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Abstract: This paper investigates the hedging effectiveness of the Standard & 
Poor’s (S&P) 500 stock index futures contract using weekly settlement prices 
for the period 3 July 1992–30 June 2002. Particularly, it focuses on three  
areas of interest: the determination of the appropriate model for estimating a 
hedge ratio that minimises the variance of returns; the hedging effectiveness 
and the stability of optimal hedge ratios through time and an in-sample 
forecasting analysis to examine the hedging performance of different 
econometric methods. The hedging performance of this contract is examined 
considering alternative methods, both constant and time varying, for computing 
more effective hedge ratios. The results suggest the optimal hedge ratio that 
incorporates non-stationarity, long-run equilibrium relationship and short-run 
dynamics are reliable and useful for hedgers. Comparisons of the hedging 
effectiveness and in-sample hedging performance of each model imply that the 
Error Correction Model (ECM) is superior to other models employed in terms 
of risk reduction. Finally, the results for testing the stability of  
the optimal hedge ratio obtained from the ECM suggest that it remains stable 
over time. 

Keywords: hedging effectiveness; Minimum Variance Hedge Ratio; MVHR; 
hedging models; Standard & Poor’s (S&P) 500 stock index futures. 
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1 Introduction 

The hedging effectiveness of stock index futures has been extensively investigated in 
recent years using the portfolio approach to hedging and the associated Minimum 
Variance Hedge Ratio (MVHR) of Johnson (1960). Hedging through trading futures is a 
process used to control or reduce the risk of adverse price movements. The introduction 
of stock index futures contracts offered to market participants the opportunity to manage 
the market risk of their portfolios without changing the portfolios composition. 

The effectiveness of a hedge becomes relevant only in the event of a significant 
change in the value of the hedged item. A hedge is effective if the price movements of 
the hedged item and the hedging derivative roughly offset each other. According to 
Pennings and Meulenberg (1997), a determinant in explaining the success of financial 
futures contracts is the hedging effectiveness of futures contracts. 

All the previous studies, which investigate measures of hedging effectiveness, use the 
simple Ordinary Least Squares (OLS) regression for estimating hedge ratios. However, 
there is a wide evidence that the simple regression model is inappropriate to estimate the 
hedge ratios, as it suffers from the problem of serial correlation in the OLS residuals and 
the heteroskedasticity often encountered in cash and futures price series (e.g. Herbst  
et al., 1993). Thus, to counter the problem of inconstant variances of index futures and 
stock index prices, a number of papers measure optimal hedge ratios via autoregressive 
conditional heteroskedastic processes which allow for the conditional variances of spot 
and futures prices to vary over time (e.g. Park and Switzer, 1995). 

A second problem encountered when estimating hedge ratios arise from the 
cointegrative nature between the spot and futures markets. If no account is made for  
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the presence of cointegration, it can lead to an under-hedged position due to the 
misspecification of the pricing behaviour between these markets (Ghosh, 1993). 
Numerous studies have used Error Correction Models (ECMs) when analysing the  
spot-futures relationship (e.g. Chou et al., 1996), while other papers have also included 
both Error Correction Terms (ECTs) and a time-varying risk structure (e.g. Lien and  
Tse, 1999). 

This paper contributes to the existing literature in a number of ways. Firstly, the 
chosen period updates earlier work on the Standard & Poor’s (S&P) 500 stock index 
futures contract that has not considered periods of the late 1990s and the early 2000s. 
Secondly, different model specifications, both constant and time varying, are estimated 
and compared so as to arrive at the most appropriate model, which takes account of the 
univariate properties of cash and futures prices. Thirdly, the MVHRs are estimated via 
alternative methods, already used in previous studies (OLS, ECM, GARCH model and 
ECM with GARCH error structure), but also the EGARCH model. This model has never 
been considered for computing hedging ratios in prior empirical studies known. Finally, 
an in-sample forecasting analysis is conducted to examine the hedging performance of 
alternative models, while the stability of the optimal hedge ratio through time for the 
superior model is also examined, given that investors are likely to use hedge ratios 
estimated in one period to hedge positions in the coming period. 

The rest of the paper is organised as follows. Section 2 briefly discusses theoretical 
considerations by presenting the traditional one-to-one, the beta and the minimum 
variance hedging strategies. Section 3 briefly reviews the relevant empirical research. 
The data and methodology adopted are then set out; the results are presented and are 
followed by concluding remarks in Sections 4–6. 

2 Theoretical considerations 

In considering the use of futures contracts to hedge an established spot position, the 
investor must decide on the hedge ratio, h, to be employed. The hedge ratio is the ratio of 
the number of units traded in the futures market to the number of units traded in the spot 
market. The particular hedging strategy adopted depends crucially on the investor’s 
objectives. Research has concentrated on three hedging strategies: the traditional  
one-to-one; the beta hedge and the minimum variance hedge proposed by Johnson 
(1960) and also associated with Ederington (1979). 

The traditional strategy emphasises the potential for futures contracts to be used to 
reduce risk. It is a very simple strategy, involving the hedger in taking up a futures 
position that is equal in magnitude, but opposite in sign to the spot market position, that 
is, h = −1. If proportionate price changes in the spot market match exactly those in the 
futures market the price risk will be eliminated. However, in practice, it is unlikely for a 
perfect correlation between spot and future returns to exist and hence the hedge ratio that 
minimises the variance of returns will definitely differ from −1. 

Beta hedge ratio simply refers to the portfolio’s beta. The beta hedge has the same 
objective as the traditional 1:1 hedge that establishes a futures position that is equal in 
size but opposite in sign to the spot position. Yet, when the cash position is a stock 
portfolio, the number of futures contracts needed for full hedge coverage needs to be 
adjusted by the portfolio’s beta. In many cases the portfolio to be hedged will be a subset 
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of the portfolio underlying the futures contract, and hence the beta hedge ratio will 
deviate from −1. However, it may be the case that the futures contract may mirror the 
portfolio to be hedged, and thus the beta hedge ratio will be the same as the traditional 
hedge ratio. 

Johnson (1960) proposed the MVHR as an alternative to the classic hedge.  
He applied modern portfolio theory to the hedging problem. It was the first time that 
definitions of risk and return in terms of mean and variance of return were employed to 
this problem. Johnson maintained the traditional objective of risk minimisation as the 
main goal of hedging but defined risk as the variance of return on a two-asset hedged 
portfolio. The MVHR (h*) is measured as follows: 

*
2

f SF

S F

X
h

X

σ
σ

= − =  (1) 

where *
FX  and SX  represent the relative dollar amount invested in futures and spot, 

respectively, σSF is the covariance of spot and futures prices changes and 2
Fσ  is the 

variance of futures price changes. It should be mentioned that the minimum variance 
hedge is the coefficient of the regression of spot price changes on futures price changes. 
The negative sign reflects the fact that to hedge a long stock position it is necessary to go 
short (i.e. sell) on futures contracts. Using the MVHR assumes that investors are 
infinitely risk averse. While such an assumption about risk-return trade-off is unrealistic, 
the MVHR provides an unambiguous benchmark against which to assess hedging 
performance (Butterworth and Holmes, 2001). 

Johnson also developed a measure of the hedging effectiveness (E) of the hedged 
position in terms of the reduction in variance of the hedge [VAR (H)] over the variance 
of the unhedged position [VAR (U)]: 

VAR( )
1

VAR( )

H
E

U
= −  (2) 

substituting the minimum variance * ,fX  and rearranging yields 
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−
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where the ρ2 is the squared simple correlation coefficient of spot, futures price changes. 
The measure of hedging effectiveness for the MVHR model is the squared simple 
correlation coefficient of spot price changes (∆S) to futures price changes (∆F) or the R2 
of a regression of spot price change on futures price change.1 

3 Literature review 

The majority of the studies investigating the hedging on stock index futures relates to the 
USA, although more recent research has been focused on UK, Japan and Germany. In 
the first analysis of hedging effectiveness of stock index futures, Figlewski (1984) 



   

 

   

   
 

   

   

 

   

    Hedge ratio estimation and hedging effectiveness 125    
 

    
 
 

   

   
 

   

   

 

   

       
 

calculated the risk and returns combinations of different capitalisation portfolios 
underlying five major stock indices that could have been achieved by using the S&P 500 
stock index futures as a hedging instrument for the period June 1982–September 1983. 
The risk of minimising hedge ratios was estimated by OLS on historical spot and futures 
returns. He found that for all indices represented diversified portfolios ex post MVHRs 
were better than the beta hedge ratios. With large capitalisation portfolios, risk was 
considerably reduced in contrast to smaller stocks portfolios. Moreover, Figlewski 
pointed out that dividend risk was not an important factor, whereas time to maturity and 
hedge duration were. 

Junkus and Lee (1985) investigated the hedging effectiveness of three US stock index 
futures under alternative hedging strategies. The optimal hedge ratios were calculated 
using the OLS conventional regression model. Their results indicated the superiority of 
MVHR. Moreover, there was little evidence about the impact of contract expiration and 
hedging effectiveness. Ghosh (1993) extended studies of lead and lag relationships 
between stock index and stock index futures prices by using an ECM, arguing that  
the standard OLS approach is not well specified in estimating hedge ratios (ratio for the 
S&P 500, NYSE composite index, but not the DJIA index) because it ignores lagged 
values. 

Holmes (1996) tried to assess the appropriate econometric technique when estimating 
optimal hedge ratios of the FTSE-100 stock index by applying a GARCH (1,1) as well. 
He showed that in terms of risk reduction a hedge strategy based on MVHRs estimated 
using OLS outperforms optimal hedge ratios that are estimated using more advanced 
econometric techniques such as an ECM or a GARCH (1,1) approach. Furthermore, he 
provided evidence that effectiveness increased with hedge duration, while the impact of 
an expiration effect was not straightforward. 

Butterworth and Holmes (2001) investigated the hedging effectiveness of the  
FTSE-Mid 250 stock index futures contract using actual diversified portfolios in the form 
of Investment Trust Companies (ITCs). Using an alternative econometric technique 
(Least Trimmed Squares Approach) to estimate hedge ratios, their results showed that 
this contract is superior to the FTSE-100 index futures contact when hedging cash 
portfolios mirroring the Mid250 and the FT Investment Trust (FTIT) indices 

Chou et al. (1996) estimated and compared the hedge ratios of the conventional and 
the ECM using Japan’s Nikkei Stock Average (NSA) index and the NSA index futures 
with different time intervals for the period 1989–1993. Examining an out-of-sample 
performance, the ECM outperformed the conventional approach, while the opposite hold 
by evaluating the in-sample portfolio variance. As far as the temporal aggregation is 
concerned, their results showed that hedging effectiveness increased as hedge duration 
increased. Finally, Lypny and Powalla (1998) examined the hedging effectiveness of the 
German stock index DAX futures and showed that the application of a dynamic hedging 
strategy based on a GARCH (1,1) process is economically and statistically the most 
effective model. 

4 Methodology 

This paper aims to determine the appropriate model when estimating optimal hedge 
ratios. The alternative models employed are as follows. 
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4.1 Model 1: the conventional regression model 

This model is just a linear regression of change in spot prices on changes in futures 
prices. Let St and Ft be logged spot and futures prices, respectively, the one period 
MVHR can be estimated as follows: 

0t t tS a F uβ∆ = + ∆ +  (4) 

where ut is the error from the OLS estimation, ∆St and ∆Ft represent spot and futures 
price changes and the slope coefficient β is the optimal hedge ratio (h*). 

4.2 Model 2: the error correction model 

Engle and Granger (1987) stated that if sets of series are cointegrated, then there exists a 
valid error correction representation of the data. Thus, if St represents the index spot price 
series and Ft the index of futures price series and if both series are I(1), there exists an 
error correction representation of the following form: 

1
1 1

m n

t t t t k t j t
k j

S au F F S eβ θ φ− − −
= =

∆ = + ∆ + ∆ + ∆ +∑ ∑  (5) 

where ut−1 = St−1 − [a0 + a1Ft−1] is the ECT and has no moving average part; the systematic 
dynamics is kept as simple as possible and enough lagged variables are included to 
ensure that et is a white noise process and the coefficient β is the optimal hedge ratio.2 

4.3 Model 3: the GARCH model 

A useful generalisation of ARCH models introduced by Bollerslev (1986) is the GARCH 
(1,1) model that parameterises volatility as a function of unexpected information shocks 
to the market. The equation for GARCH (1,1) is as follows: 

0

2 2 2
1 1 1t t ta a eσ β σ− −= + +  (6) 

The equation specified above is a function of three terms: the mean α 0, news about 
volatility from the previous period, measured as the lag of the squared residual from the 
mean equation 2

1te −  (the ARCH term), and last period’s forecast variance 2
-1tσ  (the 

GARCH term). The more general GARCH (p, q) calculates 2
tσ  from the most recent p 

observations on e2 and the most recent q estimates of the variance rate. 
Estimation sometimes results in 1 1,a β+ ≈  or even 1 1.α β+ >  Values of α1 + β 

close to unity imply that the persistence in volatility is high. In other words, to interpret 
expression (6), suppose that there is a large positive shock et−1, and hence 2

1te −  is large, 

then the conditional variance 2
tσ  increases. This shock is permanently ‘remembered’ if 

α1 + β is greater than or equal to unity but dies out if it is less than unity. 



   

 

   

   
 

   

   

 

   

    Hedge ratio estimation and hedging effectiveness 127    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.4 Model 4: the EGARCH model 

The EGARCH model is given by 

2 2 1 1
1

1 1

log log( ) t t
t

t t

aτ

ε ε
σ ϖ β σ γ

σ σ
− −

−
− −

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 (7) 

where ϖ , α, β and γ are constant parameters (Nelson, 1991). The left-hand side is that 
of the conditional variance. This implies that the leverage effect is exponential, rather 
than quadratic, and those forecasts of the conditional variance are guaranteed to be  
non-negative. As, the level 1 1/t tε σ− −  is included, the model will be asymmetric if 0.γ ≠  

The presence of leverage effects can be tested by the hypothesis that γ > 0. If the leverage 
effect term, γ, after running the appropriate regression, is negative and statistically 
different from zero, this will imply that positive shocks generate less volatility than 
negative shocks (bad news). 

Comparisons are then made of the hedging effectiveness associated with each 
hedging strategy based on the MVHR estimations, using the simple OLS, the ECM, the 
ECM with GARCH errors and the GARCH and EGARCH models. The question of the 
appropriate model to use when estimating the optimal hedge ratio of the S&P 500 index 
futures contracts traded in the USA is of considerable interest to investors wishing to use 
this contract for hedging. 

In addition, comparisons of in-sample hedging performance among the four models 
are given. Investors are usually concerned with how well they have done in the past. 
Therefore, the in-sample hedging performance is a sufficient way to evaluate the hedging 
performance of alternative models employed to obtain the optimal hedge ratio. The 
measures that are most used to identify how well individual variables track their 
corresponding series are the Root Mean Square Errors (RMSEs), Mean Absolute Errors 
(MAEs) and Mean Absolute Percent Errors (MAPEs). 

Finally, the issue of the stability of the estimated hedge ratio is also examined in this 
study using the Chow’s breakpoint test for superior model. We apply the Chow’s 
breakpoint test by examining parameter consistency from 19 March 1999 onwards. The 
particular date is chosen for the following reasons. Firstly, the date should be within our 
sample, and also because, after plotting both our series, we identified a peak in the 
residuals at that particular date. 

5 Data and empirical results 

5.1 Data 

In this paper, the hedging performance of the S&P 500 futures contract is examined 
using data relating to the period July 1992–June 2002. The spot portfolio to be hedged is 
that underlying the S&P 500 index. The data used for both spots and futures relate to 
closing prices on a weekly basis. Weekly data are preferred in this study for several 
reasons. Firstly, the choice of weekly hedges is realistic and implies that hedgers in the 
market rebalance their futures positions on a weekly basis. Secondly, a one-week hedge  
can be used to reduce risk without incurring excessive transactions costs. Finally,  
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the weekly hedging horizon is the most common choice of the prior empirical studies in 
several derivatives markets. Nearest to expiration is used in all estimations for futures 
contract. In line with previous studies changes in logarithms of both spot and futures 
price are analysed and no adjustment is made for dividends. All prices were obtained 
from DataStream. 

5.2 Tests of units roots and cointegration 

Tests for the presence of a unit root are performed by conducting the Augmented 
Dickey-Fuller and Phillips-Perron unit root tests under the assumption that there is no 
linear trend in the data generation process. However, after plotting the data we have 
identified that both our series appear to be trended. Therefore, the tests were performed 
using a linear time trend and an intercept. The ADF (four lags) and PP (five lags) test 
statistics indicate that none of the level series are stationary processes; while for the 
differenced series the hypothesis of a unit root is rejected at 5% level, suggesting that the 
differenced series are stationary processes. The test results are reported in Table 1. 

Table 1 ADF and PP tests for unit root 

Interval S&P 500 (Levels) S&P 500 (Differences) 

Spot Futures Spot Futures 
 

ADF PP ADF PP ADF PP ADF PP 

One week –2.5539 –2.5403 –2.5769 –2.6103 –10.4302* –24.8812* –10.7417* –25.4163* 

Critical value –3.4422        

Note: The null hypothesis is that series has a unit root. 
*Denotes that the test statistics are significantly different from zero at the 5% level. 

As we have identified that both our series, the spot prices (St) and future prices (Ft), are 
I(1), then the presence or absence of cointegration can be investigated by simply 
regressing the value of the spot asset (St) on the value of the futures contract (Ft).  
In particular a test for a unit root in the estimated residuals will determine the presence or 
absence of cointegration. The estimates of a0 and a1 of the long-run regression are 
presented in Equation (8). Table 2 provides the ADF and PP tests on the residuals. 

0.027309 0.994311t t tS F u= + +  (8) 

The results suggest that the spot S&P 500 index is cointegrated with the S&P 500 index 
futures, as it shows that the error term is I(0). Evidence in favour of a cointegrated 
system between weekly closing prices on the stock index and weekly ‘settlement’ prices 
on the stock index futures implies that both the cash and the futures markets have a 
tendency to move together in the long run, in spite of the fact that short run deviations 
from equilibrium may be observed due to temporary disequilibrium forces. 

In addition, we notice that the coefficient of Ft is very close to unity. Even though 
other time intervals (hedge duration) are not examined in this paper, our finding 
corresponds to previous studies that support there is a tendency for the magnitude of the 
hedge ratio to increase with the level of aggregation, suggesting that the length of the 
time interval has an important impact on the hedge ratios (e.g. Chou et al., 1996; 
Figlewski, 1984). 
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Table 2 ADF and PP tests for unit root on the residuals 

 ADF PP 

 −8.9677* −11.9916* 

Critical value −3.4422  
*Denotes that the null hypothesis of no cointegration is rejected at the 5% level. 

5.3 The results from Models 1–4 

The optimal hedge ratio from the regression of the form given in Equation (4), that is, 
using the ‘conventional approach’, is presented in the following equation: 

0.000178 0.947281t t tS F u∆ = + ∆ +  (9) 

The slope coefficient β is the optimal hedge ratio. In this case, it is close to unity and 
highly significant. The adjusted R2 is 0.975164 and indicates a good fit. However, the 
model exhibits a serial correlation and heteroskedasticity, while there are no ARCH (1) 
effects. 

As the spot S&P 500 index is cointegrated with the S&P 500 index futures, then, 
according to Engle and Granger (1987), an ECM must exist as presented in Equation (5). 
Table 3 presents a summary of the ECM that was chosen according to the smallest value 
of the Akaike Information Criterion (AIC) and the Schwarz’s Bayesian Information 
Criterion (BIC). Any insignificant variables are excluded from the model to reach a  
more parsimonious specification. By examining Table 3, we can report that the optimal  
hedge ratio is 0.95582 and the ECM including no lags has a nice fit 2( 0.98134).R =   
In addition, this model has a small standard error of regression, while the error correction 
coefficient (ut−1) is statistically significant at 5% level. The coefficient of the error term 
measures the single period response of the left-hand side variable (∆St) to departures 
from equilibrium and has important predictive powers. Indeed, it could be mentioned  
that about 50% of the discrepancy between St and its long-run equilibrium is corrected 
within a week. This shows that last period’s disequilibrium error has a great impact in the 
adjustment process of the subsequent price changes in the cash market. It is also 
noticeable that the intercept is highly insignificant indicating there is no linear time trend 
in the data generating process. 

The diagnostics tests indicate no serial correlation up to the second lag, no ARCH (1) 
effects, but the problem of heteroskedasticity is observed. The adjusted R2 indicates  
that 98% of the variance is explained by our model. However, the presence of 
heteroskedasticity, violating one of the assumptions underlying OLS, leads us to 
reestimate the optimal hedge ratio using two appropriate methods: GARCH and 
EGARCH models. In addition, an ECM with GARCH errors was also examined. This 
was done to correct for the presence of heteroskedasticity. 

Table 4 presents the results from the GARCH model, the EGARCH model and  
the ECM with GARCH errors employed in this paper. Initially, we fitted a GARCH (1,1) 
and a GARCH (2,1) model. The GARCH parameter β corresponding to Equation (6) is 
significant for both of our models, while the ARCH parameter a1 is highly insignificant 
in the case of a GARCH (2,1). As a1 and a2 are insignificant at the 5% level, this indicates 
that old shocks have no impact on current volatility, hence heteroskedasticity  
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is corrected. We obtain an optimal hedge ratio of 0.944651 very close to unity.  
The adjusted R2 is 0.974120 indicating a nice fit. On the other hand, the ARCH (1)  
term for the GARCH (1,1) is highly significant at the 5% level. Testing for ARCH (1) 
effects we obtain a p-value of 0.284243 and hence heteroskedasticity is corrected (we  
do not reject the null hypothesis of no ARCH effects at the 5% level). However, the  
sum of the ARCH and GARCH coefficients (a1 + β ) is 0.730494 (see Equation (6)) 
indicating that old shocks have an impact on current volatility but this effect is not 
permanently remembered. Instead, due to the fact that this sum is less than unity it  
dies out. 

Table 3 Results from the ECM 

Variable Coefficient SE t-Stat Prob.  

C 0.000138 0.000127 0.882026 0.3923  

u
t−1

 −0.4983901 0.0386350 −11.842860 0.00000  

∆F
t

* 0.955820 0.005358 146.3982 0.00000  

Lag criteria 

  Akaike info criterion    −8.898341 

  Schwarz criterion    −8.854448 

Model adequacy      

   0.002501 

   0.003316 

  SE of regression 

  Mean 

  Adjusted R2    0.981341 

      

  0.574682  

  0.188212  

Serial correlation LM test 

ARCH LM test 

White heteroskedasticity test   0.000000  

Notes: The dependent variable of the ECM is defined as ∆S
t
 = log (S

t
/S

t–1
), while ∆F

t
 = log 

(F
t
/F

t–1
). Serial correlation LM test is Breusch-Godfrey’s Lagrange Multiplier (LM) 

Statistic for second and fifth serial correlation in the residuals, being asymptotically 
distributed as X2 under the null of serial independence. The ARCH LM test is Engle’s 
LM statistic for autoregressive conditional heteroskedasticity under the null of no 
ARCH effect. Heteroskedasticity test is White’s test statistic for heteroskedasticity in 
the residuals, being asymptotically distributed as X2 under the null of no 
heteroskedasticity. 

*The optimal hedge ratios (h*) are the coefficients of the variable ∆F
t
. 

In addition, an EGARCH (1,1) model was estimated where all terms were statistically 
significant. The leverage effect term γ  is positive and statistically different from zero, 
indicating the existence of the leverage effect (evidence of asymmetry).3 Hence, negative 
shocks generate less volatility than positive shocks (good news). We obtain an optimal 
hedge ratio of 0.957953, very close to unity. The adjusted R2 is 0.971802 indicating a 
nice fit. 
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Table 4 Results from the GARCH model, the EGARCH model and the ECM with  
GARCH errors 

Variable Coefficient SE z-Stat Prob. 

 GARCH (1,1)    

*
tF∆  0.948062 0.005590 163.8893 0.0000 

α1 (ARCH (1)) 0.150432 0.058057 2.635951 0.0078 

β (GARCH (1)) 0.580062 0.150959 3.793963 0.0000 

Adjusted R2 = 0.973843 SE of regression = 0.003298 ARCH test (p-value) = 0.284243 

 GARCH (2,1)    

*
tF∆  0.944651 0.006241 156.2389 0.0000 

α1 (ARCH (1)) 0.091077 0.066378 1.396932 0.1567 

α 2 (ARCH (2)) 0.090981 0.087799 1.041368 0.2882 

β (GARCH (1)) 0.605277 0.148270 4.096276 0.0000 

Adjusted R2 = 0.974120 SE of regression = 0.003382 ARCH test (p-value) = 0.467912 

 EGARCH (1,1)    

*
tF∆  0.957953 0.007228 136.8890 0.0000 

γ 0.230686 0.040590 5.078608 0.0000 

EGARCH (1) 0.983622 0.005992 143.0483 0.0000 

Adjusted R2 = 0.971802 SE of regression = 0.003374 ARCH test (p-value) = 0.758862 

 ECM with GARCH (1,1) errors   

*
tF∆  0.952578 0.005609 169.9308 0.0000 

ARCH (1) 0.036582 0.017964 1.944276 0.0582 

GARCH (1) 0.968236 0.019892 48.66820 0.0000 

Adjusted R2 = 0.980582 SE of regression = 0.002812 ARCH test (p-value) = 0.938502 

 ECM with GARCH (1,0) errors   

*
tF∆  0.956217 0.005312 183.3577 0.0000 

ARCH (1) 0.085387 0.046652 1.710992 0.0928 

Adjusted R2 = 0.980611 SE of regression = 0.002809 ARCH test (p-value) = 0.963948 

 ECM with GARCH (2,0) errors   

*
tF∆  0.956903 0.005293 189.8967 0.0000 

ARCH (1) 0.136602 0.061309 2.476901 0.0181 

ARCH (2) 0.128350 0.049683 2.693601 0.0084 

Adjusted R2 = 0.980578 SE of regression = 0.002829 ARCH test (p-value) = 0.510821 

*The coefficient of the variable ∆F
t
 defined as log (F

t
/F

t−1
) is the optimal hedge ratios (h*). 

Finally, we examined an ECM with GARCH errors, to correct for heteroskedasticity. In 
particular, we fitted a GARCH (1,1), a GARCH (1,0) and a GARCH (2,0) upon our 
ECM. The GARCH (2,0) model manages to correct heteroskedasticity. Testing for 
ARCH (1) effects we obtain a p-value of 0.510821 and hence heteroskedasticity is 
corrected. Both ARCH terms are highly significant at 5% level; while the two alternative 
models manage to explain the behaviour of the dependent variable (insignificant ARCH 
terms). Thus, we consider the GARCH (1,0) model quite better than the GARCH (1,1) as 
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we obtain a higher adjusted R2 and it has the smallest standard error of regression.  
The optimal hedge ratio we obtain of such an approach is 0.956218, very close to unity. 
We should mention here that although the ECM with GARCH (1,0) errors performs 
statistically better than the simple error correction representation, it did not manage to 
increase hedging effectiveness, as measured by using the adjusted R2, and hence the 
simple error correction representation is considered superior. 

Table 5 summarises the comparisons of the optimal hedge ratios estimated using 
alternative methods. In terms of risk reduction, the appropriate method for estimating 
optimal hedge ratios is the ECM. The results from the other models did not manage to 
increase hedging effectiveness, as measured by the adjusted R2, and hence a simple error 
correction representation is considered superior. 

Table 5 Comparisons between hedging models 

 OLS ECM GARCH (2,1) EGARCH (1,1) 

Hedge ratios 0.947281* 0.955820* 0.944651* 0.957953* 

Adjusted R2 0.975164 0.981341 0.974120 0.971802 

Serial correlation 
(two lags) (p-value) 0.00000 0.574682* – – 

ARCH (1) (p-value) 0.56277* 0.188212* 0.467912* 0.758862* 

Heteroskedasticity 
(p-value) 0.00108 0.000000 – – 

RMSEs** 0.004762 0.004183*** 0.004771 0.004756 

MAEs** 0.003753 0.003194*** 0.003798 0.003613 

MAPEs** 26.08845 19.16262*** 26.22565 26.03724 

*Significant at 5% level. 

**According to the RMSEs, MAEs and MAPEs, the smaller the error, the better the 
forecasting ability of the model. 

***Indicates the smaller error between the models. 

5.4 In-sample analysis 

Table 5 also reports the RMSEs, MAEs and MAPEs for each model. The results indicate 
that the error correction specification outperforms all other models as it has the smallest 
values of the above measures. However, all models performed well as the estimated 
RMSEs are close to zero. Therefore, we could claim that the ECM fits the available data 
sufficiently well and can forecast adequately. 

On average, the ECM gives forecasts with about a 12% reduction in RMSEs.  
In contrast, Park and Switzer (1995) find that the hedge strategy for the S&P 500, MMI 
and Toronto 35 index futures using the GARCH is superior to other methods. Chou et al. 
(1996) report that the OLS outperforms the ECM for the Nikkei futures index. However, 
they report that for out-of-sample forecasts the reverse stands. Moreover, Lypny and 
Powalla (1998) provide evidence that a GARCH (1,1) is economically and statistically 
superior to other models based on the RMSEs, while Holmes (1996) finds that the OLS 
hedges dominate. 
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Finally, the issue of the stability of the estimated hedge ratio is also examined using 
Chow’s breakpoint test for the ECM, which was shown to be a superior model. We apply 
Chow’s breakpoint test by examining parameter consistency from 19 March 1999 
onwards. The results from Table 6 indicate that null hypothesis of no breakpoint is not 
rejected since the probability value of 0.174494 is greater than 0.05 (5%). 

Table 6 Stability test using Chow’s breakpoint test, 19 March 1999 

F-statistic 1.264100 Probability 0.174494* 

Log-likelihood ratio 37.58262 Probability 0.084696 
*Denotes that the null hypothesis of no structural change is not rejected at the 5% level. 

6 Conclusions 

This paper estimated optimal hedge ratios and examined the hedging effectiveness of the 
S&P 500 index using alternative models, both constant and time varying, over the period 
from July 1992 to June 2000. The findings of this study suggest that in terms of risk 
reduction the ECM is the appropriate method for estimating optimal hedge ratios as it 
provides better results than the conventional OLS method, the ECM with GARCH errors, 
the GARCH model and the EGARCH (1,1) model. 

The adjusted R2 value, which measures the effectiveness of the hedge, is higher for 
the ECM. In addition, judging from the in-sample test the proposed error correction 
specification achieves a significantly lower RMSE when compared with forecasting 
performance of the alternative models. Indeed, the in-sample analysis indicates that on 
average, the ECM provides better forecasts with about a 12% reduction in RMSEs. 
Finally, the issue of the stability of the estimated hedge ratio was also examined in this 
study using Chow’s breakpoint test for the ECM, which was shown to be the superior 
model. The results indicated reasonable parameter consistency. 

The evidence presented in this paper strongly suggests that the S&P 500 stock index 
futures contract is an effective tool for hedging risk. This is consistent to earlier studies 
on S&P 500 index covering the 1980s and early 1990s. Hence, the introduction of this 
contract has given portfolio managers and investors a valuable financial instrument by 
which they can avoid risk at times they wish to do this without liquidating their spot 
position or changing their portfolios composition. 
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Notes 
1Other studies have incorporated expected returns into hedging decisions and developed risk-return 

measures of hedging effectiveness (e.g. Howard and D’Antonio, 1984). However, such models 
display the same shortcoming as Johnson’s MVHR in that they require a subjective 
assumption to be made in relation to investors’ preferences. 

2The ECM with GARCH error structure also used in this paper meets the earlier criticisms of 
possible model misspecifications and time-varying hedge ratios, as the ECT describes the 
long-run relationship between spot and futures prices and the GARCH error structure permits 
the second moments of their distributions to change over time. 

3Notice that using the Threshold Autoregressive Conditional Heteroskedasticity (TARCH) (1,1) 
model, the results do not indicate any evidence of asymmetry. The results are available from 
the authors upon request. 


