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Abstract—We study a simple one-dimensional, discrete-time
network model that consists of two nodes moving on a discrete
circle, changing their direction of movement randomly, and
a single packet travelling in the clockwise direction, using
combinations of transmissions between the two nodes (when they
are co-located) and physical transports on their buffers. In this
setting, we provide exact, explicit expressions for the long-term
averages of the packet speed and the wireless transmission cost.
Our work is a first step towards providing simple and exact
results for more realistic wireless delay-tolerant network models.

Index Terms—Delay, mobile network, mobility, one-
dimensional network, wireless delay-tolerant network.

I. INTRODUCTION

Numerous wireless mobile delay-tolerant network (DTN)
models have recently been proposed, where packets travel
to their destinations through combinations of both wireless
transmissions and physical transports on the buffers of nodes,
resulting in packet delivery delays that are much larger
than typically expected. Examples include satellite, vehicular,
pocket-switched, deep-space, and even sensor networks [1].
In some cases, physical transports (and the induced delay)
are unavoidable; in other cases, they are tolerated in order to
improve other performance figures, such as energy and spectral
efficiency. Therefore, understanding the fundamental tradeoffs
involving delay in such networks is of great current interest.

A variety of approaches have been taken towards this goal.
In [2], cost/speed tradeoffs are studied for an infinite number
of nodes moving in R2 under a random way-point model;
the authors use tools from stochastic geometry, resorting
to approximations in order to make the analysis tractable.
In [3], a related throughput/delay tradeoff is examined, in
the well-known Gupta/Kumar setting: Asymptotic results are
established as the number of nodes increases, and the relevant
quantities are computed up to a multiplicative constant. In con-
trast, in [4] the authors study cost/delay tradeoffs in networks
whose topology evolution is completely known in advance,
using tools from the theory of dynamic networks and flows.

Due to the emergence of vehicular networks, where nodes
are constrained to move on roads, numerous works have
focused on one-dimensional networks. Notably, [5] considers
such a bidirectional model with two lanes of node traffic
moving with a fixed common speed in opposite directions.
The packet propagation speed undergoes a phase transition as
the density of nodes increases: For low densities it matches

the node speed, whereas for densities above a threshold it
increases quasi-exponentially. In [6] the same authors consider
a multi-lane setting with time-varying radio ranges. In [7] a
multi-lane setting is also adopted and, in addition, node speeds
change randomly, according to a lane-specific distribution;
here, an accurate estimate for the packet speed is provided.
Connectivity problems in a similar setting are studied in [8].

In this work, we study a simple discrete-time network
consisting of two nodes and a single packet. The nodes move
randomly on a discrete circle of N locations, changing their
direction of travel with probability ε in each time slot. The
packet travels in the clockwise direction using a combination
of physical transports (on the buffers of the two nodes) and
wireless transmissions (which take place only when the two
nodes are co-located, the current carrier of the packet is trav-
elling in the counter-clockwise direction, and the other node
is travelling in the clockwise direction). In this setting, we
provide exact, explicit expressions for the long-term averages
of (i) the packet speed (i.e., the rate of progress in the
clockwise direction), and (ii) the wireless transmission cost
(i.e., the wireless transmissions per time slot).

Although the model considered here is certainly too simple
as a description of realistic applications, we expect that the
resulting analysis could provide a first step towards identifying
the appropriate technical tools and ideas that may facilitate the
analysis of more complex scenarios arising in practice. Finally
we remark that, in contrast with the earlier works mentioned
above, our results are exact, and given in terms of simple,
explicit expressions in terms of the problem parameters; fur-
thermore, these results are not only on the packet speed, but
also on the wireless transmission cost.

II. MODEL

Let S = {0, 1, . . . , N −1} = Z/NZ denote the discrete N -
circle, for a fixed odd N ≥ 3 (N is assumed to be odd in order
to avoid uninteresting technicalities stemming from the fact
that the resulting chain Φ below is periodic when N is even).
We place 2 independent random walkers Xt = (Xt(1), Xt(2))
on S, and with each walker i = 1, 2 we associate a random
direction Dt(i) at time t, where Dt(i) is either = +1
(clockwise motion) or −1 (counter-clockwise motion). The
initial positions X0 and directions D0 = (D0(1), D0(2)) are
arbitrary. The Markov chain {(Xt, Dt) ; t ≥ 0} evolves on
the state space S2 × {−1,+1}2 as follows.



Let {Zt = (Zt(1), Z2(2))} be a sequence of independent
Bernoulli random variables with parameter ε ∈ (0, 1), and
{Ut = (Ut(1), U2(2))} be independent ±1 uniform random
variables. Given the current state (Xt, Dt), each walker i takes
a step in the direction given by Dt(i),

Xt+1(i) = Xt(i) +Dt(i) (mod N),

for t ≥ 0, i = 1, 2 and then decides to either continue moving
in the same direction with probability (1− ε), or to choose a
new, random direction, with probability ε:

Dt+1(i) = (1− Zt(i))Dt(i) + Zt(i)Ut(i),

for all t ≥ 0, i = 1, 2.
A single packet is travelling on S. To track its movement,

we define an index process {It} evolving on {1, 2}, with
I0 chosen arbitrarily and It trying to track walkers that
move clockwise: Given (Xt, Dt, It = i), let (Xt+1, Dt+1)
be defined as above. If Dt+1(i) = −1 and the other walker i′

is in the same location at time t, but its direction is +1, then
It+1 = i′, i.e., a transmission takes place. In all other cases,
It+1 = It = i.

It is easy to see from the above construction that Φ =
{Φ(t) = (Xt, Dt, It) ; t ≥ 0} is an irreducible and aperiodic
chain on the state space Σ consisting of all configurations of
the form,

(x(1), x(2), d(1), d(2), i) ∈ S2 × {+1,−1}2 × {1, 2},

except those where d(i) = −1, x(1) = x(2) and d(i′) =
+1. Moreover, the unique invariant distribution of the chain
{(Xt, Dt)} is uniform: The positions Xt(i) are independent of
each other and uniformly distributed on S, and the directions
Dt(i) are independent of the positions Xt and each D0(i) =
±1 with probability 1/2, independently of the others.

The main goal of this work is to answer the following
questions: (i) What is the limiting distribution of the direction
Dt(It) of the message at time t? (ii) What is the long-term
average speed of the packet? (iii) What is the long-term
average number of transmissions per unit time?

III. RESULTS

Let Pπ and Pφ denote the distribution of the Markov chain
Φ when the initial state is distributed according to π or when
it is equal to a state φ ∈ Σ, respectively.

Theorem 1 (Packet speed). For any initial state, the long-
term average packet speed is

s := lim
n→∞

1

n

n−1∑
t=0

Dt(It) = Eπ[D1(I1)]

=
2− ε

2(2 + ε(N − 2))
, a.s.,

where π denotes the unique stationary distribution of the chain
Φ = {Φ(t) = (Xt, Dt, It) ; t ≥ 0}.

Theorem 1 answers Question (ii) of Section II. The answer
to Question (i) is a simple consequence of Theorem 1:

Corollary 2 (Packet direction). For any initial state Φ(0) =
φ ∈ Σ, the steady state direction of the packet is:

d := Pπ(D1(I1) = +1) = lim
t→∞

Pφ(Dt(It) = +1)

=
s+ 1

2
=

6 + ε(2N − 5)

4(2 + ε(N − 2))
.

We note that the speed s = s(N, ε) is decreasing in both N
and ε; see Fig. 1. In the boundary case ε = 0, the speed s(N, ε)
is either +1 or −1, depending on the initial directions of the
two walkers. Therefore, s(N, ε) is discontinuous at ε = 0,
since s(N, ε) ↑ 1/2 as ε ↓ 0, for any N .
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Fig. 1. Plots of the asymptotic speed s = s(N, ε) and cost c = c(N, ε) of
the packet, as a function of ε, for N = 11, 21, 51, 111 and 1001.

Also we observe that, for a large circle, i.e., N � 1, and a
small rate of direction updates ε ≈ 0, we have the following
interesting scaling limit: If ε = γ/N for some γ > 0, then
the speed s(N, ε) → (2 + γ)−1 as N → ∞. This suggests
the following question: Is there a space-time scaling of this
family of chains that converges to the obvious continuous-
time/continuous space version of this problem?

Our second main result determines the long-term cost of
the packet transmissions, i.e., the steady-state average number
of transmissions c = c(N, ε) per unit time. This answers the
third question stated in Section II.



Theorem 3 (Transmission cost). For any initial state, the
long-term average cost of packet transmissions is:

c := lim
n→∞

1

n

n−1∑
t=0

I{It+1 6=It} = Pπ(I2 6= I1)

=
ε(2− ε)

4[2 + ε(N − 2)]
, a.s.

Note that the cost c = c(N, ε) is decreasing in N , and for
each fixed N it is a concave function of ε; see Fig. 1. Also,
unlike the speed s = s(N, ε), c = c(N, ε) is continuous and
equal to zero at ε = 0. It is also interesting to observe the
following simple, scale-free relationship between the speed
and the cost: c(N, ε) = (ε/2)s(N, ε), for all N and ε.
Therefore, on the average, the packet travels a (clockwise)
distance of 2/ε units between successive jumps, regardless of
the value of N .

In terms of the speed/cost tradeoff, note that for each N
there is an ε∗ below which the speed increases and the cost
decreases as ε ↓ 0. Furthermore, in the limit N →∞ with ε =
γ/N discussed earlier, although the speed c(N, ε) converges
to a finite, nonzero constant, the cost c(N, ε) decays to zero
as O(1/N). This suggests that, if such a protocol were to be
implemented in practice, it is the relatively smaller values of
ε that would be most effective in the long run.

IV. PROOF OF THEOREM 1

Consider the reduced chain,

Ψ = {Ψ(t) = (Yt = Xt(1)−Xt(2), Dt(1), Dt(2), It); t ≥ 0}

where the differences Yt = Xt(1) −Xt(2) are taken modulo
N . Clearly Ψ is irreducible and aperiodic on the corresponding
reduced state space Σψ consisting of all configurations of the
form,

(y, d, d′, i) ∈ S × {+1,−1}2 × {1, 2},

except (0,+1,−1, 2) and (0,−1,+1, 1). Let πψ denote the
unique invariant measure of Ψ. The limit in the theorem exists
a.s. by ergodicity; in order to compute its actual value, we
define the regeneration time

T = inf{t ≥ 1 ; Yt = 0 and Dt(1) 6= Dt(2)}, (1)

and we consider two special states of Ψ: ψ1 = (0,+1,−1, 1)
and ψ2 = (0,−1,+1, 2). Let ν denote the probability measure
on Σψ given by,

ν =
1

2
δψ1

+
1

2
δψ2

, (2)

where, as usual, δx denotes the unit mass at x. Then T is
indeed a regeneration time for ν in the sense that, with Ψ(0) ∼
ν, we also have Ψ(T ) ∼ ν. We will use the following general
version of Kac’s formula.

Lemma 4. For any function f : Σψ → R:

Eν

[
T−1∑
t=0

f(Ψ(t))

]
= Eν(T )πψ(f).

To apply Lemma 4, we first compute Eν(T ):

Lemma 5. Eν(T ) = 2N.

PROOF. Consider the (further restricted) chain Υ = {Υ(t) =
(Yt, D1(t), D2(t)) ; t ≥ 0} on the state space S×{+1,−1}2,
and note that its unique invariant measure ρ is uniform. Write,
D = {(0,+1,−1), (0,−1,+1)}, let ρD denote the measure ρ
conditioned on D, and let,

T+
D = inf{t ≥ 1 ; Υ(t) ∈ D},

so that, in fact, T+
D = T . Then, by Kac’s formula [9], we have,

Eν(T ) = EρD (T+
D ) =

1

ρ(D)
=

4N

|D|
= 2N,

as claimed. �

The central step in the proof of the theorem is an application
of Lemma 4 with f(Ψ(t)) = Dt(It), which, combined with
Lemma 5 gives us that s = π(D1(I1)) = πψ(D1(I1)) equals

s =
1

2N
Eν

[
T−1∑
t=0

Dt(It)

]
=

1

4N
Eψ1

[
T−1∑
t=0

Dt(1)

]

+
1

4N
Eψ2

[
T−1∑
t=0

Dt(2)

]
=

1

2N
Eψ1

[
T−1∑
t=0

Dt(1)

]
,

where the sums above (and in what follows) correspond to
addition over Z (as opposed to modulo N addition over S).
Therefore, writing X∗t+1(i) = X∗t (i) + Dt(i), for i = 1, 2,
t ≥ 1, we have,

s =
1

2N
Eψ1(X∗T (1))

=
1

2N
Eψ1

(
X∗T (1)−X∗T (2)

2

)
+

1

2N
Eψ1

(
X∗T (1) +X∗T (2)

2

)
=

1

2N
Eψ1

(
X∗T (1)−X∗T (2)

2

)
,

where we noted that Eψ1
(X∗T (1) + X∗T (2)) is zero by the

symmetry of the distribution of the independent increments
{Dt}, which implies that the law (conditional on ψ1) of X∗T (1)
is the same as that of −X∗T (2).

Now write

A = {(0,+1,+1), (0,+1,−1), (0,−1,+1), (0,−1,−1)},

and let T+
A denote the first time when the two walkers meet,

T+
A = inf{t ≥ 1 ; Υ(t) ∈ A} = inf{t ≥ 1 ; Yt = 0},

so that T+
A can be expressed in terms of either Ψ or Υ.

We observe that, at time T+
A , either the two walkers decide

to go in opposite directions, in which case T+
A = T , or

they continue moving together until they choose opposite
directions, in which case the difference of their locations
X∗t (i) stays constant; therefore,

s =
1

2N
Eψ1

(
X∗
T+
A

(1)−X∗
T+
A

(2)

2

)
.



Since the last expectation above is conditioned on the two
walkers starting from the same position, in opposite directions,
and with the first one moving in the positive (clockwise)
direction, there are exactly two possible scenarios for their first
meeting time T+

A : In the first scenario, at time t = T+
A − 1

walker 1 is two steps “ahead” in the clockwise direction of
walker 2 (as they are, e.g., at time t = 1). In this case, we will
necessarily have X∗

T+
A

(1) − X∗
T+
A

(2) = 0. We call this event
C. In the second scenario, the relative positions of the two
walkers at time t = T+

A −1 will be reversed, which necessarily
means that the first walker travelled a whole circle “around”
the second one before they met, so that (since N is odd) on
Cc, we must have X∗

T+
A

(1)−X∗
T+
A

(2) = 2N . Therefore,

s =
1

2N

[
0

2
· Pψ1(C) +

2N

2
· Pψ1(Cc)

]
=

1

2
Pψ1(Cc). (3)

Finally we compute the probability of the event C:

Lemma 6. Pψ1
(Cc) = 2−ε

2+ε(N−2) .

PROOF. Here we consider the chain Υ∗ = {Υ∗(t) =
(Y ∗t , D1(t), D2(t)) ; t ≥ 0} on Σ∗ = Z × {+1,−1}2,
where Y ∗t = X∗t (1) − X∗t (2). Note that, for the state u1 :=
(0,+1,−1), the initial condition Υ∗(0) = u1 corresponds to
Ψ(0) = ψ1.

We will only need to examine the evolution of Υ∗ until time
t = T+

A , which, since N is odd, can equivalently be expressed
as,

T+
A = inf{t ≥ 1 ; Y ∗t = 0 (mod 2N)},

and the same argument as in the last paragraph before the
statement of the lemma shows that, given Υ∗(0) = u1, the
only two possible values of Y ∗

T+
A

are 0 and 2N , on C and on
Cc, respectively. Therefore, letting,

TR = min{t ≥ 1 ; Y ∗t = 0},
and TL = min{t ≥ 1 ; Y ∗t = 2N},

we have that T+
A = min{TL, TR} and that Pψ1

(Cc) =
Pψ1

(TL < TR); cf. Fig. 2.
Next, for the computation of Pψ1

(TL < TR); it will suffice
to consider the trace of Υ∗ on the set,

Σt := {0, 2, 4, . . . , 2N} × {(+1,−1), (−1,+1)} ⊂ Σ∗;

cf. [10]. The evolution of this Markov chain is fairly simple
and its transition probabilities are easy to compute; e.g., the
probability of the transition from (0,+1,−1) to (2,+1,−1)
is equal to,(

1− ε

2

)2

+
( ε

2

)(
1− ε

2

)1

2
+
( ε

2

)(
1− ε

2

)1

2
= 1− ε

2
.

The first term above corresponds to the case when the two
walkers both maintain their original directions after their first
step; the second term corresponds to the case when only the
first walker changes direction, after which they keep moving
at a distance two apart, until one of them changes direction
again and they either reach the state (2,+1,−1) or the state
(2,−1,+1), each having probability 1/2 by symmetry; and

the third term corresponds to the case when only the second
walker changes direction after their first step, and its value is
the same as the second term again by symmetry. The remaining
transition probabilities can be similarly computed; see Fig. 2.

Finally, for every state

u ∈ {0, 2, 4, . . . , 2N} × {(+1,−1), (−1,+1)}
we define h(u) = Pu(TL < TR), so that h(u1) = Pψ1

(Cc).
Writing L and R for the states (2N − 2,+1,−1) and
(2,−1,+1), respectively, we have h(L) = 1, h(R) = 0, and
in fact it is easy to see that the one-step conditional expectation
of h given any state u 6= (2N,+1,−1) or (0,−1,+1), is equal
h(u). This relationship can be expressed as a simple recursion:
Letting f(k) = h(2k,+1,−1) and g(k) = h(2k+2,−1,+1):

f(k) = (1− ε/2)f(k + 1) + (ε/2)g(k), 0 ≤ k ≤ N − 1

g(k + 1) = (1− ε/2)g(k) + (ε/2)f(k + 1), 0 ≤ k ≤ N − 1

g(0) = 0 and f(N − 1) = 1.

Adding the first two equations above shows that f(k)−g(k)
is a constant, say A, independent of k, and substituting this
in the recursion for g gives g(k) = Aεk/(2 − ε). Similarly
solving for f we obtain, f(k) = A+Aεk/(2−ε), and from the
boundary values we can obtain that A = (2−ε)/(2+ε(N−2)).
Therefore, as claimed,
Pψ1(Cc) = h(u1) = f(0) = A = (2− ε)/(2 + ε(N − 2)). �
Combining (3) with Lemma 6 proves of Theorem 1.

V. PROOF OF THEOREM 3
In the interest of space, some details will be omitted below.

Recall the ergodic chain Ψ defined earlier. Write Σψ for
its state space, πψ for its unique invariant measure, and
let P (ψ,ψ′) = Pr(Ψ(t + 1) = ψ′|Ψ(t) = ψ) denote its
transition kernel. Consider the bivariate chain Ψ̃ = {Ψ̃(t) =
(Ψ(t),Ψ(t+1) ; t ≥ 0}. Then Ψ̃ is also ergodic, with unique
invariant measure,

π̃(ψ,ψ′) = πψ(ψ)P (ψ,ψ′).

Therefore, the limit in the statement exists a.s. and it equals,

c := Pπ(I2 6= I1) = π̃
(
I{I2 6=I1}

)
= π̃(B),

where B consists of the following 8 states,(
(0, 1, 1, 1), (0,−1, 1, 2)

)
,
(

(0,−1,−1, 1), (0,−1, 1, 2)
)
,(

(0, 1, 1, 2), (0, 1,−1, 1)
)
,
(

(0,−1,−1, 2), (0, 1,−1, 1)
)
,(

(2,−1, 1, 1), (0,−1, 1, 2)
)
,
(

(2,−1, 1, 2), (0, 1,−1, 1)
)
,(

(−2, 1,−1, 1), (0,−1, 1, 2)
)
,
(

(−2, 1,−1, 2), (0, 1,−1, 1)
)
.

and where, with a slight abuse of notation, the negative values
of the Yt variables above are again interpreted modulo N .

Now, observe that π̃(B) can easily be shown to be,
1

2N

ε

2

(
1− ε

2

)
+
(
πψ(−2,+1,−1, 1)− πψ(2,−1,+1, 1) +

1

4N

)( ε
2

)2

+
(
πψ(2,−1,+1, 1)− πψ(−2,+1,−1, 1) +

1

4N

)(
1− ε

2

)2



L

R

Fig. 2. Evolution of the trace of the chain Υ∗ on {0, 2, 4, . . . , 2N} × {(+1,−1), (−1,+1)}.

where we used the fact that the invariant distribution of
(Xt(1), Xt(2), Dt(1), Dt(2)) is uniform, which implies that
πψ(y, d, d′, 1) + πψ(y, d, d′, 2) = 1/(4N), for any y ∈ S and
d, d′ ∈ {+1,−1}. Simplifying, π̃(B) equals,

1

4N
+ (1− ε)[πψ(2,−1,+1, 1)− πψ(−2,+1,−1, 1)], (4)

and, by Lemma 4,

Eν(T )πψ(ψ) = Eν

[
T−1∑
t=0

I{Ψ(t)=ψ}

]

=
1

2
Eψ1

[
T−1∑
t=0

I{Ψ(t)=ψ}

]
=

1

2
Eu1

[
T−1∑
t=0

I{Υ∗(t)=(y,d,d′)}

]
,

so that, substituting this twice in (4), we have,

c = Eu1

[
T−1∑
t=0

(
I{Υ∗(t)=(2,−1,+1)} − I{Υ∗(t)=(2N−2,+1,−1)}

)]
where we also used Lemma 5. By the definition of T , the
value of the sum inside the expectation above is either 0− 1
or 1− 0, and the corresponding probabilities can be found by
looking at the trace of Υ∗ on Σt; indeed referring to Fig. 2,
and in the notation of the proof of Lemma 6, the case 1 − 0
has probability 1−Pu1

(TL < TR), whereas the case 0−1 has
probability Pu1

(TL < TR). So,

c = π̃(B) =
1

4N
+

(1− ε)
4N

[1− 2Pu1
(TL < TR)],

and now substituting the result of Lemma 6,

Pu1
(TL < TR) =

2− ε
2 + ε(N − 2)

,

and simplifying yields the claimed result.

VI. CONCLUSIONS

The performance analysis of wireless delay-tolerant net-
works with nodes moving in a random fashion is typically
quite difficult. In part for this reason, past works have fo-
cused on using relatively accurate network models together
with approximations and/or asymptotic analysis. In this work,
instead, we consider a very simple network model (perhaps the
simplest non-trivial one) but arrive at exact, simple expressions
for the quantities of interest. The intuition thus gained suggests
the following scenarios for future work that could also lead

to exact, closed-form results: The same setting, but with more
than two nodes; for continuous one-dimensional topologies
as those considered in [5], [6], [7]; and in two-dimensional
settings, e.g., the discrete or continuous torus.
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