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Abstract

In this work we study symmetric random matrices with variance profile satisfying certain
conditions. We establish the convergence of the operator norm of these matrices to the
largest element of the support of the limiting empirical spectral distribution. We prove that
it is sufficient for the entries of the matrix to have finite only the 4-th moment or the 4 + ϸ

moment in order for the convergence to hold in probability or almost surely respectively.
Our approach determines the behaviour of the operator norm for random symmetric or
non-symmetric matrices whose variance profile is given by a step or a continuous function,
random band matrices whose bandwidth is proportional to their dimension, random Gram
matrices, triangular matrices and more.

1 Introduction

The problem of understanding the operator norm of a large random matrix with independent entries is
multidisciplinary, occupying mathematicians, statisticians, physicists. On the mathematical side, tools
from classical probability, geometric analysis, combinatorics, free probability and more have been used.
The problem dates back to 1981, where in [20] the convergence of the largest eigenvalue of renormalized
Wigner matrices (symmetric, i.i.d. entries) to the edge of the limiting distribution was established when the
entries of the matrix are bounded. Next, in [3], the authors gave necessary and sufficient conditions for the
entries of a Wigner matrix to converge. The crucial condition was that the entries should have finite 4-th
moment. Similar bounds have been given to non-symmetric matrices with i.i.d. entries. Then, the difference
of the largest eigenvalue and its limit, after re-normalization, was proven to converge to the Tracy-Widow
law in [28]. Later, universality results were established for sparse random matrix models, for example in
[23] for random graphs and in [26] for random banded matrices. Moreover, sharp non-asymptotic results
for a general class of matrices were established in [5] and in [4].
All the models mentioned above can be considered as random matrices with general variance profile, i.e.,
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random matrices whose entries’ variances can depend on the dimension of the matrix and the location of
the element in the matrix. These models have also drawn a lot of attention lately, see for example [13],
[14], where non-Hermitian models are considered. More specifically, assume that AN = (a(N)

i,j ), N ∈ N+, is a
sequence of symmetric random matrices, with a(N)

i,j real valued having mean zero and variance s(N)
i,j bounded

by a fixed number, say 1. Classically, the first question is whether the empirical spectral distribution of an
appropriate normalization of AN (e.g., AN /

√
N ) converges to a nontrivial probability measure, as in Wigner’s

theorem. Nothing guarantees that, and one can construct examples where the sequence of the empirical
spectral distributions does not converge. The work [30], using the notion of graphons, gave conditions on
the variance profile s(N)

i,j , i, j ∈ [N], N ∈ N+ so that convergence takes place.
The next, natural, question concerns the convergence of the largest eigenvalue to the largest element of
the support of the limiting distribution. Again, this in not automatic but requires additional assumptions.
It was established in the recent works [1], [18], [24], [17] (whose focus however is not this question) for
some class of random matrices with a general variance profile under the assumption that the entries of the
matrices have finite all moments (the first two works assume that each a(N)

i,j is sharp sub-Gaussian, the last
two assume that for each k ∈ N+ there is a constant bounding the 2k moment of each a(N)

i,j ). In this paper,
we generalize these results, i.e., we establish the convergence of the largest eigenvalue of general variance
profile random matrices to the largest element of the support of the limiting empirical spectral distribution
under general assumptions for the variance profile of the matrices. Regarding finiteness of moments, we
assume only that supN∈N+,i,j∈[N] E|a(N)

i,j |4 < ∞.

Notation. For any N × N matrix A = (ai,j)i,j∈[N] ∈ RN×N with eigenvalues {λi(A)}i∈[N], the measure

µA :=
1
N

∑
i∈[N]

δλi (A)

will be called the Empirical Spectral Distribution (E.S.D.) of A. When the eigenvalues are real, write λmax(A)
for the maximum among them. We will use the following two norms on square matrices. For A ∈ RN×N ,

|A|op := max
x∈RN :||x ||2=1

||Ax ||2 =
√

λmax(AAT ) (1.1)

||A||max := max
i,j∈[N]

|ai,j |. (1.2)

It is easy to see that |A|op ≤ N ||A||max and if the matrix A is symmetric, then

|A|op := max
i∈[N]
|λi(A)|. (1.3)

2 Statement of the results

Throughout this section, (AN )N∈N+ is a sequence of symmetric random matrices with independent entries
(up to symmetry), AN = (a(N)

i,j )i,j∈[N] is an N × N matrix, and all {a(N)
i,j : N ∈ N+, i, j ∈ [N]} are defined on the

same probability space and take real values.
A standard assumption for the sequence is the following (see relation (2.2.1) in [2]).

Assumption 2.1.

1. Ea(N)
i,j = 0 for all N ∈ N+, i, j ∈ [N], and supN∈N+,i,j∈[N] E|a(N)

i,j |2 < ∞.

2. For any ε > 0,

lim
N→∞

1
N2

∑
i,j∈[N]

E
{
|a(N)

i,j |21|a(N)
i,j |≥ε

√
N

}
= 0. (2.1)

This is satisfied in the case that {a(N)
i,j : N ∈ N+, i, j ∈ [N], i ≤ j} are i.i.d. with mean 0 and finite variance.

But it is not enough to guarantee that the ESD of the appropriately normalized AN converges to a nontrivial
limit. To state a sufficient condition for this, we introduce some notation that will be used throughout the
work. We let

s(N)
i,j := E{|a(N)

i,j |2} (2.2)
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for all N ∈ N+, i, j ∈ [N] and V0 := supN∈N+,i,j∈[N] s(N)
i,j ∈ [0,∞).

Also, let Ck be the set of ordered rooted trees with k edges (where k ∈ N) of all non-isomorphic plane rooted
trees with k + 1 vertices, i.e. all trees with k + 1 vertices, a vertex distinguished as a root and an ordering
amongst the children of any vertex. The number of such trees is the k−th Catalan number, i.e.,

|Ck | =
1

k + 1

(
2k

k

)
, (2.3)

and a trivial bound that we will use is |Ck | ≤ 22k. For each such tree, we consider its vertices ordered
v0 < v1 < · · · < vk so that v0 is the root, each parent is smaller than its children, and the children keep the
order they have as vertices of an ordered tree. A labeling of such a tree is an ordered k+1-tuple (`0, `1, · · · , `k)
of different objects, the object `i is the label of vertex vi .
A quantity of fundamental importance for the sequel is the following sum

MN (k) :=
∑
T∈Ck

∑
i∈[N]k+1

labeling of T

∏
{i,j}∈E(T )

s(N)
i,j . (2.4)

E(T ) denotes the set of edges of the tree T . Note that MN (0) = N since by convention the product over an
empty index set equals 1.

Assumption 2.2. There is a probability measure µ on R such that for each k ∈ N it holds

lim
N→∞

MN (k)
Nk+1 =

∫
x2k dµ(x). (2.5)

A tool for checking this assumption is explained in Remark 2.13 below.
If the sequence (AN )N∈N+ satisfies both Assumptions 2.1 and 2.2, then µAN /

√
N ⇒ µ with probability one

(see the proof of Theorem 3.2 of [30]). The measure µ is symmetric with compact support contained in
[−2
√

V0, 2
√

V 0]. The compactness of the support follows from (2.5), MN (k) ≤ |Ck |Nk+1V k
0 , and |Ck | ≤ 22k. Let

µ∞ := sup suppt µ. (2.6)

We seek conditions under which the maximum eigenvalue of AN /
√

N converges to µ∞ in probability. An
easy argument will give us the lower bound, and since λmax(A) ≤ |A|op for any symmetric matrix A ∈ RN×N , it
will be enough to prove the upper bound for the operator norm of AN /

√
N .

For this purpose, we need stronger assumptions. The following is stronger than Assumption 2.1.

Assumption 2.3.

(a) Ea(N)
i,j = 0 for all N ∈ N+, i, j ∈ [N], supN∈N+,i,j∈[N] E|a(N)

i,j |2 ≤ 1, and supN∈N+,i,j∈[N] E|a(N)
i,j |4 < ∞.

(b) For any ε > 0 it is true that
lim

N→∞

∑
i,j

P(|a(N)
i,j | ≥ ε

√
N) = 0. (2.7)

Note that condition (2.7) is satisfied if we assume that all {a(N)
i,j : N ∈ N+, i, j ∈ [N]} have the same distribution

with finite 4-th moment.
We gain control over |AN |op through the traces of high moments of AN , and the main difficulty, which the
next conditions (Assumption 2.4 and Assumption 2.6) try to address, is how to connect these traces with
µ∞, which emerges out of {λi(AN ) : i ∈ [N]} only after we take N → ∞.

Assumption 2.4. For every N ∈ N+ and i, j ∈ [N] it is true that

s(N)
i,j ≤ min{s(2N)

2i,2j , s(2N)
2i−1,2j, s(2N)

2i−1,2j−1}. (2.8)

For example, this assumption is satisfied if s(N)
i,j = h(i/N, j/N) for all N ∈ N+, i, j ∈ [N], where h : [0, 1]2 →

[0,∞) is a function decreasing separately in each variable.
In order to give the next sufficient condition, we first give some definitions.
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Definition 2.5. (i) We call graphon any Borel measurable function W : [0, 1]×[0, 1]→ R which is symmetric
and integrable.
(ii) For any bounded graphon W and any multigraph G = (V, E), we call isomorphism density from G to W

the quantity

t(G, W ) :=
∫

[0,1]|V |

∏
{i,j}∈E

W (xi,xj)
∏
i∈V

dxi . (2.9)

Now, let (AN )N∈N+ be a sequence of random matrices with elements having finite second moment. Each AN

defines a graphon, WN , through the relation

WN (x, y) := s(N)
dNxe,dNye (2.10)

for each (x, y) ∈ [0, 1] × [0, 1]. For this relation, d0e denotes 1.

Assumption 2.6. There exists a graphon W such that the WN of (2.10) satisfies

lim
N→∞

t(T, WN ) = t(T, W ) (2.11)

for any finite tree T . Moreover, for any D > 0 there exists some C = C(D) ∈ (0,∞) and N0 = N0(D) ∈ N+ such
that for any N ≥ N0 it holds ∫

[0,1]2
|WN (x, y) −W (x, y)|dx dy ≤ CN−D. (2.12)

This assumption together with Assumption 2.3 implies Assumption 2.2 (This will be explained in Lemma
4.2). Again, we denote by µ∞ the maximum of the support of µ.
The assumptions we made so far will lead to convergence in probability of the largest eigenvalue. Next we
give some extra condition, which will lead to the almost sure convergence of the largest eigenvalue.

Assumption 2.7. (AN )N∈N+ is a sequence of symmetric random matrices, the entries of each AN are inde-
pendent (up to symmetry), and there exists a random variable X with mean 0, variance 1, and finite 4 + δ

moment for some δ > 0, which stochastically dominates the entries of AN in the following sense

P(|{AN }i,j | ≥ t) ≤ P(|X | ≥ t), for all t ∈ [0,∞), N ∈ N+, i, j ∈ [N]. (2.13)

We are now ready to present our first main result.

Theorem 2.8. Let (AN )N∈N+ be a sequence of matrices satisfying Assumption 2.3. Then if either Assumptions

2.2 and 2.4 hold or Assumption 2.6 holds, it is true that

lim
N→∞

|AN |op√
N
= µ∞ in probability (2.14)

where µ∞ is defined in (2.6). Moreover, if the sequence (AN )N∈N+ satisfies Assumption 2.7, the convergence in

(2.14) holds in the almost sure sense.

Note that Assumption 2.4 is restrictive and does not cover several of the well-known and studied models.
Thus, in what follows, we try to extend the domain of validity of Theorem 2.8. We first give two definitions.
For N ∈ N+ and U ⊂ [N]2:
• We call a (x, y) ∈ U internal point of U if {(x + d1, y + d2) : d1, d2 ∈ {−1, 0, 1}} ⊂ U . We denote by U o the set
of internal points of U .
• We say that U is axially convex if (i, j) ∈ U, (i, j′) ∈ U, r ∈ [N], (r − j)(r − j′) < 0 imply (i, r) ∈ U and
(i, j) ∈ U, (i′, j) ∈ U, r ∈ [N], (r − i)(r − i′) < 0 imply (r, j) ∈ U .

Definition 2.9 (Generalized step function variance profile). Let (AN )N∈N+ be a sequence of symmetric random
matrices, AN of dimension N ×N , with each element having zero mean and finite second moment. Moreover,
suppose that there exists an N+−valued sequence (dN )N∈N+ with limN→∞ dN /N = 0 and such that for each N

there is a partition PN := {B(N)
i : i = 1, 2, . . . , dN } of the grid [N]2 consisting of dN axially convex sets with

the following properties.
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(a) If A ∈ PN then R(A) := {(i, j) : (j, i) ∈ A} ∈ PN .

(b) For any m ∈ [dN ] there exists f ∈ [d2N ] such that

2B(N)
m ⊂ B(2N)

f . (2.15)

(c) For any N ∈ N, m ∈ [dN ] and i ∈ [N] the line segment x = i intersects B(N)
m \ (B(N)

m )◦ at most 2 times.

Then if for all (i, j) ∈ [N]2 the variance of the (i, j)-entry of AN is given by

s(N)
i,j :=

∑
m∈[dN ]

s(N)
m 1(i,j)∈B(N)

m
(2.16)

for some set of numbers {si}i∈[dN ] so that s(N)
m = s(N)

k if R(B(N)
m ) = B(N)

k , we will call the sequence of matrices
(AN )N≥1 random matrix model whose variance profile is given by a generalized step function.

The following Theorem is a corollary of Theorem 2.8 and gives results of the type (2.14) for the operator
norm of the matrix
• AN when AN is a non-periodic band matrix with band size proportional to N or has a step or continuous
profile.
• AN AT

N (i.e., Gram matrix) when AN is a rectangular matrix with step or continuous variance profile.
Details are given after the next theorem and in subsection 8.2.

Theorem 2.10. Let (AN )N∈N+ be a random matrix model whose variance profile is given by a generalized step

function. If it also satisfies Assumptions 2.2, 2.3, and for every N ∈ N and (i, j) ∈ [N]2 it is true that

s(N)
i,j ≤ s(2N)

2i,2j , (2.17)

then

lim
N→∞

|AN |op√
N
= µ∞ in probability, (2.18)

where µ∞ is defined in (2.6). Moreover, if the sequence (AN )N∈N+ satisfies Assumption 2.7 the convergence in

(2.18) holds in the almost sure sense.

For any N ∈ N+ and any two N × N matrices A, B we will denote by A � B their Hadamard product, which is
the entry-wise product of A, B,i.e., the N × N matrix with entries

{A � B}i,j = {A}i,j{B}i,j for all i, j ∈ [N]. (2.19)

Note that Assumption 2.7 is satisfied if AN can be written as

AN = ΣN � A′N , (2.20)

where A′N is a sequence of symmetric random matrices with i.i.d. entries all following the same law, with 0
mean, unit variance and finite 4 + δ moment for some δ > 0 and for each N the entries of ΣN are elements
of [0, 1].
Next, we study the operator norm of two widespread random matrix models.

Definition 2.11 (Step function variance profile). Consider

a) m ∈ N+ and numbers {σp,q}p,q∈[m] ∈ [0, 1]m×m with σp,q = σq,p for all p, q ∈ [m].

b) For each N ∈ N+, a partition of [N] into m intervals {I (N)
p }p∈[m]. The numbering of the intervals is

such that x < y whenever x ∈ I (N)
p , y ∈ I (N)

q and p < q. Let L(N)
p and R(N)

p be the left and right endpoint
respectively of I (N)

p .

c) Numbers 0 = α0 < α1 < · · · < αm−1 < αm := 1. We assume that limN→∞ R(N)
p /N = αp for each p ∈ [m].

d) A random variable X0 with E(X0) = 0, E(X2
0 ) = 1.
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For each N ∈ N+, define the matrix ΣN ∈ RN×N by (ΣN )i,j = σp,q if i ∈ I (N)
p , j ∈ I (N)

q , and let {AN }N∈N+ be the
sequence of symmetric random matrices defined by

AN = ΣN � A′N (2.21)

where A′N is symmetric and its entries are independent (up to symmetry) random variables all with distribu-
tion the same as X0. Then (AN )N∈N+ will be called symmetric random matrix model whose variance profile is

given by a step function.

Let Îp := [αp−1, αp) for p ∈ [m − 1], and Îm := [αm−1, 1]. These intervals together with the numbers from a)
determine a function σ : [0, 1]2 → [0, 1] as follows

σ(x, y) := σp,q if x ∈ Îp, y ∈ Îq. (2.22)

We call the function σ2 the variance profile of the model.

Definition 2.12 (Continuous function variance profile). For

a) a continuous and symmetric function σ : [0, 1]2 → [0, 1] (i.e, σ(x, y) = σ(y, x) for all x, y ∈ [0, 1]),

b) a sequence (ΣN )N∈N+ of symmetric matrices, ΣN ∈ [0, 1]N×N , with the property

lim
N→∞

sup
1≤i,j≤N

∣∣∣(ΣN )i,j − σ(i/N, j/N)
∣∣∣ = 0, (2.23)

c) a random variable X0 with E(X0) = 0, E(X2
0 ) = 1,

consider the sequence {AN }N∈N+ of symmetric random matrices, AN of dimension N × N , defined by

AN = ΣN � A′N (2.24)

where the entries of A′N are independent (up to symmetry) random variables all with distribution the same
as X0. Then we say that (AN )N∈N+ is a random matrix model whose variance profile is given by a continuous

function. Again, we call the function σ2 the variance profile.

Remark 2.13 (Checking Assumption 2.2). A sufficient condition for the validity of Assumption 2.2 is that
(AN )N∈N+ satisfies Assumption 2.1 and there is a graphon W such that WN → W almost everywhere in
[0, 1] × [0, 1].
Indeed, the bounded convergence theorem gives that t(T, WN ) → t(T, W ) for all trees. Then Theorem 3.2 (a)
of [30] shows that the ESD of AN /

√
N converges almost surely weakly to a probability measure µ

√
W whose

2k moment equals

lim
N→∞

∑
T∈Ck

t(T, WN ) (2.25)

while the moments of odd order are 0. Then, for each T ∈ Ck,

0 ≤ t(T, WN ) −
∑

i∈[N]K+1

labeling of T

N−k−1
∏

{i,j}∈E(T )

s(N)
i,j = O(1/N), (2.26)

because t(T, WN ) is simply the same as the sum in the previous relation with the only difference that i is not
required to be a labeling, i.e., it can have repetitions. It follows that Assumption 2.2 holds. As we remarked
after (2.5), µ

√
W is symmetric and has bounded support. Denote by µ

√
W
∞ the largest element of the support.

If, in the two models above, X0 has finite 4 + δ moment for some small δ > 0, then it is easy to see
that the sequence (AN )N∈N+ satisfies Assumptions 2.3. It also satisfies Assumption 2.2 because it satisfies
Assumption 2.1 and, in both cases, WN (x, y) converges to σ2(x, y) for almost all (x, y) ∈ [0, 1] × [0, 1], thus
the preceding remark applies.
Our result for the model (2.21) is the following.



7

Theorem 2.14. Let (AN )N∈N+ be a random matrix model whose variance profile is given by a step function as

above. Assume that X0 has mean value 0, variance 1, and finite 4 + δ moment, for some small δ > 0. Then it

is true that

lim
N→∞

|AN |op√
N
= µσ

∞ a.s. (2.27)

The previous theorem together with an approximation result that we prove in Section 7 (Proposition 7.1) has
the following consequence for the model (2.24).

Corollary 2.15. Let (AN )N∈N+ be a sequence of matrices whose variance profile is given by a continuous

function. If X0 has mean zero, variance one, and finite 4 + δ moment, then

lim
N→∞

|AN |op√
N
= µσ

∞ a.s. (2.28)

Remark 2.16. 1) Theorem 2.14 covers the cases in the Wigner matrix model [i. e., AN := (ai,j)i,j∈[N] with
{ai,j : 1 ≤ i ≤ j ≤ N, N ∈ N+} i.i.d. with E(a1,1) = 0, E(a2

1,1) = 1] where E(|a1,1|4+δ) < ∞ for some δ > 0. Recall
that the necessary and sufficient condition for the validity of (2.27) in that model is E(|a1,1|4) < ∞.
2) Corrolary 2.15 holds also in the case that the function σ of Definition 2.12 is piecewise continuous in a
sense explained in the end of Section 7.

3 Analysis of high order moments

Assume at the moment that the entries of AN have finite moments of all orders.
We will relate the largest eigenvalue with a high moment of the measure µN and at the same time this
moment will be controlled by µ∞. In general, for k ∈ N, it is true that

E tr(A2k
N ) =

∑
i1,i2,........,i2k∈[N]

E

 2k∏
l=1

a(N)
il ,il+1

 (3.1)

with the conventions that i2k+1 = i1, when k = 0 the sum is only over i1 ∈ [N], and the product over an
empty set equals 1.
Now, for a term with indices i1, i2, . . . , i2k, we let i := (i1, i2, . . . , i2k) and X (i) :=

∏2k
l=1 a(N)

il ,il+1 . For such an i we
also use the term cycle. Then consider the graph G(i) with vertex set

V (i) = {i1, i2, . . . , i2k}
and set of edges

{{ir , ir+1} : r = 1, 2, . . . , 2k}. (3.2)

As explained in [2] (in the proof of relation (3.1.6) there, pages 49, 50 or in Theorem 3.2 of [30]), the limit

lim
N→∞

1
Nk+1 E tr(A2k)

remains the same if in the sum of (3.1) we keep only the summands such that

the graph G(i) is a tree with k + 1 vertices (3.3)

Then, necessarily, the path i1 → i2 → · · · → i2k → i1 traverses each edge of the tree exactly twice, in opposite
directions of course. Such a G(i) becomes an ordered rooted tree if we mark i1 as the root and order children
of the same vertex according to the order they appear in the cycle.
Cycles i that don’t satisfy (3.3) we call bad cycles. So, for k ∈ N, the sum in (3.1) can be written as

E tr(A2k) = MN (k) + BN (k), (3.4)

where

MN (k) :=
∑
T∈Ck

∑
i∈[N](2k)∨1:G(i)∼T

∏
{i,j}∈E(G(i))

s(N)
i,j , (3.5)

BN (k) :=
∑

i∈[N]2k :bad cycle

EX (i). (3.6)
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Recall that Ck are the ordered rooted trees with k edges and G(i) ∼ T means that the graphs are isomorphic
as ordered rooted trees. Note also that MN (k) has already been defined in (2.4) but the two definitions for it
agree. Also, MN (0) = N, BN (0) = 0.
The plan is to control the expectation of the trace in (3.4) through an appropriate bound involving various
MN (j)′s. To control the term BN (k), we adopt the analysis of Section 2.3 of [27].

Proposition 3.1. Let AN be an N×N symmetric random matrix with independent entries (up to symmetry) and

with E(a(N)
i,j ) = 0, s(N)

i,j ≤ 1 for all N ∈ N, i, j ∈ [N]. Assume additionally that the absolute value of the entries

of the matrix are all supported in [0, CN
1
2−ϸ] for some ϸ > 0. Then for all N large enough and all integers

1 ≤ k < N it is true that

|BN (k)| ≤
k∑

s=1

(4k5)2k−2s
(
CN

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)MN (t − 1). (3.7)

Proof. We bound each term of the sum defining BN (k). Take a bad cycle i and let

• t: the number of vertices of G(i),

• s: the number of the edges of G(i),

• e1, e2, . . . , es: the edges of G(i) in order of appearance in the cycle,

• a1, a2, . . . , as: the multiplicities of e1, e2, . . . , es in the cycle.

That is, aq is the number of times the (undirected) edge eq appears in the cycle. Note that t ≤ s + 1 (true for
all graphs) and t ≤ k because the cycle is bad.
Additionally, in case t ≥ 2, we let T (i) be the rooted ordered tree obtained from G(i) by keeping only edges
that lead to a new vertex at the time of their appearance in the cycle. The root is i1 and we declare a child
of a vertex smaller than another if it appears earlier in the cycle. In case t = 1, T (i) is the graph with one
vertex, i1, and one edge (loop) with end vertices i1, i1. Thus, T (i) has t vertices and 1 ∨ (t − 1) edges.
To bound |EX (i)|, notice that if any of a1, a2, . . . , as is 1, we have EX (i) = 0 by the independence of the
elements of AN and the zero mean assumption. We assume therefore that all multiplicities are at least 2.
Using the information about the mean, variance, and support of |a(N)

i,j |, we get that for any integer a ≥ 2 it
holds E(|a(N)

i,j |a) ≤ (C1N1/2−ϸ)a−2s(N)
i,j . Thus

E|X (i)| =
s∏

q=1

E|Xeq |aq ≤ (CN1/2−ε)a1+···+as−2s
∏

{i,j}∈E(G(i))

s(N)
i,j ≤ (CN1/2−ε)2k−2s

∏
{i,j}∈E(T (i))

s(N)
i,j . (3.8)

In the second inequality, we used the fact that s(N)
i,j ∈ [0, 1] for all i, j, N . For integers s, t ≥ 1, a1, . . . , as ≥ 2

and T ∈ Ct−1 let

NT,a1,a2,...,as =
the number of bad cycles with T (i) ∼ T , indices 1, 2, . . . , t, appearing in this order,
and edge multiplicities a1, a2, . . . , as.

(3.9)

Using the bound on NT,a1,a2,...,as provided by Lemma 9.1, we obtain

|BN (k)| ≤
k∑

s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(CN1/2−ε)2k−2s

1t=1

∑
i∈[N]

s(N)
i,i + 1t≥2

∑
T∈Ct−1

NT,a1,a2,...,as

∑
i∈[N]2k :T (i)∼T

∏
{i,j}∈E(T (i))

s(N)
i,j


(3.10)

≤
k∑

s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(CN1/2−ε)2k−2s

1t=1

∑
i∈[N]

s(N)
i,i + 1t≥2

∑
T∈Ct−1

NT,a1,a2,...,as

∑
i∈[N]2(t−1):T (i)∼T

∏
{i,j}∈E(T (i))

s(N)
i,j


(3.11)

≤
k∑

s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(CN1/2−ε)2k−2s(4k4)4(s+1−t)+2(k−s)MN (t − 1). (3.12)
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We used here the fact that s(N)
i,i ≤ 1, so that

∑
i∈[N] s(N)

i,i ≤ N = MN (0). The inside sum in (3.12) is over all s-
tuples of integers a1, a2, . . . , as greater than or equal to 2 with sum 2k. By subtracting 2 from each ai , we get
an s-tuple of non-negative integers with sum 2k −2s. The number of such s-tuples is

((
s

2k−2s

))
(combinations

with repetition), which is at most s2(k−s) ≤ k2(k−s). Thus the above sum is bounded by
k∑

s=1

(4k5)2(k−s)(CN1/2−ε)2k−2s
k∧(s+1)∑

t=1

(4k4)4(s+1−t)MN (t − 1). (3.13)

□

Proposition 3.2. Let (AN )N∈N+ be a sequence of symmetric matrices and R > 0 so that the sequence satisfies

Assumption 2.3 and the following condition Σ(R):
For each C1 > 0 there are C2 > 0 and N0 ∈ N+ such that

MN (k) ≤ C2Nk+1R2k (3.14)

for all N, k ∈ N+ with N ≥ N0 and 1 ≤ k ≤ C1 log N .

Then for each ϸ > 0, it holds

lim
N→∞
P

( |AN |op√
N
≥ R(1 + ϸ)

)
= 0. (3.15)

Proof. Fix η ∈ (0, 1/8) and define the N × N matrices A≤N , A>
N by

(A≤N )i,j := a(N)
i,j 1|ai,j |≤N

1
2 −η , (3.16)

(A>
N )i,j := a(N)

i,j 1|ai,j |>N
1
2 −η (3.17)

for all i, j ∈ [N]. For a random matrix H := (hi,j), EH denotes the matrix whose (i, j) element is Ehi,j provided
that the mean value of hi,j can be defined. Note that

1
√

N
|AN |op ≤

1
√

N

(
|A≤N − EA≤N |op + |EA≤N |op + |A>

N |op

)
. (3.18)

We will bound the three terms in the right hand side of the last inequality. For the first two, we use only
Assumption 2.3 and the arguments in the proof of Theorem 2.3.23 in [27].
1) The term N−

1
2 |E(A≤N )|op is a deterministic sequence that converges to 0 because, since a(N)

i,j is centered, we
have

|(EA≤N )i,j | = |(EA>
N )i.j | ≤ N−3( 1

2−η) sup
N

max
i,j

E|a(N)
i,j |4. (3.19)

And using the inequality |C|op ≤ N ||C||max, we get that

|E(A≤N )|op ≤ N3η− 1
2 sup

N
max

i,j
E|a(N)

i,j |4
N→∞→ 0.

2) The term N−
1
2 |A>

N |op converges to 0 in probability. Indeed, for any δ1 > 0,

P(|A>
N |op > δ1

√
N) ≤P(|a(N)

i,j | > δ1
√

N for some i, j ∈ [N]) (3.20)

+P(|A>
N |op > δ1

√
N and |a(N)

i,j | ≤ δ1
√

N for all i, j ∈ [N]). (3.21)

The first quantity goes to zero as N → ∞ because of (2.7). For the second, it is an easy exercise to show that
if each entry of a matrix M has absolute value at most a and each row and column of M has at most one
non-zero element then |M |op ≤ a (use the expression |M |op = supx:||x ||2=1 ||Mx ||2). Consequently, the probability
in (3.21) is at most

N∑
i=1

∑
1≤j1<j2≤N

P(|ai,j1 | > N
1
2−η, |ai,j2 | > N

1
2−η) +

N∑
j=1

∑
1≤i1<i2≤N

P(|ai1,j | > N
1
2−η, |ai2,j | > N

1
2−η) (3.22)

≤2N

(
N

2

) supN∈N+,i,j∈[N](E{|a
(N)
i,j |4})2

N4−8η
≤ 1

N1−8η
sup

N∈N+,i,j∈[N]
(E{|a(N)

i,j |4})2 N→∞→ 0. (3.23)
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We used the independence of the entries in each row or column and Markov’s inequality.
3) To deal with |A≤N − EA≤N |op, we will use Proposition 3.1. Let

ÃN := A≤N − EA≤N , (3.24)

s(N),≤
i,j := E{(ÃN )2

i,j}. (3.25)

Proposition 3.1 applies to ÃN because any element of the matrix, say (ÃN )i,j, has zero mean and variance
s(N),≤

i,j ≤ E{(A≤N )2} ≤ E(A2
N ) = s(N)

i,j ≤ 1. Thus, if we denote by M̃N (m) the terms (2.4) for m ∈ [N] and for the
matrix ÃN , we will have M̃N (m) ≤ MN (m) for all m ∈ N, and Proposition 3.1, gives that for any 1 ≤ k < N ,

E tr(Ã2k
N ) ≤ MN (k) +

k∑
s=1

(4k5)2k−2s
(
2N

1
2−η

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)MN (t − 1) (3.26)

Now fix C1 > 0, its value will be determined in (3.32) below. For 1 ≤ k ≤ C1 log N ,

E tr(Ã2k
N ) ≤ C2Nk+1R2k + C2

k∑
s=1

(4k5)2k−2s
(
2N

1
2−η

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)N tR2(t−1). (3.27)

Next, we focus on the second summand in the right hand side of the previous inequality for N large enough.
In the sum in t we factor out (4k4)4(s+1)R−2, and in the resulting sum of geometric progression with ratio a

larger than 1 we use the bound a + a2 + · · · + a(s+1)∧k ≤ ka(s+1)∧k. Thus the sum in (3.27) is bounded by

C2
k

R2

k∑
s=1

(4k5)2k−2s
(
2N

1
2−η

)2k−2s
(4k4)4(s+1)

(
NR2

(4k4)4

)(s+1)∧k

(3.28)

= 28C2k17Nk(R2)k−1 + C2
k

R2 (NR2)k+1
k−1∑
s=1

(
4(4k5)2

N2ηR2

)k−s

(3.29)

≤ 28C2k17Nk(R2)k−1 + 27C2k11(R2)(k−1)Nk+1−2η ≤ 29C2k17Nk+1−2ηR2k−2 (3.30)

[in summing the geometric series in (3.29), we used the bound c + c2 + · · · + cr ≤ 2c if 0 ≤ c < 1/2]. Thus,
returning to (3.27),

E tr(Ã2k
N ) ≤ Nk+1R2k{1 + o(1)}2k. (3.31)

with o(1) depending on R, C2, η.
Fix ϸ > 0, pick

C1 >
2 + ϸ

log(1 + ϸ)
, (3.32)

and apply the above for k := [C1 log N]. Relation (3.31) implies

P

( |ÃN |op√
N
≥ R(1 + ϸ)

)
≤ P

 |ÃN |2k
op

Nk
≥ R2k(1 + ϸ)2k

 ≤ 1
R2k(1 + ϸ)2k

1
Nk

E|ÃN |2k
op

≤ N

(
1 + o(1)

1 + ϸ

)2k

= O
( 1
N1+ϸ

)
,

(3.33)

for any N large enough. The last equality is true because of the choice of k and C1. □

A tool for proving almost sure convergence of the sequence |AN |op/
√

N is the following lemma.

Lemma 3.3. Let (AN )N∈N+ be a sequence of matrices, AN is N × N , and R > 0 so that the sequence satisfies

Assumption 2.3(a), condition Σ(R), and Assumption 2.7. Then

lim sup
N→∞

|AN |op√
N
≤ R a.s. (3.34)
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Proof. Pick η ∈ (0, 1/8), its exact value will be determined below, and define the matrices A≤N , EA≤N as in the
proof of Proposition 3.2. The proof will be accomplished once we show that

lim sup
N

|A≤N |op√
N
≤ R, a.s., and (3.35)

P
(
AN , A≤N for infinitely many N

)
= 0. (3.36)

Proof of (3.35). Since Σ(R) holds for the sequence (AN )N≥1, the proof of Proposition 3.2 (the part with
heading 3) shows that

lim sup
N

|A≤N − EA≤N |op√
N

≤ µ∞ a.s. (3.37)

because the upper bound in (3.33) is summable with respect to N . In the same proof it is shown that

lim sup
N

|EA≤N |op√
N
= 0 a.s.

Using these two facts and the triangle inequality we get (3.35).
Proof of (3.36). Let X be the random variable that stochastically dominates the entries of AN in the sense
of (2.13). Let XN be a sequence of symmetric random matrices after an appropriate coupling such that for
all N ∈ N and i, j ∈ [N] it is true that

|a(N)
i,j | ≤ |(XN )i,j | (3.38)

and the entries of XN are independent up to symmetry and all following the same law as X. It is an easy
exercise to show that for any a, c > 1 and Y real valued random variable we have

∞∑
k=1

akP(|Y | ≥ ck) ≤ 1
a − 1

E
{|Y | log a

logc
}
. (3.39)

Using this inequality and the fact that the random variable X has finite 4+δ moment, we get that all η ≤ δ
δ+4

satisfy
∞∑

m=1

22mP(|X | ≥ 2
m
2 (1−η)) < ∞. (3.40)

Thus, picking in the beginning of the proof an arbitrary η with 0 < η < (1/8) ∧ (δ/(4 + δ)), we have

P
(
AN , A≤N for infinitely many N

)
= P

(
for infinitely many N there are i, j ∈ [N] : |a(N)

i,j | > CN
1
2−η

)
(3.41)

≤ P
(

for infinitely many N there are i, j ∈ [N] : |X (N)
i,j | > CN

1
2−η

)
= P

(
XN , X≤N for infinitely many N

)
. (3.42)

In the second line, the inequality is a consequence of (3.38), and the matrix X≤N is the matrix whose (i, j)
element is (XN )i,j1|(XN )i,j |≤CN

1
2 −η . The convergence of the series in (3.40). implies that the probability in the

right hand side of (3.42) is 0 (see [2], pages 94 and 95) and finishes the proof of (3.36). □

4 Proof of Theorem 2.8

The convergence µAN /
√

N ⇒ µ in probability implies that

lim inf
N

|AN |op√
N
≥ µ∞ in probability, (4.1)

that is, for all ϸ > 0, limN→∞ P(|AN |op/
√

N < µ∞ − ϸ) = 0. So in order to prove Theorem 2.8 one needs to prove
that

lim sup
N

|AN |op√
N
≤ µ∞ (4.2)

in probability. By Proposition 3.2, it is enough to prove that condition Σ(µ∞) is satisfied.
We will prove condition Σ(µ∞) separately for each of the Assumptions 2.4 and 2.6 in the next two lemmas.
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Lemma 4.1. Let (AN )N∈N+ be a sequence of matrices that satisfies Assumptions 2.2, 2.3, and 2.4. Then for

every k, N ∈ N+ such that k < N it is true that

MN (k) ≤ Nk+1µ2k
∞ .

In case µ∞ > 0, the inequality is true (as equality) for k = 0 also.

Proof. Fix N, k ∈ N+ with k < N and a tree T ∈ Ck. Then, for each d := (d1, d2, . . . , dk+1) ∈ {−1, 0}k+1 consider
the function

φd : [N]k+1 → [2N]k+1

with
φd (i1, i2, · · · , ik+1) = 2 (i1, i2, · · · ., ik+1) + (d1, d2, · · · , dk+1)

for all i1, i2, . . . , ik+1 ∈ [N]. Each φd is one to one and, for different vectors d, d′ ∈ {−1, 0}k+1, the image of φd

is disjoint from that of φd’. If G is a plane rooted tree whose vertices in order of appearance in a depth first
search are (i1, i2, . . . , ik+1) ∈ [N]k+1, and φd(i1, i2, . . . , ik+1) = (j1, j2, . . . , jk+1), we denote by φd(G) the plane
rooted tree with vertex set {j1, j2, . . . , jk+1}, root j1, and edges {{ja , jb} : {a, b} is an edge of G}. Note that if all
coordinates of i ∈ [N]k+1 are different, the same is true for the coordinates of φd(i).
Lastly, by assumption 2.4, for any T ∈ Ck , i ∈ [N]2k such that G(i) ∼ T and d ∈ {−1, 0}k+1, it is true that∏

{i,j}∈E(G(i))

s(N)
i,j ≤

∏
{i,j}∈E(φd(G(i)))

s(2N)
i,j . (4.3)

So if one sums over all possible trees in Ck and d ∈ {−1, 1}k+1, (4.3) implies that

2k+1MN (k) =
∑

d∈{−1,0}k+1

∑
T∈Ck

∑
i∈[N]2k :G(i)∼T

∏
{i,j}∈E(G(i))

s(N)
i,j ≤

∑
d∈{−1,0}k+1

∑
T∈Ck

∑
i∈[N]2k :G(i)∼T

∏
{i,j}∈E(φd(G(i)))

s(2N)
i,j ≤ M2N (k). (4.4)

By applying (4.4) inductively, one can prove that for fixed N, k ∈ N the sequence

qm := M2m N (k)/(2mN)k+1, m ∈ N

is increasing in the variable m. So by (2.5) it is true that

sup
m

qm = lim
m→∞

qm =

∫
x2k dµ(x) ≤ µ2k

∞ .

In particular, q0 ≤ µ2k
∞ , completing the proof. □

Lemma 4.2. Suppose (AN )N∈N+ is a sequence of matrices such that Assumptions 2.3,2.6 hold. Then for each

C1 > 0 there is C2 > 0 such that

MN (k) ≤ C2Nk+1µ2k
∞ (4.5)

for all N ∈ N+ and 1 ≤ k ≤ C1 log N .

Proof. Note that for 1 ≤ k < N ,

1
Nk+1 MN (k) ≤

∑
T∈Ck

∫
[0,1]k+1

( ∏
{i,j}∈E(T )

WN (xi , xj)
)
dx1dx2 · · ·dxk+1 =: ΞN (k). (4.6)

The inequality holds because the left hand side results if on the right hand side we restrict the domain of
integration to the union of the sets

∏k+1
r=1 ((ir − 1)/N, ir/N] where all i1, i2, . . . , ik+1 ∈ [N] are different. Thus, it

is enough to show (4.5) with the left hand side replaced by Nk+1ΞN (k).
Fix T ∈ Ck and enumerate the edges of T in the order of first appearance during a depth first search
algorithm. For {i, j} ∈ E(T ), let {i, j}ord be its enumeration. Then for any integer l ∈ [0, k] define the following
quantities.

µ(l)
N (k, T ) =

∫
[0.1]k+1

∏
{i,j}∈E(T ):{i,j}ord≤l

WN (xi , xj)
∏

{i,j}∈E(T ):{i,j}ord≥l+1

W (xi , xj)dx1dx2 · · ·dxk+1. (4.7)
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Note that ∑
T∈Ck

µ(0)
N (k, T ) = µ2k ,

∑
T∈Ck

µ(k)
N (k, T ) = ΞN (k) (4.8)

Fix D > 0. Since all the variances are uniformly bounded by 1, Assumption (2.12) implies that there exists
some N0(D) and C > 0 such that for N ≥ N0(D) and any 1 ≤ l ≤ k < N it is true that

|µ(l)
N (k, T ) − µ(l−1)

N (k, T )| ≤
∫

[0,1]2
|WN (x, y) −W (x, y)|dx dy ≤ C

1
ND

. (4.9)

Consequently, since |Ck | ≤ 22k, for k < N we have

|ΞN (k) − µ2k | ≤
∑
T∈C

∣∣∣∣ k∑
l=1

{µ(l)
N (k, T ) − µ(l−1)

N (k, T )}
∣∣∣∣ ≤ ∑

T∈Ck

k∑
l=1

|µ(l)
N (k, T ) − µ(l−1)

N (k, T )| ≤ Ck22k

ND
. (4.10)

Pick any D > −2C1 log(µ∞/2). Then there is N ′0 ∈ N+, N ′0 > N0(D) such that Ck22k/ND ≤ µ2k
∞ for all N > N ′0

and 1 ≤ k ≤ C1 log N . And since µ2k ≤ µ2k
∞ , we will have ΞN (k) ≤ 2µ2k

∞ for the same N and k. If we choose a
constant C2 ≥ 2 so that (4.5) is satisfied for N ∈ [N ′0] and 1 ≤ k ≤ C1 log N , then we will have (4.5) for all N, k

claimed. □

4.1 Proof of almost sure convergence under the additional Assumption 2.7

The convergence in probability that we have proven so far gives

lim inf
N→∞

|AN |op√
N
≥ µ∞ a.s. (4.11)

The opposite inequality follows from Lemma 3.3 whose assumptions are satisfied, with R = µ∞, because,
under both scenarios of the Theorem, assumption Σ(µ∞) holds.

5 Proof of Theorem 2.10

The plan is to write the matrix AN as A(1)
N + A(2)

N so that for the sequence {A(1)
N }N≥1 we can apply Theorem 2.8

while for {A(2)
N /
√

N}N≥1 the operator norm will tend to zero.
Let

DN := {(i, j) ∈ [N]2 : there exists m ∈ [dN ] : (i, j) ∈ (B(N)
m )◦}. (5.1)

Then define the matrices

{A(1)
N }i,j := 1(i,j)∈DN {AN }i,j, (5.2)

{A(2)
N }i,j = 1(i,j)<DN {AN }i,j. (5.3)

The proof follows from the triangle inequality for the operator norm and the following two statements, which
we are going to prove next.

lim
N→∞

|A(2)
N |op√

N
= 0 in probability. (5.4)

lim
N→∞

|A(1)
N |op√

N
= µ∞. (5.5)

Proof of (5.4). For any k ∈ N denote by M (2)
N (k) the quantity (2.4) but with the role of AN played by A(2)

N , i.e.,
s(N)

i,j is replaced by s(N)
i,j 1(i,j)<DN By Proposition 3.2 it is sufficient to prove that for any constant C1 > 0 it is

true that for any k ≤ C1 log N ,

M (2)
N (k) ≤ N(8dN )k. (5.6)

This is true because each product in (2.4) is at most 1, then the inner sum has at most N(2dN )k non zero
terms [there are N choices for i1, and then, for each choice of i1 there are at most 2dN choices for i2 that
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have s(N)
i1,i2 , 0 due to condition (c) of Definition 2.9, and the same restriction holds for i3, . . . , ik+1] and the

outer sum has |Ck | ≤ 4k terms.

Proof of (5.5). We will show that Theorem 2.8 can be applied to the sequence {A(1)
N }N≥1. First we prove that

µA(1)
N /
√

N ⇒ µ in probability as N → ∞. (5.7)

As remarked after relation (2.5), µAN /
√

N ⇒ µ in probability as N → ∞. Then, from a well known inequality
(Corollary A.41 in [2]), the Levy distance between µAN /

√
N and µA(1)

N /
√

N is bounded as follows.

L3(µAN /
√

N , µA(1)
N /
√

N ) ≤ 1
N

tr
{( 1
√

N
AN −

1
√

N
A(1)

N

)2}
=

1
N2

∑
i,j∈[N]

{(A(2)
N )i,j}2. (5.8)

The expectation of the rightmost quantity is at most N−2N2dN (since each row of A(2)
N has at most 2dN

elements that are not identically zero random variables and these random variables have second moment
at most 1), which tends to 0 as N → 0 because of the assumption on dN .
Then the sequence {A(1)

N }N≥1 satisfies:
• Assumption 2.2 with the same measure as {AN }N≥1. This follows from Lemma 9.2. Assumption (c) of that
lemma is satisfied because of (5.7).
• Assumption 2.3, this is clear,
• Assumption 2.4. Indeed, fix (i, j) ∈ [N]2. If (i, j) ∈ DN , there exists some m ∈ [dN ] such that

{(i + d1, j + d2) : d1, d2 ∈ {−1, 0, 1}} ⊆ B(N)
m .

Then Assumption (2.15) implies that there exists some f ∈ [d2N ] such that

{(2i + d1, 2j + d2) : d1, d2 ∈ {−2, 0, 2}} ⊆ B(2N)
f .

But since B(2N)
f is axially convex (see before Definition 2.9), one can conclude that

{(2i + d1, 2j + d2) : d1, d2 ∈ {−2,−1, 0, 1, 2}} ⊆ B(2N)
f .

Now since (k, `) 7→ s(2N)
k,` is constant in B(2N)

f [see (2.16)] and we assumed (2.17), our claim follows.
Thus, all the Assumptions of Theorem 2.8 hold for A(1)

N , and hence (5.5) holds.
Almost sure convergence under the additional Assumption 2.7. Using Lemma 3.3, we will prove that

lim sup
N→∞

|A(1)
N |op√

N
≤ µ∞ a.s. (5.9)

lim sup
N→∞

|A(2)
N |op√

N
≤ ϸ a.s. for any ϸ > 0. (5.10)

And these are enough to prove our claim.
Notice that the validity of Assumptions 2.3(a) and 2.7 for the sequence (AN )N∈N+ implies the validity of
the same assumptions for the sequences (A(1)

N )N∈N+ and (A(2)
N )N∈N+ . As was mentioned above, the sequence

{A(1)
N }N≥1 satisfies Assumption 2.2 with the same measure as {AN }N≥1. And then Lemma 4.1 implies that the

sequence (A(1)
N )N∈N+ satisfies condition Σ(µ∞), while (5.6) and limN→∞ dN /n = 0 imply that, for any ϸ > 0, the

sequence (A(2)
N )N∈N+ satisfies condition Σ(ϸ). Thus, Lemma 3.3 applies and gives the desired inequalities.

6 Step function profile. Proof of Theorem 2.14

Proof of Theorem 2.14. The inequality lim infN→∞ |AN |op/
√

N ≥ µσ
∞ almost surely is justified with the same

argument as (4.1) with the only difference that here we have µAN /
√

N ⇒ µσ a.s., and so the inequality will be
true in the a.s. sense.
For the reverse inequality, we will apply Lemma 3.3. To check Assumptions 2.3(a) and 2.7, required by that
lemma, note that the (i, j) element of AN is of the form σp,qX ′0 for a constant σp.q ∈ [0, 1] and X ′0

d
= X0, and
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clearly X0 can play the role of X in relation (2.13). We will prove that (AN )N∈N+ satisfies condition Σ(c) for all
c > µ∞, and this will finish the proof.
Define the matrix Σ̂N ∈ RN×N by

(Σ̂N )i,j = σp,q if
ap−1 + (1/N) ≤ i/N < ap and
aq−1 + (1/N) ≤ j/N < aq,

(6.1)

and ÂN := Σ̂N � A′N .
Also, let

εN := max
{∣∣∣∣R(N)

p

N
− αp

∣∣∣∣ : p ∈ [m − 1]
}
. (6.2)

By Definition 2.11, it holds limN→∞ εN = 0.
Claim 1: a) With probability one, ÂN /

√
N has the same limiting ESD as AN /

√
N .

b) For ÂN , Lemma 4.1 applies.
Consequently,

M̂N (k) ≤ Nk+1(µσ
∞)2k (6.3)

for all 1 ≤ k < N .
Proof of Claim 1:
a) This is true because by Theorem A.43 in the Appendix A of [2], the Kolmogorov distance between µAN /

√
N

and µÂN /
√

N is at most

1
N

rank(AN − ÂN ) ≤ m

N
max
p∈[m]

(max{Rp, Nap} −min{Rp, Nap}) = mϸN
N→∞→ 0. (6.4)

b) Assumption 2.3 is satisfied because E(|X0|4+δ) and σp,q ≤ 1 for all p, q ∈ [m]. To show that Assumption 2.2
is satisfied, we repeat the argument just before the statement of the Theorem. For the sequence (ÂN )N∈N+ ,
the corresponding WN (x, y), as N → ∞, converges to σ2(x, y) for almost all (x, y) ∈ [0, 1]2. Assumption 2.4 is
satisfied because if for some i, j we have Var[(ÂN )i,j] > 0, then this equals σ2

p,q for the unique p, q as in (6.1).
Then

2i − 1
2N

∈ [ap−1 +
1

2N
, ap −

1
2N

),
2i

2N
∈ [ap−1 +

1
N

, ap), (6.5)

2j − 1
2N

∈ [aq−1 +
1

2N
, aq −

1
2N

),
2j

2N
∈ [aq−1 +

1
N

, aq). (6.6)

Thus, (2.8) holds as equality.

Claim 2: There is θ ∈ (0,∞) so that MN (k) ≤ eθ(k+1)εN M̂N (k) for all k < N .
Proof of Claim 2: Define the following sets of indices.

∆
(N)
p := I (N)

p ∩ [ap−1N + 1, apN), (6.7)

∆(N) := ∪m
p=1∆

(N). (6.8)

When p = m, the interval in the intersection becomes closed on the right also. Then

MN (k) ≤ M̂N (k) +
∑

∅,J⊂[k+1]

∑
T∈Ck

∑
i1···ik+1

1
(
il < ∆(N) if l ∈ J and il ∈ ∆(N) if l < J

) ∏
{i,j}∈E(T )

s(N)
i,j (6.9)

= M̂N (k) +
∑

∅,J⊂[k+1]

∑
T∈Ck

∑
m1,...,mk+1∈[m]k+1

a(T, J, m1, m1, . . . , mk+1) (6.10)

where

a(T, J, m1 · · ·mk+1) :=
∑

i1∈I (N)
m1 ,···ik+1∈I (N)

mk+1

1(il < ∆(N) if l ∈ J, il ∈ ∆(N) if l < J, (i`)`∈[k+1]distinct)
∏

{i,j}∈E(T )

s(N)
i,j . (6.11)

Note that ∑
T∈Ck

∑
m1,m2···mk+1∈[m]k+1

a(T, ∅, m1 · · ·mk+1) ≤ M̂N (k). (6.12)
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We will show that for some constant θ = θ(I1, I2, . . . , Im) ∈ (0,∞) we have

a(T, J, m1 · · ·mk+1) ≤ (θεN )|J |a(T, ∅, m1, · · ·mk+1). (6.13)

In the definition of a(T, J, m1, m2, . . . , mk+1), the product is common to all summands [recall the rectangles
of constancy of the map (i, j) 7→ s(N)

i,j ]. We write a(T, J, m1 · · ·mk+1) and a(T, ∅, m1, . . . mk+1) as

∑
i`∈I (N)

m`
for `<J

1(il ∈ ∆(N) for l < J, (i`)`∈[k+1]\J distinct)
∑

i`∈I (N)
m`

for all `∈J

1(il < ∆(N) for all l ∈ J, (i`)`∈[k+1]distinct)
∏

{i,j}∈E(T )

s(N)
i,j ,

(6.14)∑
i`∈I (N)

m`
for `<J

1(il ∈ ∆(N) for l < J, (i`)`∈[k+1]\J distinct)
∑

i`∈I (N)
m`

for all `∈J

1(il ∈ ∆(N) for all l ∈ J, (i`)`∈[k+1]distinct)
∏

{i,j}∈E(T )

s(N)
i,j

(6.15)

We will compare the inner sums in the two expressions. Notice that there are C1, C2 > 0 that depend on
a1, a2, . . . , am only so that

|∆(N)
p | ≥ C1N, (6.16)

|I (N)
p \∆(N)| ≤ C2εN N (6.17)

for all p ∈ [m]. For each fixed collection (i`)`<J , the inner sum in (6.14) is at most (C2εN N)|J | while the inner
sum in (6.15) is at least (C1N/2)|J |. The ratio of the first over the second bound is (2C2εN /C1)|J |. Thus, we
get (6.13) with θ := 2C2/C1.
Taking into account (6.13) and (6.12), we get that the second summand in (6.10) is bounded above by

k+1∑
t=1

∑
J⊂[k+1]:|J |=t

M̂N (k)(θεN )t = M (1)
N (k)

k+1∑
t=1

(
k + 1

t

)
(θεN )t = M̂N (k)

{
(1 + θεN )k+1 − 1

}
(6.18)

Consequently, MN (k) ≤ (1 + θεN )k+1M̂N (k) ≤ eθ(k+1)εN M̂N (k), and this proves Claim 2.
Now, combining this with (6.3), we get that condition Σ((1 + ε)µ∞) is satisfied for each ε > 0. □

7 An approximation result and proof of Corollary 2.15

Proposition 7.1. Let (AN )N∈N+ be a sequence of symmetric random matrices, AN of dimension N × N , of the

form

AN = ΣN � A′N , (7.1)

where ΣN ∈ [0,∞)N×N and A′N is a random N × N symmetric matrix with independent entries (up to symmetry)

all with zero mean and unit variance.

For every n ∈ N+ consider a sequence (Σ(n)
N )N∈N+ of matrices, with Σ(n)

N ∈ [0,∞)N×N , and define

A(n)
N := Σ(n)

N � A′N for each N ∈ N+. (7.2)

(a) Assume that

(i) the sequence (A′N )N∈N+ satisfies Assumption 2.3,

(ii) for each n ∈ N+ it holds

lim
N→∞

|A(n)
N |op√

N
= µ(n)

∞ in probability, (7.3)

where µ(n)
∞ is a finite constant,

(iii)

lim
n→∞

µ(n)
∞ =: µ∞ ∈ R, (7.4)
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(iv)

lim
n→∞

lim sup
N→∞

|ΣN − Σ(n)
N |max = 0. (7.5)

Then

lim
N→∞

|AN |op√
N
= µ∞ in probability. (7.6)

(b) Assume that, in addition to the assumptions of (a), the convergence in (7.3) holds in the a.s. sense and

Assumption 2.7 holds for the sequence (A′N )N∈N+ . Then the limit in (7.6) holds in the a.s. sense.

Proof. (a) Fix ϸ ∈ (0, 1/2) and n0 large enough such that for every n ≥ n0 it is true that

|µ∞ − µ(n)
∞ | ≤ ϸ and lim sup

N→∞
|ΣN − Σ(n)

N |max < ϸ.

Fix an n ≥ n0. There is an N0 = N0(n) ∈ N+ so that |ΣN −Σ(n)
N |max < ϸ2 for all N ≥ N0. Then for N ≥ N0 we have

P

(∣∣∣∣∣∣ |AN |op√
N
− µ∞

∣∣∣∣∣∣ ≥ 5ϸ

)
≤ P

(∣∣∣∣∣∣ |AN |op√
N
− µ(n)
∞

∣∣∣∣∣∣ ≥ 4ϸ

)
≤ P

 |AN − A(n)
N |op√

N
≥ 3ϸ

 + P


∣∣∣∣∣∣∣ |A

(n)
N |op√

N
− µ(n)
∞

∣∣∣∣∣∣∣ ≥ ϸ

 . (7.7)

The last term in (7.7) converges to zero as N → ∞ due to (7.3). For the previous term we will apply Proposition
3.2. Notice that the sequence (AN − A(n)

N )N∈N+ satisfies

• Assumption 2.3 because (AN − A(n)
N )i,j = ((ΣN )i,j − (Σ(n)

N )i,j)(A′N )i,j and |(AN − A(n)
N )i,j | ≤ |(A′N )i,j | (for all

N ∈ N+, i, j ∈ [N]) and we assumed that (A′N )N∈N+ satisfies Assumption 2.3

• condition Σ(2ε) because if, for t ∈ N+ with t < N , we call M ′N (t) the quantity defined in (2.4) for
the matrix AN − A(n)

N , and note that the (i, j) element of AN − A(n)
N has mean zero and variance

{(ΣN )i,j − (Σ(n)
N )i,j}2, we obtain that

M ′N (t) ≤ N t+122t(|ΣN − Σ(n)
N |max

)2t < N t+1(2ϸ)2t . (7.8)

Since 3ϸ > 2ϸ(1 + ϸ), Proposition 3.2 implies that the penultimate term in (7.7) goes to zero as N → ∞.

(b) It is enough to prove that with probability 1 it holds limN→∞
|AN |op√

N
≤ µ∞. Because of (7.3) (holding a.s.)

and (7.4), it is enough to prove that for all ϸ > 0 and all n large enough, with probability 1, it holds

lim
N→∞

|AN − A(n)
N |op√

N
≤ 2ϸ. (7.9)

To prove this, we will apply Lemma 3.3. Take n0 so that for all n ≥ n0 it holds lim supN→∞ |ΣN − Σ(n)
N |max < ϸ2.

Now fix n ≥ n0. There is N0 = N0(n) ∈ N+ so that |ΣN − Σ(n)
N |max < ϸ2 for all N ≥ N0. Then the sequence

(AN −A(n)
N )N≥N0 satisfies Assumption 2.3(a) as we saw in part a) of the proposition, Assumption 2.7 (because

A′N does so and |ΣN −Σ(n)
N |max < 1), and assumption Σ(2ϸ) because of (7.8). Then Lemma 3.3 gives the desired

inequality. □

Proof of Corollary 2.15. We will apply Proposition 7.1(b) for the sequence (AN )N∈N+ . The sequence (A′N )N∈N+

mentioned in that Proposition is exactly the sequence (A′N )N∈N+ of relation (2.24) and it satisfies Assumption
2.3 because for it the discussion following Assumption 2.3 applies (X0 has finite fourth moment).
For each n ∈ N+, we define the following obvious approximation to σ.

σ (n)(x, y) := n2
∫

Ik

∫
I`

σ(a, b) da db if (x, y) ∈ Ik × I` for k, ` ∈ [n], (7.10)

where Ik := [ k−1
n , k

n ) for k ∈ [n − 1] and In := [(n − 1)/n, 1]. Then, we define the matrices Σ(n)
N through the

relation (Σ(n)
N )i,j := σ (n)(i/N, j/N).

For each n ∈ N+, the sequence of matrices (Σ(n)
N � A′N )N≥1 satisfies the assumptions of Theorem 2.14. Con-

sequently, as N → ∞, the sequence (µA(n)
N /
√

N )N∈N+ converges almost surely weakly to a symmetric measure,
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say µ(n), with support contained in [−µ(n)
∞ , µ(n)

∞ ] and (7.3) holds in the a.s. sense. In a claim below we prove
that condition (7.4) is satisfied. Finally, to check (7.5), note that∣∣∣(ΣN )i,j − (Σ(n)

N )i,j

∣∣∣ ≤ ∣∣∣(ΣN )i,j − σ(i/N, j/N)
∣∣∣ + ∣∣∣σ(i/N, j/N) − σ (n)(i/N, j/N)

∣∣∣ . (7.11)

In the right hand side of the last inequality, the first term converges to zero as N → ∞ due to (8.2), and the
second term is at most the supremum norm of σ − σ (n), which goes to zero as n → ∞ because σ is uniformly
continuous in [0, 1]2. Thus, Proposition 7.1(b) applies and completes the proof.
Claim: Condition (7.4) is satisfied.
We modify the proof of Lemma 6.4 of [24]. Call µ the weak limit as N → ∞ of µAN /

√
N , then FN , F (n)

N

the distribution function of µAN /
√

N and µA(n)
N /
√

N respectively, and F, F (n) the distribution function of µ, µ(n)

respectively. Let

λN,1 ≤ λN,2 ≤ · · · ≤ λN,N ,

λ(n)
N,1 ≤ λ(n)

N,2 ≤ · · · ≤ λ(n)
N,N

the eigenvalues of AN /
√

N, A(n)
N /
√

N respectively.
Let ϸ ∈ (0, 1/2). There is n0 = n0(ϸ) so that for all n ≥ n0 it holds lim supN→∞ |ΣN − Σ(n)

N |max < ϸ2. Take now
n ≥ n0 fixed. There is N0 = N0(n) ∈ N+ so that |ΣN − Σ(n)

N |max < ϸ2 for all N ≥ N0. As explained in the proof
of Proposition 7.1, limN→∞ P

(
|AN − A(n)

N |op ≥ 3ϸ
√

N
)
= 0. There is sequence (Nk)k≥1 so that in a set Ωϸ of

probability 1, eventually for all k we have |ANk − A(n)
Nk
|op < 3ϸ

√
Nk. Since

max
i∈[N]
|λ(n)

Nk ,i − λNk ,i | ≤ |ANk − A(n)
Nk
|op/

√
Nk ,

in Ωϸ (the inequality is true by Theorem A46 in [2]), we will have eventually for all k ∈ N+ that

F (n)
Nk

(a − 3ϸ) ≤ FNk (a) ≤ F (n)
Nk

(a + 3ϸ) (7.12)

for all a ∈ R. From here, using the convergence as N → ∞ of FN to F and of F (n)
N to F (n), we have that for all

a ∈ R it holds
F (n)(a − 3ϸ) ≤ F (a) ≤ F (n)(a + 3ϸ). (7.13)

[First we get this for all a outside a countable subset of R and then using the right continuity of F, F (n) we
get it for all a ∈ R.] This implies that |µ(n)

∞ − µ∞| ≤ 3ϸ and finishes the proof of the claim. □

Remark 7.2. The above proof easily generalizes to the case that the function σ is piecewise continuous in
the following sense. There are m ∈ N+, 0 = a0 < a1 < · · · < am−1 < am = 1 so that letting Ip := [ap−1, ap) for
p = 1, 2, . . . , m − 1, and Im = [am−1, 1] the function σ |Ip × Iq is uniformly continuous for all p, q ∈ [m] (i.e.,
when σ extends continuously in the closure of each rectangle Ip × Iq. Recall that to handle the last term in
(7.11) all we needed was the uniform continuity of σ.

8 Examples

8.1 Random Gram matrices

Let (XN )N∈N+ be a sequence of matrices so that XN is an M(N)×N matrix with independent, centered entries
with unit variance, and M : N+ → N+ a function with limN→∞

M(N)
N = c ∈ (0,∞). It is known that the

empirical spectral distribution of XXT , after rescaling, converges to the Marchenko-Pastur law µMP [25].
Moreover, the convergence of the rescaled largest eigenvalue to the largest element of the support of µMP

has been established in [29] under the assumption of finite fourth moment for the entries. However, some
applications in wireless communication require understanding the spectrum of XXT , where X has a variance
profile, see for example [21] or [15]. Such matrices are called random Gram matrices. In this subsection,
we establish the convergence of the largest eigenvalue of random Gram matrices to the largest element of
the support of its limiting empirical spectral distribution for specific variance profiles. Firstly we give some
definitions.
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Definition 8.1 (Step function variance profile). Consider

a) m, n ∈ N+ and numbers {σp,q}p∈[m],q∈[n] ∈ [0,∞)mn.

b) For each K ∈ N+, two partitions {I (K)
p }p∈[m], {J (K)

p }p∈[n] of [K] in m and n intervals respectively. The
numbering of the intervals is such that x < y whenever x ∈ I (K)

p , y ∈ I (K)
q or x ∈ J (K)

p , y ∈ J (K)
q with

p < q. Let LI (K)
p and RI (K)

p be the left and right endpoint respectively of I (K)
p and similarly LJ (K)

p and
RJ (K)

p for J (K)
p .

c) Numbers 0 = α0 < α1 < · · · < αm−1 < αm := 1. We assume that limM→∞ RI (M)
p /M = αp for each

p ∈ [m].

d) Numbers 0 = �0 < �1 < · · · < �n−1 < �n := 1. We assume that limN→∞ RJ (N)
q /N = �q for each q ∈ [n].

e) M : N+ → N+ a function,

f) A random variable X0 with E(X0) = 0, E(X2
0 ) = 1.

For each M, N ∈ N+, define the matrix ΣM,N ∈ RM×N by (ΣM,N )i,j = σp,q if i ∈ I (M)
p , j ∈ I (N)

q , and let {AN }N∈N+ be the
sequence of random matrices defined by

AN = ΣM(N),N � A′M(N),N (8.1)

where A′M(N),N is an M(N)×N matrix whose elements are independent random variables all with distribution
the same as X0. We say that AN in (8.1) is a random matrix model whose variance profile is given by a step

function.

Definition 8.2 (Continuous function variance profile). For

a) a continuous function σ : [0, 1]2 → [0, 1],

b) M : N+ → N+ a function

c) a sequence (ΣM(N),N )N∈N+ of matrices, ΣM(N),N ∈ [0, 1]M(N)×N , with the property

lim
N→∞

sup
i∈[M(N)],j∈[N]

∣∣∣(ΣM(N),N )i,j − σ(i/M(N), j/N)
∣∣∣ = 0, (8.2)

d) a random variable X0 with E(X0) = 0, E(X2
0 ) = 1,

consider the sequence {AN }N∈N+ of random matrices, AN ∈ RM(N)×N , defined by

AN = ΣM(N),N � A′N (8.3)

where the entries of A′N are independent random variables all with distribution the same as X0. Then we
say that (AN )N∈N+ is a random matrix model whose variance profile is given by a continuous function. Again,
we call σ the variance profile.

Symmetrization To study the eigenvalues of AN AT
N , where AN falls in one of the cases of the two last definitions,

we use the trick of symmetrization. If A is an M × N matrix, where M, N ∈ N+, we call symmetrization of A

the (M + N) × (M + N) symmetric matrix Ã defined by

Ã :=
OM,M A

AT ON,N

 (8.4)

where, for any k, l ∈ N+, Ok,l denotes the k × l matrix with all of its entries equal to 0. The characteristic
polynomials of AAT , Ã are connected through the relation

λM det(λIM+N − Ã) = λN det(λ2IM − AAT ) (8.5)

for all λ ∈ C. Thus, in the case M ≤ N , if we call (t1, t2, . . . , tM+N ) the eigenvalues of the symmetric matrix
Ã, then the vector (t2

1 , t2
2 , . . . , t2

M+N ) contains twice each eigenvalue of AAT and N −M times the eigenvalue 0
(multiple eigenvalues appear in the previous vectors according to their multiplicities). Thus, the empirical
spectral distributions of AAT , Ã are related through

µÃ ◦ T−1 =
2M

M + N
µAAT +

N −M

M + N
δ0 (8.6)
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with T : R→ [0,∞) being the map x 7→ x2.

Step function profile: If (AN )N∈N+ is as in Definition 8.1 with M(N) := dcNe for some c ∈ (0, 1], then the
sequence (ÃN )N∈N+ is of the form given in Definition 2.11 with the following modification. We require that
there is some γ : N+ → N+ with limN→∞ γ(N) = ∞ so that the N-th matrix is of dimension γ(N) × γ(N) and,
for each N ∈ N+, the family (I (N)

p )p∈[m] is a partition of [γ(N)]. The numbers ap satisfy limN→∞ R(N)
p /γ(N) = ap.

With this modification, Theorem 2.14 holds if the denominator in (2.27) is replaced by
√

γ(N).
The sequence (ÃN )N∈N+ fits into this framework. We have γ(N) = dcNe + N , the role of m (of Definition 2.11)
is played by m + n (m, n from Definition 8.1), the (m + n)2 constants are

σ̃p,q :=


0 if p ∈ [m], q ∈ [m],

σp,q−m if p ∈ [m], q ∈ [m + n]\[m],

σq,p−m if p ∈ [m + n]\[m], q ∈ [m],

0 if p ∈ [m + n]\[m], q ∈ [m + n]\[m]

(8.7)

for each N , and the partition of [γ(N)] into m + n intervals consists of the intervals (we write M instead of
dcNe) {

[Map−1, Map) ∩ N+ : p ∈ [m]
}
, (8.8){

[M + N�q−1, M + N�q) ∩ N+ : q ∈ [n]
}
. (8.9)

Dividing the right endpoints of the intervals by γ(N) and taking N → ∞, we get the m + n numbers
c

1 + c
a1 <

c

1 + c
a2 < · · · < c

1 + c
am <

c

1 + c
+

1
1 + c

�1 < · · · < c

1 + c
+

1
1 + c

�n. (8.10)

If we feed these data to the recipe of Definition 2.11, relation (2.21) will give as AN the matrix ÃN where AN is
given by (8.1). The discussion preceding Theorem 2.14 applied to the sequence (ÃN )N≥1 gives that the ESD
of ÃN /

√
γ(N) converges almost surely weakly to a symmetric probability measure µ̃σ with compact support.

Call µ̃σ
∞ the largest element of the support. Relation (8.6) implies that the ESD of AN AT

N /N converges to a
measure with compact support contained in [0,∞) and the largest element of this support is µ∞ = (1+c)(µ̃σ

∞)2.
Then Theorem 2.14 has the following corollary.

Corollary 8.3. Assume that (AN )N≥1 is as in Definition 8.1 with M := dcNe for some c ∈ (0, 1] and E(|X0|4+δ) <

∞ for some δ > 0. Then it is true that

lim
N→∞

|AN AT
N |op

N
= µ∞ a.s. (8.11)

Continuous function profile: If (AN )N∈N+ is as in Definition 8.2 with M(N) := dcNe for some c ∈ (0, 1], then we
apply the discussion preceding Theorem 2.14 to the sequence (ÃN )N∈N+ . The graphon, WN , corresponding
to ÃN converges pointwise in [0, 1]2 to the graphon σ̃ with

σ̃(x, y) :=


0 if (x, y) ∈ [0, c/(1 + c)]2 ∪ (c/(1 + c), 1]2,

σ(x(1 + c)/c, (1 + c)y − c) if (x, y) ∈ [0, c/(1 + c)] × (c/(1 + c), 1],

σ(y(1 + c)/c, (1 + c)x − c) if (x, y) ∈ (c/(1 + c), 1] × [0, x/(1 + c)].

(8.12)

We used (8.2) and the continuity of σ. Since (ÃN )N∈N+ also satisfies Assumption 2.1, we get that the ESD
of ÃN /

√
γ(N) converges almost surely weakly to a symmetric probability measure µ̃σ with compact support.

Call µ̃σ
∞ the largest element of the support. As above, the ESD of AN AT

N /N converges to a measure with
compact support contained in [0,∞), and the largest element of this support is µ∞ = (1 + c)(µ̃σ

∞)2.

Corollary 8.4. Assume that (AN )N≥1 is as in Definition 8.2 with M := dcNe for some c ∈ (0, 1] and E(|X0|4+δ) <

∞ for some δ > 0. Then it is true that

lim
N→∞

|AN AT
N |op

N
= µ∞ a.s. (8.13)
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Proof. The proof does not follow directly from Corollary 2.15 because the sequence (ÃN )N∈N+ does not nec-
essarily have a continuous variance profile in the sense of Definition 2.12. Instead, we mimic the proof
of that corollary. We define σ (n) as in (7.10), and the M × N matrix Σ(n)

N as (Σ(n)
N )i,j := σ (n)(i/M, j/N) for all

i ∈ [M], j ∈ [N]. Then we apply an obvious modification of Proposition 7.1 (the N-th matrix is of dimension
γ(N) × γ(N), with γ(N) = dcNe + N ) with the role of ΣN and Σ(n)

N played by Σ̃M,N , Σ̃(n)
N (the symmetrizations of

ΣM,N and Σ(n)
N , defined in (8.4). The proof continues by adopting the proof of Corollary 2.15 to this setting.

Note that |Σ̃M,N − Σ̃(n)
N |max = |ΣM,N − Σ(n)

N |max, which has limn→∞ lim supN→∞ |ΣM,N − Σ(n)
M,N |max = 0. □

Remark 8.5. In [21] the authors showed that if the variances of the entries of AN,M are given by the values
of a continuous function (and some extra assumptions such as bounded 4 + ϸ moments of the entries) the
limiting distribution of the E.S.D. of AN AT

N does exist. So in Theorem 8.3 we prove the convergence of the
largest eigenvalue of these models as well. The authors in [21] also studied the non-centered version of
these models, i.e. when the entries of the matrix do not have 0 mean, but we do not cover this case with
our result.

8.2 Further applications of Theorem 2.10

In the Random Matrix Theory literature what are commonly described as Random matrices with variance-
profile given by a step function are more or less what we describe in Theorem 2.14. In this subsection we
give some examples which are covered by the generalized version of this variance-profile matrices (Definition
2.9) but not from the "standard" step functions.
Let {a(N)

i,j : N ∈ N+, i, j ∈ [N]} identically distributed random variables, a(N)
i,j = a(N)

j,i for all N ∈ N+, i, j ∈ [N],
{a(N)

i,j : 1 ≤ j ≤ i ≤ N} independent for each N , and a(1)
1,1 has mean 0 and variance 1. Fix p ∈ (0, 1] and let AN

be the matrix with entries
{AN }i,j = a(N)

i,j 1|i−j|≤pN , i, j ∈ [N], (8.14)

The sequence (AN )N∈N+ satisfies Assumption 2.1 (easy to check) and also Assumption 2.2. To see the last
point, we follow Remark 2.13. The graphon corresponding to AN is WN (x, y) = 1|dNxe−dNye|≤pN which converges
to the graphon W (x, y) = 1|x−y|≤p at least on the set {(x, y) ∈ [0, 1]2 : |x − y| , pn}, which has measure 1.
Thus, with probability one, the ESD of AN /

√
N converges weakly to a symmetric measure µ with compact

support. Call µ∞ the supremum of the support of µ.

Corollary 8.6 (Non-Periodic Band Matrices with Bandwidth proportional to the dimension). Assume that

for the matrix defined in (8.14) we have that a(N)
1,1 has 0 mean, unit variance and finite 4 + δ moment for some

δ > 0. Then

lim
N→∞

|AN |op√
N
= µ∞ a.s.

Proof. The sequence (AN )N∈N+ satisfies Assumption 2.2, as we saw above, and also Assumption 2.3 because
{a(N)

i,j : N ∈ N+, i, j ∈ [N]} are identically distributed and a1,1 has mean zero, variance one, and finite fourth
moment. The corollary then is a straightforward application of Theorem 2.10, where dN = 3, the partition
of [N]2 required by Definition 2.9 consists of the sets

B(N)
1 := {(i, j) ∈ [N]2 : |(i/N) − (j/N)| ≤ p}, (8.15)

B(N)
2 := {(i, j) ∈ [N]2 : (i/N) > (j/N) + p}, (8.16)

B(N)
3 := {(i, j) ∈ [N]2 : (j/N) > (i/N) + p}, (8.17)

and s(N)
1 = 1, s(N)

2 = s(N)
3 = 0. Condition (b) of that definition is satisfied by f := m for each m ∈ [3]. □

Remark 8.7. The random band matrix models have been extensively studied after the novel work in [8] and
have tremendous application in various research areas. When the bandwidth of the matrices is periodic,
i.e., the distance from the diagonal outside which the entries are 0 is periodic, the operator norm has been
extensively studied, see for example [26] or the survey [11]. Moreover when the bandwidth of such matrices
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is non-periodic but the bandwidth (the maximum number of non identically zero entries per row) is o(N)
but also tends to infinity has also been examined in [6]. To the best of our knowledge, the convergence of
the largest eigenvalue of non-periodic Band Matrices with bandwidth proportional to the dimension has not
been established.
Our next result concerns the singular values of triangular random matrices. It is well known under various
assumptions for the entries, but we record it here as another application of our main theorem.
Let {a(N)

i,j : N ∈ N+, 1 ≤ i ≤ j ∈ [N]} identically distributed random variables, {a(N)
i,j : 1 ≤ j ≤ i ≤ N} independent

for each N , and a(1)
1,1 has mean 0 and variance 1. Let AN be the matrix with entries

{AN }i,j = a(N)
i,j 1i≤j, i, j ∈ [N], (8.18)

Corollary 8.8 (Triangular matrices). Assume that for the matrix defined in (8.18) we have that a(N)
1,1 has 0

mean, unit variance and finite 4 + δ moment for some δ > 0. Then

lim
N→∞

|AN AT
N |op

N
= e a.s.

Proof. As in the case of Gram matrices, we denote by ÃN the symmetrization of AN , defined in (8.4). We have
|AN AT

N |op = |ÃN |2op. We will apply Theorem 2.10 to the sequence (ÃN )N∈N+ . The partition of [2N]2 required by
Definition 2.9 consists of the following three sets (i.e., dN = 3)

B(N)
1 := {(i, j) ∈ [2N]2 : |i − j| ≤ N − 1}, (8.19)

B(N)
2 := {(i, j) ∈ [2N]2 : i ≥ N + j}, (8.20)

B(N)
3 := {(i, j) ∈ [2N]2 : j ≥ N + i}, (8.21)

and the corresponding values of the variance are s(N)
1 = 0, s(N)

2 = s(N)
3 = 1. Assumption 2.2 follows as an

application of Remark 2.13, in the same way as in the previous corollary. The measure µ of that assumption
satisfies µ ◦ T−1 = ν, where ν is the limit of the E.S.D of N−1AN AT [recall (8.6)]. It was shown in [12] that
ν has support [0, e]. It follows that µ has support [−

√
e,
√

e] [See Remark 2.2 of [10] for a more detailed
discussion of this phenomenon].
Assumption 2.3 is satisfied because the elements of ÃN with indices in B(N)

2 ∪B
(N)
3 are identically distributed

with zero mean, unit variance and finite fourth moment (the remaining elements of the matrix are identically
zero random variables). Finally, condition (2.17) is satisfied as equality.
Thus, the corollary follows from Theorem 2.10. □

9 Two technical lemmas

In the next lemma, we prove the crucial estimate we invoked in the proof of Proposition 3.1. We adopt and
present the terminology of Section 5.1.1 of [2].

Lemma 9.1. NT,a1,a2,...,as ≤ (4k4)4(s+1−t)+2(k−s) if t ≥ 2 and NT,a1,a2,...,as = 1 if t = 1.

Proof. When t = 1, since the cycle is bad, we have s = 1 and a1 = 2k, and there is only one cycle with these
s, t and vertex set {1}.
For the case t ≥ 2, take a cycle i := (i1, i2, . . . , i2k) as in (3.9) and assume that it has edge multiplicities
a1, a2, . . . , as ≥ 2. Each step in the cycle we call a leg. More formally, legs are the elements of the set
{(r, (ir , ir+1)) : r = 1, 2, . . . , 2k}. Edges of the cycle we call the edges of G(i), and the multiplicity of each edge
is computed from i. The graph G(i) does not have multiple edges.
For 1 ≤ a < b, we say that the leg (a, (ia , ia+1)) is single up to b if {ia , ia+1} , {ic, ic+1} for every c ∈ {1, 2, . . . , b−
1}, c , a. We classify the 2k legs of the cycle into 4 sets T1, T2, T3, T4. The leg (a, (ia , ia+1)) belongs to

T1: if ia+1 < {i1, . . . , ia}. I. e., the leg leads to a new vertex.

T3: if there is a T1 leg (b, (ib, ib+1)) with b < a so that a = min{c > b : {ic, ic+1} = {ib, ib+1}}. I. e., at the time of
its appearance, it increases the multiplicity of a T1 edge of G(i) from 1 to 2.
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T4: if it is not T1 or T3.

T2: if it is T4 and there is no b < a with {ia , ia+1} = {ib, ib+1}.
I.e., at the time of its appearance, it creates a new edge but leads to a vertex that has
appeared already.

Moreover, a T3 leg (a, (ia , ia+1)) is called irregular if there is exactly one T1 leg (b, (ib, ib+1)) which has b < a,
va ∈ {ib, ib+1}, and is single up to a. Otherwise the leg is called regular.
It is immediate that a T4 leg is one of the following three kinds.

a) It is a T2 leg.

b) Its appearance increases the multiplicity of a T2 edge from 1 to 2.

c) Its edge marks the third or higher order appearance of an edge.

The number of edges of G(i) is s and the number of its vertices is t (since T (i) ∼ T ∈ Ct−1). Call

`: the number of edges of G(i) that have multiplicity at least 3.

m: the number of T2 legs.

r: the number of regular T3 legs.

We have for r, t, and |T4| the following bounds

r ≤ 2m, (9.1)

t = s + 1 −m ≤ k, (9.2)

|T4| = 2m + 2(k − s). (9.3)

The first relation is Lemma 5.6 in [2]. The second is true because if we remove the m edges traveled by T2

legs, we get a tree with s−m edges and t vertices, and in any tree the number or vertices equals the number
of edges plus one. Then the inequality is true because s ≤ k (all edges of G(i) have multiplicity at least 2)
and if s = k, then m ≥ 1 since the cycle is bad. For the last relation, note that |T3| = |T1| = t − 1 and thus,
using (9.2) too, we have |T4| = 2k − 2(t − 1) = 2k − 2(s −m).
Now back to the task of bounding NT,a1,...,as . We fix a cycle as in the beginning of the proof and we record

• for each T4 leg, a) its order in the cycle, b) the index of its initial vertex, c) the index of its final
vertex, and d) the index of the final vertex of the next leg in case that leg is T1. This gives a
Q1 ⊂ {1, 2, . . . , 2k} × ({1, 2, . . . t}2 ∪ {1, 2, . . . t}3) with |T4| elements.

• for each regular T3 leg, a) its order in the cycle, b) the index of its initial vertex, and c) the index of
its final vertex. This gives a Q2 ⊂ {1, 2, . . . , 2k} × {1, 2, . . . , t}2 with r elements.

We call U the set of all indices that appear as fourth coordinate in elements of Q1. These are indices of final
vertices of T1 legs.
We claim that, having Q1, Q2 and knowing that T (i) = T , we can reconstruct the cycle i.
We determine what kind each leg of the cycle is and what the index of its initial and its final vertex is. These
data are known for the T4 and T3 regular legs. The remaining legs are T1 or T3 irregular. We discover the
nature of each of them by traversing the cycle from the beginning as follows. The first leg is T4 (if i2 = i1)
or T1. The set Q1 will tell us if we are in the first case and will give us all we want. If we are in the second
case, the initial vertex is 1 and the final 2. Assume that we have arrived at a vertex vi in the cycle with the
smallest i for which the nature of the leg `i := (i, (vi , vi+1)) is not known yet. If the vertex vi has no neighbors
in G(i) that we haven’t encountered up to the leg `i−1, then `i is T3 irregular, and by the defining property
of T3 irregular legs, we can determine the index of its final vertex. If the vertex vi does have such neighbors,
call z the one that appears earlier in the cycle.
• If z ∈ U , then in case it was included in U because of `i−1 (this can be read off from Q1. Note that z could

not have been included because of an earlier leg because z has not appeared earlier than vi ), we have that
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z

w
vi

vj

ℓi

ℓp

ℓj

ℓq

Figure 1: The case z < U .The legs `i , `j(i < j) are T3, while `p, `q are T1.

`i is T1 with vi+1 = z, while in case it was included with a leg `i′ with index i′ ≥ i, we have that `i can’t be T1

(because then vi+1 would be a neighbor of vi appearing earlier than z, contradicting the choice of z), thus `i

is T3 irregular.
• If z < U , we will show that `i = (i, (vi , w)) is T1. Assume on the contrary that it is T3 irregular. Clearly
z , w, and call `p (p < i) the T1 leg that has vertices vi , w and is single up to i − 1. The cycle will visit the
vertex vi at a later point, with a leg `j = (j, (vj, vi)) with j > i and vj , z, vj , vi , in order to create the edge
that connects vi with z (that is, `j+1 = (j + 1, (vi , z)) will be T1), see Figure 1. The leg `j is not T1 because vi

has been visited by an earlier leg, and it is not T4 because we assumed that z < U . It has then to be T3.
Thus, there is a leg `q connecting vertices vi , vj that is T1.
If q < i, then we consider two cases. If vj = w, then `j is T4, because the edge vi , w has been traveled already
by `p, `i (recall that p < i < j), and this would force z ∈ U , a contradiction. If vj , w, then `i would have been
T3 regular as there are at least two T1 legs (i.e., `p, `q) with order less than i with one vertex vi , traveling
different edges, and single up to i − 1, again a contradiction because `i is T1 or T3 irregular.
If q > i, then vj(, z) is a neighbor of vi (that is, the T1 leg `q goes from vi to vj) that appears after leg `i but
earlier than z, which contradicts the definition of z. We conclude that `i is T1.
Thus, having T, Q1, Q2 allows to determine i.
The above imply that the number of bad cycles with given T, t, r is at most

(2kt2(t + 1))|T4 |(2kt2)r ≤ (4k4)r+|T4 |. (9.4)

Then (9.1) and (9.3) give r + |T4| ≤ 4m + 2(k − s), and finally using (9.2), we get the desired bound. □

The next lemma is used in the proof of Theorem 2.10.

Lemma 9.2. Let (AN )N∈N+ be a sequence of matrices, AN of dimension N×N , that satisfies Assumption 2.1 and

Assumption 2.2 with measure µ. Suppose that there are two sequences of matrices (A(1)
N )N∈N+ and (A(2)

N )N∈N+

such that

(a) AN = A(1)
N + A(2)

N ,

(b) For all N ∈ N+ and i, j ∈ [N], at least one of (A(1)
N )i,j, (A(2)

N )i,j is identically zero random variable.

(c) µA(1)
N /
√

N ⇒ µ in probability as N → ∞.

Then (A(1)
N )N∈N+ also satisfies Assumptions 2.1, 2.2 with the measure µ.

Proof. We only need to check the validity of Assumption 2.2 as the validity of Assumption 2.1 is immediate.
Because A(1)

N satisfies Assumption 2.1, there is a decreasing sequence (ηN )N∈N+ of positive reals converging
to 0 so that

lim
N→∞

1
N2

∑
i,j∈[N]

E
[
({A(1)

N }i,j)
21

(
|{A(1)

N }i,j | > ηN N
1
2
)]
= 0. (9.5)
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Set A(1),≤
N to be the matrix whose (i, j) entry is

{A(1)
N }i,j1

(
|{A(1)

N }i,j | ≤ ηN N
1
2
)
− E

[
{A(1)

N }i,j1
(
|{A(1)

N }i,j | ≤ ηN N
1
2
)]

(9.6)

and µN,i,j := E
[
{A(1)

N }i,j1
(
|{A(1)

N }i,j | ≤ ηN N
1
2

)]
.

Claim:
µN−1/2A(1),≤

N
⇒ µ in probability as N → ∞ (9.7)

The Levy distance between µA(1)
N /
√

N and µA(1),≤
N /

√
N is bounded as follows.

L3(µA(1)
N /
√

N , µA(1),≤
N /

√
N ) ≤ 1

N
tr
{( 1
√

N
A(1)

N −
1
√

N
A(1),≤

N

)2}
(9.8)

=
1

N2

∑
i,j∈[N]

{µ2
N,i,j1

(
|{A(1)

N }i,j | ≤ ηN N
1
2
)
+ ({A(1)

N }i,j + µN,i,j)21
(
|{A(1)

N }i,j | > ηN N
1
2
)
} (9.9)

≤ 3
N2

∑
i,j∈[N]

µ2
N,i,j +

2
N2

∑
i,j∈[N]

({A(1)
N }i,j)

21
(
|{A(1)

N }i,j | > ηN N
1
2
)
. (9.10)

Since the entries of A(1)
N have mean 0, we have

µ2
N,i,j =

(
E

[
{A(1)

N }i,j1
(
|{A(1)

N }i,j | > ηN N
1
2
)])2
≤ E

[
({A(1)

N }i,j)
21

(
|{A(1)

N }i,j | > ηN N
1
2
)]

.

Thus, the expectation of the expression in (9.10) is at most

5
N2

∑
i,j∈[N]

E
{
({A(1)

N }i,j)
21

(
|{A(1)

N }i,j | > ηN N
1
2
) }

,

which tends to zero as N → ∞ due to (9.5). This, combined with assumption (c), proves the claim.
Fix k ∈ N+ and set MN (k), M (1),≤

N (k) the asymptotic contributing terms (see (2.4)) of AN and A(1),≤
N respectively.

Notice that
M (1),≤

N (k) ≤ M (1)
N (k) ≤ MN (k). (9.11)

The rightmost inequality is true because the variance of {A(1)
N }i,j is either zero or s(N)

i,j due to assumption (b)
of the lemma. The leftmost inequality is true because if W is a real valued random variable with mean 0
and finite variance and W̃ is a variable with |W̃ | ≤ |W |, then Var(W̃ ) ≤ Var(W ).
Lemma 3.6 of [30] implies that

M (1),≤
N (k)
Nk+1 =

1
Nk+1 E tr{(A(1),≤

N )2k} + o(1) (9.12)

as N → ∞. We will prove that the right hand side converges to
∫

x2kdµ as N → ∞. It will be convenient to
let BN := A(1),≤

N /
√

N and {λi(BN ) : i ∈ [N]} its eigenvalues.
Pick some C > µ∞ and consider the function gC(x) = (|x | ∧ C)2k, which is bounded and continuous. Then,

1
Nk+1 E tr{(A(1),≤

N )2k} = 1
N

N∑
i=1

E{(λi{BN })2k} (9.13)

and the right hand side can be estimated as follows.∣∣∣∣∣∣∣ 1N
N∑

i=1

E{(λi{BN })2k} − 1
N

N∑
i=1

EgC(λi{BN })
∣∣∣∣∣∣∣ ≤ 1

N

N∑
i=1

E{λ2k
i (BN )1|λi (BN )|≥C}

≤ 1
N

N∑
i=1

√
Eλ4k

i (BN )
√
P(|λi(BN )| ≥ C) ≤

√√
N∑

i=1

Eλ4k
i (BN )
N

√
E

∑N
i=1 1|λi (BN )|≥C

N

N→∞→ 0.

(9.14)

To justify the convergence to zero, note that the quantity in the second square root converges to zero by our
choice of C > µ∞ and the in probability weak convergence of the E.S.D. of BN to µ. The quantity in the first
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square root is bounded in N because, due to (9.12), its difference from M (1),≤
N (2k)/N2k+1 is bounded and the

latter is less than MN (2k)/N2k+1 which is bounded in N since it converges to
∫

x4k dµ.
The in probability weak convergence (9.7) implies that

1
N

N∑
i=1

gC(λi{BN })→
∫

x2kdµ in probability, (9.15)

and the boundedness of gC allows to conclude that

lim
N→∞

1
N

N∑
i=1

EgC(λi{BN }) =
∫

x2kdµ. (9.16)

Thus, relations (9.12), (9.13), (9.14),(9.16) show that

lim
N→∞

M (1),≤
N (k)
Nk+1 =

∫
x2kdµ. (9.17)

And this combined with (9.11) concludes the proof. □
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