THE SCIENTIFIC PARADIGM IN COMPARATIVE EDUCATION

Dimitris Mattheou

The Changing Educational Context and the Quest for a New Paradigm in Comparative Education

Comparative Education as an academic field of study was born in the aftermath of the establishment of state systems of education; in an era when the humanities dominated the school curriculum in Europe, when Bildung in Germany, Culture Générale in France, Liberal Education in England or Klassiki Paedeia in Greece had basically the same ultimate aim; the preparation of intellectually, morally and aesthetically cultivated individuals, allegedly capable and willing to provide good service to their country and to mankind.

Natural sciences, which had only recently (by the second half of the nineteenth century) managed to find a place in the curriculum, were still struggling to prove themselves in terms of their contribution to the development of human faculties, such as discipline, accurate observation, critical analysis, etc. (McLean, 1995; Lawton, 1976; Whitfield, 1971; Mattheou, 2006). Science as a form of knowledge had undoubtedly won a name for itself (Davies, 1997: 790–794); its achievements could hardly be overlooked. On the contrary, there was a ‘general conviction that scientific methods could and should be applied to the study of human as well as natural phenomena’ (Davies, 1997: 794).

And it was in this intellectual climate that Comte, one of the fathers of modern sociology, introduced scientific positivism in the study of society. Yet, despite these developments and the thorough criticism of people like Herbert Spencer, many intellectuals, educators, educational authorities and members of the leisure class remained firm in their point of view; for all its weaknesses, drawbacks and failures humanistic education embedded in the classics continued, to their way of thinking, to constitute the cornerstone of education, the complete system of timeless values and eternal verities (cf. the views of the 1864 Clarendon Commission in England, Matthew Arnold, 1869, Wilhelm von Humboldt, 1961, etc.).

This humanistic spirit prevailing in education at that time had certainly exerted an influence on the nascent cognitive domain of Comparative Education. The founding fathers of the field, among them M. Sadler, I. Kandel and later on N. Hans and R. Ulich, approached the study of foreign systems of education with a melioristic, holistic and idealistic outlook (Kazamias & Schwartz, 1977; Noah & Eckstein, 1969).
Convinced that ideas and ideals fundamentally influence men’s actions, they looked for ‘the intangible, impalpable spiritual and cultural forces which underlie an educational system’ (Kandel, 1955: xix) and which, therefore, potentially contribute to the betterment of society. As genuine humanists they turned to history and to philosophy for help. Moreover, the international circumstances during the first half of the twentieth century, especially during the mid-war years, favoured this attempt: ‘at a time when economic depression, rising nationalism, the emergence of modern authoritarian ideologies [threatened peace]… the problems of the democracies preempted the attention of educators all over the world’ (Noah & Eckstein, 1969: 50) and consequently shaped the priorities of comparative educators. They looked into the ‘forgotten struggles and difficulties’ of the past and into ‘battles long ago’ (Sadler, 1964), into the educative influence of religious and secular factors – democracy, humanism, nationalism and socialism (Hans, 1958) – in an attempt to understand the dynamics of educational development that would in turn allow policy makers, if they so wished, to improve human condition.

By the end of the Second World War, circumstances had changed. Faith in humanistic studies had diminished: not only had educated elites failed to prevent atrocities, but on several occasions they had played a leading role in the abhorrent war drama: ‘militarism, fascism, and communism found their adherents not only in the manipulated masses of the most afflicted nations but amongst Europe’s most educated elites and its most democratic countries’ (Davies, 1997: 899). The post-war ‘Dark Continent’ was in search of ‘blue-prints for the golden age’ (Mazower, 1998: 185). Education for economic development and democratisation – presumably a key element for individual and social improvement – became a central theme of the educational discourse of the time (Adams & Farrell, 1967; Sobel, 1982). Policy making and successful reform had consequently come to the forefront, and both politicians and academics were trying to find ways to respond to the new demands.

In comparative education, a new generation of comparativists felt increasingly unhappy with the historical approach. They maintained that the prevailing historical approach was too macroscopic in its perspective, too ambitious in its orientation, too qualitative in its approach, heavily melioristic and in any case irrelevant to the pressing needs of education which at the time had to cope with the problems posed by the pursuit of reform (Noah & Eckstein, 1969.; Kazamias, 1961; Mattheou, 1997; Holmes, 1965). The climate for a change of paradigm in the field was thus quite favourable.

Impressive developments in the natural and the social sciences were already pointing to a most promising paradigmatic alternative. Actually, the ‘growing respect for science … affected all branches of study. The social sciences [in particular]… exerted a profound effect on all the older disciplines’ (Davies, 1997: 1076). For instance, in sociology and economics the refinement of measurement techniques and of the statistical processing of data had generated great hopes that objectivity in the study of social phenomena could be achieved and that the laws governing their course could be expressed in a mathematical form (Kerlinger, 1965; Cohen & Nagel, 1934). For many comparativists the strengths of the scientific method, its explanatory and prognostic power, its accurate observational techniques, its systematic and thorough empirical
testing of hypotheses, its precise measurements, and its probing and fact-finding approach could hardly be ignored (Noah & Eckstein, 1969; Anderson, 1961; Holmes, 1965). Equally confident and optimistic for the strengths of the scientific method, a host of technocrats, technical advisors, bureaucrats and politicians were involved in the scientific planning of reform, believing that this was the only safe means to overcome socio-economic difficulties (cf. the work of the International Institute for Educational Planning).

The Scientific Paradigm: The Question of Aims and Laws

In this context of optimism and wishful thinking it is not strange that by the late 1950s comparative education was in search of a new ‘scientific’ identity. A fundamental prerequisite for the field to acquire scientific status was, according to the critics, the abolition of impressionism, subjectivity, speculation, intuition and predisposition, generically linked, with its qualitative and value-laden character, as this had been nurtured by the historical and philosophical work of its forefathers (Templeton, 1958; Epperson & Schmuck, 1963; Clayton, 1972). Yet, transformation was far from easy. Firstly, established schools of thought or paradigms, according to Kuhn (1970:7), never die out silently and voluntarily, as their exponents are ready to defend them. Secondly, consensus as to what actually constitutes science was far from being unanimous, especially in terms of the study of society. Hence, comparative education literature during the late 1950s and mainly during the 1960s was intensely occupied with questions of aims, content, theory and practice and most significantly of methodology in comparative education.

One way to follow these debates is to make use of a classificatory system based on the elements that constitute the Kuhnian paradigm, namely goals and subject matter, theory and exemplary practice, research rules and standards, application and instrumentation (Kuhn, 1970: 10 ff).

In what follows the discussion focuses on the question of ‘aims and laws’ – the latter being also an essential part of the ‘subject matter’ and by the same token closely linked with ‘theory’ – and on ‘epistemological and methodological issues’ pervading both ‘research rules and standards’ and ‘application and instrumentation’.

A significant paradigmatic shift concerned the aims of Comparative Education. In the new paradigm the field retained its ambitious aim to understand and to explain the workings of education and its relationship with the broader social context. Yet understanding and explanation should not be based any longer on the intuitive, cultivated and sensitive mind of the comparativist but on a hard-core scientific theory, comprising laws and verifiable quantitative hypotheses that would stand exhaustive empirical test.

The position of Bereday, who served as a bridge between the historical and the scientific paradigm, is characteristic in this respect. While his first three steps aimed basically at understanding and explaining specific educational phenomena, his ultimate aim remained total analysis; an exercise, i.e. which ‘deals with the imminent general forces upon which all systems are built’ and which lead to ‘the formulation of ‘laws’ or
‘typologies’ that permit an international understanding and a definition of the complex interrelation between the schools and the people they serve’ (Bereday, 1964: 23–25). Establishing laws, as the mature sciences did and as some social sciences – especially economics – aspired to do with significant probability of success, became a dominant methodological discourse for comparative education.

Agreement on the necessity of formulating laws did not however imply consensus as to the character of these laws. C. A. Anderson, as a sociologist, for example, would speak of ‘patterns comprising abstracted social systems, exploring relationships of essentially undated and often timeless nature’ (Anderson, 1961: 4), while in the same vein Foster would refer to the invariant relationships that exist ‘between educational institutions and the institutional matrix in which they function’ (Foster, 1960: 116). Although ‘the perennial difficulties of sifting out generalities from the maze of institutional particularities’ were recognized, C. A. Anderson – echoing the optimism and perhaps an element of positivism inherent in functionalism, a dominant theory in sociology at the time – appeared to be certain that the ‘continued pursuit of comparative education’ in this direction ‘has great promise’ (Anderson, 1977: 415–416). Clearly, his confidence as to the scope and purpose of comparative education was based on the assumption that such timeless and universal generalisations do exist and can be revealed through sociological research, provided that proper use of ever-improving research methods and techniques would be made.

On their part, Harold Noah and Max Eckstein seemed also confident that the ultimate aim of comparative education is to provide well-tested and refined generalisations. These generalisations were seen as ‘functional relationship(s) between dependent and independent variables’ expressed in propositions that preferably take the mathematical form of ‘as x changes so y changes’ (Noah & Eckstein, 1969: 93). Like structural functionalists, they too looked for universally valid explanations of how things are and how they actually function instead of searching for antecedent causes. Being aware however of the difficulties of such a project and of the pitfalls inherent in covariational relationships they were at pains to underline that ‘a statement of a functional relationship … need not necessarily refer to causal relationships’, that ‘it may not reveal the direction of influence from one factor to another’ and that ‘…the precise mechanism by which x causes y may still remain unstated’ (Noah & Eckstein, 1969: 96). They stressed the need for an unceasing refinement of explanatory propositions, every time that comparative evidence would divulge that these propositions constitute an ad hoc and a ‘simplistic explanation of the phenomena’ under consideration (Noah & Eckstein, 1969: 120). Finally, all these elucidations may explain why they did not give the status of ‘laws’ to their universal explanatory propositions.

This was not the case for Brian Holmes, another prominent adherent of the scientific approach in comparative education. Trained originally as a physicist he was imbued with the notion that the world, physical as well as social, is governed by laws; that ‘God does not play dice’, as Einstein had once said. Consequently, the student of comparative education had to start his work by appreciating the existence of laws governing the educational world.

Following the Popperian critical dualism, Holmes drew however a distinction between normative and sociological laws; ‘between the man-enforced normative laws or
conventions and the natural regularities which are beyond his power’. Normative laws ‘are man-made and can be accepted, rejected or changed by man’ (Holmes, 1981: 77), he argues. ‘Representing man’s beliefs, [they] are part of the context in which schools are run’, and hence ‘they must be known if we hope to understand how schools function’. Accordingly, ‘the establishment of … normative laws for particular nations represents … one of the most important of the many tasks a comparative educationist should tackle’ (Holmes, 1981: 78). On the other hand, sociological laws, like the laws of physics, ‘are man-made statements’, that ‘apply to the functioning of societal institutions’ both inside the school system and outside it (Holmes, 1981: 80). They are ‘hypothetical, and if they are to be scientific, [they] should be refutable’. Finally, ‘sociological laws are not universally valid: they are contingent’, in the sense that, although they constitute ‘universal or general statement(s)’ they are dependent on ‘the conditions under which [they are] to be applied’ (Holmes, 1981: 78).

Clearly the Holmesian perception of laws that govern education differ in many respects from those of his American colleagues (e.g. C. A. Anderson and Noah and Eckstein). In the first place, his laws are diversified into two distinct types which actually codify and bring together two different intellectual traditions or schools of thought: the anthropocentric, expressed through man’s freedom of the will that pervade normative laws, and the structural functional, inherent in the sociological laws. Second, sociological laws are contingent and hence they are neither a-historical nor unconditionally valid. Prevailing traditions, circumstances and conditions determine the validity and the application of these laws. The influence of relativity theory in physics is obvious in Holmes’ perception of sociological laws and overtly stated.

The contingency of sociological laws indicates, among other things, that the aim of scientific comparative education is not the ultimate formulation of either a grand educational theory based on thoroughly tested hypotheses or of absolute and unconditional laws; in this sense, contingency might even pose the question of comparability among substantially different social and educational contexts.

The role Holmes reserves for comparative education is less ambitious. To his way of thinking, comparative education should focus on the study of a specific educational problem with the aim to analyse it in context, to understand and to explain it. Through contextual analysis the ‘pure’ comparative educationist is expected to formulate refutable hypotheses (i.e. ‘hypotheses on which planned reform in education rests’ (Holmes, 1981: 78)), extrapolate from them all rationally anticipated consequences or, in other words, proceed to probable predictions as to what the outcomes of policy implementation are likely to be. To the extent that predictions are verified, the problem has been solved/explained, the hypothesis has been tested and has provisionally acquired the status of sociological law. Impressed by the striking success of relativity theory to predict phenomena that had only much later been empirically established (and explained), Holmes inaugurates prediction as the demarcation criterion of science, thus opening up a debate on the method of science in comparative education.

Irrespective of their differences concerning the aim of comparative education as an academic field of study, all three versions of the ‘scientific schools of thought’ tend to agree on the pragmatic dimensions of the field, on its potential to provide sound advice to policy makers. ‘As “pure” scientists’, Holmes argues, ‘we should attempt to
formulate alternative policies to carefully analysed problems and eliminate those we think will be less successful in particular countries. As ‘applied’ scientists we should be prepared to see how far we can help those responsible for policy to implement adopted policies…” (Holmes, 1981: 54). After all, hypotheses/sociological laws are, to Holmes’ way of thinking, identical with education policies.

‘Although explanation is’, for Noah and Eckstein, ‘the ultimate goal of all scientific (and hence comparative) work in education’, they also readily appreciate the practical contribution of the field; the help ‘provided to planners trying to improve the effectiveness of educational system’ (Noah & Eckstein, 1969: 187). And of course, many comparativists’ involvement in several technical assistance programmes for Third World countries (e.g. World Bank Projects, AID Programmes) or in national policymaking committees testify to the truth of their intention to treat comparative education as a policy-oriented field of study. This renewed emphasis on policy making on the part of scientific comparative education, which clearly runs against the humanitarian tradition of the founding fathers’ ambition to appreciate ‘the intangible, impalpable spiritual and cultural forces which underlie an educational system’ (Kandel, 1955: xix) and to grasp ‘the hidden meaning’ or the ‘real meaning’, or the ‘essence’ of things, certainly reflects the developmental priorities of the time, both economic and social. This emphasis also reflects faith on the part of political authorities in the effectiveness of rational central planning (cf. 5-year plans, in vogue during the 1950s and 1960s in many countries) which in turn was encouraged by economists’ and other social scientists’ reassurances that science (basically social sciences) was by then in a position to guarantee with a substantial measure of probability the success of the planned, i.e. of the desired predicted outcomes of educational policies (cf. Parnes, 1962; Harbison & Myers, 1964).

Epistemological and Methodological Issues

It would not be unreasonable to infer that optimism was to a large extent based on the impressive record of success in physical sciences (atomic fission and fusion, transistors, etc.) during the war and after it, and of the remarkable advances in social and behavioural sciences as well. As a matter of fact success stories or ‘finished scientific achievements as they are recorded in the classics … from which each new scientific generation learns to practice its trade’ (Kuhn, 1970: 1) have always contributed to the development of an ‘image of science [which is] persuasive and pedagogic’ (Kuhn, 1970: 1) in the sense that it usually evokes the quest for a ‘more esoteric type of research’ which in turn constitutes ‘a sign of maturity in the development of any given scientific field’ (Kuhn, 1970: 11). By mid-1950s comparative education seemed to have reached this stage. Bereday was among the first to realize it. He insisted that ‘the discussion of methods of comparative education is perhaps the most urgent task which those who research and teach comparative education must face’ (Bereday, 1957: 13). Without rejecting the historical-philosophical approach altogether, he subscribed to the circumspect use of the scientific method. He retained ‘a basic concern with the concepts and data of the social sciences, especially sociology and political science’
The Scientific Paradigm in Comparative Education

(Noah & Eckstein, 1969: 65). Other comparativists too, like Kazamias, agreed that ‘comparative education needs to be infected with a more rigorous scientific method’ (Kazamias, 1961: 96).

Although unanimous in criticising the traditional historical approach, the new generation of comparativists retained substantially different views on fundamental epistemological and methodological issues.

Each provided a different answer to questions like ‘what is science’; ‘should comparative education develop its own characteristic methodology or should it borrow from other sciences, and if so, which science should serve as the prototype’; ‘is the method of science inductive or deductive’; ‘should it be strictly empirical and quantitative or could it be more theoretical and qualitative’; ‘what should be the role reserved for history’?

Most would agree that comparative education was by definition an interdisciplinary field, at least in the sense that its interests were overlapping with those of almost all other social sciences, and was hence dependant on their methodologies – comparativists were actually ‘shameless borrowers’ of ‘other social scientists’ approaches (Farrell, 1979). Some, like Edmund King, would even argue that comparative education was itself a method of ‘getting at “the truth” of a situation’ (King, 1976: 18) rather than an independent field of study.

Yet, each had his own preferences. According to Bereday, comparative education was an interdisciplinary area of study centered around a geographical perspective of education: ‘Its specific task’, he argued, ‘is to bring several of the concerns of the humanities and the social sciences together in application to a geographical perspective of education’ (Bereday, 1964: x). On their part, C. A. Anderson and Philip Foster of the University of Chicago Comparative Education Center envisaged comparative education essentially as a branch of sociology. Holmes’ preferences lay basically with the physical sciences whose elaborate and efficient methodology he tried to transfer to comparative education by adopting critical dualism which, to his mind, constituted a productive analytical framework for the study of collective human behaviour and of law-like regularities related to the functioning of social institutions.

Preferences of comparativists for certain scientific fields were influenced by their training and occupation as well as by prevailing trends in their academic field of expertise and led to the adoption of different methodological approaches. Bereday had studied at the London School of Economics, Anderson was a sociologist, Foster, a social anthropologist, had studied in the London School of Economics as well as in Chicago under Anderson, Holmes was a physicist and Noah was an economist. As sociologists working in the United States in the 1950s Anderson and Foster followed for the most part the prevailing orthodoxy of structural-functionalism. They investigated both intra-educational and educational-societal relationships, ‘of essentially undated and often timeless nature’, by isolating and controlling variables, carefully collecting relevant data, empirically testing hypotheses of a covariational character, giving emphasis to measurement and quantitative techniques in an attempt to objectify research, by eliminating the subjective views, beliefs and prejudices of the observer. Noah and Eckstein too appeared to be confident that post-war developments in social sciences, ‘the rise of quantitative empirical research’, ‘the greater availability of
numerical data, an improved technology for storing, manipulating and retrieving data, and the widespread use of new statistical techniques’ (Noah & Eckstein, 1969: 58), had improved the scientific character of the social science approach in ‘dealing with problems of bias, tendentiousness and even caprice and willfulness’ (Noah & Eckstein, 1969: 90); hence their call for the accession of comparative education into the realm of social sciences, especially as it concerns the adoption of ‘empirical and quantitative methods of inquiry’ (Noah & Eckstein, 1969: 113).

Criticism of this unilateral perception of the scientific method with all its undue emphasis on co-relational, empirical, quantitative and objective character came from many quarters. Kazamias for example, who had advocated a synthesis of history and social science, would not accept as scientific and explanatory covariational studies that failed to make their theoretical basis explicit (Kazamias, 1963, 1970). Other critics like Toulmin (1961) and Barber (1972) would not accept that there was a single method of science utilised by working scientists and that this method provided a guarantee for objective knowledge, which, on top of that, could be universally valid. Interestingly, criticism of this mode of science came also from proponents of the scientific method in comparative education.

Brian Holmes too was not ready to accept that co-relational studies, no matter how skillfully carried out, could ever lead to general propositions of universal validity and he was therefore not ready to accept that these propositions could serve as a reliable basis for valid predictions and trustworthy policy proposals. His first reservation came from the hypothetico-inductive character of the empiricist approach. Carefully collected data on the basis of an intuitively formulated hypothesis – normally involving preconception and bias – could at best lead to its verification only within its frame of reference; this was, according to him, a limitation inherent in the inductive method, which parenthetically was not anymore accepted as the method of (physical) science. His second reservation came from the recognition of the fact that in empirical studies ‘too little attention is usually paid to conceptual analysis prior to operationalising variables’, as it is assumed that ‘unambiguous and meaningful indicators can be identified and operationalised’ (Holmes, 1981: 68) without due consideration of the different meanings, different ideologies and value systems they endow concepts with. Finally, according to Holmes, emphasis on empirical testing and measurement, on variables that can easily be quantified, leaves no room for an account of important national or cultural peculiarities; of the Sadlerian ‘living spirit’ or of the ideological whims of policy makers that have on so many occasions played a central role in decision taking.

To address the limitations of the empirical approach Holmes proposes a different comparative method. He starts by limiting the scope of his investigation. He refuses to get involved in the unfeasible task of discovering universal laws, but prefers to deal with the analysis and resolution of a specific problem, preferably of a ‘technical’ problem, which exists under certain characteristic and identifiable circumstances and which is of significance to policy making. His immediate reaction, in his problem-solving approach, is to proceed – after the careful analysis of the problem and the appreciation of the ‘initial’ conditions (the context within which the problem exists and its policy solution will be implemented) have been completed – to the formulation of a hypothesis/policy proposal that would best solve the problem. This proposal
is only tentative, problem-specific and context-specific, refutable and open to testing only through comparing anticipated results, logically deduced from it, with the actual outcomes from its implementation. Holmes’ attempt to apply to comparative education the hypothetico-deductive method which, according to him, is the method of physical science is plainly clear. His conviction on the issue and on the plausibility of transferring and incorporating it to comparative education led him to the extensive exploration of relevant epistemological and methodological issues and to the utilisation of various theoretical perspectives from scholars such as Popper, Dewey, Weber, Myrdral, etc.

From all his theoretical stances, prediction as the demarcation criterion of science attracted perhaps the most severe criticism. He was reminded that prediction in human and social affairs is an unfeasible task, given the complexity and uncertainty of society and man’s freedom of the will (King, 1967); a criticism to which he responded that prediction is not equivalent to long-term prophesies and in any case it is not about extracting certainties but rather probabilities, a situation that has not prevented people from organising systems of public transportation or from calculating insurance premiums (Holmes, 1981: 79). The heat of the debate had actually inflated the issue of prediction out of its normal proportions.

On the other hand, reflecting perhaps the influence of the English (and European) humanistic tradition in comparative education, the problem-solving approach reserved a place for history (Mattheou, 1993). The use of ‘normative patterns’ at the cross-national level – this highly internalised set of values and norms inherited from the past, codified in ideal-typical models based on the work of historically renowned thinkers (e.g. Plato, Dewey, Marx) and responsible for human behaviour – is indicative in this respect. The same is true for the ‘pattern of mental states’ at the national level; those ‘lower valuations’ or ‘mores’ which ‘constitute, if you will, Sadler’s “living spirit”, or Mallinson’s “national character”’ (Holmes, 1981: 83). Thus, in a way, the Holmesian scientific approach came, in my judgement, closer to satisfying Kazamias appeal for a synthesis of history and social science (Kazamias, 1963; Kazamias & Schwartz, 1977).

The eclecticism of the problem-solving approach in comparative education prevented its use in actual comparative research. On the other hand, research financiers and policy makers are sceptical of methodological approaches that do not lead to clear-cut proposals, that are not supportive to ideologically preconceived policies and that do not provide reassurances for their success within their own term of office. So, the scientific method that finally prevailed was that of the American functionalist and empirical school of thought in the social sciences. Major comparative research projects like the IEA studies, followed the empirical-quantitative road.

On the other hand, the scientific methodology that finally prevailed seemed to be compatible with and well-suited to the needs and priorities of educational policy at the time. To some extent one could argue that comparative research of economists and human capital theorists interested in Third World development played a substantial part in laying down the political agenda for education policy making and certainly in providing arguments to educational reformers. Exponents of development education (Harbison & Myers, 1964; Adams, 1977; Anderson & Bowman, 1965) and modernisation theorists (like Wiener, 1966; Levy, 1966) with all their reassuring evidence were the cornerstone of reform almost everywhere, with policy makers prompt to call
upon the hard facts of scientific research. In this sense social science had become a convenient alibi and/or a legitimising means for the prevailing political orthodoxy in education. Educational expansion and hence increased funding of the educational sector were argued on the basis of human capital theory (Schultz, 1963; Bowen, 1964) and of the utilisation of the latent pool of talents. The comprehensive school movement drew support from sociological research findings (Halsey et al., 1961). Technical assistance programmes to Third World countries were also given the blessings of technocrats and several academic experts prior to their approval (UNESCO, 1972; Adams & Bjork, 1971).

The Decline of the Search for an All-Embracing Paradigm

By the mid-1970s the scientific approach of the 1960s to comparative education lost its momentum. Developments in the real world and in academia may be held responsible for the decline of its appeal.

In the first place, many promises – social justice and mobility, uninterrupted economic growth, elimination of underdevelopment – were not kept: ‘scientific’ research and planning had failed to live up to their reassurances as to the righteousness and the effectiveness of their policy proposals (Hüsen, 1982). The hard facts of life had in practice rendered unreliable all the grandiloquent statements about the objective, infallible and positive character of the scientific approach, thus undermining the very foundations of its reputation. Scientific comparative education was not in this sense better suited for the job than other alternative methodological approaches. This explains perhaps why so many different approaches and perspectives found a place in comparative education during the following decades.

A second reason for the decline of the supremacy of the scientific method in comparative education should be sought in the changing epistemological pattern in the natural sciences. The quantum mechanics paradigm in physics was suggesting that god might eventually play dice; uncertainty and perhaps chaos rather than the rule of law might be the order of the day in nature. And if this was true for physics, then social sciences (and comparative education) could not hope for anything more. The scientific method could not claim supremacy on epistemological and practical grounds over other alternative approaches.

In addition, the post-modern climate, the devaluing of grand theories into grand narratives, favoured in the social sciences the development of new cognitive domains, new theories and new approaches; despite their more qualitative, participatory or subjective character, these approaches were given an equivalent academic status. Thus, comparative education itself saw the emergence of new approaches and methodologies that were disputing and negating the dominance of the scientific paradigm of the 1960s; academics’ inclination to explore new regimes of truth had certainly played its role. Already by the 1980s one could rightfully suggest that ‘there are now many schools of thought in comparative education and none has dominance’ (Altbach, 1991: 493); consequently it would be more accurate to speak today about comparative educations rather than about comparative education (Cowen, 2000).
The decline of ‘scientific’ comparative education does not certainly imply that it has lost all its influence or its adherents. After all, ‘there are always some men who cling to one or another of the older views’ (Kuhn, 1970: 19). This is even more true for those past paradigms that had served their stakeholders well. In this sense, the covariational, quantitative and empirical sort of comparative education has consistently served politicians well. They have repeatedly relied on it for the legitimation and promotion of their preconceived policies. The longevity of the IEA studies and the influence programmes like PISA have on policy making bear witness to this fact.

Coda

Referring to the development of national systems of education Hans had argued that every system corresponds to a complex edifice of various architectural styles, each related to the historical period its different apartments were built (Hans, 1958: 10).

The metaphor seems somehow appropriate for the development of comparative education too. Its forefathers had discovered a privileged site for educational study amidst the marshy land of nineteenth century educational borrowing. They had decided to build an edifice on it that would contribute to the utilisation of its fertile ground; to a better understanding of the interplay between society and education through history. When later on difficulties arose, their successors, equipped with new ‘scientific technologies’, built a new and presumably stronger estate. Ever since, new buildings have been erected, each following different architectural styles and contributing to an allegedly better utilisation of the land.

From the very beginning some of those buildings were occupied by tenants related to policy making. Yet the rest remain in the hands of the academic community and are still being expanded. Fortunately enough, they constitute the habitat of criticism, innovative thinking and creativity; the place where episteme, the art of endless, laborious but intellectually rewarding search for truth resides.

References

The Scientific Paradigm in Comparative Education

Author Query:

[Au1] Please provide citation for Kazamias & Schwartz, 1970.