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Abstract: This paper investigates the hedging effectiveness of the Standard &
Poor’s (S&P) 500 stock index futures contract using weekly settlement prices
for the period 3 July 1992-30 June 2002. Particularly, it focuses on three
areas of interest: the determination of the appropriate model for estimating a
hedge ratio that minimises the variance of returns; the hedging effectiveness
and the stability of optimal hedge ratios through time and an in-sample
forecasting analysis to examine the hedging performance of different
econometric methods. The hedging performance of this contract is examined
considering alternative methods, both constant and time varying, for computing
more effective hedge ratios. The results suggest the optimal hedge ratio that
incorporates non-stationarity, long-run equilibrium relationship and short-run
dynamics are reliable and useful for hedgers. Comparisons of the hedging
effectiveness and in-sample hedging performance of each model imply that the
Error Correction Model (ECM) is superior to other models employed in terms
of risk reduction. Finally, the results for testing the stability of
the optimal hedge ratio obtained from the ECM suggest that it remains stable

over time.

Keywords: hedging effectiveness; Minimum Variance Hedge Ratio; MVHR;

hedging models; Standard & Poor’s (S&P) 500 stock index futures.

Copyright © 2008 Inderscience Enterprises Ltd.



122 D. Kenourgios, A. Samitas and P. Drosos

Reference to this paper should be made as follows: Kenourgios, D.,
Samitas, A. and Drosos, P. (2008) ‘Hedge ratio estimation and hedging
effectiveness: the case of the S&P 500 stock index futures contract’, Int. J. Risk
Assessment and Management, Vol. 9, Nos. 1/2, pp.121-134.

Biographical notes: Dimitris Kenourgios is a Visiting Lecturer in the
Department of Economics, University of Athens and the Department of
Accounting and Finance, Athens University of Economics and Business
(AUEB). He received a BSc in Economics from the University of Athens,
in 1995, an MSc in Banking and Finance from the University of Birmingham,
UK in 1996 and a PhD in Finance from the University of Athens in 2000. His
main research interests are financial risk management and analysis of financial
markets.

Aristeidis Samitas is a Visiting Assistant Professor in the Department of
Business Administration at the University of the Aegean. He received a BSc in
Economics from the University of Athens, in 1995, an MSc in Banking and
Finance from the University of Birmingham, in 1996 and a PhD in Economics
and Finance from the University of Athens, in 2000. His main research interests
are financial risk management and portfolio management.

Panagiotis Drosos studied Basic Economics at the University of Athens and
holds an MSc in Finance from the University of Sheffield. He is a financial
analyst and researcher focused in the area of risk management.

1 Introduction

The hedging effectiveness of stock index futures has been extensively investigated in
recent years using the portfolio approach to hedging and the associated Minimum
Variance Hedge Ratio (MVHR) of Johnson (1960). Hedging through trading futures is a
process used to control or reduce the risk of adverse price movements. The introduction
of stock index futures contracts offered to market participants the opportunity to manage
the market risk of their portfolios without changing the portfolios composition.

The effectiveness of a hedge becomes relevant only in the event of a significant
change in the value of the hedged item. A hedge is effective if the price movements of
the hedged item and the hedging derivative roughly offset each other. According to
Pennings and Meulenberg (1997), a determinant in explaining the success of financial
futures contracts is the hedging effectiveness of futures contracts.

All the previous studies, which investigate measures of hedging effectiveness, use the
simple Ordinary Least Squares (OLS) regression for estimating hedge ratios. However,
there is a wide evidence that the simple regression model is inappropriate to estimate the
hedge ratios, as it suffers from the problem of serial correlation in the OLS residuals and
the heteroskedasticity often encountered in cash and futures price series (e.g. Herbst
et al., 1993). Thus, to counter the problem of inconstant variances of index futures and
stock index prices, a number of papers measure optimal hedge ratios via autoregressive
conditional heteroskedastic processes which allow for the conditional variances of spot
and futures prices to vary over time (e.g. Park and Switzer, 1995).

A second problem encountered when estimating hedge ratios arise from the
cointegrative nature between the spot and futures markets. If no account is made for
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the presence of cointegration, it can lead to an under-hedged position due to the
misspecification of the pricing behaviour between these markets (Ghosh, 1993).
Numerous studies have used Error Correction Models (ECMs) when analysing the
spot-futures relationship (e.g. Chou et al., 1996), while other papers have also included
both Error Correction Terms (ECTs) and a time-varying risk structure (e.g. Lien and
Tse, 1999).

This paper contributes to the existing literature in a number of ways. Firstly, the
chosen period updates earlier work on the Standard & Poor’s (S&P) 500 stock index
futures contract that has not considered periods of the late 1990s and the early 2000s.
Secondly, different model specifications, both constant and time varying, are estimated
and compared so as to arrive at the most appropriate model, which takes account of the
univariate properties of cash and futures prices. Thirdly, the MVHRSs are estimated via
alternative methods, already used in previous studies (OLS, ECM, GARCH model and
ECM with GARCH error structure), but also the EGARCH model. This model has never
been considered for computing hedging ratios in prior empirical studies known. Finally,
an in-sample forecasting analysis is conducted to examine the hedging performance of
alternative models, while the stability of the optimal hedge ratio through time for the
superior model is also examined, given that investors are likely to use hedge ratios
estimated in one period to hedge positions in the coming period.

The rest of the paper is organised as follows. Section 2 briefly discusses theoretical
considerations by presenting the traditional one-to-one, the beta and the minimum
variance hedging strategies. Section 3 briefly reviews the relevant empirical research.
The data and methodology adopted are then set out; the results are presented and are
followed by concluding remarks in Sections 4—6.

2 Theoretical considerations

In considering the use of futures contracts to hedge an established spot position, the
investor must decide on the hedge ratio, A, to be employed. The hedge ratio is the ratio of
the number of units traded in the futures market to the number of units traded in the spot
market. The particular hedging strategy adopted depends crucially on the investor’s
objectives. Research has concentrated on three hedging strategies: the traditional
one-to-one; the beta hedge and the minimum variance hedge proposed by Johnson
(1960) and also associated with Ederington (1979).

The traditional strategy emphasises the potential for futures contracts to be used to
reduce risk. It is a very simple strategy, involving the hedger in taking up a futures
position that is equal in magnitude, but opposite in sign to the spot market position, that
is, h =—1. If proportionate price changes in the spot market match exactly those in the
futures market the price risk will be eliminated. However, in practice, it is unlikely for a
perfect correlation between spot and future returns to exist and hence the hedge ratio that
minimises the variance of returns will definitely differ from —1.

Beta hedge ratio simply refers to the portfolio’s beta. The beta hedge has the same
objective as the traditional 1:1 hedge that establishes a futures position that is equal in
size but opposite in sign to the spot position. Yet, when the cash position is a stock
portfolio, the number of futures contracts needed for full hedge coverage needs to be
adjusted by the portfolio’s beta. In many cases the portfolio to be hedged will be a subset
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of the portfolio underlying the futures contract, and hence the beta hedge ratio will
deviate from —1. However, it may be the case that the futures contract may mirror the
portfolio to be hedged, and thus the beta hedge ratio will be the same as the traditional
hedge ratio.

Johnson (1960) proposed the MVHR as an alternative to the classic hedge.
He applied modern portfolio theory to the hedging problem. It was the first time that
definitions of risk and return in terms of mean and variance of return were employed to
this problem. Johnson maintained the traditional objective of risk minimisation as the
main goal of hedging but defined risk as the variance of return on a two-asset hedged
portfolio. The MVHR (#*) is measured as follows:

. X, o
h =__f=_52F (D)
XS GF

where X, and X, represent the relative dollar amount invested in futures and spot,
respectively, o, is the covariance of spot and futures prices changes and o, is the

variance of futures price changes. It should be mentioned that the minimum variance
hedge is the coefficient of the regression of spot price changes on futures price changes.
The negative sign reflects the fact that to hedge a long stock position it is necessary to go
short (i.e. sell) on futures contracts. Using the MVHR assumes that investors are
infinitely risk averse. While such an assumption about risk-return trade-off is unrealistic,
the MVHR provides an unambiguous benchmark against which to assess hedging
performance (Butterworth and Holmes, 2001).

Johnson also developed a measure of the hedging effectiveness (E) of the hedged
position in terms of the reduction in variance of the hedge [VAR (H)] over the variance
of the unhedged position [VAR (U)]:

£ 1. VAR(H) @)
VAR(U)

substituting the minimum variance X ,, and rearranging yields

E=1
X503

3)

where the o’ is the squared simple correlation coefficient of spot, futures price changes.
The measure of hedging effectiveness for the MVHR model is the squared simple
correlation coefficient of spot price changes (AS) to futures price changes (AF) or the R’
of a regression of spot price change on futures price change.'

3 Literature review

The majority of the studies investigating the hedging on stock index futures relates to the
USA, although more recent research has been focused on UK, Japan and Germany. In
the first analysis of hedging effectiveness of stock index futures, Figlewski (1984)
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calculated the risk and returns combinations of different capitalisation portfolios
underlying five major stock indices that could have been achieved by using the S&P 500
stock index futures as a hedging instrument for the period June 1982—September 1983.
The risk of minimising hedge ratios was estimated by OLS on historical spot and futures
returns. He found that for all indices represented diversified portfolios ex post MVHRs
were better than the beta hedge ratios. With large capitalisation portfolios, risk was
considerably reduced in contrast to smaller stocks portfolios. Moreover, Figlewski
pointed out that dividend risk was not an important factor, whereas time to maturity and
hedge duration were.

Junkus and Lee (1985) investigated the hedging effectiveness of three US stock index
futures under alternative hedging strategies. The optimal hedge ratios were calculated
using the OLS conventional regression model. Their results indicated the superiority of
MVHR. Moreover, there was little evidence about the impact of contract expiration and
hedging effectiveness. Ghosh (1993) extended studies of lead and lag relationships
between stock index and stock index futures prices by using an ECM, arguing that
the standard OLS approach is not well specified in estimating hedge ratios (ratio for the
S&P 500, NYSE composite index, but not the DJIA index) because it ignores lagged
values.

Holmes (1996) tried to assess the appropriate econometric technique when estimating
optimal hedge ratios of the FTSE-100 stock index by applying a GARCH (1,1) as well.
He showed that in terms of risk reduction a hedge strategy based on MVHRs estimated
using OLS outperforms optimal hedge ratios that are estimated using more advanced
econometric techniques such as an ECM or a GARCH (1,1) approach. Furthermore, he
provided evidence that effectiveness increased with hedge duration, while the impact of
an expiration effect was not straightforward.

Butterworth and Holmes (2001) investigated the hedging effectiveness of the
FTSE-Mid 250 stock index futures contract using actual diversified portfolios in the form
of Investment Trust Companies (ITCs). Using an alternative econometric technique
(Least Trimmed Squares Approach) to estimate hedge ratios, their results showed that
this contract is superior to the FTSE-100 index futures contact when hedging cash
portfolios mirroring the Mid250 and the FT Investment Trust (FTIT) indices

Chou et al. (1996) estimated and compared the hedge ratios of the conventional and
the ECM using Japan’s Nikkei Stock Average (NSA) index and the NSA index futures
with different time intervals for the period 1989-1993. Examining an out-of-sample
performance, the ECM outperformed the conventional approach, while the opposite hold
by evaluating the in-sample portfolio variance. As far as the temporal aggregation is
concerned, their results showed that hedging effectiveness increased as hedge duration
increased. Finally, Lypny and Powalla (1998) examined the hedging effectiveness of the
German stock index DAX futures and showed that the application of a dynamic hedging
strategy based on a GARCH (1,1) process is economically and statistically the most
effective model.

4 Methodology

This paper aims to determine the appropriate model when estimating optimal hedge
ratios. The alternative models employed are as follows.
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4.1 Model 1: the conventional regression model

This model is just a linear regression of change in spot prices on changes in futures
prices. Let S, and F, be logged spot and futures prices, respectively, the one period
MVHR can be estimated as follows:

AS, = a, + PAF, +u, 4)

where u, is the error from the OLS estimation, AS, and AF, represent spot and futures
price changes and the slope coefficient Sis the optimal hedge ratio ().

4.2 Model 2: the error correction model

Engle and Granger (1987) stated that if sets of series are cointegrated, then there exists a
valid error correction representation of the data. Thus, if S, represents the index spot price
series and F, the index of futures price series and if both series are I(1), there exists an
error correction representation of the following form:

AS, =au,_, + BAF, + Y OAF, + Y §AS,  +e, 5)
k=1

=

where u_, =S_, — [a,+ a,F -] is the ECT and has no moving average part; the systematic
dynamics is kept as simple as possible and enough lagged variables are included to
ensure that e, is a white noise process and the coefficient Bis the optimal hedge ratio.’

4.3 Model 3: the GARCH model

A useful generalisation of ARCH models introduced by Bollerslev (1986) is the GARCH
(1,1) model that parameterises volatility as a function of unexpected information shocks
to the market. The equation for GARCH (1,1) is as follows:

2 2 2
o, =a,+ae  +po (6)

The equation specified above is a function of three terms: the mean « ,, news about

volatility from the previous period, measured as the lag of the squared residual from the

2

mean equation e, (the ARCH term), and last period’s forecast variance o, (the
GARCH term). The more general GARCH (p, ¢) calculates o7 from the most recent p

observations on ¢’ and the most recent ¢ estimates of the variance rate.
Estimation sometimes results in g, + f =1, or even o, +f>1. Values of o, + f

close to unity imply that the persistence in volatility is high. In other words, to interpret
expression (6), suppose that there is a large positive shock e_,, and hence ef_l is large,

then the conditional variance o increases. This shock is permanently ‘remembered’ if

o, + [ 1is greater than or equal to unity but dies out if it is less than unity.
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4.4 Model 4: the EGARCH model

The EGARCH model is given by

gr—l

O-tfl

logo? =@+ f log(c? ) + y(%} +a @)

t-1

where @ , , fand y are constant parameters (Nelson, 1991). The left-hand side is that
of the conditional variance. This implies that the leverage effect is exponential, rather
than quadratic, and those forecasts of the conditional variance are guaranteed to be
non-negative. As, the level ¢, /o, , is included, the model will be asymmetric if y # 0.

The presence of leverage effects can be tested by the hypothesis that y> 0. If the leverage
effect term, y, after running the appropriate regression, is negative and statistically
different from zero, this will imply that positive shocks generate less volatility than
negative shocks (bad news).

Comparisons are then made of the hedging effectiveness associated with each
hedging strategy based on the MVHR estimations, using the simple OLS, the ECM, the
ECM with GARCH errors and the GARCH and EGARCH models. The question of the
appropriate model to use when estimating the optimal hedge ratio of the S&P 500 index
futures contracts traded in the USA is of considerable interest to investors wishing to use
this contract for hedging.

In addition, comparisons of in-sample hedging performance among the four models
are given. Investors are usually concerned with how well they have done in the past.
Therefore, the in-sample hedging performance is a sufficient way to evaluate the hedging
performance of alternative models employed to obtain the optimal hedge ratio. The
measures that are most used to identify how well individual variables track their
corresponding series are the Root Mean Square Errors (RMSEs), Mean Absolute Errors
(MAESs) and Mean Absolute Percent Errors (MAPEs).

Finally, the issue of the stability of the estimated hedge ratio is also examined in this
study using the Chow’s breakpoint test for superior model. We apply the Chow’s
breakpoint test by examining parameter consistency from 19 March 1999 onwards. The
particular date is chosen for the following reasons. Firstly, the date should be within our
sample, and also because, after plotting both our series, we identified a peak in the
residuals at that particular date.

5 Data and empirical results

5.1 Data

In this paper, the hedging performance of the S&P 500 futures contract is examined
using data relating to the period July 1992—June 2002. The spot portfolio to be hedged is
that underlying the S&P 500 index. The data used for both spots and futures relate to
closing prices on a weekly basis. Weekly data are preferred in this study for several
reasons. Firstly, the choice of weekly hedges is realistic and implies that hedgers in the
market rebalance their futures positions on a weekly basis. Secondly, a one-week hedge
can be used to reduce risk without incurring excessive transactions costs. Finally,
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the weekly hedging horizon is the most common choice of the prior empirical studies in
several derivatives markets. Nearest to expiration is used in all estimations for futures
contract. In line with previous studies changes in logarithms of both spot and futures
price are analysed and no adjustment is made for dividends. All prices were obtained
from DataStream.

5.2 Tests of units roots and cointegration

Tests for the presence of a unit root are performed by conducting the Augmented
Dickey-Fuller and Phillips-Perron unit root tests under the assumption that there is no
linear trend in the data generation process. However, after plotting the data we have
identified that both our series appear to be trended. Therefore, the tests were performed
using a linear time trend and an intercept. The ADF (four lags) and PP (five lags) test
statistics indicate that none of the level series are stationary processes; while for the
differenced series the hypothesis of a unit root is rejected at 5% level, suggesting that the
differenced series are stationary processes. The test results are reported in Table 1.

Table 1 ADF and PP tests for unit root

Interval S&P 500 (Levels) S&P 500 (Differences)
Spot Futures Spot Futures
ADF PP ADF PP ADF PP ADF PP
One week 25539 25403 25769 -2.6103 -10.4302° -24.8812" -10.7417 -25.4163

Critical value  -3.4422

Note: The null hypothesis is that series has a unit root.

"Denotes that the test statistics are significantly different from zero at the 5% level.

As we have identified that both our series, the spot prices (S,) and future prices (F)), are
I(1), then the presence or absence of cointegration can be investigated by simply
regressing the value of the spot asset (S,) on the value of the futures contract (F).
In particular a test for a unit root in the estimated residuals will determine the presence or
absence of cointegration. The estimates of g, and a, of the long-run regression are
presented in Equation (8). Table 2 provides the ADF and PP tests on the residuals.

S, =0.027309 + 0.994311F, + u, (8)

The results suggest that the spot S&P 500 index is cointegrated with the S&P 500 index
futures, as it shows that the error term is /(0). Evidence in favour of a cointegrated
system between weekly closing prices on the stock index and weekly ‘settlement’ prices
on the stock index futures implies that both the cash and the futures markets have a
tendency to move together in the long run, in spite of the fact that short run deviations
from equilibrium may be observed due to temporary disequilibrium forces.

In addition, we notice that the coefficient of F, is very close to unity. Even though
other time intervals (hedge duration) are not examined in this paper, our finding
corresponds to previous studies that support there is a tendency for the magnitude of the
hedge ratio to increase with the level of aggregation, suggesting that the length of the
time interval has an important impact on the hedge ratios (e.g. Chou et al., 1996;
Figlewski, 1984).
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Table 2 ADF and PP tests for unit root on the residuals

ADF PP
-8.9677 -11.9916
Critical value —3.4422

‘Denotes that the null hypothesis of no cointegration is rejected at the 5% level.

5.3 The results from Models 1-4

The optimal hedge ratio from the regression of the form given in Equation (4), that is,
using the ‘conventional approach’, is presented in the following equation:

AS, =0.000178 +0.947281 AF, +u, )

The slope coefficient £ is the optimal hedge ratio. In this case, it is close to unity and
highly significant. The adjusted R’ is 0.975164 and indicates a good fit. However, the
model exhibits a serial correlation and heteroskedasticity, while there are no ARCH (1)
effects.

As the spot S&P 500 index is cointegrated with the S&P 500 index futures, then,
according to Engle and Granger (1987), an ECM must exist as presented in Equation (5).
Table 3 presents a summary of the ECM that was chosen according to the smallest value
of the Akaike Information Criterion (AIC) and the Schwarz’s Bayesian Information
Criterion (BIC). Any insignificant variables are excluded from the model to reach a
more parsimonious specification. By examining Table 3, we can report that the optimal
hedge ratio is 0.95582 and the ECM including no lags has a nice fit (R* = 0.98134).

In addition, this model has a small standard error of regression, while the error correction
coefficient (u_,) is statistically significant at 5% level. The coefficient of the error term
measures the single period response of the left-hand side variable (AS) to departures
from equilibrium and has important predictive powers. Indeed, it could be mentioned
that about 50% of the discrepancy between S, and its long-run equilibrium is corrected
within a week. This shows that last period’s disequilibrium error has a great impact in the
adjustment process of the subsequent price changes in the cash market. It is also
noticeable that the intercept is highly insignificant indicating there is no linear time trend
in the data generating process.

The diagnostics tests indicate no serial correlation up to the second lag, no ARCH (1)
effects, but the problem of heteroskedasticity is observed. The adjusted R’ indicates
that 98% of the variance is explained by our model. However, the presence of
heteroskedasticity, violating one of the assumptions underlying OLS, leads us to
reestimate the optimal hedge ratio using two appropriate methods: GARCH and
EGARCH models. In addition, an ECM with GARCH errors was also examined. This
was done to correct for the presence of heteroskedasticity.

Table 4 presents the results from the GARCH model, the EGARCH model and
the ECM with GARCH errors employed in this paper. Initially, we fitted a GARCH (1,1)
and a GARCH (2,1) model. The GARCH parameter S corresponding to Equation (6) is
significant for both of our models, while the ARCH parameter «, is highly insignificant
in the case of a GARCH (2,1). As a, and a, are insignificant at the 5% level, this indicates
that old shocks have no impact on current volatility, hence heteroskedasticity
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is corrected. We obtain an optimal hedge ratio of 0.944651 very close to unity.
The adjusted R’ is 0.974120 indicating a nice fit. On the other hand, the ARCH (1)
term for the GARCH (1,1) is highly significant at the 5% level. Testing for ARCH (1)
effects we obtain a p-value of 0.284243 and hence heteroskedasticity is corrected (we
do not reject the null hypothesis of no ARCH effects at the 5% level). However, the
sum of the ARCH and GARCH coefficients (a, + £) is 0.730494 (see Equation (6))
indicating that old shocks have an impact on current volatility but this effect is not
permanently remembered. Instead, due to the fact that this sum is less than unity it
dies out.

Table 3 Results from the ECM

Variable Coefficient SE t-Stat Prob.

C 0.000138 0.000127 0.882026 0.3923

u_, —0.4983901 0.0386350  —11.842860  0.00000

AF’ 0.955820 0.005358 146.3982 0.00000

Lag criteria
Akaike info criterion —8.898341
Schwarz criterion —8.854448

Model adequacy
SE of regression 0.002501
Mean 0.003316
Adjusted R’ 0.981341

Serial correlation LM test 0.574682

ARCH LM test 0.188212

White heteroskedasticity test 0.000000

Notes: The dependent variable of the ECM is defined as AS, =log (S/S, ), while AF, = log
(F/F ). Serial correlation LM test is Breusch-Godfrey’s Lagrange Multiplier (LM)
Statistic for second and fifth serial correlation in the residuals, being asymptotically
distributed as X*under the null of serial independence. The ARCH LM test is Engle’s
LM statistic for autoregressive conditional heteroskedasticity under the null of no
ARCH effect. Heteroskedasticity test is White’s test statistic for heteroskedasticity in
the residuals, being asymptotically distributed as X’ under the null of no
heteroskedasticity.

"The optimal hedge ratios (k') are the coefficients of the variable AF.

In addition, an EGARCH (1,1) model was estimated where all terms were statistically
significant. The leverage effect term y is positive and statistically different from zero,
indicating the existence of the leverage effect (evidence of asymmetry).’ Hence, negative
shocks generate less volatility than positive shocks (good news). We obtain an optimal
hedge ratio of 0.957953, very close to unity. The adjusted R’ is 0.971802 indicating a
nice fit.
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Table 4 Results from the GARCH model, the EGARCH model and the ECM with
GARCH errors
Variable Coefficient SE z-Stat Prob.
GARCH (1,1)
AF, 0.948062 0.005590 163.8893 0.0000
@, (ARCH (1)) 0.150432 0.058057 2.635951 0.0078
P (GARCH (1)) 0.580062 0.150959 3.793963 0.0000

Adjusted R = 0.973843

n

SE of regression = 0.003298
GARCH (2,1)

ARCH test (p-value) = 0.284243

AF, 0.944651 0.006241 156.2389 0.0000
a, (ARCH (1)) 0.091077 0.066378 1.396932 0.1567
a,(ARCH (2)) 0.090981 0.087799 1.041368 0.2882
S(GARCH (1)) 0.605277 0.148270 4.096276 0.0000

Adjusted R’ = 0.974120

SE of regression = 0.003382
EGARCH (1,1)

ARCH test (p-value) = 0.467912

AF; 0.957953 0.007228 136.8890 0.0000
y 0.230686 0.040590 5.078608 0.0000
EGARCH (1) 0.983622 0.005992 143.0483 0.0000

Adjusted R* = 0.971802

SE of regression = 0.003374
ECM with GARCH (1,1) errors

ARCH test (p-value) = 0.758862

AF, 0.952578 0.005609 169.9308 0.0000
ARCH (1) 0.036582 0.017964 1.944276 0.0582
GARCH (1) 0.968236 0.019892 48.66820 0.0000

Adjusted R’ = 0.980582

AF,

ARCH (1)
Adjusted R = 0.980611

"

AF,

SE of regression = 0.002812
ECM with GARCH (1,0) errors

0.956217 0.005312

0.085387 0.046652
SE of regression = 0.002809
ECM with GARCH (2,0) errors

ARCH test (p-value) = 0.938502

183.3577 0.0000
1.710992 0.0928
ARCH test (p-value) = 0.963948

[ 0.956903 0.005293 189.8967 0.0000
ARCH (1) 0.136602 0.061309 2.476901 0.0181
ARCH (2) 0.128350 0.049683 2.693601 0.0084

Adjusted R = 0.980578

SE of regression = 0.002829

ARCH test (p-value) = 0.510821

"The coefficient of the variable AF, defined as log (F/F ) is the optimal hedge ratios (/').

Finally, we examined an ECM with GARCH errors, to correct for heteroskedasticity. In
particular, we fitted a GARCH (1,1), a GARCH (1,0) and a GARCH (2,0) upon our
ECM. The GARCH (2,0) model manages to correct heteroskedasticity. Testing for
ARCH (1) effects we obtain a p-value of 0.510821 and hence heteroskedasticity is
corrected. Both ARCH terms are highly significant at 5% level; while the two alternative
models manage to explain the behaviour of the dependent variable (insignificant ARCH
terms). Thus, we consider the GARCH (1,0) model quite better than the GARCH (1,1) as
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we obtain a higher adjusted R and it has the smallest standard error of regression.
The optimal hedge ratio we obtain of such an approach is 0.956218, very close to unity.
We should mention here that although the ECM with GARCH (1,0) errors performs
statistically better than the simple error correction representation, it did not manage to
increase hedging effectiveness, as measured by using the adjusted R’, and hence the
simple error correction representation is considered superior.

Table 5 summarises the comparisons of the optimal hedge ratios estimated using
alternative methods. In terms of risk reduction, the appropriate method for estimating
optimal hedge ratios is the ECM. The results from the other models did not manage to
increase hedging effectiveness, as measured by the adjusted R’, and hence a simple error
correction representation is considered superior.

Table 5 Comparisons between hedging models

OLS ECM GARCH (2,1) EGARCH (1,1)
Hedge ratios 0.947281" 0.955820" 0.944651" 0.957953"
Adjusted R’ 0.975164 0.981341 0.974120 0.971802
Serial correlation )
(two lags) (p-value) 0.00000 0.574682 - -
ARCH (1) (p-value) 0.56277 0.188212° 0.467912° 0.758862"
Heteroskedasticity
(p-value) 0.00108 0.000000 - -
RMSEs™ 0.004762 0.004183™ 0.004771 0.004756
MAEs" 0.003753 0.003194™ 0.003798 0.003613
MAPEs” 26.08845 19.16262"" 26.22565 26.03724

*Significant at 5% level.
**According to the RMSEs, MAEs and MAPEs, the smaller the error, the better the
forecasting ability of the model.

***[ndicates the smaller error between the models.

5.4 In-sample analysis

Table 5 also reports the RMSEs, MAEs and MAPEs for each model. The results indicate
that the error correction specification outperforms all other models as it has the smallest
values of the above measures. However, all models performed well as the estimated
RMSEs are close to zero. Therefore, we could claim that the ECM fits the available data
sufficiently well and can forecast adequately.

On average, the ECM gives forecasts with about a 12% reduction in RMSEs.
In contrast, Park and Switzer (1995) find that the hedge strategy for the S&P 500, MMI
and Toronto 35 index futures using the GARCH is superior to other methods. Chou et al.
(1996) report that the OLS outperforms the ECM for the Nikkei futures index. However,
they report that for out-of-sample forecasts the reverse stands. Moreover, Lypny and
Powalla (1998) provide evidence that a GARCH (1,1) is economically and statistically
superior to other models based on the RMSEs, while Holmes (1996) finds that the OLS
hedges dominate.
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Finally, the issue of the stability of the estimated hedge ratio is also examined using
Chow’s breakpoint test for the ECM, which was shown to be a superior model. We apply
Chow’s breakpoint test by examining parameter consistency from 19 March 1999
onwards. The results from Table 6 indicate that null hypothesis of no breakpoint is not
rejected since the probability value of 0.174494 is greater than 0.05 (5%).

Table 6 Stability test using Chow’s breakpoint test, 19 March 1999

F-statistic 1.264100 Probability 0.174494"
Log-likelihood ratio 37.58262 Probability 0.084696

"Denotes that the null hypothesis of no structural change is not rejected at the 5% level.

6 Conclusions

This paper estimated optimal hedge ratios and examined the hedging effectiveness of the
S&P 500 index using alternative models, both constant and time varying, over the period
from July 1992 to June 2000. The findings of this study suggest that in terms of risk
reduction the ECM is the appropriate method for estimating optimal hedge ratios as it
provides better results than the conventional OLS method, the ECM with GARCH errors,
the GARCH model and the EGARCH (1,1) model.

The adjusted R’ value, which measures the effectiveness of the hedge, is higher for
the ECM. In addition, judging from the in-sample test the proposed error correction
specification achieves a significantly lower RMSE when compared with forecasting
performance of the alternative models. Indeed, the in-sample analysis indicates that on
average, the ECM provides better forecasts with about a 12% reduction in RMSEs.
Finally, the issue of the stability of the estimated hedge ratio was also examined in this
study using Chow’s breakpoint test for the ECM, which was shown to be the superior
model. The results indicated reasonable parameter consistency.

The evidence presented in this paper strongly suggests that the S&P 500 stock index
futures contract is an effective tool for hedging risk. This is consistent to earlier studies
on S&P 500 index covering the 1980s and early 1990s. Hence, the introduction of this
contract has given portfolio managers and investors a valuable financial instrument by
which they can avoid risk at times they wish to do this without liquidating their spot
position or changing their portfolios composition.
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Notes

'Other studies have incorporated expected returns into hedging decisions and developed risk-return
measures of hedging effectiveness (e.g. Howard and D’ Antonio, 1984). However, such models
display the same shortcoming as Johnson’s MVHR in that they require a subjective
assumption to be made in relation to investors’ preferences.

*The ECM with GARCH error structure also used in this paper meets the earlier criticisms of
possible model misspecifications and time-varying hedge ratios, as the ECT describes the
long-run relationship between spot and futures prices and the GARCH error structure permits
the second moments of their distributions to change over time.

*Notice that using the Threshold Autoregressive Conditional Heteroskedasticity (TARCH) (1,1)
model, the results do not indicate any evidence of asymmetry. The results are available from
the authors upon request.



