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Historical Introduction

The Early Years

1930: Pauli proposed the existence of a neutral fermion
that is emitted in the beta decay!
1933: Fermi concluded that neutrino may be massless!
1934: Fermi formulated a theory for beta decay!
1936: Gamow & Teller added axial vectors into the theory!
1937: Anderson discovered muon!
1947: Pontecorvo proposed the universality of Fermi
interaction!
1953: Lepton number conservation! Later such a number
was assigned on each generation!
1956: Reines & Cowan finally discovered neutrino!
1956: Lee & Yang solved θ − τ puzzle! Parity Violation!
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Historical Introduction

Maturity

1958: The V − A theory was established! Indeed neutrino
helicity was found negative!
1962: Lederman, Schwartz & Steinberg discovered νµ!
1964: CP violation was discovered on K 0!
1967: Glashow, Weinberg & Salam formulated
Electroweak Unification!
1973: Kobayashi & Maskawa introduced mixing of three
generations!
1974: GIM Mechanism!
1975: Perl discovered tau! 3rd generation of particles
includes b quark (1977) & t quark (1995)!
1989: Light generations were fixed at 3!
2000: Finally ντ was observed!
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Neutrino Physics Overview

History

Pontecorvo proposed in 1957 neutrino oscillations!
Nakagawa, Maki & Sakata formulated in 1967 neutrino
mixing!
Solar Neutrino Problem was discovered by Davies in 1968!
Atmospheric neutrino oscillations were observed in 80’s!
SNP was solved in 2002 by SNO!
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Neutrino Physics Overview

Where we stand? Part 1

What we know:
We have a well established theory concerning neutrino
interaction, oscillations and mixing!
Neutrinos are massive for sure!
Solar & atmospheric mixing angles have been measured
with very good accuracy! There is bound for reactor mixing
angle!
Square mass splittings are known with great accuracy too!
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Neutrino Physics Overview

Where we stand? Part 2

What we want to learn:
We want to learn the sign of the atmospheric square mass
splitting!
We definitely want to measure the reactor mixing angle!
We have absolutely no idea about the value(s) of the
mixing phase(s)!
The absolute scale of neutrino mass must be determined!
The nature of neutrino should be determined too!
We want to find out what is going on with LSND and
MiniBooNe!
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Neutrinos and New Physics

Neutrinos Probe New Physics

Sterile neutrinos are candidates for Hot Dark Matter!
Relic neutrinos will give information for early universe!
Neutrino mass may be understood via See-Saw
mechanism!
Extra dimensions may explain the tiny neutrino mass too!
Some GUTs are connected with neutrino physics!
Majorana neutrinos break the L!
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Vacuum Oscillations

How does the story begin?

As a result of mixing we have the decay:

W + → `α + νi : (1)

`α is a charged lepton of flavor α.
νi is a neutrino which is mass eigenstate.

We denote the amplitude as U∗αi .
Physical particles are mass eigenstates!
Flavor eigenstates are in general superposition of mass
eigenstates:

|να >=
∑

i

U∗αi |νi > . (2)
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Vacuum Oscillations

What does neutrino oscillation mean?
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Vacuum Oscillations

Putting everything together

The total amplitude is:

Amp(να → νβ) =
∑

i

U∗αiProp(νi)Uβi . (3)

We must calculate the propagator.
In the rest frame, the Schrödinger equation is:

ı
∂

∂τi
|νi(τi) >= mi |νi(τi) > . (4)

The solution is trivial:

|νi(τi) >= e−ımiτi |νi(0) > . (5)
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Vacuum Oscillations

Calculating the Phase

The product miτi is Lorentz invariant, thus:

miτi = Ei t − piL. (6)

We assume that neutrinos are ultrarelativistic and have same
energy E, then:

pi =
√

E2 −m2
i ≈ E −

m2
i

2E
. (7)

This leads to:

miτi ≈ E(t − L) +
m2

i
2E

L. (8)
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Vacuum Oscillations

Obtaining the Probability

The phase E(t − L) will be canceled when we calculate the
probability, therefore we omit that term. As a result:

Prop(νi) = e−ım
2
i

L
2E . (9)

The amplitude becomes:

Amp(να → νβ) =
∑

i

U∗αie
−ım2

i
L

2E Uβi . (10)

Finally, the probability is:

P(να → νβ) =
∑
i,j

U∗αiUβiUαjU∗βjexp
(
−ı∆m2

ij
L

2E

)
. (11)

∆m2
ij = m2

i −m2
j . (12)
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Vacuum Oscillations

Oscillation Probability

After some math we get:

P(να → νβ) = δαβ − 4
∑
i>j

<(U∗αiUβiUαjU∗βj) sin2
(

∆m2
ij

L
4E

)

+2
∑
i>j

=(U∗αiUβiUαjU∗βj) sin
(

∆m2
ij

L
2E

)
.

(13)

The case α = β corresponds to Survival Probability.
The case α 6= β corresponds to Transition Probability.
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Vacuum Oscillations

Antineutrino Case

The process:
ν̄α → ν̄β (14)

is the CPT image of the process:

νβ → να. (15)

We observe that:

P(νβ → να,U) = P(να → νβ,U∗). (16)

Therefore in the antineutrino case we have:

P(να → νβ) = δαβ − 4
∑
i>j

<(U∗αiUβiUαjU∗βj) sin2
(

∆m2
ij

L
4E

)

−2
∑
i>j

=(U∗αiUβiUαjU∗βj) sin
(

∆m2
ij

L
2E

)
.

(17)
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Vacuum Oscillations

What about CP Violation?

In general:
=(U∗αiUβiUαjU∗βj) 6= 0, (18)

which means:

P(να → νβ) 6= P(ν̄α → ν̄β). (19)

Possible CP violation!!!
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Comments

Does this approach have results? Part 1

Even with this elementary approach we get valuable
conclusions!

Massless neutrinos leads to P(να → νβ) = δαβ.
Does flavor change have any relation to matter effect? NO!
The probability depends on the ratio L/E , which is nothing
but the eigentime elapsed in the rest frame of the neutrino!
Assume no mixing. Then U∗αj = 0 for i 6= j , as a result
P(να → νβ) = δαβ.
Oscillations depends on square mass splitting.
Oscillations depend on the quadratic product of U’s. This
term is phase invariant, thus oscillations are insensitive to
the nature of neutrinos and CP violation depends only on
Dirac phase.
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Comments

Does this approach have results? Part 2

The total flux is invariant!∑
β

P(να → νβ) = 1. (20)

Only sterile neutrinos change the flux!
Putting the constants back we get:

∆m2
ij

L
4E

= 1.27∆m2
ij (eV 2)

L[km]

E [GeV ]
. (21)

The oscillation length is Losc = 2.47 E [GeV ]
∆m2 [eV 2]

km.
If L� Losc the probability oscillates rapidly and we get:〈

Pνα→νβ

〉
=
∑

i

|Uαi |2|Uβi |2. (22)

In the case of incoherent sum we get the same result.
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Comments

Assumptions

We have made two assumptions:
We expressed flavor eigenstates as superposition of mass
eigenstates.
We assumed that neutrinos have common energy and
time.
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Symmetries

Symmetries

We cant apply parity transformations on neutrino!
In general we can apply CP transformation, that transforms
the neutrino to antineutrino, no matter what antineutrino
does mean:

να → νβ
CP⇐⇒ να → νβ. (23)

Time reversal simply exchanges initial and final states:

να → νβ
T⇐⇒ νβ → να. (24)

CPT combines both transformations:

να → νβ
CPT⇐=⇒ νβ → να. (25)
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Two Neutrino Oscillations

2 Neutrino Case Part 1

It is interesting to study the 2 neutrino case for 2 reasons:
1 The relations are much more simpler!
2 Its a very good approach!

The mixing matrix is:

U =

(
cos θ sin θ
− sin θ cos θ

)
, (26)

The Transition Probability is:

Pνα→νβ
(L,E) = sin2 2θ sin2

(
∆m2L

4E

)
, (α 6= β). (27)

The Survival Probability is:

Pνα→να(L,E) = 1− sin2 2θ sin2
(

∆m2L
4E

)
. (28)

The square mass splitting ∆m2 = m2
2 −m2

1 is defined positive.
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Two Neutrino Oscillations

2 Neutrino Case Part 2

The average Transition Probability is:

〈P(να → νβ)〉 =
1
2

sin2 2θ. (29)

There is a symmetry:

θ ⇐⇒ π

2
− θ. (30)

As the mixing matrix is real we have:

P(να → νβ) = P(νβ → να) = P(ν̄α → ν̄β) = P(ν̄β → ν̄α) (31)
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Matter Effects

What about Matter Effect?

The neutrino interacts is two ways with matter:
If the neutrino is νe it exchanges W bosons with electrons.
All neutrinos exchange Z bosons with protons, electrons &
neutrons.

The interactions to first order give raise to the potentials:

VW = +
√

2GF Ne VZ = −
√

2
2

GF N(n,p,e) (32)

If we change neutrinos to antineutrinos the potentials change
sign.
At zero momentum transfer contributions of electrons and
protons to VZ cancel.
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Matter Effects

Matter Effect Calculation Part 1

The Schödinger equation is:

ı
∂

∂t
|ν(t)〉 = H |ν(t)〉 |ν(t)〉 =

(
fe(t)
fµ(t)

)
. (33)

The Hamiltonian is a 2× 2 matrix:

〈να|Hvac |νβ〉 =
∑

i

UαiU∗βi

√
p2 + m2

i . (34)

We use the ultrarelativistic approximation:√
p2 + m2

i ≈ p +
m2

i
2p
≈ E +

m2
i

2E
. (35)
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Matter Effects

Matter Effect Calculation Part 2

The nontrivial part of the Hamiltonian is:

Hvac =
∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
. (36)

In the presence of matter the Hamiltonian becomes:

HM =
∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
+ VW

(
1 0
0 0

)
+VZ

(
1 0
0 1

)
.

(37)
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Matter Effects

Matter Effect Calculation Part 3

Terms proportional to the identity matrix are irrelevant, thus we
get:

HM =
∆m2

4E

(
−(cos 2θ − x) sin 2θ

sin 2θ (cos 2θ − x)

)
, (38)

where

x =
VW/2

∆m2/4E
=

2
√

2GF NeE
∆m2 . (39)

We define:

∆m2
M = ∆m2

√
sin2 2θ + (cos 2θ − x)2 (40)

sin2 2θM =
sin2 2θ

sin2 2θ + (cos 2θ − x)2
(41)
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Matter Effects

Matter Effect Calculation Part 4

Then the Hamiltonian is nothing else but the vacuum
Hamiltonian with matter parameters:

HM =
∆m2

M
4E

(
− cos 2θM sin 2θM

sin 2θM cos 2θM

)
. (42)

If electron density is constant then

PM(νe → νµ) = sin2 2θM sin2
(

∆m2
M

L
4E

)
(43)

How strong is matter effect?

∆m2 ≈ 2.4× 10−3 eV 2 ⇒ |x | ' E
12 GeV

. (44)
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Matter Effects

Neutrino Antineutrino Asymmetry

The sign of x is

ν ν

mν2 > mν1 + -
mν2 < mν1 - +

The asymmetry has nothing to do with genuine CP violation!
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Matter Effects

MSW Effect

Matter effect can cause a very interesting phenomenon in the
case of resonance! We have seen that:

sin2 2θM =
sin2 2θ

sin2 2θ + (cos 2θ − x)2
(45)

If
x ≈ cos 2θ (46)

then even tiny sin2 2θ correspond to large sin2 2θM .
If electron density variates smoothly and neutrino propagation
can be considered adiabatic and we have the MSW Effect.
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Matter Effects

Solution to SNP

The propagation is adiabatic therefore we can solve
Schrödinger equation at every distance r and then combine the
solutions.

H(r)
M =

∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
+
√

2GF Ne

(
1 0
0 0

)
. (47)

At r = 0 the vacuum part must be neglected. The neutrino is
born being the high energy eigenstate of the Hamiltonian and
propagates being at that state. As the neutrino emerges the
sun it is just the high energy state of the vacuum Hamiltonian!
In other words we have the transition

νe → ν2. (48)

SNP simply means:
|Ue2|2 = 1/3 (49)
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Wave Packets

What about Wave Packets?

It a QFT framework we must use wave packets. In fact we don’t
really need them!
The wave packet treatment gives:

Pνα→νβ
(~L) =

∑
k ,j

U∗αkUαjUβkU∗βjexp

[
−2πı

L
Losc

kj
−

(
L

Lcoh
kj

)2

−2π2

(
1−

~L · ~ξ
L

)2(
σx

Losc
kj

)2]
.

(50)

Where

~̃pk ' ~p− ~ξ
m2

k
2E

σ2
x ∼

(
σP

x

)2
+
(
σD

x

)2
Losc

kj =
4
√

2E2

|∆m2
kj |
σx (51)
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Wave Packets

Identifying the Terms

The exponent has 3 terms:
The first term is the standard oscillation phase.

−2πı
L

Losc
kj

(52)

The second term is the coherence term.

−

(
L

Lcoh
kj

)2

(53)

The third term is the localization term.

−2π2

(
1−

~L · ~ξ
L

)2(
σx

Losc
kj

)2

(54)
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Wave Packets

The Localization Term

This terms reflects the decoherance suppressing the
oscillations if σx � Losc

kj .
This way we separate neutrino oscillation experiments and
neutrino mass measurement experiments! The mass
measurement accuracy is:

δm2
k =

√(
2ẼkδẼk

)2
+
(

2|~̃pk |δ|~̃pk |
)2
' 2
√

2Eσp, (55)

If δm2
k < ∆m2

kj there is not enough energy to produce νj ,
therefore oscillations are suppressed:

−2π2

(
σx

Losc
kj

)2

' −1
4

(
∆m2

kj

δm2
k

)2

. (56)

In oscillation experiments we can neglect the localization term.
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Wave Packets

Comparison to our simple Approach

Neglecting the localization term the probability is given by:

Pνα→νβ
(~L) =

∑
k ,j

U∗αkUαjUβkU∗βjexp

−2πı
L

Losc
kj
−

(
L

Lcoh
kj

)2


(57)
If we overage the probability found in the simple approach over
a Gaussian distribution E/L we get:〈

P(να → νβ)
〉

=∑
ij

U∗αiUβiUαjU∗βjexp

−ı∆m2
ij

2

〈
L
E

〉
− 1

2

(
∆m2

ij

2
σL/E

)2


(58)

If we add the quantum space and momentum uncertainties to
the classical L/E uncertainty everything is fine!
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Introduction

LEW = ı
∑

α=e,µ,τ

L
′
αL /DL′αL + ı

∑
α=1,2,3

Q
′
αL /DQ′αL

+ ı
∑

α=e,µ,τ

`
′
αR /D`

′
αR + ı

∑
α=d ,s,b

q′DαR /Dq′DαR + ı
∑

α=u,c,t

q′UαR /Dq′UαR

− 1
4

AµνAµν − 1
4

BµνBµν

+ (DµΦ)† (DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2

−
∑

α,β=e,µ,τ

(
Y ′`αβL

′
αLΦ`′βR +

(
Y ′`αβ

)∗
`
′
βRΦ†L

′
αL

)
−

∑
α=1,2,3

∑
β=d ,s,b

(
Y ′DαβQ

′
αLΦq′DβR +

(
Y ′Dαβ

)∗
q′DβRΦ†Q

′
αL

)
−

∑
α=1,2,3

∑
β=u,c,t

(
Y ′UαβQ

′
αLΦ̃q′UβR +

(
Y ′Uαβ

)∗
q′UβRΦ̃†Q

′
αL

)
.

(59)
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Leptons

Leptonic Mass Terms

The coupling of leptons to the Higgs field is:

LH,L = −v + H√
2

∑
α,β=e,µ,τ

Y ′`αβ`
′
αL`
′
βR + HC. (60)

The matrix containing the Yukawa cuplings is not diagonal. The
primed fields don’t have definite mass! We diagonalize the
matrix with a biunitary transformation:(

V `
L

)†
Y ′`V `

R = Y `, Y `
αβ = y `αδαβ y `α > 0, (61)

LH,L = −v + H√
2

∑
α=e,µ,τ

y `α`αL`αR + HC. (62)
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Leptons

Charged Weak Current

Now the leptons have definite mass:

`L =
(

V `
L

)†
`′L =

 eL
µL
τL

 . (63)

The charged weak current becomes:

jkW ,L = 2ν ′Lγ
k`′L = 2ν ′Lγ

kV `
L`L = 2νLγ

k`L, (64)

νL =
(

V `
L

)†
ν ′L =

 νeL
νµL
ντL

 . (65)

These neutrinos have definite flavor & mass.
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Leptons

Symmetries

The Lagrangian is invariant under global phase transformations:

ναL → eıφαναL, `αL → eıφα`αL, `αR → eıφα`αR, (66)

ναL → eıφναL, `αL → eıφ`αL, `αR → eıφ`αR. (67)

The Noether currents are:

jkα = ναLγ
kναL + `αLγ

k`αL (68)

and the corresponding conserved charges are:

Le, Lµ, Lτ , L. (69)
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Leptons

Neutral Weak & EM Currents

The weak neutral current is invariant:

jkZ ,L = 2gνLν
′
Lγ

kν ′L + 2g`L`
′
Lγ

k`′L + 2g`R`
′
Rγ

k`′R

= 2gνLνLγ
kνL + 2g`L`Lγ

k`L + 2g`R`Rγ
k`R

(70)

EM current is invariant too:

jkγ,L = −`′γk`′ = −`γk`. (71)
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Quarks

Quark Mass Terms

The coupling of quarks to the Higgs field is:

LH,Q = −v + H√
2

 ∑
α,β=d ,s,b

Y ′Dαβq′DαLq′DβR +
∑

α,β=u,c,t

Y ′Uαβq′UαLq′UβR

+HC.

(72)
Yet again we diagonalize the matrices(

V D
L

)†
Y ′DV D

R = Y `, Y D
αβ = yD

α δαβ, yD
α > 0, (73)

(
V U

L

)†
Y ′UV U

R = Y `, Y U
αβ = yU

α δαβ, yU
α > 0, (74)
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Quarks

Quarks

The quarks having definite mass are defined as:

qD
L =

(
V D

L

)†
q′DL =

 dL
sL
bL

 , qD
R =

(
V D

R

)†
q′DR =

 dR
sR
bR

 ,

(75)

qU
L =

(
V U

L

)†
q′UL =

 uL
cL
tL

 , qU
R =

(
V U

R

)†
q′UR =

 uR
cR
tR


(76)
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Quarks

Charged & Neutral Weak Current

The charged weak current is not invariant:

jkW ,Q = 2q′UL γ
kq′DL = 2qU

L γ
k
(

V U
L

)†
V D

L qD
L = 2qU

L γ
kVCKMqD

L

(77)

VCKM =
(

V U
L

)†
V D

L . (78)

Flavors are not conserved, only baryonic number is!
The weak current is invariant due to GIM mechanism:

jkZ ,Q = 2gD
L q′DL γ

kq′DL + 2gD
R q′DR γ

kq′DR + 2gU
L q′UL γ

kq′UL + 2gU
R q′UR γ

kq′UR
= 2gD

L qD
L γ

kqD
L + 2gD

R qD
Rγ

kqD
R + 2gU

L qU
L γ

kqU
L + 2gU

R qU
Rγ

kqU
R

(79)

EM current is invariant too:

jkγ,Q =
2
3

qUγkqU − 1
3

qDγkqD. (80)
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Quarks

CKM Mixing Matrix

The components of CKM matrix are:

V =
(

V U
L

)†
V D

L =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (81)

At 90 % C.L. the norms of the elements of the CKM matrix are:

|V | =

 0.9739− 0.9751 0.221− 0.227 0.0029− 0.0045
0.221− 0.227 0.9730− 0.9744 0.039− 0.044

0.0048− 0.014 0.037− 0.043 0.9990− 0.9992


(82)
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The Mixing Matrix

Mixing Parameters

Every N × N complex matrix has N2 mixing parameters:

N(N − 1)

2
, mixing angles, (83)

N(N + 1)

2
, phases. (84)

Some of the phases can be eliminated.
Physical phases are only the phases that affect the weak
currents!
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The Mixing Matrix

Rephasing

Apart from the coupling to W & Z bosons LEW is invariant to
rephasing the quarks:

qU
α → eıψ

U
αqU

α , qD
k → eıψ

D
k qD

k . (85)

jkW ,Q = 2
∑

α=u,c,t

∑
k=d ,s,b

qU
αLe−ıψ

U
αγkVαkeıψ

D
k qD

kL

= 2e−ı(ψ
U
c −ψD

s )
∑

α=u,c,t

∑
k=d ,s,b

qU
αLe−ı(ψ

U
α−ψU

c )γkVαkeı(ψ
D
k −ψ

D
s )qD

kL

(86)

This rephasing can eliminate in total the following phases:

e−ı(ψ
U
c −ψD

s ) → 1

e−ı(ψ
U
α−ψU

c ) → N − 1

eı(ψ
D
k −ψ

D
s ) → N − 1.

(87)
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The Mixing Matrix

Physical Parameters

The remaining phases are the physical ones:

N(N + 1)

2
− (2N − 1) =

(N − 1)(N − 2)

2
. (88)

The total physical parameters are:

N(N − 1)

2
+

(N − 1)(N − 2)

2
= (N − 1)2 (89)
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The Mixing Matrix

Parametrization of the Mixing Matrix Part 1

We define the matrices:[
Wαβ(θαβ,nαβ)

]
rs

= δrs + (cos θαb − 1)(δrαδsα + δrβδsβ)

+ sin θαβ
(
eınαβδrαδsβ − e−ınαβδrβδsα

)
.

(90)

This matrices are complex rotations in the α− β plane. For
example for N = 3 we have:

W 12(θ12,n12) =

 cos θ12 sin θ12eın12 0
− sin θ12e−ın12 cos θ12 0

0 0 1

 . (91)
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The Mixing Matrix

Parametrization of the Mixing Matrix Part 2

We define the diagonal unitary matrices:

D(ω) = diag(eıω1 , · · · ,eıωN ) (92)

Any mixing matrix can be parametrized as:

V = D(ω)
∏
α<β

Wαβ(θαβ,nαβ). (93)

The parameters allowed values are:

0 ≤ θαβ ≤ π 0 ≤ ωk < 2π 0 ≤ nαβ < 2π. (94)
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The Mixing Matrix

Elimination of Unphysical Phases

One can see that:

D(φ)Wαβ(θαβ,nαβ)D†(φ) = Wαβ(θαβ,nαβ + φα − φβ) (95)

Expressing the mixing matrix as:

V = D(ω − φ)

∏
α<β

D(φ)Wαβ(θαβ,nαβ)D†(φ)

D(φ) (96)

We can eliminate N − 1 of the nαβ phases:

V = D(ω − φ)

∏
α<β

Wαβ(θαβ,nαβ + φα − φβ)

D(φ). (97)
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The Mixing Matrix

The Parametrization of PDG

In the case N=3 we use:

φ = (φ2 − n12, φ2, φ2 + n23) (98)

The mixing matrix becomes:

V = R23W 13R12. (99)

We define δ = −n13 and we get the mixing matrix:

V =

 c12c13 s12c13 s13e−ıδ

−s12c23 − c12s23s13eıδ c12c23 − s12s23s13eıδ s23c13
s12s23 − c12c23s13eıδ −c12s23 − s12c23s13eıδ c23c13

 .

(100)
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The Mixing Matrix

Degenerate Masses

In the case of degenerate masses the mixing matrix can be
simplified further. Consider two down-type, for example d & s
quarks having degenerate masses. Then rotations in d-s plane
have no physical effects:

qD → U12qD U12 =

 U12
11 U12

12 0
U12

21 U12
22 0

0 0 1

 . (101)

The mixing matrix can be expressed as

V = DLR23R13W 12DR. (102)

The diagonal matrices can be eliminated an once, but by
choosing U12 =

(
W 12)† we can eliminate W 12 too. The mixing

matrix becomes rotations on the s-b & d-b planes:

V = R23R13 (103)
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The Mixing Matrix

Maximal & Minimal Parameters

If an angle has its minimal or its maximal value then at least
one of the elements of the mixing matrix vanishes. Using the
unitarity relations:

V †V = 1 VV † = 1. (104)

Starting from the PDG parametrization we can rearrange the
mixing matrix columns and lines and move sinθ13 to the
vanishing element. This way the maxing matrix becomes real.
Obviously in the cases

δ = 0, π (105)

the mixing matrix is real.
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CP Violation

The Jarlskog Invariant

In order to measure the CP Violation we use the Jarlskog
invariant:

J = = [VusVcbVubVcs] (106)

In the PDG parametrization:

J = c12s12c23s23c2
13s13 sin δ

=
1
8

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ.
(107)
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CP Violation

Maximal CP Violation

Maximal CP Violation corresponds to

|Jmax | =
1

6
√

3
, (108)

which means θ12 = θ23 = π/4, s13 = 1/
√

3 & sin δ = ±1. The
norm of each element of the mixing matrix is 1/

√
3.

V =
1√
3

 1 1 ∓ı
−e±ıπ/6 e∓ıπ/6 1
e∓ıπ/6 e±ıπ/6 1

 (109)
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CP Violation

Expressing the Mixing Matrix in terms of the Jarlskog Invariant

The mixing matrix can be determined almost uniquely by

|Vus|, |Vub|, |Vcb|, J. (110)

using the unitarity relations and the followings:

tan θ12 =
|Vus|
|Vud |

, tan θ23 =
|Vcb|
|Vtb|

, sin θ13 = |Vub|, (111)

sin δ13 =
8J

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13
. (112)

The mixing phase is not unique as sin δ = sin(π − δ).
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CP Violation

Conditions for CP Violation

If the mixing matrix is real then CP must be conserved!
This means that we have CP Violation if:

No two up-type or down-type quarks have degenerate
masses. (6)
No mixing angle is maximal or minimal. (6)
The phase is not maximal or minimal. (2)

In total we have 14 conditions! This can be summarized as

detC 6= 0. (113)

C is the commutator:

C = ı

[(
MU
)2
,V
(

MD
)2

V †
]

(114)

Thus the conditions are:

detC = 2J(m2
c−m2

u)(m2
t −m2

u)(m2
t −m2

c)(m2
s−m2

d )(m2
b−m2

d )(m2
b−m2

s).
(115)
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Dirac Neutrinos

Righthanded Neutrinos

A Dirac mass term for neutrinos arises through the Higgs
mechanism just like all other fermions. We can introduce a
righthanded neutrino for each generation:

ναR. (116)

This is a gauge singlet therefore we call righthanded neutrinos
sterile.
The coupling of leptons to Higgs field is:

LH,L = −
(

v + H√
2

)[
`
′
LY ′``′R + ν ′LY ′νν ′R

]
+ H.C. (117)
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Dirac Neutrinos

Coupling to Higgs Field

We diagonalize the matrices containing the Yukawa couplings:(
V `

L

)†
Y ′`V `

R = Y `, Y `
ij = y `i δij , y `i > 0

(V ν
L )† Y ′νV ν

R = Y ν , Y ν
ij = yνi δij , yνi > 0.

(118)

The Lagrangian becomes:

LH,L = −
(

v + H√
2

)[
`LY ``R + νLY ννR

]
+ H.C. (119)

The neutrinos having definite mass are

νL = (V ν
L )† ν ′L =

 ν1L
ν2L
ν3L

 νR = (V ν
R)† ν ′R =

 ν1R
ν2R
ν3R

 .

(120)
Having such a tiny neutrino mass is unphysical as it requires
extremely small Yukawa couplings.
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Dirac Neutrinos

Charged Weak Current

The charged weak current becomes

jkW ,L = 2ν ′Lγ
k`′L = 2νL (V ν

L )† γkV `
L`L = 2νLU†PMNSγ

k`L. (121)

We define the leptonic mixing matrix:

UPMNS =
(

V `
L

)†
V ν

L (122)
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Dirac Neutrinos

Comparison to SM Neutrinos

We can define the neutrinos having definite flavor as:

νF
L = UνL =

(
V `

L

)†
ν ′L, νF

L =

 νeL
νµL
ντL

 . (123)

Then the current takes the form

jkW ,L = 2νF
L γ

k`L. (124)

but this neutrinos are not independent:

LH,L = −v + H√
2

∑
α=e,µ,τ

y `α`
αL
`αR + νF

αL

∑
k=1,2,3

Uαkyνk ν
F
kR

+H.C.

(125)
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Dirac Neutrinos

Symmetries

The Lagrangian is no more invariant to phase transformations
per generation:

ναL → eıφαναL, , ναR → eıφαναR, `αL → eıφα`αL, `αR → eıφα`αR
(126)

Only common phase transformations for all leptons leave the
Lagrangian invariant:

νkL → eıφνkL, νkR → eıφνkR, `αL → eıφ`αL, `αR → eıφ`αR.
(127)

This correspond to the conservation of leptonic number.
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Majorana Neutrinos

Are Lefthanded Majorana Mass Terms for Neutrino allowed in SM?

In general Majorana lefthanded particles have mass terms in
the form:

f
C
L fL. (128)

Its not so easy to include lefthanded Majorana mass term for
neutrinos in the frame work of SM. The term:

νC
L νL (129)

has I3 = 1 & Y = −2, therefore the Higgs doublet cant couple
to this term. There are two ways to deal with this problem:

We can add a Higgs triplet.
We can add a non-renormalizable term.

The non-renormalizable term is not as bad as it sound, as it
can be understand in the framework of the low energy limit of
new physics.



Mixing in the SM Neutrino Mixing & Mass Terms Summary

Majorana Neutrinos

5-D Operator

The simplest case is a 5-D operator:

L5 =
g
M

(
LT

L σ2Φ
)

C†
(

ΦTσ2LL

)
+ H.C., (130)

After symmetry breaking the neutrinos acquire mass:

LM
Mass =

1
2

gv2

M
νC

L νL + H.C. (131)

As Dirac mass terms are proportional to Higgs Field VEV:

m ∼
m2

D
M
. (132)

The similarity with the See-Saw relation is not accidental.
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Majorana Neutrinos

Mixing Part 1

The mass term is:

LM
Mass =

1
2
νT ′

L C†MLν ′L + H.C. =
1
2

∑
αβ

νT ′
αLC†ML

αβν
′
βL + H.C.

(133)
As the mass matrix is symmetric it can be diagonalized with the
transformation:

(V ν
L )T MLV ν

L = M Mij = miδij mi > 0. (134)

The neutrinos of definite mass are defined as

ν ′ = V ν
L νL νL =

 ν1L
ν2L
ν2L

 . (135)
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Majorana Neutrinos

Mixing Part 2

These neutrinos satisfy the Majorana condition:

νC
k = νk . (136)

We can express the mass term as

LM =
1
2
ν
(
ı/∂ −M

)
ν. (137)

One can see that the mass term is no more invariant under
transformations:

νkL → eıφνkL. (138)

Thus arises lepton number violation.
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Majorana Neutrinos

Charged Weak Current

The charged weak current is transformed as in the Dirac case,
but now we cant eliminate all that phases. The mixing matrix
can be expressed as:

U = UDUM . (139)

UD is the mixing matrix of the Dirac case & UM is a diagonal
matrix containing Majorana phases:

DM = diag(eıα1 ,eıα2 ,eıα3). (140)

Only 2 Majorana phases are physical. Usually we set α1 = 0.
Neutrino oscillations cant give information for the Majorana
phases.
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Majorana Neutrinos

Mixing in the Framework of the 5-D Operator

The 5-D operator is:

LM
Mass =

1
2

v2

M

∑
αβ

gαβν ′TαLC†ν ′βL + H.C. (141)

The mass matrix is

ML =
v2

M
gαβ (142)

thus the matrix gαβ must be symmetric.
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Dirac & Majorana Neutrinos 1 Generation

Dirac Majorana Mass Term

If we accept the existence of righthanded neutrinos the most
general mass term is a Dirac - Majorana:

LD+M
mass = LL

mass + LD
mass + LR

mass

=
1
2

mLν
T
L C†νL −mDνRνL +

1
2

mRν
T
RC†νR + H.C.

(143)

This Lagrangian is only possible for neutrinos.
As we can redefine only two fields and we have three masses,
one may be complex. We assume that this mass is mL.
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Dirac & Majorana Neutrinos 1 Generation

A more Convenient Form

It is enlightening to define

NL =

(
νL
νC

R

)
=

(
νL

CνT
R

)
. (144)

Then the Lagrangian can now be expressed as:

LD+M
mass =

1
2

NT
L C†MNL + H.C. (145)

The mass matrix is has the symmetric form:

M =

(
mL mD
mD mR

)
(146)

As the mass matrix is not diagonal neutrinos don’t have definite
mass.
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Dirac & Majorana Neutrinos 1 Generation

Mixing

We diagonalize the mass matrix:

NL = UnL, nL =

(
ν1L
ν2L

)
. (147)

Then the mass matrix becomes:

UT MU =

(
m1 0
0 m2

)
, mi ≥ 0 (148)
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Dirac & Majorana Neutrinos 1 Generation

Diagonalization Part 1

The masses and the elements of the mixing matrix are defined
through the eigenvalues and the eigenvectors of the matrix:

M =


<[mL] mD −=[mL] 0

mD mR 0 0
−=[mL] 0 −<[mL] −mD

0 0 −mD −mR

 . (149)

The eigenvalues are:

m2
2,1 =

1
2

[
|mL|2 + m2

R + 2m2
D

±
(

(<[mL] + mR)2
[
(<[mL]−mR)2 + 4m2

D

]
+ (=[mL])4 + 2 (=[mL])2

(
(<[mL])2 −m2

R + 2m2
D

))1/2
]

(150)
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Diagonalization Part 2

For real mL the relation is simplified:

m′2,1 =
1
2

[
m2

L + m2
R ±

√
(mL −mR)2 + 4m2

D

]
(151)

The prime symbolizes that the mass is not always positive. If
it’s negative the minus sign can be absorbed in the mass
matrix.Thus the mass is the absolute value of m′.
The mixing matrix can be written as:

U =

(
cos θ sin θ
− sin θ cos θ

)(
eıλ 0
0 1

)
=

(
cos θeıλ sin θ
− sin θeıλ cos θ

)
.

(152)
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Diagonalization Part 3

The first eigenvector is:

M


sin θ
cos θ

0
0

 = m2


sin θ
cos θ

0
0

 (153)

This result corresponds to:

tan 2θ =
2mD

mR −<[mL]
(154)
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Diagonalization Part 4

The second eigenvector is:

M


cos θ cosλ
− sin θ cosλ
cos θ sinλ
− sin θ sinλ

 = m1


cos θ cosλ
− sin θ cosλ
cos θ sinλ
− sin θ sinλ

 . (155)

This result corresponds to:

tan 2λ =
2=[mL]

<[mL] + mR −
√

(<[mL]−mR)2 + 4m2
D

(156)

Since 0 ≤ 2λ ≤ 4π there are 4 allowed values λ We choose the
value that makes both masses positive.
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Diagonalization Summary

For 1 generation of lefthanded and righthanded neutrinos after
the diagonalization occur 2 Majorana neutrinos ν1 & ν2 of
definite mass. The neutrinos νL & νC

R are lefthanded on the
flavor base. The neutrino νL is active, while the neutrino νR is
sterile, thus oscillations between active and sterile neutrinos is
possible. This oscillations have:

∆m2 =

[
(<[mL] + mR)2

[
(<[mL]−mR)2 + 4mD

]

+ (=[mL])4 + 2 (=[mL])2
(

(<[mL])2 −m2
R + 2m2

D

)]1/2 (157)
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Weak Interactions

The neutrinos of definite flavor in terms of the neutrinos of
definite mass are:

νL = U11ν1L + U12ν2L

νC
R = U21ν1L + U22ν2L

(158)

According to this mixing the Lagrangian of charged current
weak interactions is:

LCC = − g√
2

∑
i=1,2

U∗1iν iLγ
µ`LWµ + H.C. (159)

The Lagrangian of neutral current weak interactions is

LNC = − g
2 cos θW

∑
ij=1,2

U∗1iU1jν iLγ
µνjLZµ (160)

A very strange phenomenon is that GIM mechanism doesn’t
work.
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Maximal Mixing Part 1

Maximal mixing occurs when

mL = mR. (161)

In this case the masses are:

m′2,1 = mL ±mD. (162)

If mL > mD then both masses are real and the mixing matrix is:

U =
1√
2

(
1 1
−1 1

)
. (163)

If mL < mD then m1 < 0, thus the mixing matrix is:

U =
1√
2

(
ı 1
−ı 1

)
. (164)
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Maximal Mixing Part 2

In the case mL < mD since θ = π/4 we get:

ν1L = − ı√
2

(
νL − νC

R

)
(165)

ν2L =
1√
2

(
νL + νC

R

)
. (166)

The neutrinos of definite mass are:

ν1 = ν1L + νC
1L = − ı√

2

[
(νL + νR)− (νC

L + νC
R )
]

(167)

ν2 = ν2L + νC
2L =

1√
2

[
(νL + νR) + (νC

L + νC
R )
]
. (168)

The square mass splitting is:

∆m2 = m2
2 −m2

1 = 4mLmD (169)
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Dirac Limit

The Dirac limit corresponds to the case:

mL = mR = 0 (170)

m′2,1 = ±mD. (171)

The mixing matrix in this case is:

U =

(
ı 1
−ı 1

)
. (172)

This way we get two Majorana neutrinos of the same mass with
opposite CP parities. This two neutrinos can be combined into
a Dirac neutrino as:

ν =
1√
2

(ıν1 + ν2) = νL + νR. (173)

On the same reasoning a Dirac neutrino can split into two
Majorana neutrinos of the same mass with opposite parities.
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Pseudodirac Neutrinos Part 1

Pseudodirac neutrinos correspond to the case:

|mL|,mR � mD (174)

The neutrinos have masses:

m′2,1 =
mL + mR

2
±mD (175)

Thus the neutrinos have opposite CP parities and the acquired
masses are:

m2,1 = mD ±
mL + mR

2
(176)

The mass splitting is

(mL + mR)� m2,1, (177)
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Pseudodirac Neutrinos Part 2

The Majorana neutrinos are almost degenerate. We call them
pseudodirac because its very difficult distinguish them from the
Dirac neutrinos. The best way to distinguish the two cases is
the oscillations between active and sterile neutrinos with
square mass splitting:

∆m2 ' mD(mL + mR) (178)

and a practically maximal mixing angle:

tan 2θ =
2mD

mR −mL
� 1→ θ ' π

4
(179)
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See-Saw Mechanism Part 1

The most realistic and interesting case is when:

mL = 0 mR � mD (180)

The mass mL is protected by the symmetries of SM and
renormalizability.
In this case the mass eigenstates are:

m′1 ' −
m2

D
mR

(181)

m′2 ' mR (182)

Mixing is minimal
tan 2θ = 2

mD

mR
� 1 (183)
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See-Saw Mechanism Part 2

The huge difference between neutrinos and other fermions
are explained in a very natural manner.
The mass mD is generated through Higgs mechanism
can’t be greater than the energy scale of EW symmetry
breaking. Its natural to set mD ∼ 100GeV .
mR may be associated with symmetry breaking of a
greater symmetry. If mR is associated with GUT then
mR ∼ 1014 − 1016.
The similarity of See-Saw relations with the relations
obtained for the 5-D operator is not accidental. See-Saw
mechanism is a special case of 5-D operators.
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See-Saw Mechanism as Special Case of 5-D Operators Part 1

For mL = 0 the Lagrangian is:

LD+M
mass = −mD (νRνL + νLνR)+

1
2

mR

(
νT

RC†νR + ν†RCν∗R
)

(184)

Above symmetry breaking:

LD+M
mass = −yν

(
νRΦ̃†LL + LLΦ̃νR

)
+

1
2

mR

(
νT

RC†νR + ν†RCν∗R
)

(185)
Considering νR static E-L equation becomes:

0 ' ∂LD+M
mass

∂νR
= mRν

T
R C† − yνLLΦ̃. (186)

Solving for νR we have:

νR ' −
yν

mR
Φ̃T CL

T
L . (187)

Substitution of νR to the Lagrangian gives a 5-D operator for νL.
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Non Vanishing mL

Consider the case:

mL � mD � mR mL = g
m2

D
M

(188)

M is at the energy scale of physics Beyond SM, maybe at the
scale of L or B-L symmetry breaking. We obtain:

m1 '

∣∣∣∣∣g m2
D

M
−

m2
D

mR

∣∣∣∣∣ m2 ' mR (189)

Type I See-Saw mechanism corresponds to the case
mL � m2

D/mR.
Type II See-Saw mechanism corresponds to the case
mL � m2

D/mR.
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Mass Terms Part 1

We consider 3 active lefthanded neutrinos and NS sterile
righthanded neutrinos. A general Lagrangian has the form:

LD+M
mass = LL

mass + LD
mass + LR

mass. (190)

The Majorana mass terms are:

LL
mass

1
2

∑
α,β=e,µ,τ

(
ν ′
)T
αL C†ML

αβν
′
βL + H.C. (191)

LR
mass

1
2

∑
s,s′=s1,··· ,sNS

(
ν ′
)T

sR C†MR
ss′ν

′
s′R + H.C. (192)

while the Dirac mass term is:

LD
mass = −

∑
s=1,··· ,NS

∑
α=e,µ,τ

νsRMD
sαν
′
αL + H.C. (193)
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Dirac & Majorana Neutrinos 3 Generations

Mass Terms Part 2

All mass matrices are complex, especially the Majorana mass
matrices are symmetric. The matrices dimensions are as
follows: ML is 3× 3, MR is NS × NS & MD is NS × 3. We
express the neutrinos as a N = 3 + NS column:

N ′L =

(
ν ′L
νC′

R

)
νC′

R =


νC′

s1R
...

νC′
sNS

R

 (194)

Then the Lagrangian becomes:

LD+M
mass =

1
2
(
N ′L
)T C†MD+MN ′L + H.C. (195)
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Diagonalization

The mass matrix MD+M is symmetric N × N:

MD+M =

(
ML (

MD)T

MD MR

)
. (196)

If we define the neutrinos as

N ′L = V ν
L nL nL =

 ν1L
...
νNL

 , (197)

then the mass matrix is diagonalized:

(V ν
L )T MD+MV ν

L = M Mij = miδij mi > 0. (198)
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The Lagrangian can be written as:

LD+M
mass =

1
2

(nL)T C†MnL + H.C. (199)

If we define the column:

n =

 ν1
...
νN

 νi = νiL + νC
iL (200)

with neutrinos satisfy the Majorana condition:

νC
i = νi (201)

the Lagrangian becomes:

LD+M
mass = n

(
ı/∂ −M

)
n. (202)
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Dirac & Majorana Neutrinos 3 Generations

Weak Interactions Part 1

The leptonic weak charged current is:

jµW ,L = 2ν ′Lγ
µ`′L (203)

In term of neutrinos with definite mass the current is:

jµW ,L = 2νLU†γµ`L. (204)

The mixing matrix has elements:

Uαk =
∑

β=e,µ,τ

[(
V `

L

)†]
αβ

[V ν
L ]βk , (205)

The mixing matrix is 3× 3 and diagonalizes the charged
leptons mass matrix. U is N × N but its not unitary as:

UU† = 1 U†U 6= 1 (206)
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Dirac & Majorana Neutrinos 3 Generations

Weak Interactions Part 2

The neutrinos of definite flavor are defined as:

νL = UnL =
(

V `
L

)†
ν ′L νL =

 νeL
νµL
ντL

 (207)

This way we get the SM expression for the weak charged
current:

jµW ,L = 2νLγ
µ`L (208)

As in the case of one generation GIM mechanism doesn’t work:

jµZ ,ν = nLγ
µU†UnL, (209)
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Dirac & Majorana Neutrinos 3 Generations

See-Saw Mechanism Part 1

If we set ML = 0 the mass matrix becomes:

MD+M =

(
0

(
MD)T

MD MR

)
, (210)

the elements of MR are much greater than the elements of MD.

We diagonalize to first order of
(
MR)−1 MD:

W T MD+MW '
(

Mlight o
0 Mheavy

)
, (211)

where the matrix W is:

W '

 1− 1
2MD†

(
MRMR†

)−1
MD

(
MR−1

MD
)†

−MR−1
MD 1− 1

2MR−1
MDMD†

(
MR†

)−1


(212)
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Dirac & Majorana Neutrinos 3 Generations

See-Saw Mechanism Part 2

The elements blocks of the mass matrix are:

Mlight ' −MDT
MR−1

MD Mheavy ' MR. (213)

The heavy masses are the eigenvalues of the heavy mass
matrix, while the light masses are suppressed by the factor
MDT

MR−1
. The masses can have a wide range depending on

the elements of the matrices.
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Dirac & Majorana Neutrinos 3 Generations

Quadratic See-Saw

Quadratic See-Saw Mechanism corresponds to the case:

MR =MI (214)

then

Mlight ' −
MDT

MD

M
, (215)

which means that the masses are:

mi ' −
(mD

i )2

M
. (216)

We expect the mass ratios to be:

m1 : m2 : m3 =
(

mD
1

)2
:
(

mD
2

)2
:
(

mD
3

)2
(217)
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Dirac & Majorana Neutrinos 3 Generations

Linear See-Saw

The case of linear See-Saw NS = 3 and

MR =
M
MD MD, (218)

MD is the energy scale of the elements of MD. M�MD is
the GUT scale.
The matrix Mlight becomes:

Mlight ' −
MD

M
MD (219)

Thus the light masses are:

mi =
MD

M
mD

i . (220)

The ratios are linear:

m1 : m2 : m3 = mD
1 : mD

2 : mD
3 (221)

Both ratios hold at GUT scale, we need R.G.E.
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Dirac & Majorana Neutrinos 3 Generations

GUTs Part 1

We are interested in 3+1 models. The special case is the
symmetric expansion of SM, which only need righthanded
neutrinos and U(1) symmetry corresponds to B-L:

SU(3)C × SU(2)L × SU(2)R × U(1)B−L (222)

The GUTs are:

SU(5) SU(4)× SU(2)L × SU(2)R SO(10) (223)

SU(5) is the simplest case. It doesn’t provide space for
righthanded neutrinos which means that in order to have
massive neutrinos we must include either Higgs triplets or
non-renormalizable mass terms.
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Dirac & Majorana Neutrinos 3 Generations

GUTs Part 2

Pati - Salam SU(4)× SU(2)L × SU(2)R includes righthanded
currents but they are suppressed by m2

WR
.

SU(4)× SU(2)L × SU(2)R is a subgroup of SO(10).
SO(10) does not only include righthanded neutrino but the
neutrino is SU(5) singlet too. Nevertheless the righthanded
neutrino couples to other gauge bosons. As SO(10) not
necessarily conserve B-L Majorana neutrinos are allowed.
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Experimental Types

Introduction

Appearance Transition Probability
Disappearance Survival Probability

Oscillations are suppressed for:

∆m2L
2E

� 1 (224)

Oscillations are averaged for:

∆m2L
2E

� 1 (225)

Thus we need:
∆m2L

2E
∼ 1. (226)
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Experimental Types

Sources

Sun: νe

Atmosphere: νe, νe, νµ, νµ
Reactor: νe

Accelerator experiments are divided as follows:
Pion Decay In Flight:

π+ → µ+ + νµ (227)

Muon Decays at Rest:

µ+ → e+ + νe + ν̄µ (228)

Beam Dump: νe, νe, νµ, νµ

Beta Beams: pure νe or νe
Nu Factories: pure νµ or νµ
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Experimental Types

Classification of Experiments

Type L E ∆m2

Reactor SBL ∼ 10 m ∼ 1 MeV ∼ 0.1 eV 2

Ac. SBL
Pion DIF ∼ 1 km ≥ 1 GeV ∼ 1 eV 2

Muon DAR ∼ 10 m ∼ 10 MeV ∼ 1 eV 2

Beam Dump ∼ 10 km ∼ 102 GeV ∼ 102 eV 2

Reactor LBL ∼ 10 km ∼ 1 MeV ∼ 10−3 eV 2

Ac. LBL ∼ 103 km ≥ 1 GeV ≥ 10−3 eV 2

Atmospheric 20− 104 km 0.5− 102 GeV ∼ 10−4 eV 2

Reactor VLBL ∼ 102 km ∼ 102 MeV ∼ 10−5 eV 2

Ac. VLBL ∼ 104 km ≥ 102 GeV ≥ 10−4 eV 2

Solar ∼ 1011 km 0.2− 15 MeV ∼ 10−12 eV 2
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Exclusion Curves

Taking into Account Uncertainties Part 1

We will include in our analysis that the ratio L/E follows a
distribution. It reasonable to consider:

φ

(
L
E

)
=

1√
2πσL/E

exp

(
L/E − 〈L/E〉

2σ2
L/E

)
, (229)

As a result〈
Pνα→νβ

(L,E)
〉

=
1
2

sin2 2θ
[
1−

〈
cos

(
∆m2L

2E

)〉]
(α 6= β),

(230)
where〈

cos
(

∆m2L
2E

)〉
=

∫
cos

(
∆m2L

2E

)
φ

(
L
E

)
d

L
E

(231)
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Exclusion Curves

Taking into Account Uncertainties Part 2

With the Gaussian distribution we can calculate:〈
cos

(
∆m2L

2E

)〉
= cos

(
∆m2

2

〈
L
E

〉)
exp

[
−1

2

(
∆m2

2
σL/E

)2]
.

(232)
We can consider that:

σL/E ∼
〈

L
E

〉
. (233)

Assume that: 〈
Pνα→νβ

(L,E)
〉
≤ Pmax

να→νβ
. (234)

This bound can be used to set the following bound:

sin2 2θ ≤
2Pmax

να→νβ

1−
〈

cos
(

∆m2L
2E

)〉 . (235)
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Exclusion Curves

Special Cases

In the case:

∆m2
〈

L
E

〉
� 1⇒ sin22θ → 2Pmax

να→νβ
(236)

In the opposite case:

∆m2
〈

L
E

〉
� 1⇒ sin2 2θ ≤

0.62Pmax
να→νβ(

∆m2[eV 2]
〈

L
E

〉
[km]

[GeV ]

)2 . (237)

This means that we can’t bound ∆m2 if it is lower than:

∆m2[eV 2]

〈
L
E

〉
[km]

[GeV ]
= 0.79

√
Pmax
να→νβ

. (238)
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Exclusion Curves

A Different Case

If we have 2 detectors we can measure the flux ratio.

〈Pνα→να(L,E)〉far
〈Pνα→να(L,E)〉near

≥ R, 0 ≤ R < 1 (239)

We ”average” the survival probability:

Pνα→να(L,E) = 1− 1
2

sin2 2θ
[
1− cos2

(
∆m2L

2E

)]
, (240)

Thus we get:

2(1−R) ≤ sin2 2θ
[
1− R −

〈
cos

∆m2L
2E

〉
far

+ R
〈

cos
∆m2L

2E

〉
near

]
(241)

sin2 2θ ≤ 2(1− R)

1− R −
〈

cos ∆m2L
2E

〉
far

+ R
〈

cos ∆m2L
2E

〉
near

, (242)
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Exclusion Curves

3 Neutrino Case

In the three neutrino case:

〈P(να → νβ)〉 =

δαβ − 2
∑
i>j

<(U∗αiUβiUαjU∗βj)

(
1−

〈
cos

(
∆m2

ij
L

2E

)〉)

+ 2
∑
i>j

=(U∗αiUβiUαjU∗βj)

〈
sin
(

∆m2
ij

L
2E

)〉
,

(243)

The sine’s overage is given by:〈
sin
(

∆m2L
2E

)〉
= sin

(
∆m2

2

〈
L
E

〉)
exp

[
−1

2

(
∆m2

2
σL/E

)2]
.

(244)
It’s obvious that this analysis is much more complicated.
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Solar Neutrinos

Solar Neutrino Production

In the Sun energy is produced by the reaction:

4p + 2e− → 4He + 2νe + Q, (245)

The Q-Value is Q = 25.731 MeV .
Each branch contributes to solar constant:∑

r

αr Φr = Ko, , r = pp,pep,hep, 7Be, 8B, 13N, 15O, 17F

(246)
Therefore the total flux is:

Φ ' 2Ko

Q
. (247)

The flux is measured in SNU, where 1 SNU = 10−36 events per
second.
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Solar Neutrinos

Solar Results

The solar data leads to:

∆m2 = 6.5+4.4
−2.3 × 10−5eV 2, tan2 θ = 0.45+0.09

−0.08 (248)

If we take KamLAND’s data into account we get:

∆m2 = 8.0+0.6
−0.4 × 10−5eV 2, tan2 θ = 0.45+0.09

−0.07, (249)
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Solar Neutrinos
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Atmospheric Neutrinos

Atmospheric Overview

Pions produced by cosmic rays produce neutrinos and muons.

π+ → µ+ + νµ π− → µ− + ν̄µ. (250)

Muons may or may not decay before they hit the ground:

µ+ → e+ + νe + ν̄µ µ− → e− + ν̄e + νµ (251)

We estimate the following flux ratios:

φνµ + φν̄µ

φνe + φν̄e

' 2,
φνµ

φν̄µ

' 1,
φνe

φν̄e

'
φµ+

φµ−
(252)

We compare experimental values with Monte Carlo results.
The best fit values for atmospheric experiments are:

sin2 2θ = 1.00 ∆m2 = 2.1× 10−3 eV 2 (253)
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Reactor Experiments

Reactor Overview

Neutrinos νe are produced in nuclear reactors. Each GW of
energy corresponds to 2× 1020 antineutrinos. Due to low
neutrino’s energy we can only measure the disappearance of
νe.
We use the inverse beta decay :

νe + p → n + e+ Eth = 1.806 MeV . (254)

Only 25% of the flux has energy above this threshold.
KamLAND result taking into account solar data is:

∆m2 = 7.9+0.6
−0.5 × 10−5 eV 2 tan2 θ = 0.40+0.10

−0.07 (255)
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Reactor Experiments
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Accelerator Experiments

Accelerator Overview

There are 3 types of beams:
Wide Band: Neutrino energies may differ 2 orders of
magnitude, but the beam has great intensity.
Narrow Band: These beams have low intensity.
Off Axis: These beams are almost monochromatic.

Only K2K detected oscillation. Its data implied that:

sin2 2θ = 1.0 ∆m2 = 2.8× 10−3 eV (256)

Atmospheric results were confirmed. No transformations
νµ → νe were detected, leading to the bound:

sin2 2θµe < 0.13 (90%C.L.) ∆m2 = 2.8× 10−3 eV (257)
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Introduction

New Point of View

So far experiments were analyzed using 2 neutrino oscillations.
Now we are going one step further.
Square mass splitting don’t depend on the analysis, as they are
fixed by nature. Only 2 out of 3 are independent as:

∆m32 + ∆m21 −∆m31 = 0 (258)

The experiments imply that:

∆m2
SOL � ∆m2

ATM , (259)

We symbolize:

∆m2
SOL = ∆m2

21 ∆m2
ATM = |∆m2

31| ' |∆m2
32| (260)
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Introduction

Mixing in 3 Neutrinos Analysis

Mixing may change dramatically, but as we will see it won’t.
Solar experiments measure the disappearance of νe, as a result
they depend only on Uei . Atmospheric oscillations depend on
the mixing angles θ23 & θ13. This angles are determined as:

sin θ23 =
|Uµ3|√

1− |Ue3|2
sin θ13 = |Ue3| (261)

The only common elements is |Ue3| which is very small, if not
zero.
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Two Types of Oscillations

Two types of oscillations

As a result of
∆m2

SOL � ∆m2
ATM , (262)

we have two different types of oscillations depending on the
active square mass splitting.
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Two Types of Oscillations

Large Square Mass Splitting Part 1

In atmospheric or LBL experiments we have:

∆m2
31

2

〈
L
E

〉
∼ π (263)

Oscillations due to ∆m2
21 are averaged. As a result the

oscillation can be interpreted as effective two neutrinos
oscillations with the following probabilities and mixing angles:

Peff
να→νβ

(L,E) = sin2 2θeff
αβ sin2

(
∆m2

31L
4E

)
, α 6= β (264)

Peff
να→να

(L,E) = 1− sin2 2θeff
αα sin2

(
∆m2

31L
4E

)
(265)

sin2 2θeff
αβ = 4|Uα3|2|Uβ3|2, α 6= β (266)

sin2 2θeff
αα = 4|Uα3|2

(
1− |Uα3|2

)
(267)
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Two Types of Oscillations

Large Square Mass Splitting Part 2

Oscillations between any type of neutrinos are allowed and
they have the same oscillation length:

Losc =
4π

∆m2
31
. (268)

As the probabilities don’t depend on the phase, no information
for CP violation can be obtained. Oscillations depend only on
∆m2

31, |Ue3| & |Uµ3|. In terms of mixing parameters we have
|Ue3| = sin2 θ13 & |Uµ3| = cos2 θ13 sin2 θ23. This analysis
implies that 2 neutrino analysis uses the same square mass
splitting and the effective mixing angle.
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Two Types of Oscillations

Small Square Mass Splitting Part 1

In solar of VLBL experiments we have:

∆m2
21

2

〈
L
E

〉
∼ π, (269)

Oscillation due to the small square mass splitting are washed
out. Either we measure the disappearance of νe or as we can’t
distinguish νµ & ντ we measure their total appearance. The
second process is equivalent to the first as:

Pνe→νµ + Pνe→ντ = 1− Pνe→νe . (270)
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Two Types of Oscillations

Small Square Mass Splitting Part 2

The probability for this oscillations is given by:

Peff
να→να

(L,E) =
(

1− |Uα3|2
)2

P(1,2)
να→να

(L,E) + |Uα3|2, (271)

where the effective two neutrino probability is given by:

P(1,2)
να→να

(L,E) = 1− sin2 2θeff
αα sin2

(
∆m2

21L
4E

)
, (272)

and the effective mixing angle is given by:

sin2 2θeff
αα = 4

|Uα1|2|Uα2|2

(|Uα1|2 + |Uα2|2)
2 (273)
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Bound on |Ue3|

As we mentioned in oscillations duo to ∆m2
31 the effective

mixing angle depends only on |Uα3|. If we use νe or νe then:

sin2 2θeff
ee = 4|Uα3|2

(
1− |Uα3|2

)
= sin2 2θ13. (274)

If experimentally we have an upper bound
(

sin2 2θ13

)
max

then:

|Ue3|2 ≤
1
2

(
1−

√
1−

(
sin2 2θ13

)
max

)
. (275)

Analysis based on data of CHOOZ and Palo Verde in combined
with data of Super-Kamiokande gives:

|Ue3|2 < 5× 10−5 99.73% CL (276)

As LBL experiments didn’t detect any νµ → νe oscillation we
have the bound:

|Ue3|2 < 7× 10−5 90% CL @ ∆m2 = 2.8× 10−3 eV 2. (277)
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Tribimaximal Analysis

Tribimaximal Analysis Part 1

We can assume |Ue3| = 0, then atmospheric & solar
oscillations are decoupled. We denote:

θSOL = θ12 θATM = θ23 (278)

Then the mixing matrix becomes:

U =

 cos θSOL sin θSOL 0
− sin θSOL cos θATM cos θSOL cos θATM sin θATM

sin θSOL sin θATM − cos θSOL sin θATM cos θATM


(279)

Neutrinos νe are the superposition:

νe = cos θSOLν1 + sin θSOLν2. (280)

As they oscillate they transit to the orthogonal state:

νSOL = − sin θSOLν1 + cos θSOLν2

= cos θATMνµ − sin θATMντ
(281)
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Tribimaximal Analysis

Tribimaximal Analysis Part 2

As the atmospheric mixing angle is maximal, thus:

νSOL =
1√
2

(νµ − ντ ) . (282)

From SNO we know that the ration charged current to neutral
current events is 1/3 thus νe, νµ & ντ have same flux. We can
use the approximation θSOL = π/6, then:

U =


√

3/2 1/2 0
−1/2

√
2
√

3/2
√

2 1/
√

2
1/2
√

2 −
√

3/2
√

2 1/
√

2

 (283)
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Global Results

The Framework

Now we are going to review experimental results without any
assumption for |Ue3|. We use 5 free parameters:

∆m21 ∆m31 θ12 θ23 θ13 (284)

So far experiments are not sensitive to the phase δ therefore
we will use the mixing matrix:

U = R23R13R12

=

 c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13


(285)
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Global Results

Results Part 1

An analysis gives:

∆m2
21 = 7.92(1± 0.09)× 10−5 eV 2 sin2 2θ12 = 0.314(1+0.18

−0.15),

∆m2
23 = 2.4(1+0.21

−0.26)× 10−3 eV 2 sin2 2θ23 = 0.44(1+0.41
−0.22),

sin2 2θ13 = 0.9(1+2.3
−0.9 × 10−2),

(286)
the range corresponds to 2σ. Other analysis give similar
results. The mixing matrix for these values is:

|U|bf =

 0.82 0.56 0.09
0.31− 0.43 0.51− 0.59 0.75
0.37− 0.47 0.59− 0.66 0.66

 (287)
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Global Results

Results Part 2

The ranges are a consequence of the lack of information about
δ. In 2σ we have:

|U|2σ =

 0.78− 0.86 0.51− 0.61 0.00− 0.18
0.19− 0.57 0.39− 0.73 0.61− 0.80
0.20− 0.47 0.40− 0.74 0.59− 0.79

 (288)



Experimental Aspect Global Analysis Summary

Summary

5 Experimental Aspect
Experimental Types
Exclusion Curves
Solar Neutrinos
Atmospheric Neutrinos
Reactor Experiments
Accelerator Experiments

6 Global Analysis
Introduction
Two Types of Oscillations
Bound on |Ue3|
Tribimaximal Analysis
Global Results



Introduction Beta Decay Double Beta Decay Other Bounds Summary

Lecture 4

Direct Mass Measurement



Introduction Beta Decay Double Beta Decay Other Bounds Summary

Outline of Lecture 4

7 Introduction
Neutrinos Hierarchy

8 Beta Decay
Without Mixing
With Mixing

9 Double Beta Decay
Basics
Normal Hierarchy
Inverted Hierarchy

10 Other Bounds



Introduction Beta Decay Double Beta Decay Other Bounds Summary

Neutrinos Hierarchy



Introduction Beta Decay Double Beta Decay Other Bounds Summary

Neutrinos Hierarchy

The 2 Hierarchies

We can express neutrino masses in terms of the lightest
neutrino mass. In the normal hierarchy:

m2
2 = m2

1 + ∆m2
21 = m2

1 + ∆m2
SOL

m2
3 = m2

1 + ∆m2
31 = m2

1 + ∆m2
ATM .

(289)

In the inverted hierarchy:

m2
1 = m2

3 −∆m2
31 = m2

3 + ∆m2
ATM

m2
2 = m2

1 + ∆m2
21 = m2

2 + ∆m2
ATM + ∆m2

SOL.
(290)
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Neutrinos Hierarchy

Pattern Analysis

In both cases there is a degenerate region, where:

m1 ' m2 ' m3 ' mν , mν �
√

∆m2
ATM ' 5× 10−2 eV (291)

If the lightest mass is smaller than
√

∆m2
ATM the 2 patterns can

be distinguished. In the normal hierarchy:

m1 � m2 � m3, (292)

In the inverted hierarchy:

m3 � m1 ' m2 (293)

In any case at least two neutrino has mass greater than√
∆m2

SOL > 8× 10−3 eV and one of them has mass greater

than ∆m2
ATM > 4× 10−2 eV .
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Without Mixing

Introduction

In beta decay the energy released becomes kinetic energy of
the electron and neutrino energy.

Qβ = Ee + Eν . (294)

When the neutrino is produced at rest the electron has its
maximum energy:

Ee−max = Qβ −mνe (295)

In allowed beta decays we have:

dΓ

dEe
=

G2
F m5

e

2π3 cos2 θC |M|2F (Z ,Ee)Eepe

× (Qβ − Ee)

√
(Qβ − Ee)2 −m2

νe .

(296)
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Without Mixing

Curie Function

Unfortunately events near maximum are very rare. Tritium beta
decay gives the best bound:

3H → 3He + e− + νe Qβ = 18.754 keV . (297)

Curie function is defined as:

K (Ee) =

[
(Qβ − Ee)

√
(Qβ − Ee)2 −m2

νe

]1/2

(298)

For massless neutrinos:

K (Ee) = Qβ − Ee, (299)
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Without Mixing

Results

This way Mainz & Troitzk collaborations got the following limits:

mνe < 2.3 eV (95%C.L.) (300)

mνe < 2.5 eV (95%C.L.) (301)

These collaboration are now joined and they work on the
KATRIN experiments which has sensitivity down to 0.2 eV
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With Mixing

Taking Mixing Into Account Part 1

We see the decay as:

3H → 3He + e− + νk (302)

Now Curie function is defined as:

K (Ee) =

[
(Qβ − Ee)

∑
k

|Uek |2
√

(Qβ − Ee)−m2
k

]1/2

(303)

The shift of the end point gives the mass of the lightest mass
eigenstate:

mlight = Qβ − Ee−max . (304)

There are kinks at the points:

Ee−k = Qβ −mk mk 6= mlight (305)
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With Mixing

Taking Mixing Into Account Part 2

For mk � Qβ − Ee we have:

K 2 ' (Qβ − Ee)
√

(Q − Ee)2 −m2
β m2

β =
∑

k

|Uek |m2
k . (306)

Thus mβ is the effective mass of the neutrino in beta decay:

m2
β = c2

12c2
13m2

1 + s2
12c2

13m2
2 + s2

13m2
3. (307)
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Basics

Introduction

Double Beta Decay was proposed by M. Goeppert - Meyer
back to 1935. It’s the process:

N (A,Z )→ N (A,Z ± 2) + e∓ + 2νe
νe . (308)

Neutrinoless Double Beta Decay on the other hand is the
process:

N (A,Z )→ N (A,Z ± 2) + 2e∓. (309)

As a second order weak interaction it’s extremely suppressed.
Currently from Heidelberg - Moscow we have the bound:

T 0ν
1/2(76Ge) > 1.9× 1025 y (90%C.L.) (310)

Neutrinoless Double Beta Decay requires massive Majorana
neutrinos. Positive helicity is proportional to mνe/Eνe .



Introduction Beta Decay Double Beta Decay Other Bounds Summary

Basics



Introduction Beta Decay Double Beta Decay Other Bounds Summary

Basics

Effective Mass

The effective mass involved into the process is:

m2β =
∑

k

U2
ekmk . (311)

m2β = c2
12c2

13m1 + e2ıλ2s2
12c2

13m2 + e2ı(λ3−δ)m3

= |Ue1|2m1 + eıα2 |Ue2|2m2 + eıα3 |Ue3|2m3

α2 = 2λ2, α3 = 2(λ3 − δ)

(312)
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Basics

CP Conserving Cases

CP is conserved when δ = 0, π & λk = 0, π/2, π,3π/2. As a
result:

αk = 0, π eıαk = ±1. (313)

There are 4 cases:

(++) m2β = |Ue1|2m1 + |Ue2|2m2 + |Ue3|2m3 (314)

(+−) m2β = |Ue1|2m1 + |Ue2|2m2 − |Ue3|2m3 (315)

(−+) m2β = |Ue1|2m1 − |Ue2|2m2 + |Ue3|2m3 (316)

(−−) m2β = |Ue1|2m1 − |Ue2|2m2 − |Ue3|2m3 (317)

Maximal effective mass is achieved in ++ case:

mmax
2β =

∑
k

|Uek |2mk (318)
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Basics

Halflife and Matrix Elements

Neutrinoless Double Beta Decay halflife is:[
T 0ν

1/2(N )
]−1

= GN0ν |MN0ν |2
|m2β|2

m2
e

, (319)

where GN0ν &MN0ν are the phase space factor and nuclear
matrix element respectivly. The phase space factor can be
calculation with great accuracy, but there are uncertainties into
the calculation. For 76Ge we have:

G
76Ge
0ν = 6.31× 10−15y−1 (320)

1.5 ≤ |M76Ge
0ν | ≤ 4.6 (321)

As a result :
|m2β| ≤ 0.3− 1.0 eV . (322)
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Normal Hierarchy

Normal Hierarchy Part 1

The lightest mass is m1, then:

m2β = |Ue1|2m1 + eıα2 |Ue2|2
√

m2
1 + ∆m2

SOL

+ eıα3 |Ue3|2
√

m2
1 + ∆m2

ATM

(323)

The last term can be neglected as |Ue3| � |Ue1|, |Ue2|. In the
degenerate region m1 � ∆m2

ATM thus:

m2β ' m1

(
|Ue1|2 + eıα2 |Ue2|

)
(324)

In the 4 CP concerving cases:

(++), (+−) m2β ' m1 (325)

(−+), (−−) m2β 'm1

(
|Ue1|2 − |Ue2|2

)
' m1 cos 2θ12.

(326)
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Normal Hierarchy

Normal Hierarchy Part 2

In the hierarchical region:

m2 '
√

∆m2
SOL m3 '

√
∆m2

ATM (327)

Using the experimanetal values we observe that the effective
mass may vanish in the cases (−+) & (−−), if

m1 = tan2 θ12

√
∆m2

SOL ' 4× 10−3 → m2β = 0 (328)

For even smaller m1 we have:

m2β ' |Ue2|2
√

∆m2
SOL ' 2.7× 10−3 (329)

In the normal hierarchy in the hierarchical region there is no
lower bound, but there is an upper bound:

|m2β| ≤ 6× 10−3 eV m1 ≤ 10−3 eV (330)
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Inverted Hierarchy

Inverted Hierarchy

In the inverted hierarchy m1 ' m2 � m3, then:

m2β =
(
|Ue1|2 + eıα2 |Ue2|2

)√
m2

3 + ∆m2
ATM + eıα3 |Ue3|2m3

(331)
Again the last term can be neglected, but now the effective
mass cann’t vanish. In the degenerate region everything is as
in normal hierarchy if we substitute m3 to m1. In the hierarchical
region in the 4 CP conserving cases:

(++), (+−) m2β '
√

∆m2
ATM (332)

(−+), (−−) m2β '
√

∆m2
ATM

(
|Ue1|2 − |Ue2|2

)
'
√

∆m2
ATM cos 2θ12

(333)
The effective mass is bounded:

9× 10−3 eV ≤ |m2β| ≤ 5× 10−2 eV m3 ≤ 10−2 eV . (334)
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Inverted Hierarchy
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Other Bounds

Pion & Tau Decays

There are bounds on neutrino mass from pion and tau decays.
This bound are not so strickt but their importance was that they
excluded the existance of neutrino heavier than the bound.
From pion decays we got the bound:

mk < 0.17 MeV (90%C.L.), (335)

while from tau decays we got:

mk < 18.2 MeV (90%C.L.) (336)
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Other Bounds

Supernova & Cosmology

Analysis based on data from SN1987A implied the model
independent bound:

mk ≤ 30 eV , (337)

If the analysis is performed based on assumption the bound
varies between 5 to 30 eV.
Global analysis of cosmological data set a bound for the sum of
neutrino masses: ∑

j

mj ≤ 0.5 ∼ 1.0 eV (338)
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That’s All Folks!
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