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1 Classical Probability Theory

The idea of this chapter is to put classical probability theory in a rigorous and
abstract setting in such a way that later generalisations will be natural. We will
assume that the reader has a fair knowledge of measure theory, as presented,
for instance, in the first few chapters of [Rud87].

1.1 Probability Spaces

Definition 1.1 Let (Ω, µ) be a measure space. Then the measure µ is called
a probability measure if µ(Ω) = 1. A measure space where the measure is a
probability measure is termed a probability space.

We think of a measurable set E ⊆ Ω as a possible event and the measure
µ(E) ∈ [0, 1] as the probability of that event occurring.

Given two events, E1 and E2, we think of the union E1 ∪ E2 as either the
event E1 or the event E2 occurring. The intersection E1∩E1 should be thought
of as the event E1 and the event E2 both occurring. Viewed in this way, the
axioms of measure theory translate into intuitive axioms for a probability space.

1.2 Random Variables

Definition 1.2 Let ω be a probability space. Then a complex random variable
if a measurable function X: Ω → C. A real random variable is a measurable
function X: Ω → R.

A random variable can be thought of as a function assigning a value de-
pending on which events occur. Thus, given a measurable subset S ⊂ C, we can
define the probability

P [X ∈ S] = µ(X−1[S])

for a complex random variable X. The following result is easy to see.
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Proposition 1.3 Let X be a complex random variable. Then we can define a
probability measure on the set C by writing

τX(S) = P (X ∈ S)

for each measurable set S ⊆ C. 2

We can rewrite the above formula

P (X ∈ S) =
∫

S

dτX

The corresponding result for real random variables is also true.

Definition 1.4 The above measure τX is called the probability law (or just law)
of a random variable X.

One of the fundamental problems in probability theory is to compute the
probability laws of random variables.

Definition 1.5 Let X be a random variable on a probability space (X,µ). The
expectation of X is the integral

E(X) =
∫

X

Xdµ

The k-th moment of X is the expectation

mk(X) = E(Xk)

The expectation of a random variable can be thought of as its average value.
The following two results follows immediately from properties of the integral.

Proposition 1.6 Let 1 denote the random variable with constant value 1. Then
E(1) = 1. 2

Proposition 1.7 Let X and Y be random variables, and let α and β be scalars.
Then E(αX + βY ) = αE(X) + βE(Y ). 2

The variance of a random variable X

σ(X)2 = E((X −m1)2) = m2(X)2 −m1(X)2

can be thought of as a measure of how much and how frequently X differs from
its expectation.

The following result follows immediately from our various definitions.

Proposition 1.8 Let X be a complex random variable, with law τX . Then we
have moments

mk(X) =
∫

C
tkdτX(t)

2

The moments of a random variable determine its law in the sense of the
following result.
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Theorem 1.9 Two random variables with the same moments have the same
probability laws. 2

We will not prove this theorem now since we will look at a similar but more
general result later on.

1.3 Independence

Definition 1.10 Let (Ω, µ) be a probability space. Then we call two events
E1, E2 ⊆ Ω independent if µ(E1 ∩ E2) = µ(E1)µ(E2).

When constructing probability spaces, indpendence of two events means the
probability of one event occurring is not affected by whether or not the other
event takes place. We can make a similar definition for random variables.

Proposition 1.11 Let X1, X2, . . . , Xn be complex random variables on a prob-
ability space Ω. Then we can define a probability measure on the set Cn by
writing

τX1,...,Xn
(S) = µ(X−1

1 [S] ∩ · · · ∩X−1
n [S])

for each measurable set S ⊆ Cn. 2

The corresponding result for real random variables is of course also true.

Definition 1.12 The above measure τX is called the joint law of the random
variable X1, . . . , Xn. The random variables X1, . . . , Xn are termed independent
if the laws satisfy the equation

τX1,...,Xn = τX1τX2 · · · τXn

The joint laws of independent random variables are thus determined from
their individual laws, which makes them easy to calculate with. We will see
some examples of such calculations later on.

2 Non-Commutative Probability Spaces

2.1 Algebras of Random Variables

The idea behind non-commutative geometry is that we can replace a geometric
object by an algebra of functions on that object. This commutative algebra will
have certain properties defined by the geometry. We then generalise by looking
at non-commutative algebras with the same properties. The book [Con94] looks
at this philosophy along with numerous constructions and examples.

This approach to non-commutative geometry also works for probability the-
ory. Let Ω be a probability space. Then we can form an algebra, A(Ω), consist-
ing of all complex random variables on Ω. The expectation of a random variable
defines a linear functional E:A(Ω) → C such that E(1) = 1.

The expectation defines the moments of a random variable, and so by the-
orem 1.9 enables the probability law of a variable, and so all information con-
cerning its behaviour, to be recovered.
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Definition 2.1 A non-commutative probability space is a pair (A,φ), where A
is a unital complex algebra, and φ is a linear functional such that φ(1) = 1.
Elements of the algebra A are called random variables.

The functional φ is termed a trace if φ(XY ) = φ(Y X) for all random vari-
ables X and Y .

We usually have slightly more structure to work with, as the following ex-
amples show.

Example 2.2 Let Ω be a topological space equipped with a probability mea-
sure. Then we can form C(Ω), the commutative C∗-algebra of all continuous
random variables. The convolution is defined by writing

X?(x) = X(x) X ∈ C(Ω), x ∈ Ω

The expectation is a state, that is to say a continuous linear functional
E:C(Ω) → C such that E(1) = 1 and E(X?X) ≥ 0 for all random variables
X ∈ C(Ω).

The C∗-algebra C(Ω) acts on the Hilbert space L2(Ω) by left-multiplication,
and so we have a faithful representation C(Ω) → BL2(Ω).

Example 2.3 The weak topology on the space of operators BL2(Ω) is defined by
saying that a sequence of operators (Tn) has limit T if and only if the sequence
(〈Xnf, g〉) has limit 〈Tf, g〉 for all functions f, g ∈ L2(Ω).

The C∗-algebra C(Ω) is not closed in the space BL2(Ω) under the weak topol-
ogy; the closure is the von Neumann algebra L∞(Ω) consisting of all bounded
measurable functions on Ω.

The expectation E:L∞(Ω) → C is continuous with respect to the weak
topology.

Definition 2.4 Let (A,φ) be a non-commutative probability space. We call
the pair (A,φ) a C∗-probability space if the algebra A is a C∗-algebra and the
functional φ is a state.

We call the pair (A,φ) a W ∗-probability space if the algebra A is a von
Neumann algebra and the functional φ is a weakly continuous state.

Von Neumann’s double commutant theorem (see for example [Dix81]) is a
useful tool when looking at W ?-probability spaces. Given an algebra A ⊆ B(H),
we define the commutant

A′ = {T ∈ B(H) | TX = XT for all X ∈ A}

The double commutant theorem then tells us that a ?-subalgebra A ⊆ B(H)
is weakly closed (and so a von Neumann algebra) if and only if A = A′′.

Example 2.5 Let Ω be a proability space, and let {Xij | 1 ≤ i, j ≤ n} be
random variables. Then we can form a random matrix X = (Xij): Ω →Mn(C).

The algebra of all continuous random matrices defines a C∗-algebra,
Mn(C(Ω)). Multiplication is of course matrix multiplication. The involution is
defined by the formula

(Xij)? = (Xji)
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that is to say by taking the transpose of the complex conjugate. The functional
φ is a trace defined by the formula

φ(X) = E(
1
n
tr(X)) = E(

1
n

(X11 +X22 + · · ·+Xnn))

We thus obtain the C∗-probability space of continuous random matrices. We
can similarly define the W ∗-probability space of all bounded random matrices.

Example 2.6 LetG be a discrete group. Let CG be the complex group algebra,
made up of formal sums

n∑
i=1

αigi αi ∈ C, gi ∈ G

with multiplication law(
m∑

i=1

αigi

) n∑
j=1

βjhj

 =
m,n∑
i,j=1

αiβjgi ◦ hj

and trace

φ

(
m∑

i=1

αigi

)
=
∑
gi=e

αi

Then the pair (CG,φ) is a non-commutative probability space. The algebra
CG can be equipped with an involution(

n∑
i=1

αigi

)?

=
n∑

i=1

αig
−1
i

The left-regular representation of the algebra CG, λ: CG→ B(l2G), is defined
by the formula

(λ(g)ξ)(h) = ξ(g−1h) ξ ∈ l2G, g, h ∈ G

and extended by linearity.
The left-regular representation can be used to define a C∗-norm on the al-

gebra CG by writing ‖x‖ = ‖λ(x)‖. The trace on the algebra CG is then given
by the formula

φ(x) = 〈λ(x)e, e〉

We can complete the algebra CG to a C∗-algebra C∗rG, called the reduced
C∗-algebra of G. We have a trace, φ, defined on the reduced C∗-algebra by the
above formula, and so a C∗-probability space (C∗rG,φ).

Completing this space with respect to the weak topology, we obtain the
group von Neumann algebra NG, and a W ∗-probability space (NG,φ). By
the double commutant theorem, the von Neumann algebra NG is equal to the
double commutant λ[G]′′ ⊆ B(l2G).
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2.2 Probability Laws

Definition 2.7 Let (A,φ) be a non-commutative proability space, and let X ∈
A. Then the k-th moment of X is the number

mk(X) = φ(Xn)

The probability law of X is the linear functional τX : C[X] → C defined by
the formula

τX(P ) = φ(P (X))

for each polynomial P ∈ C[X].

By linearity, the probability law of a random variable X is determined by
its moments.

Theorem 2.8 Let (A,φ) be a C∗-probability space, and let X ∈ A be self-
adjoint. Then there is a unique measure, µX , on the real line such that∫

R
P (t)dµX(t) = φ(P (X))

for all polynomials P ∈ C[X].

Proof: We define the probability law τX(P ) = φ(P (X)) for each polynomial
P . By the Stone-Weierstrass theorem (see for example [Rud91]), we can extend
the functional τX to a unique linear functional

τX :C(R) → C

which is continuous under the suprememum norm whenever we restrict to a
compact subset of R. By the Riesz representation theorem (see for example
[Rud87]), we can define a unique measure µX such that∫

R
f dµX = τX(f)

for all f ∈ C(R), and we are done. 2

The real case of theorem 1.9 follows as an immediate corollary. The complex
case is then easily deduced.

Corollary 2.9 Two classical random variables with the same moments have
the same probability laws. 2

Now, let us equip the space of complex continuous functions C(C) with the
topology defined by saying that a sequence of functions converges if it converges
uniformly on compact subsets. The space of polynomials C[X] is topologised as
a subspace of the space C(C).

Definition 2.10 Let (Xn) be a sequence of (non-commutative) random vari-
ables, with sequence of probability laws (τn). Then we say that the sequence
(Xn) converges in distribution to a probability law τ : C[X] → C if the sequence
τn(P ) converges to the functional τ(P ) for each polynomial P ∈ C[X].
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Less formally, we say that the sequence (Xn) converges in distribution to a
random variable X if it converges in distribution to the probability law of X.

Note that it is not necessary for the each variable Xn to lie in the same
non-commutative probability space for the above definition to make sense.

The following result follows by linearity.

Proposition 2.11 Let (Xn) be a sequence of random variables, with sequences
of moments (m(n)

k ). Let τ : C[X] → C be a probability law, with moments mk :=
τ(Xk). Then the sequence (Xn) converges in distribution to the probability law
τ if and only if each sequence of moments (m(n)

k ) converges to the moment mk.
2

Proposition 2.12 Let (A,φ) be a C∗-probability space. Let (Xn) be a sequence
in A, with norm limit X. Then the sequence (Xn) converges in distribution to
the random variable X.

Proof: Let P be a polynomial. Then the sequence P (Xn) converges to the
point P (X). The result now follows by the definition of a probability law and
norm-continuity of the functional φ. 2

The following result is similar.

Proposition 2.13 Let (A,φ) be a W ∗-probability space. Let (Xn) be a sequence
in A, with weak limit X. Then the sequence (Xn) converges in distribution to
the random variable X. 2

2.3 Independence

Definition 2.14 Let (A,φ) be a non-commutative probability space. Then a
family of subalgebras {Aλ | λ ∈ Λ} is called independent if:

• [Aλ1 , Aλ2 ] = 0 if λ1 6= λ2.

• φ(a1a2 · · · an) = φ(a1)φ(a2) · · ·φ(an) whenever ak ∈ Aλk
and λi 6= λj

when i 6= j.

The following two results follow immediately from the definition of indepen-
dence.

Proposition 2.15 Let (A,φ) be a non-commutative probability space, where
the algebra A is generated by independeny subalgebras A1 and A2. Then the
functional φ is determined by the restrictions φ|A1 and φ|A2 . 2

Proposition 2.16 Let (A,φ) be a non-commutative probability space, and let
A1 and A2 be independent subalgebras. Then

φ(a1aa2) = φ(a)φ(a1a2)

whenever a1, a2 ∈ A1 and a ∈ A2. 2

We call a set of random variables {Xλ | λ ∈ Λ} independent if the algebras
generated by them form an independent family, that is to say:
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• [Xλ1 , Xλ2 ] = 0 if λ1 6= λ2.

• φ(Xλ1Xλ2 · · ·Xλn
) = φ(Xλ1)φ(Xλ2) · · ·φ(Xλn

) whenever λi 6= λj when
i 6= j.

Similarly, we call a collection of sets independent if the algebras generated
by them form an independent family.

Definition 2.17 Let (A,φ) be a non-commutative probability space, and let
{Xλ |λ ∈ Λ} be a family of random variables

Then the mixed moments of the family are the various numbers

φ(Xλ1 · · ·Xλn) λi ∈ Λ

Let C〈Yλ〉 be the algebra of non-commutative polynomials in variables in-
dexed by the set Λ. Then we define the joint law of the family {Xλ} by the
formula

τXλ
(P ) = φ(P (Xλ))

whenever P ∈ C〈Yλ〉 is a polynomial. The above notation implies we write the
specific element Xλ in place of the abstract variable Yλ in the polynomial P .

By linearity, the joint law of a family is determined by its mixed moments.
It is clear that independence of a family of random variables depends only on
its commutation relations and its joint law.

There is a notion of convergence in distribution of a family of random vari-
ables.

Definition 2.18 Let {X(n)
λ | λ ∈ Λ} be a sequence of families of non-

commutative random variables, with sequence of joint laws (τn). Then we say
that the sequence {X(n)

λ } converges in distribution to a joint law τ : C〈Yλ〉 → C
if the sequence τn(P ) converges to the functional τ(P ) for each polynomial
P ∈ C〈Yλ〉.

Proposition 2.19 Let {X(n)
λ | λ ∈ Λ} be a sequence of families of non-

commutative random variables. Then the sequence {X(n)
λ } converges in dis-

tribution to a joint law τ : C〈Yλ〉 → C if and only if for all elements λi ∈
Λ the sequence of mixed moments φ(X(n)

λ1
· · ·X(n)

λk
) converges to the number

τ(Yλ1 · · ·Yλn). 2

3 Freeness

3.1 Free Products

In this subsection we look at a number of free product constructions without
proofs. For further details, see for example chapter 1 of [VDN92].

Definition 3.1 Let {Gλ | λ ∈ Λ} be a family of groups. Then the free product
∗λ∈ΛGλ is the unique (up to isomorphism) group G equipped with homomor-
phisms ψλ:Gλ → G such that for any group H equipped with homomorphisms
ϕ:Gλ → H there is a unique homomorphism Φ:G→ H such that Φ ◦ ψλ = ϕλ

for all λ ∈ Λ.
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Given a finite family of groups G1, . . . , Gn, we denote the free product by
writing G1 ∗G2 ∗ · · · ∗Gn.

Definition 3.2 Let G be a group. Then subgroups G1 and G2 are called free
if there are no relations between them, that is to say, if w = g1g2 · · · gn, where
the elements gi belong alternately to the subgroups G1 and G2, and gi 6= e for
all i, then w 6= e.1

Proposition 3.3 Let G be a group generated by free subgroups G1 and G2.
Then G = G1 ∗G2. 2

Definition 3.4 Let {Aλ | λ ∈ Λ} be a family of unital algebras. Then the free
product ∗λ∈ΛAλ is the unique (up to isomorphism) unital algebra A equipped
with homomorphisms ψλ:Aλ → A such that for any algebra B equipped with
homomorphisms ϕ:Aλ → B there is a unique homomorphism Φ:A → B such
that Φ ◦ ψλ = ϕλ for all λ ∈ Λ.

The definition of a free product of C∗-algebras is exactly analagous to the
above.

Proposition 3.5 Let {Gλ | λ ∈ Λ} be a family of groups. Then looking at free
products of algebras and C∗-algebras respectively

∗λ∈ΛCGλ = C (∗λ∈ΛGλ) ∗λ∈Λ C
∗
rGλ = C∗r (∗λ∈ΛGλ)

2

Definition 3.6 Let {(Hλ, ξλ) | λ ∈ Λ} be a family of Hilbert spaces, each
equipped with a distinguished unit vector ξλ ∈ Hλ. Then the free product
∗λ∈Λ(Hλ, ξλ) is the Hilbert space

H = Cξ ⊕
(
⊕n≥1 ⊗λ1 6=···6=λn ξ

0
λ1
⊗ · · · ⊗ ξ0λn

)
where ξ0λi

is the orthogonal complement of the vector ξλi in the Hilbert space
Hλ.

We consider the Hilbert space H to have the distinguished unit vector ξ.
Each Hilbert space Hλ is embeddded in H, and each unit vector ξλ is identified
with the vector ξ.

Definition 3.7 Let H be a Hilbert space. Then we define the full Fock space

T (H) = Cξ ⊕
(
⊕n≥1H

⊗n
)

The norm of the vector ξ is equal to one.

Proposition 3.8 Let {(Hλ, ξλ) | λ ∈ Λ} be a family of Hilbert spaces with
distinguished unit vectors. Then

(T (⊕λ∈ΛHλ), ξ) = ∗λ∈Λ(T (Hλ), ξ)

2

1Here we use e to denote the identity element of a group.
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Definition 3.9 Let {Aλ | λ ∈ Λ} be a family of von Neumann algebras, where
Aλ ⊆ B(Hλ), and the Hilbert space Hλ is equipped with a distinguished unit
vector ξλ.

Let us regard Aλ as a subalgebra of the operator space B(∗λ∈Λ(Hλ.ξλ). Then
we define the free product as a double commutant

∗λ∈ΛAλ =

(⋃
λ∈Λ

Aλ

)′′

Proposition 3.10 Let {Gλ | λ ∈ Λ} be a family of groups. Then we have group
von Neumann algebra

N(∗λ∈ΛGλ) = ∗λ∈ΛNGλ

2

3.2 Free Algebras and Random Variables

Freeness is a fundamental concept in non-commutative probability. It is analo-
gous to independence, but only exists as a concept in the non-commutative case.
We begin with a result on free products in order to motivate the definition.

Proposition 3.11 Let A1, . . . , An be complex unital algebras. Let A = A1 ∗
· · · ∗ An be the free product, and suppose that this free product is equipped with
some trace, φ, such that φ(1) = 1. Let us identify an algebra Ai with its image
in the free product. Then φ(a1a2 · · · ak) = 0 whenever:

• aj ∈ Ai(j), where i(1) 6= i(2), i(2) 6= i(3), . . . i(k − 1) 6= i(k).

• φ(ai) = 0 for all i.

2

Definition 3.12 Let (A,φ) be a non-commutative probability space. Let
A1, . . . , An ⊆ A be unital subalgebras of A. Then the family {A1, . . . , An}
is called free if φ(a1a2 · · · ak) = 0 whenever:

• aj ∈ Ai(j), where i(1) 6= i(2), i(2) 6= i(3), . . . i(k − 1) 6= i(k).

• φ(ai) = 0 for all i.

We will often talk about freeness of a set of random variables rather than
algebras.

Definition 3.13 Let (A,φ) be a non-commutative probability space. Random
variables X1, . . . , Xn ∈ A are termed free if the family of algebras generated by
them is free.

We have a similar notion of a family of sets being free. There are many
possible algebraic manipulations involving the definition of freeness.

Proposition 3.14 Let X1 and X2 be free random variables. Then

φ(X1X2) = φ(X1)φ(X2)

11



Proof: By definition of freeness

φ((X1 − φ(X1))(X2 − φ(X2))) = 0

The result now follows by linearity of the functional φ. 2

Proposition 3.15 Let (A,φ) be a non-commutative probability space, and let
A1 and A2 be free subalgebras. Then

φ(X1XX2) = φ(X)φ(X1X2)

whenever X1, X2 ∈ A1 and X ∈ A2.

Proof: By definition of freeness

φ((X1 − φ(X1))(X − φ(X))(X2 − φ(X2))) = 0

Expanding the above expression, we see that

φ(X1(X − φ(X))(X2 − φ(X2)) + φ(X1)φ((X − φ(X))(X2 − φ(X2))) = 0

The second part of the above expression is again zero by freeness. Hence

φ(X1XX2)− φ(X)φ(X1X2) = φ(X1)φ(X2)φ(X − φ(X)) = 0

and we are done. 2

Proposition 3.16 Let (A,φ) be a non-commutative probability space, where
the algebra A is generated by free subalgebras A1 and A2. Then the functional
φ is determined by the restrictions φ|A1 and φ|A2 .

Proof: Let a ∈ A. Then we can write a = a1a2 · · · an, where the elements ai

belong alternately to the algebras A1 and A2. Suppose that n ≥ 2. Observe

φ(a) = φ((a1 − φ(a1) + φ(a1)) · · · (an − φ(an) + φ(an)))

so by linearity

φ(a) = φ((a1 − φ(a1)) · · · (an − φ(an))) + φ(b)

where b = b1b2 · · · bn−1 and the elements bi belong alternately to the algebras
A1 and A2. By definition of freeness, we see that

φ((a1 − φ(a1)) · · · (an − φ(an))) = 0

The result now follows by induction. 2
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3.3 Random Walks on Groups

LetG be a discrete group, with finite generating set {s1, . . . , sn}. Let us consider
a random walk on the group G, beginning at the point 1, and going in each of
the directions represented by elements of the generating set and their inverses,
with equal probability 1/2n.

Each step of the random walk is the random variable

X =
1
2n

(s1 + · · ·+ sn + s−1
1 + · · ·+ s−1

n )

in the space CG.
The position after k steps is given by the random variable Xk. The prob-

ability at being at position g ∈ G after k steps is the coefficient of g in the
expression for Xk, that is to say

P (Xk = g) = 〈λ(Xk), g〉

where λ is the left regular representation described in example 2.6.
In particular, P (Xk = e) = φ(Xk).

Example 3.17 Consider a random walk on Z. Let s be a generator for Z, and
let X be the random variable described above. Then

X =
1
2
(s+ s−1)

and

Xk =
1
2k

∑
l=0k

(
k

l

)
s2l−k

We can thus compute the probability of returning to the starting position
after k steps

φ(Xk) =
{

0 k odd
k!/(2k(k/2)!) k even

These probabilities are the moments of the random variable X, and so de-
termine its probability law.

Example 3.18 Consider a random walk on F2, the free group with two gener-
ators, s1 and s2. Then the random variable X is given by the formula

X = X1 +X2 X1 =
1
4
(s1 + s−1

1 ), X2 =
1
4
(s2 + s−1

2 )

Observe φ(X1) = 0, φ(X2) = 0, and

X1X2 =
1
16

(s1s2+s1s−1
2 +s−1

1 s2+s−1
1 s−1

2 ), X2X1 =
1
16

(s2s1+s2s−1
1 +s−1

2 s1+s−1
2 s−1

1 )

The group elements in the above expressions are distinct, so φ(X1X2) =
φ(X2X1) = 0. It follows that the random variables X1 and X2 are free. Freeness
actually gives us the tools to precisely compute the moments φ(Xk) and the
associated probability law. We will return to this subject later on.
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4 Some Combinatorics

4.1 The Catalan Numbers

The Catalan numbers are a sequence that occur naturally in many combinatorial
problems. The following definition is probably the one that is easiest to use in
combinatorial problems.

Definition 4.1 The sequence of Catalan numbers, (Cn), is defined recursively
by writing c0 = 0, c1 = 1, and

Cn =
n∑

k=1

Ck−1Cn−k

when n > 1.

Proposition 4.2 The Catalan numbers can also be defined by the explicit for-
mula

Cn =
(2n)!

(n+ 1)!n!

Proof: Let us define the generating function for the Catalan numbers

c(x) =
∞∑

n=0

Cnx
n

We can rewrite our recurrence relation

Cn =
n−1∑
k=0

CkC(n−1)−k

so

c(x)2 =
∞∑

n=0

n∑
k=0

CkCn−kx
n =

∞∑
n=0

Cn+1x
n

and
c(x) = 1 + xc(x)2

We can solve this equation to obtain the expression

c(x) =
1−

√
1− 4x

2x

since we know that c(0) = C0 = 1
Taking a binomial expansion of the square root, we obtain the formula we

claimed. 2

Corollary 4.3 The Catalan numbers can be defined recursively by writing

C0 = 1 Cn =
2(2n− 1)
n+ 1

Cn−1

2
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4.2 Partitions

Definition 4.4 A partition, π, of a finite set S is a collection of blocks
{V1, . . . , Vs} that partition the set S.

If the set S is ordered, we call a partition crossing if we can find elements
p1 ≤ q1 ≤ p2 ≤ q2 such that the elements p1 and p2 belong to the same block,
and the elements q1 and q2 belong to another distinct block.

A partition is called a pairing if each block contains exactly two elements.

Let us write P (n) to denote the set of all partitions of the set {1, . . . , n},
NCP (n) to denote the set of all non-crossing partitions, P2(n) to denote the
set of pairings, and NCP2(n) to denote the set of all non-crossing pairings.

Proposition 4.5 Let π, σ ∈ NCP (n) be non-crossing partitions. Write σ ≤ π
whenever each block of the partition σ is contained in some block of the partition
π.

Then the set NCP (n) is a partially ordered set, with maximal element

1n = {(1, . . . , n)}

and minimal element
0n = {(1), . . . , (n)}

2

It is quite easy to count the number of pairings.

Proposition 4.6 The number of elements in the set P2(n) is zero if n is odd,
and equal to the product

(n− 1)(n− 3) · · · 3.1

if n is even.

Proof: Let π = {V1, . . . , Vs} ∈ P2(n), where 1 ∈ V1 and the pairs Vi are
written in the order of their lower elements. Then s = n/2.

Observe V1 = {1,m} so there are n − 1 choices for the block V1. Having
chosen the block V1, there are n − 3 choices for the block V2, n − 5 choices for
the block V3, and so on. Multiplying these numbers, we arrive at the above
formula. 2

We can also count the number of non-crossing pairings.

Proposition 4.7 The number of elements in the set NCP2(n) is zero if n is
odd, and equal to the Catelan number Cn/2 if n is even.

Proof: The result when n is odd is obvious. It is similarly obvious that
\NCP2(0) = C0 = 1 and \NCP2(2) = C1 = 1.

Let π = {V1, . . . , Vs} ∈ NCP2(n) where 1 ∈ V1, so that V1 = {1,m} for
some m > 1. Then, since the partition π is non-crossing, for each block Vj ,
either 1 < k < m or m < k for all k ∈ Vj .
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It follows that the partition π can be restricted to define non-crossing pairings
on the sets {2, . . . ,m− 1} and {m+ 1, . . . , n}. It follows that m must be even.
Counting the numbers of such partitions, we obtain the recurrence relation

\NCP2(n) =
n/2∑
l=1

\NCP2(m− 2l)\NCP2(n− 2l)

If we set n = 2k, we see that the number \NCP2(2k) satisfies the recurrence
relation for the Catalan numbers. The result now follows. 2

4.3 Complements

The following construction works for non-crossing partitions, but has no analogy
in the general case.

Definition 4.8 Let NCP (n) be the set of all non-crossing partitions on the
ordered set {1, . . . , n}. Let NCP (n, n) be the set of all non-crossing partitions
on the ordered set {1, 1, . . . , n, n}.

Let π ∈ NCP (n) be a partition. Then we define the complement,
K(π) ∈ NCP (n), to be the maximal non-crossing partition σ such that
π ∪ σ ∈ NCP (n, n).

Of course, the set NCP (n) can be cannonically identified with the set
NCP (n), so the complement operation can be viewed as a natural map
K:NCP (n) → NCP (n).

Proposition 4.9 Let π ∈ NCP2(n) be a non-crossing pairing. Identify π with
the permutation in which the cycles are the blocks of the partition. Let γ =
(1, 2 . . . , n) be the cyclic permutation. Then K(π) = γ−1π. 2

4.4 Free Cumulants

Definition 4.10 Let (A,φ) be a non-commutative probability space. Then we
define the free cumulants, kn:An → C, to be the multilinear functionals defined
inductively by the moment-cumulant formula:

k1(X) = φ(X) φ(X1 · · ·Xn) =
∑

π∈NCP (n)

kπ[X1, . . . , Xn]

where

kπ[X1, . . . , Xn] =
r∏

i=1

kV (i)[X1, . . . , Xn] π = {V (1), . . . , V (r)}

and
kV [X1, . . . , Xn] = ks(Xv(1), . . . Xv(s)) V = (v(1), . . . , v(s))

As a special case, for a random variable X, we write

kX
n = kn(X, . . . ,X)
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Proposition 4.11 The free cumulants are well-defined.

Proof: We can write the moment-cumulant formula in the form

φ(X1 · · ·Xn) = kn(X1, . . . , Xn) +
∑

π∈NCP (n)
π 6=1n

kπ[X1, . . . , Xn]

The result now follows by induction. 2

We use the version of the moment-cumulant formula in the above proof to
work out cumulants explicitly.

The following result indicates why cumulants provide a useful combinatorial
way of keeping track of data when looking at free random variables. The proof
is purely a matter of combinatorics using the definitions involved, and can be
found, for instance, in [Spe94].

Theorem 4.12 Let (A,φ) be a non-commutative probability space, and let
A1, . . . , Am ⊆ A be unital subalgebras. Then the family {A1, . . . , An} is free
if and only if the free cumulant kn(a1, . . . , an) is equal to zero whenever n ≥ 2,
aj ∈ Ai(j), and there exist k and l such that i(k) 6= i(l). 2

We can generalise the moment-cumulant formula.

Definition 4.13 Let π ∈ NCP (n). Then we define

φπ[X1, . . . , Xn] =
r∏

i=1

φV (i)[X1, . . . , Xn] π = {V (1), . . . , V (r)}

where

φV [X1, . . . , Xn] = φ(Xv(1), . . . Xv(s)) V = (v(1), . . . , v(s))

Proposition 4.14 Let (A,φ) be a non-commutative probability space. Let
X1, . . . , Xn be random variables, and let π ∈ NCP (n) be a non-crossing parti-
tion. Then

φπ[X1, . . . , Xn] =
∑

σ∈NCP (n)
σ≤π

kσ[X1, . . . , Xn]

2

5 Gaussian and Semicircular Laws

5.1 Gaussian Random Variables

Let X be a self-adjoint random variable in a C∗-probability space. Then, as
we have already seen, there is a unique measure µX such that the law of X is
defined by the formula

τX(P ) =
∫

R

P (t)dµX(t)

Conversely, a measure can be used to define a probability law. Working
in this way, we have analogues in the non-commutative world of the classical
distributions in probability theory. The following definition is perhaps the most
useful example to us.
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Definition 5.1 Let (A,φ) be a non-commutative probability space. Then a
self-adjoint random variable X ∈ A is called normal or Gaussian, with expec-
tation µ and variance σ2 if the probability law is defined by the formula

τX(P ) =
1√

2πσ2

∫
R
P (t) exp

(
− 1

2σ2
(t− µ)2

)
dt

Proposition 5.2 Let X be a random variable with Gaussian probability law,
with expectation µ and variance σ2.

Then m1(X) = µ. If µ = 0, then we have higher moments

mk(X) =
{

0 k odd
σk(k − 1)(k − 3) · · · 3.1 k even

Proof: The moments of X are defined by the formula

mk(X) =
1√

2πσ2

∫
R
tn exp

(
− 1

2σ2
(t− µ)2

)
dt

and we know that

1√
2πσ2

∫
R

exp
(
− 1

2σ2
(t− µ)2

)
dt = 1

If we substitute s = t− µ, we see that

m1(X) =
1√

2πσ2

∫
R
s exp

(
− 1

2σ2
s2
)
dt+

µ√
2πσ2

∫
R

exp
(
− 1

2σ2
s2
)
dt = µ

by symmetry of the first integral and the above observation.
Now, let µ = 0. Then, by symmetry, mk(X) = 0 when k is odd. Let k = 2n,

and write
u = t2n−1 dv = t exp(−t2/2σ2)
du = (2n− 1)t2n−2 v = −σ2 exp(−t2/2σ2)

Using integration by parts

m2n =
2n− 1

2π

∫
R
t2n−2 exp

(
− 1

2σ2
t2
)
dt

It follows that
m2n = σ2n(2n− 1)(2n− 3) · · · 3.1

as claimed. 2

The following result is easy to check.

Proposition 5.3 Let X and Y be independent Gaussian random variables, with
expectations µX and µY , and variances σ2

X and σ2
Y respectively. Then X+Y is

a Gaussian random variable with expectation µX + µY and variance σ2
X + σ2

Y .
2
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5.2 Semicircular Random Variables

As we will see in the next section, the Gaussian law has a fundamental role in
the study of independent random variables. The following probability law has
a similarly central role when we look at free random variables.

Definition 5.4 Let (A,φ) be a non-commutative probability space. Then a
self-adjoint random variable X ∈ A is called semicircular, with centre a, and
radius r, if the probability law is defined by the formula

τX(P ) =
2
πr2

∫ a+r

a−r

P (t)
√
r2 − (t− a)2 dt

Proposition 5.5 Let X be a random variable with semicircular probability law,
centre a and radius r.

Then m1(X) = a. If a = 0, we have higher moments

mk(X) =
{

0 k odd
(r/2)kCk/2 k even

Proof: The moments of X are defined by the formula

mk(X) =
2
πr2

∫ a+r

a−r

tk
√
r2 − (t− a)2 dt

and we know that
2
πr2

∫ a+r

a−r

√
r2 − (t− a)2 dt = 1

If we substitute s = t− a, we see that

m1(X) =
2
πr2

∫ r

−r

s
√
r2 − s2 ds+

2
πr2

∫ r

−r

s
√
r2 − s2 dt = a

by symmetry of the first integral and the above observation.
Now, let a = 0. Then, by symmetry, mk(X) = 0 when k is odd. Let k = 2n,

and write
u = t2n−1 dv = t

√
r2 − t2

du = (2n− 1)t2n−2 v = − 1
3 (r2 − t2)

√
r2 − t2

Using integration by parts

m2n(X) =
2
πr2

∫ r

−r

1
3
r2(2n−1)t2n−2

√
r2 − t2 dt− 2

πr2

∫ r

−r

1
3
(2n−1)t2n

√
r2 − t2 dt

so
m2n(X) =

1
3
(2n− 1)r2m2n−2(X)− 1

3
m2n(X)

Rearranging, we see

m2n(X) =
2n− 1

2(n+ 1)
r2m2n−2(X)

We know that m0(X) = 1. Hence the desired result follows by the charac-
terisation of the Catalan numbers in corollary 4.3. 2
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5.3 Families of Random Variables

In this section we will generalise Gaussian and semicircular random variables by
looking at two classes of joint laws for families of random variables. We begin
by looking at Gaussian families.

Definition 5.6 A family of random variables {Xλ | λ ∈ Λ} is called a (cen-
tred) Gaussian family, with covariance matrix C = (Cij) if each variable Xλ is
Gaussian, and the Wick formula

φ(Xλ(1) . . . Xλ(n)) =
∑

π∈P2(n)

∏
(p,q)∈π

Cλ(p)λ(q)

holds.

Proposition 5.7 . Let S be a commutative family of Gaussian random vari-
ables with centre zero. Then S is a Gaussian family with diagonal covariance
matrix if and only if the set S is independent.

Proof: Let S = {Xλ | λ ∈ Λ} be a family of Gaussian random variables, each
with mean zero.

Then by the Wick formula given in the definition, the mixed moment

φ(Xλ(1), . . . , Xλ(n))

is equal to zero whenever λ(i) 6= λ(j) for i 6= j. Since φ(Xλ(i)) = 0 for all i and
the variables commute, it follows that the set S is independent.

Conversely, suppose that the set S is independent. Since the random vari-
ables Xλ commute, it suffices to look at moments of the form

φ(Xr(1)
λ(1) · · ·X

r(n)
λ(n))

where λ(i) 6= λ(j) whenever i 6= j. Independence tells us that

φ(Xr(1)
λ(1) · · ·X

r(n)
λ(n)) = φ(Xr(1)

λ(1)) · · ·φ(Xr(n)
λ(n))

This value is equal to zero unless the numbers r(i) are all even. Write
Cλ(i)λ(j) = φ(Xλ(i)Xλ(j)) so that Cλ(i)λ(j) = 0 if i 6= j. By proposition 4.6 and
proposition 5.2, the n-th even moment of a Gaussian random variable is equal
to the number of pairs in the set P2(n) multiplied by the 2nd moment. Hence
we have the formula

φ(Xr(i)
λ(1) =

∑
π∈P2(r(i))

Cλ(i)λ(i)

and so

φ(Xr(1)
λ(1) · · ·X

r(n)
λ(n)) =

n∏
i=1

∑
π∈P2(r(i))

Cλ(i)λ(i)

Write
X

r(1)
λ(1) · · ·X

r(n)
λ(n) = Xλ′(1) · · ·Xλ′(k)
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Then, by counting possible pairings, we can write the above formula in the
form

φ(Xλ′(1) · · ·Xλ′(k)) =
n∏

i=1

∑
π∈P2(k)

Cλ′(i)λ(j)

and we are done. 2

Definition 5.8 A family of random variables {Xλ | λ ∈ Λ} is called a (centred)
semicircular family, with covariance matrix C = (Cij) if each variable Xλ is
semicircular, and the Wick formula

φ(Xλ(1), . . . , Xλ(n)) =
∑

π∈NCP2(n)

∏
(p,q)∈π

Cλ(p)λ(q)

holds.

The following result can be proved similarly to proposition 5.7

Proposition 5.9 Let S be a family of random variables. Then S is a semicir-
cular family with diagonal covariance matrix if and only if each random X ∈ S
is semicircular with mean zero, and the set S is free. 2

5.4 Operators on Fock Space

We will now define an example of an operator with the semicircular probability
law. Let H be a Hilbert space. Recall that we define the full Fock space

T (H) = Cξ ⊕
(
⊕n≥1H

⊗n
)

The vector ξ is called the vacuum vector. We set its norm to be equal to
one.

Definition 5.10 Let h ∈ H. Then we define the left-creation operator
l(h):T (H) → T (H) by the formula

l(h)(k) =
{
h k = ξ
h⊗ k k ∈ H⊗n, n ≥ 1

The adjoint, l(h)∗, is called the left-annihilation operator and is given by the
formulae

l(h)∗(k1 ⊗ · · · ⊗ kn) = 〈h, k1〉k2 ⊗ · · · ⊗ kn ki ∈ H

and
l(h)∗(λξ) = 0 λ ∈ C

Definition 5.11 Let H be a Hilbert space. Then we define Φ(H) to be the von
Neumann algebra generated by the set of left-creation operators. We define the
vacuum state on Φ(H) by the formula

v(T ) = 〈ξ, T ξ〉

for any operator T .
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The algebra Φ(H) equipped with the state v is a W ∗-probability space.

Proposition 5.12 Let h ∈ H. Then the operator

s(h) =
1
2
(l(h) + l(h)∗)

has a semicircular probability law, with centre 0 and radius 2‖h‖.

Proof: We will calculate the moments of the operator s(h). Let us write

X1 = l(h) X−1 = l(h)∗

Thenm by linearity of the vacuum state

v(s(h)n =
∑

k(i)=±1

v(Xk(n) · · ·Xk(1))

By definition of the vacuum state, the number v(Xk(n) · · ·Xk(1)) is zero
unless the following conditions all hold:

• Equal numbers of the indices k(i) are equal to 1 and −1.

• k(1) = 1.

•
∑k

i=1 k(i) ≥ 0 whenever k ≤ n.

If the above conditions all hold, then v(Xk(n) · · ·Xk(1)) = ‖h‖n. The ques-
tion is thus how many elements there are in the set S, consisting of all indices
(k(1), . . . , k(n)) there are which satisfy the above conditions.

If n is odd, then the first of the above conditions implies that the set S
is empty. Let n be even. We can define a map α:S → NCP2(n) by writing
α(S) = {V1, . . . Vs} where:

• V1 is the block containing 1 and the lowest number r such that

r∑
i=1

k(i) = 0

• For p ≥ 1, Vp = {s, t} where s is the p-th number such that k(s) = 1 and
t is the lowest number such that

t∑
i=s

k(i) = 0

The map α is clearly a bijection. Hence, by proposition 4.7 the number of
elements in the set S is equal to the Catalan number Cn/2. The result now
follows by proposition 5.5. 2

There are approaches to free probability theory (see for example [Haa97])
where the operators s(h) are fundamental constructions. Here, we take a dif-
ferent, combinatorial approach, and regard these operators simply as major
examples.

A proof of the following result can be found in [VDN92].
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Proposition 5.13 Let {Vλ | λ ∈ Λ} be an orthogonal family of subspaces of a
Hilbert space H. Then the family of algebras

{Φ(Vλ) | λ ∈ Λ}

is free in the space Φ(H). 2

Corollary 5.14 Let {hλ| λ ∈ Λ} be a family of orthogonal vectors. then the
family of random variables {s(hλ) | λ ∈ Λ} is a free semicircular family.

Proof: The result follows immediately from the above two propositions and
proposition 5.9. 2

6 The Central Limit Theorem

6.1 The Classical Central Limit Theorem

Let (A,φ) be a non-commutatitve probability space. Let (Xn) be a sequence of
either independent or free random variables, all with the same law, such that
φ(Xn) = 0 for all n. The central limit theorem tells us the sequence of random
variables (

X1 + · · ·+XN√
N

)
converges in distribution to something definite. To prove this theorem, and say
exactly what the limit is, we will look at moments.

There are in fact two central limit theorems; one for independent random
variables, and one for free random variables. In this subsection, we will look at
the part of the proof of the central limit theorem that is the same in both the
independent and free cases, and go on to prove our result in the independent
case.

The version of the central limit theorem for free random variables first ap-
peared in [Voi85], and was one of the first major results in free probability. The
combinatorial approach to the proof that we take here comes from [Spe98].

Definition 6.1 Let π be a partition of the set {1, . . . , n}. Then we write π ∼=
(r(1), . . . , r(n)) whenever i and j belong to the same block of π precisely when
r(i) = r(j).

Lemma 6.2 Let (A,φ) be a non-commutative probability space. Let (Xn) be a
sequence of either independent or free random variables, all with the same law,
such that φ(Xn) = 0 for all n. Let π be a partition of the set {1, . . . , n}, and let
π ∼= (r(1), . . . , r(n)). Then the mixed moment

mπ = φ(Xr(1)Xr(2) · · ·Xr(n))

depends only on the partition π.

Proof: By proposition 2.16 (in the independent case) or 3.16 (in the free case),
the expression φ(Xr(1) · · · , Xr(n)) can be calculated from the moments of the
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individual random variables. Since the variables all have the same distribution,
it follows that

φ(Xr(1) · · ·Xr(n)) = φ(Xp(1) · · ·Xp(n))

whenever
r(i) = r(j) ⇔ p(i) = p(j) for all i, j

The result now follows. 2

Corollary 6.3 Let (Xn) be a sequence of random variables as above. Let AN
π

be the number of n-tuples (r(1), . . . , r(n)) such that π ∼= (r(1), . . . , r(n)). Then

φ((X1 + · · ·+XN )n) =
∑

π∈P (n)

mπA
N
π

Proof: By linearity

φ((X1 + · · ·+XN )n) =
n∑

r(1),...,r(n)=1

φ(Xr(1) · · ·Xr(n))

The result now follows from the above lemma. 2

Lemma 6.4 Suppose π = {V1, . . . , Vs} and Vi = {r} for some block Vi. Then
the number mπ defined in lemma 6.2 is equal to zero.

Proof: By proposition 2.16 (in the independent case) or proposition 3.15 (in
the free case) we can write

mπ = φ(Xr(1) · · ·Xr · · ·Xr(n)) = φ(Xr)φ(Xr(1) · · · X̃r · · ·Xr(n))

But φ(Xr) = 0 be definition of the sequence (Xn). 2

Corollary 6.5 Suppose that mπ 6= 0 where π = {V1, . . . , Vs}. Then \Vi ≥ 2 for
all i and \π = s ≤ n/2. 2

Lemma 6.6 Let (Xn) be a sequence of random variables as above. Then

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) =
∑

π∈P2(n)

mπ

Proof: By corollary 6.3, we know that

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) =
∑

π∈P (n)

AN
π

Nn/2
mπ

Observe
AN

π = N(N − 1) · · · (N − \π + 1) =
N !

(N − \π)!
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so

lim
N→∞

AN
π

Nn/2
= lim

N→∞
N \π−n/2 =

{
0 \π < n/2
1 \pi = n/2

and

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) =
∑

π∈P2(n)

mπ

as claimed. 2

Corollary 6.7

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) = 0

if n is odd.

Proof: There are no pairings of the set {1, . . . , n} if n is odd. 2

We can now bring our calculations together for independent random vari-
ables.

Theorem 6.8 (Classical Central Limit Theorem) Let (A,φ) be a non-
commutative probability space, and let (Xn) be a sequence of independent random
variables such that φ(Xn) = 0 for all n. Write σ2 = φ(X2

n). Then the sequence(
X1 + · · ·+XN√

N

)
converges in distribution to a Gaussian law with mean 0 and variance σ2.

Proof: Let π ∈ P2(n). Then, by definition of independence we see that

mπ = φ(Xr(1) · · ·Xr(n)) = φ(X2
1 )n/2 = σn

since the variables are identically distributed.
Hence, by lemma 6.6

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) =
∑

π∈P2(n)

mπ = \P2(n)σn

But by proposition 4.6 (for n even)

\P2(n) = (n− 1)(n− 3) · · · 3.1

so

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) =
∑

π∈P2(n)

mπ =
{

0 n odd
σn(n− 1)(n− 3) · · · 3.1 n even

But, by proposition 5.2, the above limits are the moments of a Gaussian law
with mean µ and variance σ2. The result therefore follows by proposition 2.11.
2
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6.2 The Free Central Limit Theorem

The difference between the independent and the free case of the central limit
theorem is the result of the following lemma.

Lemma 6.9 Let (Xi) be a free sequence of random variables, identically dis-
tributed, such that φ(Xi) = 0 for all i. Write (r/2)2 = φ(X2

i ). Let π ∈ P2(n).
Then

mπ =
{

(r/2)n π ∈ NCP2(n)
0 otherwise

Proof: Let π ∼= (r(1), . . . , r(n)). Then there are two possibilities.

• r(1) 6= r(2) 6= · · · 6= r(n):

Since φ(Xi) = 0 for all i, it follows that

mπ = φ(Xr(1) · · ·Xr(n))

by definition of freeness.

• There exists m such that r(m) = r(m+ 1):

Then the variable Xr(m)Xr(m+1) = X2
r(m) is free from the set

{Xr(1) · · ·Xr(m−1), Xr(m+2) · · ·Xr(n)}

is free since π is a pairing. Hence by proposition 3.15

mπ = φ(Xr(1) · · ·Xr(m−1), Xr(m+2) · · ·Xr(n))φ(X2
r(m))

= φ(Xr(1) · · ·Xr(m−1), Xr(m+2) · · ·Xr(n))σ2

The result now follows by induction. 2

Theorem 6.10 (Free Central Limit Theorem) Let (A,φ) be a non-
commutative probability space, and let (Xn) be a sequence of free random
variables such that φ(Xn) = 0 for all n. Write (r/2)2 = φ(X2

n). Then the
sequence (

X1 + · · ·+XN√
N

)
converges in distribution to a semicircular law with centre 0 and radius r.

Proof: By lemma 6.6 and lemma 6.9 we see that

lim
N→∞

φ(
(
X1 + · · ·+XN√

N

)n

) = \NCP2(n)(r/2)n

But by proposition 4.7 we know that \NCP2(n) = Cn/2 when n is even.
This number is zero when n is odd. Thus, by proposition 5.5 the above limits
are the moments of a semicircular law with centre 0 and radius r. The result
therefore follows by proposition 2.11. 2
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6.3 The Multi-dimensional Case

An elaboration of the calculations in the previous two sections lets us formulate
versions of the classical and free central limit theorems for families.

Theorem 6.11 Let (A,φ) be a non-commutative probability space, and let
{X(n)

λ | λ ∈ Λ} be a sequence of families of random variables such that each
family is independent from the other families, φ(X(n)

λ ) = 0 for all λ and all n,
and there are constants Cij such that φ(X(n)

λ(p)X
(n)
λ(q)) = Cλ(p)λ(q) for all λ(p),

λ(q), and n.
Then the sequence of families of random variables of the form(

X
(1)
λ + · · ·+X

(N)
λ√

N

)

converges in distribution as N →∞ to a Gaussian family with covariance matrix
(Cij). 2

As in the previous section, the free version of the above result involves re-
placing pairings by non-crossing pairings.

Theorem 6.12 Let (A,φ) be a non-commutative probability space, and let
{X(n)

λ | λ ∈ Λ} be a sequence of families of random variables such that each
family is free from the other families, φ(X(n)

λ ) = 0 for all λ and all n, and there
are constants Cij such that φ(X(n)

λ(p)X
(n)
λ(q)) = Cλ(p)λ(q) for all λ(p), λ(q), and n.

Then the sequence of families of random variables of the form(
X

(1)
λ + · · ·+X

(N)
λ√

N

)

converges in distribution as N → ∞ to a semicircular family with covariance
matrix (Cij). 2

7 Limits of Gaussian Random Matrices

7.1 Gaussian Matrices

Definition 7.1 Let (Ω, µ) be a (classical) probability space. Then we can form
an algebra of functions

L =
⋂

1≤p<∞

Lp(Ω)

and define a functional E:L→ C by integration with respect to the proabability
measure µ. Let tr:Mn(C) → C be the trace of a matrix. Then we can define
the W ∗-probability space of n× n random matrices

(Mn, φn) = (L⊗Mn(C), E ⊗ 1
n
tr)
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In these notes we will restrict our attention to square random matrices,
although of course others are possible. There are certain important classes of
random matrices. We begin with the most general.

Definition 7.2 Let X = (Xij) ∈ Mn be an n × n real random matrix. Then
we call X a real Gaussian matrix if each random variable Xij is independent
and Gaussian, with expectation zero and identical variance. We call X standard
if we have variance σ(Xij)2 = 1/n for all i and j.

A complex random matric Z is called a complex Gaussian matrix if it takes
the form Z = X + iY where X and Y are independent real Gaussian matrices
where each entry has the same variance. The matrix Z if the absolute value of
each entry, |Zij |, has variance 1/n.

A random matrix of the form X∗X, where X is a Gaussian matrix, is called
a Wishart matrix.

Proposition 7.3 Every complex Gaussian matrix is an invertible element of
the algebra Mn.

Proof: An element of the algebra Mn is an equivalence class of measurable
functions Ω →Mn(C), where we identify functions that agree on a set of measure
zero.

Let N be the set of non-invertible matrices, and let X be a complex Gaussian
matrix. Then by definition of the Gaussian law, the inverse image X−1[N ] has
measure zero. Hence, outside of a set of measure zero, the function X: Ω →
Mn(C) agrees with a function where every element of the image is invertible.
2

Definition 7.4 Let X = (Xij) ∈Mn be a real n× n random matrix. Then we
call X a real self-adjoint Gaussian matrix if the following conditions hold:

• Xij = Xji for all i, j.

• Each random variable Xij , where i ≤ j, is independent and Gaussian,
with expectation zero and identical variance.

A real random matrix Y = (Yij) ∈Mn is a real skew-adjoint Gaussian matrix
if the following conditions hold:

• Xij = Xji for all i, j.

• Each random variable Xij , where i ≤ j, is independent and Gaussian,
with expectation zero and identical variance.

A complex random matrix Z is called a complex self-adjoint Gaussian ran-
dom matrix if it takes the form Z = X + iY , where X is a real self-adjoint
Gaussian matrix and Y is a real skew-adjoint Gaussian matrix where each en-
try has the same variance.

Definition 7.5 A real self-adjoint or skew-adjoint Gaussian matrix X is called
standard if we have variances σ(Xij)2 = 1/n for all i and j.

A complex self-adjoint Gaussian matrix Z is called standard if the absolute
value of each entry, |Zij |, has variance 1/n.
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7.2 The Semicircular Law

We now want to look at limits of standard self-adjoint Gaussian matrices as the
size increases, initially for single matrices, and then for independent families.
We will see that such matrices converge in distribution to semicircular random
variables, and independent families converge in distribution to free semicircular
families. These results first appeared in [Voi91]. The combinatorial papproach
that we take comes from [Spe93].

Lemma 7.6 Let X ∈ Mn be a standard self-adjoint Gaussian matrix. Given
a permutation σ ∈ Σm, let us write Z(σ) to denote the number of cycles in σ.
Then we have the formula

φ(Xm) =
∑

π∈P2(m)

nZ(γπ)−1−m/2

where we identify a pairing π ∈ P2(m) with a permutation as in proposition 4.9.

Proof: By definition of the functional φn, it is clear that

φ(Xm) =
1
n

n∑
i(1),...,i(m)=1

E(Xi(1)i(2)Xi(2)i(3) · · ·Xi(m)i(1))

For convenience, let us count modulo m, that is to say set i(m+ 1) = i(1).
Then by proposition 5.7, we see that

φ(Xm) =
1
n

n∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

E(Xi(r)i(r+1)Xi(s)Xi(s+1))

Since the matrix X is a standard self-adjoint Gaussian matrix, we can write,
using Kronecker delta notation:2

E(Xi(r)i(r+1)Xi(s)Xi(s+1)) =
1
n
δi(r)i(s+1)δi(s)i(r+1)

Thus

φ(Xm) =
1

n1+m/2

∑
π∈P2(m)

n∑
i(1),...,i(m)=1

∏
(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1)

As mentioned in the statement of the result, a pairing π ∈ P2(m) can be
identified with a permutation π ∈ Σm by defining the cycles of the permutation
to be the blocks of the pairing. Thus we can rewrite the above equation

φ(Xm) =
1

n1+m/2

∑
π∈P2(m)

n∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(π(r)+1)

2That is to say

δab =


1 a = b
0 a 6= b
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or

φ(Xm) =
1

n1+m/2

∑
π∈P2(m)

n∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r))

where
γ = (1, 2, . . . ,m− 1,m) ∈ Σm

The index function i must be constant on the cycles of the permutation γπ
in order for the product

∏m
r=1 δi(r)i(γπ(r)) to be one; otherwise, the product is

zero.
It follows that we have nZ(γπ) possible index functions which make the above

product zero. Hence

n∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)) = nZ(γπ)

and
φn(Xm) =

∑
π∈P2(m)

nZ(γπ)−1−m/2

as claimed. 2

Corollary 7.7 We have moments φ(Xm) = 0 when m is odd. 2

Theorem 7.8 Let (Xn) be a sequence of standard self-adjoint Gaussian matri-
ces, where Xn ∈ Mn. Then the sequence (Xn) converges in distribution to a
semi-circular random variable with centre 0 and radius 2.

Proof: When m is odd, as we have already remarked, φn(Xm
n ) = 0 for all n.

Let m = 2k.
Let π ∈ P2(2k). Then the number of cycles, Z(γπ), can be at most 1 + k,

and this number is achieved precisely when the pairing is non-crossing. By the
above lemma, we have the formula

φ(X2k
n )) =

∑
π∈P2(m)

nZ(γπ)−1−k

Observe

lim
n→∞

nZ(γπ)−1−k =
{

1 Z(γπ) = k + 1
0 Z(γπ) < k + 1

Thus
lim

n→∞
φn(X2k

n )) = \NCP2(k)

By proposition 4.7, \NCP2(k) is the k-th Catalan number. Hence, by propo-
sition 5.5, the sequence (Xn) converges in distribution to a semicircular random
variable, as claimed. 2
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7.3 Asymptotic Freeness

We can quite easily extend the main theorem of the previous section to a result
on families of Gaussian matrices. As a first step, we have the following result.
We omit the proof since the computations needed are almost identical to those
in the proof of lemma 7.6.

Lemma 7.9 Let {Xλ | λ ∈ Λ} be a family of standard self-adjoint n×n Gaus-
sian matrices. Then

φ(Xλ(1) · · ·Xλ(n)) =
∑

π∈P2(m)

m∏
r=1

δλ(r)λ(π(r))n
Z(γπ)−1−m/2

2

Theorem 7.10 Let {Xλ
n | λ ∈ Λ} be a sequence of independent families of

standard self-adjoint n × n Gaussian matrices. Then the sequence of families
({Xλ

n}) converges in distribution to a free semi-circular family.

Proof: When m is odd, the set set P2(m) is empty, so by the above formula
the mixed moments φ(Xλ(1) · · ·Xλ(n)) are all zero. Let m = 2k.

Let π ∈ P2(2k). Then the number of cycles, Z(γπ), can be at most 1 + k,
and this number is achieved precisely when the pairing is non-crossing. By the
above lemma, we have the formula

φ(Xλ(1) · · ·Xλ(n)) =
∑

π∈P2(m)

m∏
r=1

δλ(r)λ(π(r))n
Z(γπ)−1−m/2

Observe

lim
n→∞

nZ(γπ)−1−k =
{

1 Z(γπ) = k + 1
0 Z(γπ) < k + 1

Thus

lim
n→∞

φ(Xλ(1) · · ·Xλ(n)) =
∑

π∈P2(m)

m∏
r=1

δλ(r)λ(π(r))

We can write this formula

lim
n→∞

φ(Xλ(1) · · ·Xλ(n)) =
∑

π∈NCP2(m)

∏
(r,s)∈π

δλ(r)λ(s))

which is, by definition, the law of a free semicircular family (with covariance
matrix the identity). 2

8 Sums of Random Variables

8.1 Sums of Independent Random Variables

Definition 8.1 Let µ1 and µ2 be two probability measures on the real line, R.
Then we define the convolution, dµ1 ∗ dµ2, by writing

dµ1 ∗ dµ2(v) =
∫

R
dµ1(u)dµ2(u− v)
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For a Borel set S ⊆ R, we thus define

µ1 ∗ µ2(S) =
∫

S

∫
R
dµ1(u)dµ2(u− v)

It is straightforward to check that the convolution of two probability mea-
sures is a well-defined probability measure.

Proposition 8.2 Let X and Y be real independent random variables, with laws
defined by probability measures µX and µY respectively. Then the sum X + Y
has law defined by the convolution of the measures µX and µY .

Proof: We have moments defined by the formulae

mn(X) =
∫

R
xn dµX(x) mk(Y ) =

∫
R
yn dµY (y)

and

mn(X+Y ) = φ((X+Y )n) =
n∑

k=0

(n
k

)
φ(Xk)φ(Y n−k) =

n∑
k=0

∫
R

∫
R
xkyn−k dµX(x)dµY (y)

By linearity of the integral, we have the equation

mn(X + Y ) =
∫

R

∫
R
(x+ y)ndµX(x)dµY (y)

Let z = x+ y. Then

mn(X + Y ) =
∫

R

∫
R
zndµX(x)dµY (z − x) =

∫
R
zn dµX ∗ dµY (z)

Thus the convolution gives the moments of the sum X + Y , and the result
follows. 2

8.2 Free Convolution

Let X and Y be free random variables. We would like to define the probability
law of the sum X + Y in terms of the probability laws of the random variables
X and Y . This is in fact possible, using an analogue of the convolution in the
independent case.

As elsewhere in these notes, we take a combinatorial approach, following
[Spe94]. Alternative, more analytic methods, can be found in [VDN92] and
[Haa97].

The first way to look at this convolution involves using cumulants, as intro-
duced in definition 4.10.

Proposition 8.3 Let X and Y be free random variables. Then we have free
cumulants

kX+Y
n = kX

n + kY
n
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Proof: By definition of the free cumulants

kX+Y
n = kn(X + Y, . . . ,X + Y )

= kn(X, . . . ,X) + kn(Y, . . . , Y )
= kX

n + kY
n

where the second step follows from the fact that the mixed cumulants kn:An →
C are multilinear, and mixed cumulants vanish by freeness of the random vari-
ables X and Y and theorem 4.12. 2

A simple application of the moment-cumulant formula yields the following
result.

Proposition 8.4 Let X be a random variable. Let π ∈ NCP (n) be a non-
crossing partition, with blocks {V1, . . . , Vr}. Define the cumulant kX

π by writing

kX
π = kX

\V1
· · · kX

\Vr

Let (mX
n ) be the sequence of moments of the random variable X. Then we

have the moment-cumulant formula

mX
n =

∑
π∈NCP (n)

kX
π

2

The above formula can be used to determine the free cumulants in terms of
the moments. The following definition therefore makes sense.

Definition 8.5 Let τ and τ ′ be probability laws, with sequences of moments
(mk) and (m′

k) respectively. Let {kπ | π ∈ NCP (n)} and {k′π | π ∈ NCP (n)}
be the sets of free cumulants arising from these laws.

Then we define the free convolution, τ � τ ′, to be the probability law with
squence of free cumulants (kn + k′n).

The following result follows immediately from proposition 8.3 and the defi-
nition of the free convolution.

Theorem 8.6 Let X and Y be free random variables, with probability laws τ
and τ ′ respectively. Then the sum X + Y has probability law τ � τ ′. 2

8.3 The Cauchy Transform

Let X be a real random variable. We have already seen, in theorem 2.8, that
there is a unique measure, µ, on R, such that the moments of X are given by
the formula

mk(X) =
∫

R
tk dµ(t)

In this section we will see more precisely how to determine the measure µ
from the sequence of moments (mk).
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Definition 8.7 Let µ be a probability measure on the real line. Then we define
the Cauchy transform of µ by the formula

Gµ(z) =
∫

R

1
z − t

dµ(t)

whenever =(z) > 0.

The Cauchy transform is relevant to us because of the following result, which
can be proved by expressing the fraction as a power series and exchanging the
integral and summation signs.

Proposition 8.8 Let µ be a probability measure on the real line, with moments

mk(µ) =
∫

R
tk dµ(t)

Then the moment-generating function

Mµ(z) =
∞∑

n=1

mnz
n

converges to an analytic function in some neighbourhood of 0. Whenever the
absolute value |z| is sufficiently large, the formula

Gµ(z) =
1
z
Mµ

(
1
z

)
holds. 2

In order to recover a measure from its moments, we use the following theorem
to invert the Cauchy transformation.

Theorem 8.9 (The Stieltjes Inversion Formula) Let µ be a probability
measure on the real line. Then

dµ(t) = − 1
π

lim
ε→0

=(Gµ(t+ iε)) dt

whenever t ∈ R. Here convergence is with respect to the weak topology on the
space of all real probability measures. 2

8.4 The R-transform

The R-transform, along with the Cauchy transformation, gives us an analytic
way of computing laws involving sums of free random variables.

Definition 8.10 Let τ be a probability law, with sequence of free cumulants
(kn). Then we define the R-transform by the formula

Rτ (z) =
∞∑

n=0

kn+1z
n

The following result follows immediately from theorem 8.6.
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Theorem 8.11 Let X and Y be free random variables, then

RX+Y (z) = RX(z) +RY (z)

2

There is a close relation between the R-transform and the Cauchy transform.
In order to establish the relation, we begin with a purely algebraic result.

Lemma 8.12 Let (mn)n≥1 and (kn)n≥1 be sequences of complex numbers, with
corresponding formal power series

M(z) = 1 +
∞∑

n=1

mnz
n C(z) = 1 +

∞∑
n=1

knz
n

as generating functions. Write

kπ = k\V1 · · · k\Vr π = {V1, . . . , Vr} ∈ NCP (n)

and suppose that
mn =

∑
π∈NCP (n)

kπ

Then
C(zM(z)) = M(z)

Proof: Given a non-crossing partition π ∈ NCP (n), let V1 denote the block
containing the element 1. The given formula for the number mn tells us that

mn =
n∑

s=1

∑
V1

\V1=s

∑
π∈NCP (n)

π={V1,...,Vr}

kπ

Let π = {V1, . . . , Vr} ∈ NCP (n), and

V1 = {v1, . . . , vs}

Set vs+1 = n+ 1. Then, since π is a non-crossing partition, for all j ≥ 2 we
can find k such that vk < Vj < vk+1. It follows that

π = V1 ∪ π1 ∪ · · · ∪ πs

where overlineπj is a non-crossing partition of the set {vj + 1, . . . , vj+1 − 1}.
Let ij = vj+1 − vj − 1. Then we can consider the partition πj to be an

element of the set NCP (ij). By the definition of the number kπ we can write

kπ = kskπ1 · · · kπs

since \V1 = s. Therefore

mn =
n∑

s=1

n−s∑
i1,...,is=0

i1+···+is+s=n

∑
\V1=s

π1,...,πs∈NCP (ij)

kskπ1 · · · kπs
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But
mij =

∑
πr∈NCP (ij)

kπs

for all j. Hence

mn =
n∑

s=1

n−s∑
i1,...,is=0

i1+···+is+s=n

ksmi1 · · ·mis

Now

M(z) = 1 +
∞∑

n=1

mnz
n = 1 +

∞∑
n=1

n∑
s=1

n−s∑
i1,...,is=0

i1+···+is+s=n

ksz
smi1z

i1 · · ·misz
is

We can write this sum

M(z) = 1 +
∞∑

s=0

ksz
s

(
1 +

∞∑
i=1

miz
i

)s

= C(zM(z))

and we are done. 2

Theorem 8.13 Let τ be a probability law, with Cauchy transfrom G(z) and
R-transform R(z). Then

R(G(z)) +
1

G(z)
= z G(R(z) +

1
z
) = z

Proof: Let (mn) be the sequence of moments of the probability law τ , and let
(kn) be the sequence of free cumulants. Write

K(z) = R(z) +
1
z

The R-transform is defined by the formula

C(z) = 1 + zR(z)

where

C(z) =
∞∑

n=0

knz
n

By the above lemma and proposition 8.8, we have the relations

M(z) = C(zM(z)) G(z) =
1
z
M

(
1
z

)
So

K(G(z)) = R(G(z))+
1

G(z)
=

1
G(z)

C(G(z)) =
1

G(z)
C

(
1
z
M

(
1
z

))
=

1
G(z)

M

(
1
z

)
= z

Set w = G(z). Then we have the relation G(K(w)) = w. Since this formula
is purely a formal relation between non-trivial power series, it follows in general
that

G

(
R(z) +

1
z

)
G(K(z)) = z

and we are done. 2
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8.5 Random Walks on Free Groups

Let F2 be the free group on 2 generators, s1 and s2. Consider the random
variable

X =
1
4
(X1 + · · ·+Xn) Xi = si + s−1

i

representing a step of a random walk going with equal probability in each pos-
sible direction on the group F2. It is straightforward to check that the set of
random variables {X1, X2} is free.

The operator X1 has the same law as the operator s+ s−1 on l2(Z), where
s is a generator of the group Z. Let S1 ⊆ C be the unit circle. Then we have
an isomorphism of Hilbert spaces

l2(Z) → L2(S1)

defined by mapping the series (ak)k∈Z to the Laurent series
∑∞

k=−∞ akz
k. Under

this transformation, the algebra CZ is mapped to the algebra of all Laurent
polynomials, and the trace is mapped to the function

φ(P ) =
∫

S1
P (z) dµ(z)

where µ is the Haar measure on the unit circle.
The operator 1

2 (s + s−1) is therefore mapped to the Laurent polynomial
z + 1/z. The law of this operator therefore has Cauchy transformation

G1(z) =
∫

S1

1
z − (w + 1/w)

dµ(w)

The Haar measure is defined by writing dµ(w) = 1/(2πiw) dw so we can
compute the integral as a path-integral

G1(z) = − 1
2πi

∫
S1

1
w2 − wz + 1

dw

Let p(w) = w2 − wz − 1. This polynomial has roots

w1(z) =
1
2

+

√
z2

4
− 1 w2(z) =

1
2
−
√
z2

4
− 1

For sufficiently large values of |z|, the root w1(z) lies outside of the unit
circle, and the root w2(z) lies inside the unit circle. Hence, by Cauchy’s residue
formula, we can compute this integral

G1(z) =
1

w1(z)− w2(z)

that is to say
G1(z) =

(
z2 − 4

)− 1
2

Now, the R-transformation, R1(z), is determined by the formula

G1(R1(z) + 1/z) = z
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so ((
R1(z) +

1
z

)2

− 4

)− 1
2

= z

and

R1(z) = −1
z

+

√
4− 1

z2

The random variable X2 has the same law as the random variable X1, and
therefore R-transformation

R2(z) = −1
z

+

√
4− 1

z2

By theorem 8.11, the random variableX = 1
4 (X1+X2) has R-transformation

R(z) =
1
4

(
−1
z

+

√
4− 1

z2

)

Let G be the Cauchy transform of the random variable X. Then

R(G(z)) + 1/G(z) = z

so
3

4G(z)
+

√
1− 1

4Gz2
= z

and we obtain the equation

(4z2 − 16)G(z)2 − 24zG(z) + 5 = 0

We can solve this equation to obtain the formula

G(z) =
3z +

√
(31/4)z2 + 5
z2 − 4

By proposition 8.8, the moment-generating function

M(z) =
∞∑

k=1

φ(Xk)zk

is given by the formula

M(z) =
1
z
G

(
1
z

)
so

M(z) =
3 +

√
5 + (31/4z2)
1− 4z2

This formula enables us to work out the moments by looking at a power
series expansion, and therefore the probability law.
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9 Products of Random Variables

9.1 Products of Independent Random Variables

Let X and Y be independent random variables. Then, by the definition of
independence, we have moments

mk(XY ) = φ((XY )k) = φ(Xk)φ(Y k) = mk(X)mk(Y )

We thus immediately have the law for the product XY . Let

M(z) =
∞∑

n=1

mn(X)mn(Y )zn

be the moment-generating function. By proposition 8.8, if the law of the prod-
uct XY is defined in terms of a probability measure µ, then we have Cauchy
transformation

Gµ(z) =
1
z
M

(
1
z

)
whenever the absolute value |z| is sufficiently large.

9.2 The Multiplicative Free Convolution

Let X and Y be free random variables. We would like to define the probability
law of the product XY in terms of the probability laws of the random variables
X and Y . This is in fact possible, using calculations involving free cumulants,
much as we did in the previous chapter. As we mentioned then, there are also
analytic approaches; see [VDN92] or [Haa97] for details.

Our first result is best phrased algebraically.

Theorem 9.1 Let (A,φ) be a non-commutative probability space. Let A and B
be free alagebras, and let ai ∈ A, bi ∈ B. Then the following formulae hold.

• φ(a1b1a2b2 · · · anbn) =
∑

π∈NCP (n) kπ[a1, . . . , an]φK(π)[b1, . . . , bn]

• φ(a1b1a2b2 · · · anbn) =
∑

π∈NCP (n) φK−1(π)[a1, . . . , an]kπ[b1, . . . , bn]

• kn(a1b1, a2b2, · · · , anbn) =
∑

π∈NCP (n) kπ[a1, . . . , an]kK(π)[b1, . . . , bn]

Proof: The moment-cumulant formula tells us that

φ(a1b1a2b2 · · · anbn) =
∑

π∈NCP (2n)

kπ[a1, b1, . . . , an, bn]

By freeness and theorem 4.12, the cumulant kπ[a1, b1, . . . , an, bn] vanishes
when an a-variable and a b-variable both appear in the same block of the par-
tition π. By definition of the complement of a partition, it follows that

φ(a1b1a2b2 · · · anbn) =
∑

σ∈NCP (n)

kσ[a1, . . . , an]
∑

σ′∈NCP (n)
σ′≤K(σ)

kσ′ [b1, . . . , bn]
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By the generalised moment-cumulant formula in proposition 4.14, we have
the equation

φ(a1b1a2b2 · · · anbn) =
∑

σ∈NCP (n)

(
kσ[a1, . . . , an]φK(σ)[b1, . . . , bn]

)
The other equations follow from further applications of the generalised

moment-cumulant formula. 2

Since the probability law of a random variable determines and is determined
by its free cumulants, the following definition makes sense.

Definition 9.2 Let τ and τ ′ be probability laws, with sequences of moments
(mk) and (m′

k) respectively. Let {kπ | π ∈ NCP (n)} and {k′π | π ∈ NCP (n)}
be the sets of free cumulants arising from these laws.

Then we define the multiplicative free convolution, τ � τ ′, to be the proba-
bility law with free cumulants

kτ�τ ′

n =
∑

π∈NCP (π)

kπk
′
K(π)

The following result follows immediately from theorem 9.1 and the definition
of the multiplicative free convolution.

Theorem 9.3 Let X and Y be free random variables, with probability laws τ
and τ ′ respectively. Then the product XY has probability law τ � τ ′. 2

9.3 Composition of Formal Power Series

As in the previous chapter, further calculations involving products of free ran-
dom variables involve operations on certain formal power series.

Definition 9.4 Let

ψ1(z) =
∞∑

n=1

anz
n ψ2(z) =

∞∑
n=1

bnz
n

be formal power series. Then we define the composition ψ1 ◦ ψ2(z) to be the
power series

∑∞
n=1 cnz

n where

cn =
∑
rs=n

arbs

If the functions ψ1(z) =
∑∞

n=1 anz
n and ψ2(z) =

∑∞
n=1 bnz

n are well-
defined, then the composition of formal power series is the same as composition
of functions.

The following result relating compositions and products is straightforward
to check.

Proposition 9.5 Let ψ1(z), ψ2(z), and ψ3(z) be formal power series. Then

(ψ1.ψ2) ◦ ψ3 = (ψ1 ◦ ψ3)(ψ2 ◦ ψ3)

2
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Proposition 9.6 Let

ψ(z) =
∞∑

n=1

anz
n

be a formal power series where a1 6= 0. Then there is a unique formal power
series

ψ−1(z) =
∞∑

n=1

bnz
n

such that
ψ ◦ ψ−1(z) = ψ−1 ◦ ψ(z) = z

Proof: We need to define coefficients bk such that∑
rs=n

arbs =
{

1 n = 1
0 n 6= 1

We know that a1 6= 0. We can therefore define b1 = 1/a1. The remaining
coefficients, bk, when k ≥ 2, are determined inductively by the above formula.
2

9.4 The S-transform

The S-transform is an analogue of the R-transform when we consider products
rather than sums of free random variables. The results of the previous section
mean that the following definition makes sense.

Definition 9.7 Let τ be a probability law with a sequence of moments (mτ
k),

where mτ
1 6= 0. Define the formal power series

ψτ (z) =
∞∑

n=1

mτ
nz

n

Then we define the S-transform of τ by the formula

Sτ (z) = ψ−1
τ (z)z−1(1 + z)

Lemma 9.8 Let τ be a probability law, weith associated sequence of free cumu-
lants (kn). Define a formal power series

Φτ (z) =
∞∑

n=1

knz
n

Then we have S-transformation

Sτ (z) =
Φ−1

τ (z)
z
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Proof: Write

M(z) = 1 + ψτ (z) C(z) = 1 + Φτ (z)

Then by lemma 8.12
C(zM(z)) = M(z)

that is to say
Φτ (z(1 + ψτ (z)) = ψτ (z)

Write w = ψ−1
τ (z). Then

Φτ (ψ−1
τ (w)(1 + w) = w

ie:
Φ−1

τ (w) = ψ−1
τ (w)(1 + w)

The desired formula now follows by definition of the S-transform. 2

Theorem 9.9 Let X and Y be free random variables. Then

SXY (z) = SX(z)SY (z)

Proof: By theorem 8.6, we know that we have free cumulants

kXY
n =

∑
π∈NCP (n)

kX
π k

Y
K(π)

for all n.
Let us define formal powers series ΦX , ΦY , and ΦXY as in the above lemma.

Define
NCP ′(n) = {π ∈ NCP (n) | (1) is a block of π}

and write

gamman =
∑

π∈NCP ′(n)

kX
π k

Y
K(π) Φγ(z) =

∞∑
n=1

γnz
n

Then we can check the relation

ΦXY (z) = ΦX ◦ Φγ(z)

Define

δn =
∑

π∈NCP ′(n)

kY
π k

X
K(π) Φδ(z) =

∞∑
n=1

δnz
n

The random variablesXY and Y X have the same probability law. Therefore

ΦXY (z) = ΦY ◦ Φδ(z)

The formula
zΦXY (z) = Φγ(z)Φδ(z)
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is also easy to verify. It follows that

Φγ(z)Φ−1
X ◦ ΦXY (z) Φδ(z)Φ−1

Y ◦ ΦXY (z)

so
zΦXY (z) = Φ−1

X ◦ ΦXY (z)Φ−1
Y ◦ ΦXY (z)

and by proposiition 9.5

Φ−1
XY (z)z = Φ−1

X (z)Φ−1
Y (z)

that is to say
Φ−1

XY (z)
z

=
Φ−1

X (z)
z

Φ−1
Y (z)
z

and we are done, by the above lemma. 2

10 More Random Matrices

10.1 Constant Matrices

The results we proved earlier about random matrices and freeness can be gen-
eralised to include non-Gaussian self-adjoint matrices. The first step in this
calculation is to look at constant matrices.

Definition 10.1 A sequence of matrices, (Dn), where Dn ∈ Mn(C) is said to
converge in distribution if the sequence of traces tr(Dm

n ) converges for each m.

A normal matrix, Dn, can be regarded as a constant function Ω → Mn(C)
on a probability space Ω, and so as a constant random matrix. Taking this
point of view, the above definition is the same as the definition of convergence
in distribution for a sequence of random variables.

We want to do some calculations involving both constant matrices and Gaus-
sian matrices. Before presenting the results of aour first such calculation, how-
ever, it is convenient to introduce some notation.

Definition 10.2 Let A(1), . . . , A(m) be n × n matrices. Write A(k) = (A(k)
ij ).

Let σ ∈ Σm be a permutation. Then we write

tr
σ
(A(1), . . . , A(m)) =

n∑
j(1),...,j(m)=1

Aj(1)j(σ(1)) · · ·Aj(m)j(σ(m))

Observe (since we divide by k when defining the ordinary trace of an k × k
matrix) that the above trace is a product of ordinary traces multiplied by nZ(σ),
where Z(σ) is the number of cycles of the permutation σ.

Lemma 10.3 Let X be a standard self-adjoint Gaussian n× n matrix, and let
D be a constant n× n matrix. Then

φ(Dq(1)XDq(2)X · · ·Dq(m)X) =
∑

π∈P2(m)

tr
γπ

[Dq(1) · · ·Dq(m)]nZ(γπ)−1−m/2
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Proof: Write Dk = (D(k)
ij ), and X = (Xij). Then by definition of the state φ,

φ(Dq(1)XDq(2)X · · ·Dq(m)X) =
1
n

n∑
i(1),...,i(m)

j(1),...,j(m)=1

E[D(q(1))
j(1)i(1)Xi(1)j(2)D

(q(2))
j(2)i(2)Xi(2)j(3) · · ·D

(q(m))
j(m)i(m)Xi(m)j(1)]

Since the variables D(q(k))
j(k)i(k) are all constant, we can write the above sum as

the expression

1
n

n∑
i(1),...,i(m)

j(1),...,j(m)=1

E[Xi(1)j(2)Xi(2)j(3)Xi(m)j(1)]D
(q(1))
j(1)i(1)D

(q(2))
j(2)i(2) · · ·D

(q(m))
j(m)i(m)

which by the Wick formula for moments of Gaussian families can be written

1
n

n∑
i(1),...,i(m)

j(1),...,j(m)=1

∑
π∈P2(m)

π(r,s)∈πE[Xi(r)j(r+1)Xi(s)j(s+1)]D
(q(1))
j(1)i(1)D

(q(2))
j(2)i(2) · · ·D

(q(m))
j(m)i(m)

The fact that the matrix (Xij) is a standard self-adjoint Gaussian random
matrix now tells us that φ(Dq(1)X · · ·Dq(m)X) =

1
n

n∑
i(1),...,i(m)

j(1),...,j(m)=1

∑
π∈P2(m)

π(r,s)∈πδi(r)j(r+1)δi(s)j(s+1)
1

nm/2
D

(q(1))
j(1)i(1)D

(q(2))
j(2)i(2) · · ·D

(q(m))
j(m)i(m)

Let us fix π ∈ P2(m). As usual, we can identify π with a permuatation
π ∈ Σm. Let γ = (1, 2, . . . ,m) ∈ Σm. Then the sum

n∑
i(1),...,i(m)

j(1),...,j(m)=1

π(r,s)∈πδi(r)j(r+1)δi(s)j(s+1)D
(q(1))
j(1)i(1) · · ·D

(q(m))
j(m)i(m)

can then be written in the form
n∑

i(1),...,i(m)
j(1),...,j(m)=1

πm
r=1δi(r)j(γπ(r))D

(q(1))
j(1)i(1) · · ·D

(q(m))
j(m)i(m) =

n∑
j(1),...,j(m)=1

D
(q(1))
j(1)j(γπ(1)) · · ·D

(q(m))
j(m)j(γ(π(m))

Using definition 10.2, we have the simplification

n∑
i(1),...,i(m)

j(1),...,j(m)=1

π(r,s)∈πδi(r)j(r+1)δi(s)j(s+1)D
(q(1))
j(1)i(1) · · ·D

(q(m))
j(m)i(m) =

1
nZ(σ)

tr
σ
[D(q(1)), · · · , D(q(m))]

and so the formula appearing in the statement of the lemma. 2

Theorem 10.4 Let (Xn) be a sequence of n×n standard self-adjoint Gaussian
random matrices, and let (Dn) a sequence of n×n constant matrices. Then the
sequence of pairs {Xn, Dn} converges in distribution to a pair of free random
variables.
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Proof: When m is odd, the set set P2(m) is empty, so by the above formula
the moments φ(Dq(1)XDq(2)X · · ·Dq(m)X) are all zero. Let m = 2k.

Let π ∈ P2(2k). Then the number of cycles, Z(γπ), can be at most 1 + k,
and this number is achieved precisely when the pairing is non-crossing. By the
above lemma, we have the formula

φ(Dq(1)XDq(2)X · · ·Dq(m)X) =
∑

π∈P2(m)

tr
γπ

[Dq(1) · · ·Dq(m)]nZ(γπ)−1−m/2

Observe

lim
n→∞

nZ(γπ)−1−k =
{

1 Z(γπ) = k + 1
0 Z(γπ) < k + 1

Thus

lim
n→∞

φ(Dq(1)XDq(2)X · · ·Dq(m)X) =
∑

π∈NCP2(m)

tr
γπ

[Dq(1) · · ·Dq(m)]

We can rewrite this formula

lim
n→∞

φ(Dq(1)XDq(2)X · · ·Dq(m)X) = lim
n→∞

∑
π∈NCP2(m)

φK−1(π)[Dq(1), · · · , Dq(m)]

By theorem 9.1, the above formula shows that in the limit the mixed mo-
ments are those of a pair of free random variables. The result now follows.
2

We can generalise the above result to families of Gaussian random variables
and constant matrices. The proof is the same as that given above. If we combine
this generalisation with theorem 7.10, we see the following result.

Theorem 10.5 Let {Xλ
n | λ ∈ Λ} be a sequence of independent families of

standard self-adjoint n× n Gaussian matrices. Let {Dλ
n | λ ∈ Λ} be a sequence

of families of constant random matrices that converge in distribution to random
variables {dλ | λ ∈ Λ}.

Then the sequence of families ({Xλ
n}) converges in distribution to a free

semi-circular family {sλ | λ ∈ Λ}. Further, the sets

{sλ | λ ∈ Λ} {dλ | λ ∈ Λ}

are free from each-other. 2

10.2 Unitary Random Matrices

In this section we want to imitate our earlier calculations on asymptotic freeness
for unitary rather than self-adjoint Gaussian random matrices. We begin by
defining the objects we want to examine.

Definition 10.6 A random matrix V ∈ Mn is unitary if V ∗V = V V ∗ = I,
where I = 1⊗ I ∈ L⊗Mn(C) is the identity matrix.
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Let U(n) denote the space of complex unitary n × n matrices. A random
unitary matrix is then by definition a map of the form V : Ω → U(n), where Ω
is a probability space.

However, the space U(n) is a compact topological group, and so can be
equipped with the Haar measure, h, namely the a unique multiplication-
invariant probability measure defined on all Borel measurable sets.3

Definition 10.7 Let Ω be a probability space, with measure µ. Then a random
unitary matrix V : Ω → U(n) is called a Haar matrix if it is uniformly distributed
on the space of unitary matrices, that is to say the equation

h(S) = µ(V −1[S])

holds for any Borel set S ⊆ U(n).

Let X be a standard Gaussian random matrix. By proposition 7.3, the
matrix X is invertible (as an element of the von Neumann algebra of random
matrices), so we have a polar decomposition

X = AV

where the random matrix A is positive and the matrix V is unitary.

Proposition 10.8 The random unitary matrix V defined above is a Haar ma-
trix.

Proof: Let W be a fixed unitary matrix. Then we want to show that the
random matrices V and WV have the same law. The result then follows by
theorem 2.8 and the definition of the Haar measure as the unique multiplication-
invariant probability measure on the space of unitary matrices.

By functional calculus, we can write

V = (X∗X)
−1
2 X WV = ((WX∗)(WX))

−1
2 WX

It therefore suffices to show that the random matrix WX is also Gaussian.
This follows by the definition of independence, the definition of unitary, and the
fact that a sum of independent Gaussian random variables is also Gaussian. 2

Proposition 10.9 Let {Xλ | λ ∈ Λ} be a family of complex Gaussian random
matrices. Then the family of unitary matrices

{V λ | λ ∈ Λ}

arising from polar decompositions as above is independent.

Proof: The polar decompositions Xλ = AλV λ are defined by functional
calculus:

Aλ = (Xλ(Xλ)∗)
1
2 V λ = Xλ(Xλ(Xλ)∗)−

1
2

Since the matrices {Xλ} are independent, they pairwise commute. By con-
struction, the matrices {V λ} also pairwise commute.

3A construction of the Haar measure can be found for example in chapter 5 of [Rud91].
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Again using independence of the family {Xλ}, we know that

φ(Xλ(1)Xλ(2) · · ·Xλ(n)) = φ(Xλ(1))φ(Xλ(2)) · · ·φ(Xλ(n))

whenever λ(i) 6= λ(j) when i 6= j
It is easy to check that φ(Aλ) = |φ(Xλ)| for all λ. Since the state φ is in

fact a trace, we see that

φ(V λ(1)Vλ(2) · · ·V λ(n)) = φ(V λ(1))φ(V λ(2)) · · ·φ(V λ(n))

and we have shown independence of the family {V λ}.
Let λ ∈ Λ. Then we want to check that the random unitary matrix Vλ is a

Haar matrix. For Borel set S ⊆ U(n), define

h(S) = µ((V λ)−1[S])

where µ is a probability measure on the set Ω. Then h(U(n)) = 1 so h is a
probability measure. 2

In order to perform calculations for random unitary matrices, we need to
look at some expectations involving the entries.

Definition 10.10 Let π ∈ Σn be a permutation, let N ≥ n, and let V = (Vij)
be an N ×N Haar matrix. Then we define the Weingarten function

Wg(N,π) = E(V11 . . . VnnV1π(1) · · ·Vnπ(n)

The Weingarten function Wg(N,π) depends only on the conjugacy class of
the permutation π. The general behaviour of this function is rather complex.
The following formula, relating general expectations to the Weingarten function
is easily seen, however.

Proposition 10.11 Let V = (Vij) be an N ×N Haar matrix. Then the expec-
tation

E(Vi′(1)j′(1) . . . Vi′(n)j′(n)Vi(1)j(1) · · ·Vi(n)j(n)

is equal to the sum∑
α,β∈Σn

δi(1)i′(α(1)) · · · δi(n)i′(α(n))δj(1)i′(β(1)) · · · δj(n)j′(β(n))Wg(N, βα−1)

2

We omit the proof of the following (actually quite involved) result on the
asymptotic behaviour of the Weingarten function. For details, the article
[Nic93], where results involving the asymptotic behaviour of random unitaries
were originally examined, can be consulted.

Lemma 10.12 Let π ∈ Σn be a permutation. Then

lim
N→∞

Wg(N,π)N2n−Z(π) = 1

2
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Definition 10.13 Let (A,φ) be a C∗-probability space. A random variable
V ∈ A is called a Haar unitary if φ(V k) = 0 for all k ∈ Z\{0}.

It is clear than any Haar matrix is a Haar unitary. The following result
can be proved using our usual methods on the asymptotic behaviour of random
matrices and lemma 10.12.

Theorem 10.14 Let {Uλ
n | λ ∈ Λ} be a sequence of independent families of

n × n Haar matrices. Let {Dλ
n | λ ∈ Λ} be a sequence of families of constant

random matrices that converge in distribution to random variables {dλ | λ ∈ Λ}.
Then the sequence of families ({Xλ

n}) converges in distribution to a free
family of Haar unitaries {uλ | λ ∈ Λ}. Further, the algebras generated by the
sets

{uλ | λ ∈ Λ} {dλ | λ ∈ Λ}

are free. 2

10.3 Random Rotations

To see why we are interested in unitary matrices, note the following proposition,
which follows immediately from the definition of freeness.

Proposition 10.15 Let X and Y be free random variables. Let U be a Haar
unitary that is free from the variables X and Y . Then the random variables X
and UY U∗ are also free. 2

The above proposition along with theorem 10.14 gives us the following result.

Theorem 10.16 Let (Xn) and (Yn) be sequences of constant n × n matrices
which converge in distribution to random variables X and Y respectively. Let
Un be an n×n Haar matrix. Then the sequences (Xn) and (UnYnU

∗
n) converge

in distribution to free random variables X and Y ′ respectively, where Y ′ has the
same distribution as the random variable Y . 2

The above theorem tells us that any two free random variables can be realised
as a limit (in distribution) of a sequence of constant matrices and a sequence of
constant matrices rotated by Haar matrices.
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