Exact Simulation of the Stationary Distribution of M/G/c and Other Queues

Karl Sigman Columbia University Department of Industrial Engineering and Operations Research New York City, USA

Abstract

We present two exact simulation algorithms for the stationary distribution of customer delay for first-in-first-out (FIFO) multi-server queues in which the arrival process is Poisson at rate λ , and the service times $\{S_n\}$ are general iid (with finite mean $0 < E(S) = 1/\mu < \infty$); the M/G/c model. We assume that the service-time distribution $G(x) = P(S \le x), x \ge 0$, and its corresponding equilibrium distribution $G_e(x) = \mu \int_0^x P(S > y) dy$ are such that samples of them can be simulated.

Our first algorithm (from [3]) is in continuous time and is only for the special case when $\rho = \lambda/\mu < 1$ (super stable case). This algorithm involves the general method of dominated coupling from the past (DCFTP) and we use the single-server queue operating under the *processor sharing (PS)* discipline as an upper bound. The algorithm is shown to have finite expected termination time if and only if service times have finite second moment.

Our second algorithm (from [2]) is for the general case of $\rho < c$. Here we use discretetime processes and basic regenerative simulation, in which as regeneration points, we use return visits to state 0 of a corresponding random assignment (RA) model which serves as a sample-path upper bound.

Both algorithms yield, as output, a stationary copy of the entire Kiefer-Wolfowitz workload vector. We also discuss recent results on extending the first algorithm to more complex models such as tandem queues, and even general route queueing networks as in [1].

References

- K. Sigman (2011). Using the M/G/1 Queue Under Processor Sharing for Exact Simulation of Queues. (Submitted.)
- [2] K. Sigman (2011). Exact simulation of the stationary distribution of the FIFO M/G/c queue: The general case of $\rho < c$. Queueing Systems. **70**, (To appear.)
- [3] K. Sigman (2011). Exact simulation of the stationary distribution of the FIFO M/G/c queue. Journal of Applied Probability. Special Volume 48A: New Frontiers in Applied Probability, 209-216.