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Abstract

The q-Pólya urn is a q-analog of the Pólya urn and is a model of ball extraction from

an urn with balls of two colors, A and B. Balls of color B have priority to be picked over

those of color A. We prove that, in an infinite sequence of extractions, almost surely, the

number of balls of color A that are picked has a finite limit and we identify its distribution.

Then we prove functional limit theorems for the number of balls of color A extracted. The

limit is either a pure birth process or a diffusion, depending on the initial composition of

the urn. Finally, we discuss basic results for the q-Pólya urn with more than two colors.

1 Introduction and results

The Pólya urn. This is the model where in an urn that has initially a finite number of

white and black balls we draw, successively and uniformly at random, a ball from it and then

we return the ball back together with k balls of the same color as the one drawn. The number

k ∈ N+ is fixed.

Standard references for the theory and the applications of Pólya urn and related models

are [14] and [17].

The q-Pólya urn. This is a q-analog of the Pólya urn (see [10], [15] for more on q-analogs)

introduced in [16] and studied further in [4] (see also [5]).

A q-analog of a mathematical object A is another object A(q) so that when q → 1, A(q)

“tends” to A. Take q ∈ (0,∞)\{1}. The q-analog of any x ∈ C is defined as

[x]q :=
qx − 1

q − 1
. (1.1)

Note that limq→1[x]q = x.
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Now consider an urn that contains a finite number of white and black balls. We perform

a sequence of additions of balls in the urn according to the following rule. If at a given time

the urn contains A1 white and A2 black balls (A1, A2 ∈ N, A1 +A2 > 0), then we add k white

balls with probability

Pq(white) =
[A1]q

[A1 +A2]q
. (1.2)

Otherwise, we add k black balls, and this has probability

Pq(black) = 1−Pq(white) = qA1
[A2]q

[A1 +A2]q
. (1.3)

This stochastic process we call q-Pólya urn. To understand how it works, it helps to realize

the probabilities Pq(white), Pq(black) through the following experiment.

If q ∈ (0, 1), then we put the balls in a line with the A1 white coming first and the A2 black

following. To pick a ball, we go through the line, starting from the beginning and picking

each ball with probability 1 − q independently of what happened with the previous balls. If

we finish the line without picking a ball, we start from the beginning. Once we pick a ball,

we return it to its position together with k balls of the same color. Given these rules, the

probability of picking a white ball is

(1− qA1)
∞∑
j=0

(qA1+A2)j =
1− qA1

1− qA1+A2
=

[A1]q
[A1 +A2]q

, (1.4)

which is (1.2), because before picking a white ball, we will go through the entire list a random

number of times, say j, without picking any ball and then, going through the white balls, we

pick one (probability 1− qA1).

If q > 1, we place in the line first the black balls and we go through the list picking each

ball with probability 1− q−1. According to the above computation, the probability of picking

a black ball is
[A2]q−1

[A1 +A2]q−1

= qA1
[A2]q

[A1 +A2]q
,

which is (1.3).

We extend the notion of drawing a ball from a q-Pólya urn to the case where exactly one

of A1, A2 is infinity. Then the probability to pick a white (resp. black) ball is determined

again by (1.2) (resp. (1.3)), where this is understood as the limit of the right hand side as A1

or A2 goes to ∞. For example, assuming that A1 = ∞ and A2 ∈ N, we have Pq(white) = 1

if q < 1 and Pq(white) = q−A2 if q > 1. Again these probabilities are realized through the

experiment described above. Thus, we can run the process even if we start with an infinite

number of balls from one color and finite from the other.

Consider now a q–Pólya urn having A1(0), A2(0) white and black balls respectively and

start an infinite sequence of drawings. For n ∈ N+, denote by A1(n), A2(n) the numbers of

white and black balls respectively after n drawings.

We want to study two aspects of the asymptotic behavior of the sequence {A1(n)}n∈N.

1) The first concerns the limit, in any sense, of A1(n) properly normalized. In the Pólya

urn, if we keep the same notation, the following convergence in distribution is a well known
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fact: A1(n)
A1(n)+A2(n)

d→ Beta (A1(0)/k,A2(0)/k) as n →∞. For the q–Pólya urn, things are less

exciting. If q > 1, after some point, we will be drawing only black balls, and consequently

A1(n) becomes eventualy (a random) constant A1(∞). We identify the distribution of A1(∞).

By the above discussion, this answers the case q ∈ (0, 1) too. Then, it is A2(n) that becomes

eventualy constant.

2) The second concerns the entire path {A1(n)}n∈N. Is it possible, by applying appropriate,

natural transformations, to get convergence to a stochastic process? That is, an analogous

result to Donsker’s theorem for simple symmetric random walk in Z. For the Pólya urn, this

question has been investigated in the works [7], [3] .

The results concering these two points are exhibited in the following two subsections.

1.1 Basic results for the q-Pólya urn

We recall some notation from q-calculus (see [5], [15]). For q ∈ (0,∞)\{1}, x ∈ C, k ∈ N+, we

define

[x]q :=
qx − 1

q − 1
the q-number of x, (1.5)

[k]q! := [k]q[k − 1]q · · · [1]q the q-factorial, (1.6)

[x]k,q := [x]q[x− 1]q · · · [x− k + 1]q the q-factorial of order k, (1.7)[
x

k

]
q

:=
[x]k,q
[k]q!

the q-binomial coefficient (1.8)

(x; q)∞ :=

∞∏
i=0

(1− xqi) when q ∈ [0, 1) the q-Pochhammer symbol, (1.9)

We extend these definitions in the case k = 0 by letting [0]q! = 1, [x]0,q = 1.

Now consider a q-Pólya urn that has initially A1 white and A2 black balls, where A1 ∈
N ∪ {∞} and A2 ∈ N. Call H1(n) the number of drawings that give white ball in the first n

drawings. Its distribution is specified by the following.

Fact 1: Let Â1 := A1/k and Â2 := A2/k.

(i) If A1 ∈ N, then the probability mass function of H1(n) is

P (H1(n) = x) = qk(n−x)(Â1+x)

[−Â1

x

]
q−k

[−Â2

n−x
]
q−k[−Â1−Â2

n

]
q−k

(1.10)

= q−A2x

[
Â1+x−1

x

]
q−k

[
Â2+n−x−1

n−x
]
q−k[

Â1+Â2+n−1
n

]
q−k

(1.11)

= q−kx(Â2+n−x)

[−Â1

x

]
qk

[−Â2

n−x
]
qk[−Â1−Â2

n

]
qk

(1.12)

for all x ∈ {0, 1, . . . , n}.
(ii) If A1 =∞ and q > 1, then the probability mass function of H1(n) is

P (H1(n) = x) = q−A2x(1− q−k)n−x
[
Â2 + n− x− 1

n− x

]
q−k

[n]q−k !

[x]q−k !
(1.13)
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for all x ∈ {0, 1, . . . , n}.
If A1 =∞ and q ∈ (0, 1), then P(H1(n) = n) = 1 obviously. Relation (1.10) is (3.2) in [4]

where it is proved through recursion. In Section 2 we give an alternative proof.

According to the experiment described in Section 1, the balls that are placed first in the

line have an advantage to be picked (the white if q ∈ (0, 1), the black if q > 1). In fact, this

leads to the extinction of drawings from the balls of the other color; there is a point after

which the number of balls in the urn of that color stays fixed to a random number. In the

next theorem, we identify the distribution of this number. We treat the case q > 1.

Theorem 1.1 (Extinction of the second color). Assume that q > 1, A1 ∈ N ∪ {∞}, A2 ∈ N.

As n → ∞, with probability one, {H1(n)}n≥1 converges to a random variable H1(∞) with

values in N and probability mass function

(i)

f(x) = q−A2x

[A1
k + x− 1

x

]
q−k

(q−A2 ; q−k)∞
(q−A1−A2 ; q−k)∞

(1.14)

for all x ∈ N in the case A1 ∈ N and

(ii)

f(x) =

(
q−A2

1− q−k

)x
1

[x]q−k !
(q−A2 ; q−k)∞ (1.15)

for all x ∈ N in the case A1 =∞.

When A1 ∈ N and k|A1, H1(∞) has the negative q-binomial distribution of the second

kind with parameters A1/k, q
−A2 , q−k (see §3.1 in [5] for its definition). When A1 = ∞,

H1(∞) has the Euler distribution with parameters q−A2/(1− q−k), q−k (see §3.3 in [5] again).

1.2 Functional scaling limits

Consider a q–Pólya urn whose initial composition depends on m ∈ N+. That is, it has

A
(m)
1 (0), A

(m)
2 (0) white and black balls respectively. Start an infinite sequence of drawings

and for n ∈ N+, denote by A
(m)
1 (n), A

(m)
2 (n) the numbers of white and black balls respectively

after n drawings.

To see a new process arising out of the path of {A(m)
1 (n)}n≥0, we start with an initial number

of balls that tends to infinity as m → ∞. We assume that A
(m)
2 (0) grows linearly with m.

Regarding A
(m)
1 (0), we study three regimes:

a) A
(m)
1 (0) stays fixed with m.

b) A
(m)
1 (0) grows to infinity but sublinearly with m.

c) A
(m)
1 (0) grows linearly with m.

The regime where A
(m)
1 (0) grows superlinearly with m follows from regime b) by changing

the roles of the two colors. We remark on this after Theorem 1.3.

The other parameter that we have to tune is q. If q is kept fixed, then:

(i) if q > 1, then nothing interesting happens because the assumption limm→∞A
(m)
2 (0)

= ∞ implies that the process {A(m)
1 (n)}n≥0 converges (as m → ∞) to the one that never

increases (we always pick a black ball) and
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(ii) if q < 1, then in the scenario limm→∞A
(m)
1 (0) = ∞ the situation is analogous to (i)

while in the scenario that A
(m)
1 (0) stays fixed with m the process {A(m)

1 (n)}n≥0 converges (as

m→∞) to the q-Polya urn with A2 =∞.

Interesting limits appear once we take q = qm to depend on m and approach 1 as m→∞.

We study the case that qm > 1 and the distance of qm from 1 is Θ(1/m) and remark on the

case that the distance is o(1/m).

In the regimes a) and b), the scarcity of white balls has as a result that the time between

two consecutive drawings of a white ball is large. We expect then that speeding up time by

an appropriate factor we will see a birth process. And indeed this is the case as our first two

theorems show.

All processes appearing in this work with index set [0,∞) and values in some Euclidean

space Rd are elements of DRd [0,∞), the space of functions f : [0,∞) → Rd that are right

continuous and have limits from the left at each point of [0,∞). This space is endowed with

the Skorokhod topology (defined in §5 of Chapter 3 of [9]), and convergence in distribution of

processes with values on that space is defined through that topology.

We remind the reader that the negative binomial distribution with parameters ν ∈ (0,∞)

and p ∈ (0, 1) is the distribution with support in N and probability mass function

f(x) =

(
x+ ν − 1

x

)
pν(1− p)x (1.16)

for all x ∈ N. When ν ∈ N+, this is the distribution of the number of failures until we obtain

the ν-th success in a sequence of independent trials, each having probability of success p. For

a random variable X with this distribution, we write X ∼ NB(ν, p).

In all results of this subsection we assume that the parameter of the urn is qm = c1/m with

c > 1.

Theorem 1.2. Fix w0 ∈ N+ and b > 0. If A
(m)
1 (0) = w0 and limm→∞A

(m)
2 (0)/m = b,

then the process (k−1{A(m)
1 ([mt]) − A(m)

1 (0)})t≥0 converges in distribution as m → ∞ to an

inhomogeneous in time pure birth process Z with Z(0) = 0 and such that for all 0 ≤ t1 <

t2, j ∈ N, the random variable

Z(t2)− Z(t1)|Z(t1) = j has distribution NB
(w0

k
+ j,

1− c−b−kt1
1− c−b−kt1

)
.

In particular, Z has rates

λt,j =
w0 + jk

cb+kt − 1
log c (1.17)

for all (t, j) ∈ [0,∞)× N.

Theorem 1.3. Assume that A
(m)
1 (0) = gm and limm→∞A

(m)
2 (0)/m = b, where b ∈ (0,∞)

and gm ∈ N+, gm →∞, gm = o(m) as m→∞. Then the process

(k−1{A(m)
1 ([tm/gm])−A(m)

1 (0)})t≥0

converges in distribution, as m→∞, to the Poisson process on [0,∞) with rate

log c

cb − 1
. (1.18)
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We return to the discussion at the beginning of the subsection. The regime where

limm→∞A
(m)
2 (0)/m = b > 0 and A

(m)
1 (0)/m → ∞ is covered by the previous theorem. We

need to change the roles of the colors and remark that the role of m as a scaling parameter

is played now by am := A
(m)
1 (0). The result that we obtain is that in the q-Pólya urn with

qm := c1/am and c > 1, the process

1

k

(
A

(m)
2 ([tam/(bm)])−A(m)

2 (0)
)
t≥0

converges in distribution, as m→∞, to the Poisson process on [0,∞) with rate (log c)/(c−1).

Theorem 1.4. Assume that A
(m)
1 (0), A

(m)
2 (0) are such that limm→∞A

(m)
1 (0)/m = a,

limm→∞A
(m)
2 (0)/m = b, where a, b ∈ [0,∞) are not both zero. Then the process

(
A

(m)
1 ([mt])/m

)
t≥0

converges in distribution, as m→ +∞, to the unique solution of the differential equation

X0 = a, (1.19)

dXt = k
1− cXt

1− ca+b+kt
dt, (1.20)

which is

Xt := a− 1

log c
log

(
cb − 1 + c−kt(1− c−a)

cb − c−a

)
(1.21)

for all t ≥ 0.

Next, we determine the fluctuations of the process (A
(m)
1 ([mt])/m)t≥0 around its m→∞

limit, X. Let

C
(m)
t =

√
m

(
A

(m)
1 ([mt])

m
−Xt

)
(1.22)

for all m ∈ N+ and t ≥ 0.

Theorem 1.5. Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that A
(m)
1 (0) :=

[am + θ1
√
m], A

(m)
2 (0) = [bm + θ2

√
m] for all large m ∈ N. Then the process (C

(m)
t )t≥0

converges in distribution, as m → ∞, to the unique solution of the stochastic differential

equation

Y0 = θ1,

dYt =
k log c

ca+b+kt − 1

{
(ca+b − 1)Yt − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt(1− c−a)

}
dt

+ k
√

(ca − 1)(cb − 1)
c(a+kt)/2

ca+b+kt − ca+kt + ca − 1
dWt,

(1.23)

which is

Yt =
ca+b+kt − 1

ca+b+kt − ca+kt + ca − 1

(
θ1 − (θ1 + θ2)

ca+b(ca − 1)

ca+b − 1

ckt − 1

ca+b+kt − 1

+ k
√

(ca − 1)(cb − 1)

∫ t

0

c(a+kt)/2

ca+b+kt − 1
dWs

) (1.24)

for all t ≥ 0. W is a standard Brownian motion
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Remark 1.1. If we assume that q = q(m) := cεm/m where c > 1 and εm → 0+ as m → ∞,

then q = 1 + o(m−1). With computations analogous to those of the results of the previous

subsection, it is easy to see that the limits of the processes considered in all theorems of this

subsection coincide with those in the case of the plain Pólya urn (i.e., when q = 1), which are

described in the work [7]. Of course, in (1.22), the role of Xt will be played by the limit one

gets from the analogous to Theorem 1.4.

1.3 q-Pólya urn with many colors

In this paragraph, we give a q-analog for the Pólya urn with more than two colors. The way

to do the generalization is inspired by the experiment we used in order to explain relation

(1.2).

Let l ∈ N, l ≥ 2, and q ∈ (0, 1). Assume that we have an urn containing Ai balls of color i

for each i ∈ {1, 2, . . . , l}. To draw a ball from the urn, we do the following. We order the balls

in a line, first those of color 1, then those of color 2, and so on. Then we visit the balls, one

after the other, in the order that they have been placed, and we select each with probability

1 − q independently of what happened with the previous balls. If we go through all balls

without picking any, we repeat the same procedure starting from the beginning of the line.

Once a ball is selected, the drawing is completed. We return the ball to its position together

with another k of the same color. For each i = 0, 1, . . . , l, let si =
∑

1≤j≤iAj . Notice that sl

is the total number of balls in the urn. Then, working as for (1.4), we see that

P(color i is drawn) = qsi−1
1− qAi
1− qsl

=
qsi−1 − qsi

1− qsl
= qsi−1

[Ai]q
[sl]q

. (1.25)

Call pi the number in the last display for all i = 1, 2, . . . , l. Note that when q → 1, pi

converges to Ai/sl, which is the probability for the usual Pólya urn with l colors. It is clear

that for any given q ∈ (0,∞)\{1}, the numbers p1, p2, . . . , pl are non-negative and add to 1

(the second fraction in (1.25) shows this). We define then for this q the q-Pólya urn with

colors 1, 2, . . . , l to be the sequential procedure in which, at each step, we add k balls of a

color picked randomly among {1, 2, . . . , l} so that the probability that this color is i is pi .

When q > 1, these probabilities come out of the experiment described above but in which

we place the balls in reverse order (that is, first those of color l, then those of color l− 1, and

so on) and we go through the list selecting each ball with probability 1− q−1. It is then easy

to see that the probability to pick a ball of color i is pi.

Theorem 1.6. Assume that q ∈ (0, 1) and that we start with A1, A2, . . . , Al balls from colors

1, 2, . . . , l respectively, where A1, A2, . . . , Al ∈ N are not all zero. Call Hi(n) the number of

times in the first n drawings that we picked color i. The probability mass function for the
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vector (H2(n), H3(n), . . . ,Hl(n)) is

P (H2(n) = x2, . . . ,Hl(n) = xl) = q
∑l
i=2 xi

∑i−1
j=1(Aj+kxj)

∏l
i=1

[−Ai
k
xi

]
q−k[−A1+A2...+Al

k
n

]
q−k

(1.26)

=

[
n

x1, x2, . . . , xl

]
q−k

q
∑l
i=2 xi

∑i−1
j=1(Aj+kxj)

∏l
i=1

[
−Ai

k

]
xi,q−k[

−A1+A2+...+Al
k

]
n,q−k

(1.27)

for all x2, . . . , xl ∈ {0, 1, 2, . . . , n} with x2 + · + xl ≤ n, where x1 := n −
∑l

i=2 xi and[
n

x1,x2,...,xl

]
q−k

:=
[n]

q−k !

[x1]
q−k !·...·[xl]q−k ! is the q-multinomial coefficient.

It follows from Theorem 1.1 that when q ∈ (0, 1), after some random time, we will be

picking only balls of color 1. So that the number of times, say Hi, that we pick color i, where

i = 2, 3, . . . , l, is finite. The next theorem identifies the joint distribution of H2, H3, . . . ,Hl.

Theorem 1.7. Under the assumptions of Theorem 1.6, as n→ +∞, with probability one, the

vector (H2(n), H3(n), . . . ,Hl(n)) converges to a random vector (H2(∞), H3(∞), . . . ,Hl(∞))

with values in Nl−1 and probability mass function

f (x2, x3, . . . , xl) = q
∑l
i=2 xi

∑i−1
j=1 Aj

l∏
i=2

[
xi + Ai

k − 1

xi

]
qk

(qA1 ; qk)∞
(qA1+···+Al ; qk)∞

(1.28)

for all x2, . . . , xl ∈ N.

Note that the random variablesH2(∞), . . . ,Hl(∞) are independent although (H2(n), H3(n), . . . ,

Hl(n)) are dependent.

Next, we look for a scaling limit for the path of the process. For each m ∈ N+, we consider

a q-Pólya urn with initial composition (A
(m)
1 (0), A

(m)
2 (0), . . . , A

(m)
l (0)) and qm that will be

specified below. Let A
(m)
i (j) be the number of balls of color i in this urn after j drawings.

Theorem 1.8. Assume that c ∈ (0, 1), qm = c1/m for all m ∈ N+, and

1

m

(
A

(m)
1 (0), A

(m)
2 (0), . . . , A

(m)
l (0)

)
m→∞→ (a1, a2, . . . , al) ,

where a1, . . . , al ∈ [0,∞) are not all zero. Set σ0 = 0 and σi :=
∑

j≤i aj for all i = 1, 2, . . . , l.

Then the process 1
m

(
A

(m)
1 ([mt]), A

(m)
2 ([mt]), . . . , A

(m)
l ([mt])

)
t≥0

converges in distribution, as

m→ +∞, to (Xt,1, Xt,2, . . . , Xt,l)t≥0 with

Xt,i = ai +
1

log c
log

(1− cσl+kt)− cσi−1(1− ckt)
(1− cσl+kt)− cσi(1− ckt)

(1.29)

for all i = 1, 2, . . . , l.

Theorem 1.9. Assume that c ∈ (0, 1), qm = cεm/m for all m ∈ N+ with limm→∞ εm = 0, and

1

m

(
A

(m)
0,1 , A

(m)
0,2 , . . . , A

(m)
0,l

)
m→∞→ (a1, a2, . . . , al) ,
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where a1, . . . , al ∈ [0,∞) are not all zero. Then the process 1
m

(
A

(m)
[mt],1, A

(m)
[mt],2,. . . , A

(m)
[mt],l

)
t≥0

converges in distribution, as m→ +∞, to (Xt)t≥0 with

Xt =

(
1 +

kt

a1 + · · ·+ al

)
(a1, a2, . . . , al) (1.30)

for all t ≥ 0.

Remark. Discussing this preprint with Prof. Ch. Charalambides, we were informed that he

considered this q-Pólya urn with many colors in a work that was then in progress and now

has appeared ([6]). That work studies other aspects of the urn, and the only common result

with the present work is Theorem 1.6.

Orientation. In Section 2, we prove Fact 1 and Theorem 1.1, which are basic results for the

q-Pólya urn. Section 3 (Section 4) contains the proofs of the theorems that give convergence

to a jump process (to a continuous process). Finally, Section 5 contains the proofs for the

results that refer to the q-Pólya urn with arbitrary, finite number of colors.

2 Prevalence of a single color

In this section, we prove the claims of Section 1.1. Before doing so, we mention three properties

of the q-binomial coefficient. For all q ∈ (0,∞)\{1}, x ∈ C, n, k ∈ N with k ≤ n it holds

[−x]q = −q−x[x]q, (2.1)[
−x
k

]
q

= (−1)kq−k(k+2x−1)/2

[
x+ k − 1

k

]
q

, (2.2)[
x

k

]
q−1

= q−k(x−k)

[
x

k

]
q

, (2.3)

∑
1≤i1<i2<···<ik≤n

qi1+i2+···+ik = q(
k+1
2 )
[
n

k

]
q

. (2.4)

The first is trivial, the second follows from the first, the third is easily shown, while the last

is Theorem 6.1 in [15].

Proof of Fact 1. (i) The probability to get black balls exactly at the drawings i1 < i2 <

· · · < in−x is

g(i1, i2, . . . , in−x) =

∏x−1
j=0 [A1 + jk]q

∏n−x−1
j=0 [A2 + jk]q∏n−1

j=0 [A1 +A2 + jk]q
q
∑n−x
ν=1 r+(iν−ν)k. (2.5)

To see this, note that, due to (1.2) and (1.3), the required probability would be equal to the

above fraction if in (1.3) the term qw were absent. This term appears whenever we draw a

black ball. Now, when we draw the ν-th black ball, there are A1 + (iν − ν)k white balls in the

urn, and this explains the exponent of q in (2.5).

Since [x+ jk]q = 1−qx+jk
1−q = [−x

k − j]q−k [−k]q for all x, j ∈ R, the fraction in (2.5) equals

[−Â1]x,q−k [−Â2]n−x,q−k

[−Â1 − Â2]n,q−k
. (2.6)
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Then ∑
1≤i1<i2<···<in−x≤n

q
∑n−x
ν=1 A1+(iν−ν)k (2.7)

= q(n−x)A1−k(n−x)(n−x+1)/2
∑

1≤i1<i2<···<in−x≤n
(qk)i1+i2+···+in−x (2.8)

= q(n−x)A1−k(n−x)(n−x+1)/2qk(
n−x+1

2 )
[
n

x

]
qk

(2.9)

= q(n−x)A1qkx(n−x)

[
n

x

]
q−k

= qk(n−x)(Â1+x)

[
n

x

]
q−k

. (2.10)

The second equality follows from (2.4) and the equality
[
n
x

]
qk

=
[
n

n−x
]
qk

. The third, from

(2.3). Thus, employing (1.8) too, we obtain that the sum∑
1≤i1<i2<···<in−x≤n g(i1, i2, . . . , in−x) equals the right hand side of (1.10). Then (1.11) and

(1.12) follow by using (2.2) and (2.3) respectively.

(ii) In this scenario, we take A1 →∞ in (1.11). We will explain shortly why this gives the

probability we want. Since q−k ∈ (0, 1), we have limt→∞[t]q−k = (1 − q−k)−1 and thus, for

each ν ∈ N, it holds

lim
t→∞

[
t+ ν − 1

ν

]
q−k

=
1

[ν]q−k !

1

(1− q−k)ν
. (2.11)

Applying this twice in (1.11) (there Â1 = A1/k →∞), we get as limit the right hand side of

(1.13).

Now, to justify that passage to the limit A1 → ∞ in (1.11) gives the required result, we

argue as follows. For clarity, denote the probability Pq(white) when there are w white and

b black balls in the urn by Pw,b
q (white). And when there are A1 white and A2 black balls

in the urn in the beginning of the procedure, denote the probability of the event H1(n) = x

by PA1,A2(H1(n) = x). It is clear that the probability PA1,A2(H1(n) = x) is a continuous

function (in fact, a polynomial) of the quantities

PA1+ki,A2+kj
q (white) : i = 0, 1, . . . , x− 1, j = 0, 1, . . . , n− x− 1,

for all values of A1 ∈ N ∪ {∞}, A2 ∈ N. In P∞,A1(H1(n) = x), each such quantity,

P∞,mq (white), equals limA1→∞PA1,m(white).

Thus P∞,A2(H1(n) = x) = limA1→∞PA1,A2(H1(n) = x). �

Before proving Theorem 1.1, we give a simple argument that shows that eventually we

will be picking only black balls. That is, the number H1(∞) := limn→∞H1(n) of white balls

drawn in an infinite sequence of drawings is finite. It is enough to show it in the case that

A1 = ∞ and A2 = 1 since, by the experiment that realizes the q-Pólya urn, we have (using

the notation from the proof of Fact 1 (ii))

PA1,A2(H1(∞) =∞) ≤ P∞,1(H1(∞) =∞).

For each n ∈ N+, call En the event that at the n-th drawing we pick a white ball, Bn the

number of black balls present in the urn after that drawing (also, B0 := 1), and write q̂ := 1/q.

Then P(En) = E(P(En|Bn−1)) = E(q̂Bn−1). We will show that this decays exponentially with
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n. Indeed, since at every drawing there is probability at least 1 − q̂ to pick a black ball, we

can construct in a common probability space the random variables (Bn)n≥1 and (Yi)i≥1 so

that the Yi are i.i.d. with Y1 ∼ Bernoulli(1− q̂) and Bn ≥ 1 + k(Y1 + · · ·+ Yn) for all n ∈ N+.

Consequently,

P(En) ≤ E(q̂1+k(Y1+···+Xn−1)) = q̂{E(q̂kY1)}n−1.

This implies that
∑∞

n=1 P(En) <∞, and the first Borel-Cantelli lemma gives that P∞,1(H1(∞) =

∞) = 0.

Proof of Theorem 1.1. Since {H1(n)}n≥1 is increasing, it converges to a random variable

H1(∞) with values in N ∪ {∞}. In particular, it converges to this variable in distribution.

Our aim is to take the limit as n → ∞ in (1.11) and in (1.13) in order to determine the

distribution of H1. Note that for a ∈ R and θ ∈ [0, 1) it is immediate that (recall (1.9) for the

notation)

lim
n→∞

[
a+ n

n

]
θ

=
(θa+1; θ)∞

(θ; θ)∞
. (2.12)

(i) Taking n → ∞ in (1.11) and using (2.12), we get the required expression, (1.14), for f .

Then relation (2.2) in [4] (or (8.1) in [15]) shows that
∑

x∈N f(x) = 1, so that it is a probability

mass function of a random variable H1 with values in N.

(ii) This follows after taking limit in (1.13) and using (2.12) and limn→∞(1− q−k)n[n]q−k ! =

(q−k; q−k)∞. �

3 Jump process limits. Proof of Theorems 1.2, 1.3

In the case of Theorem 1.2, we let gm := 1 for all m ∈ N+, and for both theorems we let

v := vm := m/gm. Our interest is in the sequence of the processes (Z(m))m≥1 with

Z(m)(t) =
1

k

{
A

(m)
1 ([vt])−A(m)

1 (0)
}

(3.1)

for all t ≥ 0.

To show convergence in distribution, according to Theorem 7.8 of Chapter 3 of [9], it is

enough to show that the sequence (Z(m))m≥1 is tight and its finite dimensional distributions

converge. The description of the limiting process is obtained on the way.

An easy argument shows that tightness follows from the convergence of the finite dimen-

sional distributions becauce each Z(m) has non decreasing paths. It thus remains to establish

the convergence of the finite dimensional distributions.

Notation: For sequences (an)n∈N, (bn)n∈N with values in R, we will say that they are

asymptotically equivalent, and will write an ∼ bn as n → ∞, if limn→∞ an/bn = 1. We

use the same expressions for functions f, g defined in a neighborhood of ∞ and satisfy

limx→∞ f(x)/g(x) = 1.

3.1 Convergence of finite dimensional distributions

By definition, Z(m)(0) = 0 = Z(0) for all m ∈ N+.
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Since for each m ≥ 1 the process Z(m) is Markov taking values in N and non decreasing

in time, it is enough to show that the conditional probability

P(Z(m)(t2) = k2|Z(m)(t1) = k1) (3.2)

converges as m→∞ for each 0 ≤ t1 < t2 and nonnegative integers k1 ≤ k2.

Define

n := [vt2]− [vt1], (3.3)

x := k2 − k1, (3.4)

σ :=
A

(m)
1 (0) + kk1

k
, (3.5)

τ :=
k[vt1]− kk1 +A

(m)
2 (0)

k
, (3.6)

r := q−km = c−k/m. (3.7)

Then, the probability in (3.2), with the help of (1.11), is computed as

rτx
[
σ + x− 1

x

]
r

[
τ+n−x−1
n−x

]
r[

σ+τ+n−1
n

]
r

= rτx
[
σ + x− 1

x

]
r

( n∏
i=n−x+1

(1− ri)
) 1∏n−1

i=n−x(1− rτ+i)

[τ + n− 1]n,r
[σ + τ + n− 1]n,r

. (3.8)

The last ratio is

n−1∏
i=0

1− rτ+i

1− rσ+τ+i
=

n−1∏
i=0

(
1− (1− rσ)rτ

ri

1− rσ+τ+i

)
. (3.9)

Denote by 1− am,i the i-th term of the product. The logarithm of the product equals

−(1− rσ)rτ
n−1∑
i=0

ri

1− rσ+τ+i
+ o(1) (3.10)

as m → ∞. To justify this, note that 1− rσ ∼ 1
m(A

(m)
0 + kk1) log c and rτ+i/(1− rσ+τ+i) ≤

1/(1 − c−b) for all i ∈ N. Thus, for all large m, |am,i| < 1/2 for all i = 0, 1, . . . , n − 1, and

the error in approximating the logarithm of 1− am,i by −am,i is at most |am,i|2 (by Taylor’s

expansion, we have | log(1 − y) + y| ≤ |y|2 for all y with |y| ≤ 1/2). The sum of all errors is

at most nmax0≤i<n |am,i|2, which goes to zero as m → ∞ because 1 − rσ ∼ C/n for some

appropriate constant C > 0.

We will compute the limit of (3.8) as m → ∞ under the assumptions of Theorems 1.2,

1.3.

The computation for Theorem 1.2. As m → ∞, the first term of the product in (3.8)

converges to c−x(b+kt1). The q-binomial coefficient converges to
(
k−1w0+k2−1

k2−k1

)
. The third

term converges to (1 − c−k(t2−t1))x, while the denominator of the fourth term converges to
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(1 − ρ2)x, where we set ρi := c−b−kti for i = 1, 2. The expression preceding o(1) in (3.10) is

asymptotically equivalent to

− k

m
σ(log c)ρ1

n−1∑
i=0

c−ki/m

1− rσ+τ c−ki/m
(3.11)

= −ρ1kσ(log c)
1

m

n−1∑
i=0

c−ki/m

1− ρ1c−ki/m
+ o(1) (3.12)

= −ρ1kσ log c

∫ t2−t1

0

1

cky − ρ1
dy + o(1) = σ log

1− ρ1

1− ρ2
+ o(1). (3.13)

The first equality is true because limm→∞ r
σ+τ = ρ1 and the function x 7→ c−ki/m/(1 −

xc−ki/m) has derivative bounded uniformly in i,m when x is confined to a compact subset of

[0, 1). Thus, the limit of (3.8), as m→∞, is(
σ + x− 1

x

)(
ρ1 − ρ2

1− ρ2

)x(1− ρ1

1− ρ2

)σ
, (3.14)

which means that, as m → ∞, the distribution of {Z(m)(t2) − Z(m)(t1)}|Z(m)(t1) = k1 con-

verges to the negative binomial distribution with parameters σ, (1− ρ1)/(1− ρ2). �

The computation for Theorem 1.3. Now the term rτx converges to c−xb, while[
σ + x− 1

x

]
r

( n∏
i=n−x+1

(1− ri)
)

=

∏x−1
i=0 (1− rσ+i)∏x
i=1(1− ri)

( n∏
i=n−x+1

(1− ri)
)

(3.15)

∼
∏x−1
i=0 (σ + i)∏x

i=1 i

((t2 − t1)k log c)x

gxm
∼ 1

x!
((t2 − t1) log c)x. (3.16)

The denominator of the fourth term in (3.8) converges to (1− c−b)x. The expression in (3.10)

is asymptotically equivalent to

−rτ (1− rσ)

n−1∑
i=0

ri

1− rσ+τ+i
∼ −c−b gm

m
log c

n

1− c−b
∼ − log c

cb − 1
(t2 − t1). (3.17)

In the first ∼, we used the fact that the terms of the sum, as m→∞, converge uniformly in

i to (1− c−b)−1. Thus, the limit of (3.8), as m→∞, is

1

x!

(
log c

cb − 1
(t2 − t1)

)x
e
− log c

cb−1
(t2−t1)

, (3.18)

which means that, as m → ∞, the distribution of {Z(m)(t2) − Z(m)(t1)}|Z(m)(t1) = k1 con-

verges to the Poisson distribution with parameter t2−t1
cb−1

log c. �

3.2 Conclusion

It is clear from the form of the finite dimensional distributions that in both Theorems 1.2, 1.3

the limiting process Z is a pure birth process that does not explode in finite time. Its rate at

the point (t, j) ∈ [0,∞)× N is

λt,j = lim
h→0+

1

h
P(Z(t+ h) = j + 1|Z(t) = j)

and is found as stated in the statement of each theorem.
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4 Deterministic and diffusion limits. Proof of Theorems 1.4,

1.5

These theorems are proved with the use of Theorem 7.1 in Chapter 8 of [8], which is con-

cerned with convergence of time-homogeneous Markov chains to diffusions. The chains whose

convergence is of interest to us are time inhomogeneous, but we reduce their study to the

time-homogenous setting by considering for each such chain {Zn}n∈N the time homogeneous

chain {(Zn, n)}n∈N. The following consequence of the aforementioned theorem suffices for our

purposes.

Corollary 4.1. Assume that for each m ∈ N+, (Z
(m)
n )n∈N is a Markov chain in R. For each

m ∈ N+ and n ∈ N, let ∆Z
(m)
n := Z

(m)
n+1 − Z

(m)
n and

µ(m)(x, n) := mE(∆Z(m)
n 1|∆Z(m)

n |≤1
|Z(m)
n = x), (4.1)

a(m)(x, n) := mE((∆Z(m)
n )21|∆Z(m)

n |≤1
|Z(m)
n = x) (4.2)

for all x ∈ R with P(Z
(m)
n = x) > 0. Also, for R > 0 and for the same m,n as above, let

A(m,n,R) := {(x, n) : |x| ≤ R,n/m ≤ R,P(Z
(m)
n = x) > 0}.

Assume that there are continuous functions µ, a : R× [0,∞)→ R and x0 ∈ R so that:

For every R, ε > 0, it holds

(i) sup(x,n)∈A(m,n,R) |µ(m)(x, n)− µ(x, n/m)| → 0 as m→∞.

(ii) sup(x,n)∈A(m,n,R) |a(m)(x, n)− a(x, n/m)| → 0 as m→∞.

(iii) sup(x,n)∈A(m,n,R)mP(|∆Z(m)
n | ≥ ε|Z(m)

n = x)→ 0 as m→∞.

And also

(iv) Z
(m)
0 → x0 as m→∞ with probability 1.

(v) For each x ∈ R, the stochastic differential equation

dZt = µ(Zt, t) dt+
√
a(Zt, t) dBt,

Z0 = x,
(4.3)

where B is a one dimensional Brownian motion, has a weak solution which is unique in

distribution.

Then, the process (Z
(m)
[mt])t≥0 converges in distribution to the weak solution of (4.3) with x = x0.

Proof. For each m ∈ N+, we consider the process Y
(m)
n := (Z

(m)
n , n/m), n ∈ N, which is a time-

homogeneous Markov chain with values in R2, and we apply Theorem 7.1 in Chapter 8 of [8]

Conditions (i), (ii), (iii) of that theorem follow from our conditions (ii), (i), (iii) respectively,

while condition (A) there translates to the requirement that the martingale problem for the

functions µ and
√
a is well posed, and this follows from condition (v). �
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The tool we will use in checking that condition (v) of the corollary is satisfied is the well

known existence and uniqueness theorem for strong solutions of SDEs which requires that

for all T > 0, the coefficients µ(x, t),
√
a(x, t) are Lipschitz in x uniformly for t ∈ [0, T ] and

supt∈[0,T ]{|µ(0, t)|+a(0, t)} <∞ (e.g., Theorem 2.9 of Chapter 5 or [8]). The same conditions

imply uniqueness in distribution.

4.1 Proof of Theorem 1.4

We will apply Corollary 4.1. For each m ∈ N+, consider the Markov chain Z
(m)
n =

A
(m)
1 (n)
m , n ∈

N. From any given state x of Z
(m)
n , the chain moves to either of x+km−1, x with corresponding

probabilities p(x, n,m), 1− p(x, n,m), where

p(x, n,m) :=
1− qmxm

1− qA
(m)
1 (0)+A

(m)
2 (0)+kn

m

.

In particular, for any ε > 0, is holds |∆Z(m)
n | < 1 ∧ ε for m large enough. Thus, condition

(iii) of the corollary is satisfied trivially. Also, for large m, with the notation of the corollary,

we have

µ(m)(x, n) = kp(x, n,m), (4.4)

a(m)(x, n) =
k

m
p(x, n,m). (4.5)

And it is easy to see that conditions (i), (ii) are satisfied by the functions a, µ with a(x, t) = 0

and µ(x, t) = kp(x, t) where

p(x, t) :=
1− cx

1− ca+b+kt
. (4.6)

Now, for each x ∈ R, the equation

dZt = kp(Zt, t) dt,

Z0 = x
(4.7)

has a unique solution. Thus, Corollary 4.1 applies. In fact, (4.7) is a separable ordinary

differential equation and its unique solution is the one given in the statement of the theorem.

4.2 Proof of Theorem 1.5

For each m ∈ N+, consider the Markov chain

Z(m)
n =

√
m
(A(m)

1 (n)

m
−Xn/m

)
, n ∈ N.

From any given state x of Z
(m)
n , the chain moves to either of

x+ km−1/2 +
√
m(Xn/m −X(n+1)/m), (4.8)

x+
√
m(Xn/m −X(n+1)/m) (4.9)

with corresponding probabilities p(x, n,m), 1− p(x, n,m), where

p(x, n,m) =
[A

(m)
1 (n)]qm

[A
(m)
1 (0) +A

(m)
2 (0) + kn]qm

(4.10)
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and

A
(m)
1 (n) = mXn/m + x

√
m, (4.11)

A
(m)
2 (n) = A

(m)
1 (0) +A

(m)
2 (0) + kn−A(m)

1 (n). (4.12)

For convenience, let ∆Xn/m = X(n+1)/m −Xn/m. We compute

E
[
∆Z(m)

n |Z(m)
n = x

]
=

k√
m
p(x, n,m)−

√
m∆Xn/m, (4.13)

E
[
(∆Z(m)

n )2|Z(m)
n = x

]
=

(
k2

m
− 2k∆Xn/m

)
p(x, n,m) +m(∆Xn/m)2. (4.14)

The asymptotics of these expectations are as follows.

Claim: Fix R > 0. For n such that τ := n/m ≤ R and as m→∞, we have

(a) E
[
∆Z(m)

n |Z(m)
n = x

]
=

1

m

k log c

ca+b+kτ − 1

(
cXτx− (cXτ − 1)ca+b+kτ

ca+b+kτ − 1
(θ1 + θ2)

)
+O(

1

m3/2
) (4.15)

(b) E
[
(∆Z(m)

n )2|Z(m)
n = x

]
=

1

m
k2g(τ){1− g(τ)}+O(

1

m3/2
) (4.16)

where g(t) := cXt−1
ca+b+kt−1

for all t ≥ 0.

Proof of the claim. We examine the asymptotics of p(x, n,m) and ∆Xn/m. As τ ≤ R
and m→∞, we have

p(x, n,m) =
c
Xτ+ 1√

mx − 1

c
A
(m)
1 (0)+A

(m)
2 (0)

m
+kτ − 1

=
c
Xτ+ 1√

mx − 1

c
a+b+kτ+

θ1+θ2√
m

+O( 1
m

) − 1
(4.17)

= g(τ) +
log c

ca+b+kτ − 1

(
cXτx− (cXτ − 1)ca+b+kτ

ca+b+kτ − 1
(θ1 + θ2)

)
1√
m

(4.18)

+O
( 1

m

)
.

The third equality follows from a Taylor’s development. Also

∆Xn/m = X ′n/m
1

m
+O(m−2) = kg(τ)

1

m
+O(m−2). (4.19)

For X ′ we used the differential equation, (1.20), that X satisfies instead of the explicit ex-

pression for it. Substituting these expressions in (4.13), (4.14), we get the claim.

Relation (1.21) implies that cXτ = (ca+b− 1)/{cb− 1 + c−kτ (1− c−a)}, and this gives that

the parenthesis following 1
m in equation (a) of the claim above equals

(ca+b − 1)x− cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kτ (1− c−a)
(4.20)

and also that

g(τ){1− g(τ)} =
(ca − 1)(cb − 1)ca+kτ

(ca+b+kτ − ca+kτ + ca − 1)2
. (4.21)
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Thus, the claim implies that conditions (i), (ii) of Corollary 4.1 are satisfied by the functions

µ(x, t) =
k log c

ca+b+kt − 1

{
(ca+b − 1)x− cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt(1− c−a)

}
, (4.22)

a(x, t) = k2(ca − 1)(cb − 1)
ca+kt

(ca+b+kt − ca+kt + ca − 1)2
. (4.23)

As in the proof of Theorem 1.4, condition (iii) of the corollary holds trivially, while limm→∞ Z
(m)
0 =

θ1 (condition (iv)). Finally, for each x ∈ R and for the choice of µ, a above, equation (4.3) has

a strong solution and uniqueness in distribution holds. Thus, the process (Z
(m)
[mt])t≥0 converges,

as m→∞, to the unique solution of the stochastic differential equation (1.23).

The same is true for the process (C
(m)
t )t≥0 because supt≥0 |Z

(m)
[mt] − C

(m)
t | ≤ k/

√
m for all

m ∈ N+ (we use the fact that 0 < X ′t ≤ k for all t ≥ 0). To solve (1.23), we remark that a

solution of an equation of the form

dYt = (α(t)Yt + β(t))dt+ γ(t)dWt (4.24)

with α, β, γ : [0,∞)→ R continuous functions is given by

Yt = e
∫ t
0 α(s) ds

(
Y0 +

∫ t

0
β(s)e−

∫ s
0 α(r) dr ds+

∫ t

0
γ(s)e−

∫ s
0 α(r) dr dWs

)
. (4.25)

[To discover the formula, we apply Itó’s rule to Yt exp{−
∫ t

0 α(s) ds} and use (4.24).] Applying

this formula for the values of α, β, γ dictated by (1.23) we arrive at (1.24).

5 Proofs for the q-Pólya urn with many colors

Proof of Theorem 1.6. First, the equality of the expressions in (1.26), (1.27) follows from

the definition of the q-multinomial coefficient.

We will prove (1.26) by induction on l. When l = 2, (1.26) holds because of (1.10). In

that relation, we have x1 = x, x2 = n− x. Assuming that (1.26) holds for l ≥ 2 we will prove

the case l + 1. The probability P((H2(n) = x2, . . . ,Hl+1(n) = xl+1) equals

P (H3(n) = x3, . . . ,Hl+1(n) = xl+1) P(H2(n) = x2 | H3(n) = x3, . . . ,Hl+1(n) = xl+1) (5.1)

= q
∑l+1
i=3 xi

∑i−1
j=1(wj+kxj)

[−w1+w2
k

x1+x2

]
q−k

∏l+1
i=3

[−wi
k
xi

]
q−k[−w1+...wl+1

k
n

]
q−k

qx2(w1+kx1)

[−w1
k

x1

]
q−k

[−w2
k

x2

]
q−k[−w1+w2

k
x1+x2

]
q−k

= q
∑l+1
i=2 xi

∑i−1
j=1(wj+kxj)

∏l+1
i=1

[−wi
k
xi

]
q−k[−w1+...wl+1

k
n

]
q−k

.

This finishes the induction provided that we can justify these two equalities. The second is

obvious, so we turn to the first. The first probability in (5.1) is specified by the inductive

hypothesis. That is, given the description of the experiment, in computing this probability it

is as if we merge colors 1 and 2 into one color which is placed in the line before the remaining

l−1 colors. This color has initially a1 +a2 balls and we require that in the first n drawings we

choose it x1 +x2 times. The second probability in (5.1) is specified by the l = 2 case of (1.26),
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which we know. More specifically, since the number of drawings from colors 3, 4, . . . , l + 1 is

given, it is as if we have an urn with just two colors 1, 2 that have initially w1 and w2 balls

respectively. We do x1 + x2 drawings with the usual rules for a q-Pólya urn, placing in a line

all balls of color 1 before all balls of color 2, and we want to pick x1 times color 1 and x2

times color 2. �

Proof of Theorem 1.7. The components of (H2(n), H3(n), . . . ,Hl(n)) are increasing in n,

and from Theorem 1.1 we have that each of them has finite limit (we treat all colors 2, . . . , l as

one color). Thus the convergence of the vector with probability one to a random vector with

values is Nl−1 follows. In particular, we also have convergence in distribution, and it remains

to compute the distribution of the limit. Let x1 := n− (x2 + · · ·+ xl). Then the probability

in (1.26) equals

P (H2(n) = x2, . . . ,Hl(n) = xl) = q−
∑

1≤i<j≤l wjxi

∏l
i=1

[wi
k

+xi−1
xi

]
q−k[∑l

i=1
wi

k
+n−1

n

]
q−k

(5.2)

= q
∑

1≤j<i≤l xiwj

∏l
i=1

[wi
k

+xi−1
xi

]
qk[

n+

∑l
i=1

wi
k

−1
n

]
qk

(5.3)

= q
∑l
i=2(xi

∑i−1
j=1 wj)

{
l∏

i=2

[wi
k + xi − 1

xi

]
qk

} [
x1+

w1
k
−1

x1

]
qk[

n+

∑l
i=1

wi
k

−1
n

]
qk

. (5.4)

In the first equality, we used (2.2) while in the second we used (2.3). When we take n → ∞
in (5.4), the only terms involving n are those of the last fraction, and (2.12) determines their

limit. Thus, the limit of (5.4) is found to be the function f(x2, . . . , xl) in the statement of the

theorem. �

Proof of Theorem 1.8. For each m ∈ N+, we consider the discrete time-homogeneous

Markov chain

Z(m)
n :=

(
n

m
,
A

(m)
2 (n)

m
,
A

(m)
3 (n)

m
, . . . ,

A
(m)
l (n)

m

)
, n ∈ N.

From any given state (t, x) := (t, x2, x3, . . . , xl) that Z(m) finds itself it moves to one of(
t+

1

m
,x2, . . . , xi +

1

m
, . . . , xl

)
, i = 2, . . . , l,(

t+
1

m
,x2, . . . , xi, . . . , xl

)
with corresponding probabilities

pi(x2, . . . , xl, t,m) = qmsi−1(t) [mxi]q
[msl(t)]q

, i = 2, . . . , l, (5.5)

p1(x2, . . . , xl, t,m) =
[mx1(t)]q
[msl(t)]q

, (5.6)

where

si(t) = x1(t) +
∑

1<j≤i
xj (5.7)
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for i ∈ {1, 2, . . . , l} and

x1(t) : = m−1
l∑

j=1

A
(m)
j (0) + kt−

∑
2≤j≤l

xi. (5.8)

These follow from (1.25) once we count the number of balls of each color present at the state

(t, x). To do this, we note that Z
(m)
n = (t, x) implies that n = mt drawings have taken place

so far, the total number of balls is A
(m)
0,1 + · · ·+A

(m)
0,l +kmt, and the number of balls of color i,

for 2 ≤ i ≤ l, is mxi. Thus, the number of balls of color 1 is A
(m)
1 (0) + · · ·+A

(m)
l (0) + kmt−

m
∑

2≤j≤l xi = mx1(t). The required relations follow.

Let x1 := limm→∞ x1(t) = σl + kt−
∑

2≤j≤l xi and si := limm→∞ si(t) =
∑

1≤j≤i xi for all

i ∈ {1, 2, . . . , l}. Then, since q = c1/m, for fixed (t, x2, . . . , xl) ∈ [0,∞)l with (x2, . . . , xl) 6= 0,

we have

lim
m→∞

pi(x2, . . . , xl, t,m) = csi−1
[xi]c
[sl]c

(5.9)

for all i = 2, . . . , l. We also note the following.

Z
(m)
n+1,1 − Z

(m)
n,1 =

1

m
, (5.10)

E
[
Z

(m)
n+1,i − Z

(m)
n,i |Z

(m)
n = (t, x2, . . . , xl)

]
=

k

m
pi(x2, . . . , xl, t,m), (5.11)

E
[
(Z

(m)
n+1,i − Z

(m)
n,i )2|Z(m)

n = (t, x2, . . . , xl)
]

=
k2

m2
pi(x2, . . . , xl, t,m), (5.12)

E
[
(Z

(m)
n+1,i − Z

(m)
n,i )(Z

(m)
n+1,j − Z

(m)
n,j )|Z(m)

n = (t, x2, . . . , xl)
]

= 0 (5.13)

for i, j = 2, 3, . . . , l with i 6= j.

Therefore, with similar arguments as in the proof of Theorem 1.4, as m→ +∞, (Z(m)
[mt])t≥0

converges in distribution to Y , the solution of the ordinary differential equation

dYt = b(Yt)dt,

Y0 = (0, a2, . . . , al),
(5.14)

where b(t, x2, . . . , xl) =
(
1, b(2)(t, x), b(3)(t, x), . . . , b(l)(t, x)

)
with

b(i)(t, x) = kcsi−1
[xi]c
[sl]c

for i = 2, 3, . . . , l. Note that sl = σl + kt does not depend on x.

Since A
(m)
1 ([mt])+A

(m)
2 ([mt])+ · · ·+A(m)

l ([mt]) = kmt+A
(m)
1 (0)+A

(m)
2 (0)+ · · ·+A(m)

l (0),

we get that the process (A
(m)
[mt],1/m,A

(m)
[mt],2/m + · · · + A

(m)
[mt],l/m)t≥0 converges in distribution

to a process (Xt,1, Xt,2, . . . , Xt,l)t≥0 so that Xt,1 + · · · + Xt,l = a1 + a2 + · · · + al + kt, while

the Xt,i, i = 2, . . . , l, satisfy the system

X ′t,i = kcσl+kt−
∑l
j=iXt,i

1− cXt,i
1− cσl+kt

for all t > 0, (5.15)

X0,i = ai, (5.16)
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with i = 2, 3, . . . , l. Letting Zr,i = c
X 1
k log c

log r,i for all r ∈ (0, 1] and i ∈ {1, 2, . . . , l}, we have

for the Zr,i, i ∈ {2, 3, . . . , l} the system

Z ′r,i
1− Zr,i

=
σl

1− σlr
1∏

i<j≤l Zr,j
, (5.17)

Z1,i = cai . (5.18)

In the case i = l, the empty product equals 1. It is now easy to prove by induction (starting

from i = l and going down to i = 2) that

Zr,i =
cσl−σi−1(1− cσlr)− cσl(1− r)
cσl−σi(1− cσlr)− cσl(1− r)

(5.19)

for all r ∈ (0, 1]. Since Zr,1Zr,2 · · ·Zr,l = cσlr, we can check that (5.19) holds for i = 1 too.

The fraction in (5.19) equals

cai
(1− cσlr)− cσi−1(1− r)
(1− cσlr)− cσi(1− r)

. (5.20)

Recalling that Xt,i = (log c)−1 logZckt , we get (1.29) for all i ∈ {1, 2, . . . , l} . �

Proof of Theorem 1.9. This is proved in the same way as Theorem 1.8. We keep the

same notation as there. The only difference now is that limm→∞ pi(t, x2, ..., xl,m) = xi/sl.

As a consequence, the system of ordinary differential equations for the limit process Yt :=

(t,Xt,2, . . . , Xt,l) is (5.14) but with

b(i)(t, x) =
kxi
sl
.

Recall that sl = σl + kt. Thus, for i = 2, 3, . . . , l, the process Xt,i satisfies X ′t,i = kXt,i/(σl +

kt), X0,i = ai, which give immediately the last l − 1 coordinates of (1.30). The formula for

the first coordinate follows from Xt,1 +Xt,2 + · · ·+Xt,l = kt+ σl. �
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