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Introduction

Free probability theory is a quite recent theory, bringing together many
different fields of mathematics, for example operator algebras, random
matrices, combinatorics, or representation theory of symmetric groups.
So it has a lot to offer to various mathematical communities, and in-
terest in free probability has steadily increased in recent years.

However, this diversity of the field also has the consequence that it
is considered hard to access for a beginner. Most of the literature on
free probability consists of a mixture of operator algebraic and proba-
bilistic notions and arguments, interwoven with random matrices and
combinatorics.

Whereas more advanced operator algebraic or probabilistic exper-
tise might indeed be necessary for a deeper appreciation of special
applications in the respective fields, the basic core of the theory, how-
ever, can be mostly freed from this and it is possible to give a fairly
elementary introduction to the main notions, ideas and problems of
free probability theory. The present lectures are intended to provide
such an introduction.

Our main emphasis will be on the combinatorial side of free prob-
ability. Even when stripped from analytical structure, the main fea-
tures of free independence are still present; moreover, even on this more
combinatorial level it is important to organize all relevant information
about the considered variables in the right way. Anyone who has tried
to perform computations of joint distributions for non-commuting vari-
ables will probably agree that they tend to be horribly messy if done
in a naive way. One of the main goals of the book is to show how
such computations can be vastly simplified by appropriately relying on
a suitable combinatorial structure — the lattices of non-crossing parti-
tions. The combinatorial development starts from the standard theory
of Mobius inversion on non-crossing partitions, but has its own spe-
cific flavor — one arrives to a theory of free or non-crossing cumulants
or, in an alternative approach, one talks about R-transforms for non-
commutative random variables.

xiii



Xiv INTRODUCTION

While writing this book, there were two kinds of readers that we
had primarily in mind:

(a) a reader with background in operator algebras or probability
who wants to see the more advanced “tools of the trade” on
the combinatorial side of free probability;

(b) a reader with background from algebraic combinatorics who
wants to get acquainted with a field (and a possible source
of interesting problems) where non-trivial combinatorial tools
are used.

We wrote our lectures by trying to accommodate readers from both
these categories. The result is a fairly elementary exposition, which
should be accessible to a beginning graduate student or even to a strong
senior undergraduate student.

Free probability also has applications outside of mathematics, in
particular in electrical engineering. Our exposition should also be use-
ful for readers with engineering background, who have seen the use of
R- or S-transform techniques in applications, for example in wireless
communications, and who want to learn more about the underlying
theory.

We emphasize that the presentation style used throughout the book
is a detailed one, making the material largely self-contained, and only
rarely requiring that other textbooks or research papers are consulted.
The basic units of this book are called “lectures.” They were written
following the idea that the material contained in one of them should be
suitable for being presented in one class of a first-year graduate course.
(We have in mind a class of 90 minutes, where the instructor presents
the essential points of the lecture, and leaves a number of things for
individual study.)

While the emphasis is on combinatorial aspects, we still felt that
we must give an introduction of how the general framework of free
probability comes about. Also, we felt that the flavor of the theory
will be better conveyed if we show, with moderation and within a self-
contained exposition, how analytical arguments can be interwoven with
the combinatorial ones. However, it should be understood that in the
analytical respects, this book is only an appetizer and an invitation
to further reading. In particular, the analytical framework used for
illustrations is exclusively that of a C*-probability space. The reader
should be aware that some of the most significant applications of free
probability to operator algebras take place in the more elaborate frame-
work of W*-probability spaces; but going to W*-structures (or in other
words, to von Neumann algebra theory) did not seem possible within



INTRODUCTION XV

the detailed, self-contained style of the book, and within the given page
limits.

A consequence of the frugality of the analytic aspects covered by the
book is that we do not discuss free entropy and free Fisher information,
and how free cumulants can be used in some cases to perform free
information calculations. Free entropy is currently one of the main
directions of development in free probability; for an overview of the
topic see the recent survey by Voiculescu [85].

Coming to things that are not covered by the book we must also say,
with regret, that we only consider free independence over the complex
field. The combinatorial ideas of free probability have a far-reaching
extension to the situation when free independence is considered over
an algebra B (instead of just C) — the reader interested in this direction
is referred to the memoir [73].

References to the literature are not made in the body of the lectures,
but are collected in the “Notes and comments” section at the end of
the book. The literature on free probability is growing at an explosive
rate, and, with due apologies, we felt it is beyond our limits to even
try to provide an exhaustive bibliography. We have followed the line
of only citing the research work which is presented in the lectures, or
is very directly connected to it. For a more complete image of work
in this field, the reader can consult the survey papers indicated at the
beginning of the “Notes and comments” section.

So, to summarize, from one point of view this is a research mono-
graph, presenting the current state of the combinatorial facet of free
probability. At the same time it is an introduction to the field — one
which is, we hope, friendly and self-contained. Finally, the book is
written with the specific purpose of being used for teaching a course.
We hope this will be a contribution towards making free probability
appear more often as a topic for a graduate course, and we look forward
to hearing from other people how following these lectures has worked
for them.

Finally we would like to mention that the idea of writing this book
came from a sequence of lectures which we gave at the Henri Poincaré
Institute in Paris, during a special semester on free probability and
operator spaces hosted by the institute in Fall 1999. Time has flown
quickly since then, but we hope it is not too late to thank the Poincaré
Institute, and particularly the organizers of that special semester —
Philippe Biane, Gilles Pisier, and Dan Voiculescu — for the great envi-
ronment they offered us, and for the opportunity of getting started on
this project.
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Basic concepts






LECTURE 1

Non-commutative probability spaces and
distributions

Since we are interested in the combinatorial aspects of free probabil-
ity, we will focus on a framework which is stripped of its analytical
structure (i.e. where we ignore the metric or topological structure of
the spaces involved). The reason for the existence of this monograph
is that even so (without analytical structure), the phenomenon of free
independence is rich enough to be worth studying. The interesting
combinatorial features of this phenomenon come from the fact that
we will allow the algebras of random variables to be non-commutative.
This certainly means that we have to consider a generalized concept of
“random variable” (since in the usual meaning of the concept, where
a random variable is a function on a probability space, the algebras of
random variables would have to be commutative).

Non-commutative probability spaces

DEFINITION 1.1. (1) A non-commutative probability space
(A, ) consists of a unital algebra A over C and a unital linear func-
tional

p: A—=C;  p(ly) =1,
The elements a € A are called non-commutative random variables
in (A, ). Usually, we will skip the adjective “non-commutative” and
just talk about “random variables a € A.”

An additional property which we will sometimes impose on the
linear functional ¢ is that it is a trace, i.e. it has the property that

o(ab) = ¢(ba), Y a,be A.

When this happens, we say that the non-commutative probability space
(A, ) is tracial.
(2) In the framework of part (1) of the definition, suppose that A is
a x-algebra, i.e. that A is also endowed with an antilinear x-operation
A > ar a* € A, such that (a*)* = a and (ab)* = b*a* for all a,b € A.
If we have that
p(a*a) >0, Vae€ A,

3



4 1. NON-COMMUTATIVE PROBABILITY SPACES AND DISTRIBUTIONS

then we say that the functional ¢ is positive and we will call (A, ) a
*-probability space.

(3) In the framework of a x-probability space we can talk about:

e selfadjoint random variables, i.e. elements a € A with the prop-
erty that a = a*;

e unitary random variables, i.e. elements u € A with the property
that v*u = wu* = 1;

e normal random variables, i.e. elements a € A with the property
that a*a = aa™.

In these lectures we will be mostly interested in x-probability spaces,
since this is the framework which provides us with a multitude of excit-
ing examples. However, plain non-commutative probability spaces are
also useful, because sometimes we encounter arguments relying solely
on the linear and multiplicative structure of the algebra involved —
these arguments are more easily understood when the x-operation is
ignored (even if it happened that the algebra had a s-operation on it).

REMARKS 1.2. Let (A, ¢) be a x-probability space.
(1) The functional ¢ is selfadjoint, i.e. it has the property that

ola*) = ¢(a), VYae A.

Indeed, since every a € A can be written uniquely in the form a = x+iy
where x,y € A are selfadjoint, the latter equation is immediately seen
to be equivalent to the fact that ¢(x) € R for every selfadjoint element
x € A. This in turn is implied by the positivity of ¢ and the fact that
every selfadjoint element = € A can be written in the form z = a*a—b*b
for some a,b € A (take e.g. a = (v +14)/2, b= (z —14)/2).

(2) Another consequence of the positivity of ¢ is that we have:

lp(b*a)]* < p(a*a)p(b*h), Y a,bec A. (1.1)

The inequality (1.1) is commonly called the Cauchy—Schwarz in-
equality for the functional ¢. It is proved in exactly the same way as
the usual Cauchy—Schwarz inequality (see Exercise 1.21 at the end of
the lecture).

(3) If an element a € A is such that p(a*a) = 0, then the Cauchy—
Schwarz inequality (1.1) implies that ¢(ba) = 0 for all b € A (hence
a is in a certain sense a degenerate element for the functional ¢). We
will use the term “faithful” for the situation when no such degener-
ate elements exist, except for a = 0. That is, we make the following
definition.
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DEFINITION 1.3. Let (A, p) be a x-probability space. If we have
the implication:

ac A, pla*a) =0 = a=0,
then we say that the functional ¢ is faithful.

ExaMpLES 1.4. (1) Let (2,9, P) be a probability space in the
classical sense, i.e. () is a set, Q is a o-field of measurable subsets of €2
and P : Q — [0,1] is a probability measure. Let A = L*>(Q, P), and
let © be defined by

ola) = /Q a(w) dP(w), a€ A

Then (A, ) is a *-probability space (the x-operation on A is the oper-
ation of complex-conjugating a complex-valued function). The random
variables appearing in this example are thus genuine random variables
in the sense of “usual” probability theory.

The reader could object at this point that the example presented in
the preceding paragraph only deals with genuine random variables that
are bounded, and thus misses for instance the most important random
variables from usual probability — those having a Gaussian distribution.
We can overcome this problem by replacing the algebra L>°(€2, P) with:

L (Q,P):= (] L(Q.P).

1<p<oo

That is, we can make A become the algebra of genuine random variables
which have finite moments of all orders. (The fact that L~ (Q, P) is
indeed closed under multiplication follows by an immediate application
of the Cauchy-Schwarz inequality in L*(Q, P) — cf. Exercise 1.22 at
the end of the lecture.) In this enlarged version, our algebra of random
variables will then contain the Gaussian ones.

Of course, one could also point out that in classical probability there
are important cases of random variables which do not have moments
of all orders. These ones, unfortunately, are beyond the scope of the
present set of lectures — we cannot catch them in the framework of
Definition 1.1.

(2) Let d be a positive integer, let My(C) be the algebra of d xd com-
plex matrices with usual matrix multiplication, and let tr : My(C) — C
be the normalized trace,

d
1
tr(a) = - Y ay for a=(ay)l;_, € My(C). (1.2)
i=1
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Then (My4(C),tr) is a *x-probability space (where the x-operation is
given by taking both the transpose of the matrix and the complex
conjugate of the entries).

(3) The above examples (1) and (2) can be “put together” into
one example where the algebra consists of all the d x d matrices over
L>*=(Q,P):

A= M(L* (€, P)),

and the functional ¢ on it is

p(a) = /tr(a(w))dP(w), a€ A

The non-commutative random variables obtained here are thus ran-
dom matrices over (2, Q, P). (Observe that this example is obtained
by starting with the space in Example 1.4.1 and by performing the
d x d matrix construction described in Exercise 1.23.) We will elabo-
rate more on random matrix examples later (cf. Lectures 22 and 23).

(4) Let G be a group, and let CG denote its group algebra. That
is, CG is a complex vector space having a basis indexed by the elements
of G, and where the operations of multiplication and *-operation are
defined in the natural way:

CG = {Z a,g | oy € C, only finitely many «a, # O},
Ye
with g
(Z agg) . (Z ﬂhh) = Zagﬁh(gh) = Z( Z ozgﬂh)k,
g.h keG g,h: gh=k
and .
(Z agg> = Z dgg_l.

Let e be the unit element of G. The functional 7 : CG — C defined

by the formula
TG (Z agg) = Qe

is called the canonical trace on CG. Then (CG, 7¢) is a *-probability
space. It is easily verified that 7 is indeed a trace (in the sense of
Definition 1.1.1) and is faithful (in the sense of Definition 1.3).

(5) Let H be a Hilbert space and let B(H) be the algebra of all
bounded linear operators on ‘H. This is a *-algebra, where the adjoint
a* of an operator a € B(H) is uniquely determined by the fact that

(a&,m) = (&, a™n), V&mneH.
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Suppose that A is a unital x-subalgebra of B(H) and that £, € H is

a vector of norm one (||&,|] := (&, &,)"/? = 1). Then we get an example
of -probability space (A, ¢), where ¢ : A — C is defined by:
o(a) == (a&,, &), a € A. (1.3)

A linear functional as defined in (1.3) is usually called a vector-state
(on the algebra of operators A).

EXERCISE 1.5. (1) Verify that in each of the examples described
in 1.4, the functional considered as part of the definition of the *-
probability space is indeed positive.

(2) Show that in Examples 1.4.1-1.4.4, the functional considered as
part of the definition of the x-probability space is a faithful trace.

DEFINITION 1.6. (1) A morphism between two sx-probability
spaces (A, p) and (B,1)) is a unital x-algebra homomorphism ¢ : A —
B with the property that ¢ o ® = .

(2) In the case when (B,)) is a *-probability space of the special
kind discussed in Example 1.4.5, we will refer to a morphism & from
(A, @) to (B,1) as a representation of (A, ). So, to be precise, giving
a representation of (A, ) amounts to giving a triple (H, ®,¢,) where
H is a Hilbert space, ® : A — B(H) is a unital *-homomorphism, and
£ € H is a vector of norm one, such that p(a) = (®(a)é,,&,) for all
a € A

REMARK 1.7. The x-probability spaces appearing in Examples
1.4.1, 1.4.2 and 1.4.4 have natural representations, on Hilbert spaces
related to how the algebras of random variables were constructed — see
Exercise 1.25 at the end of the lecture.

x-distributions (case of normal elements)

A fundamental concept in the statistical study of random variables is
that of distribution of a random variable. In the framework of a *-
probability space (A, ), the appropriate concept to consider is the -
distribution of an element a € A. Roughly speaking, the x-distribution
of a has to be some “standardized” way of reading the values of ¢ on
the unital x-subalgebra generated by a.

We start the discussion of x-distributions with the simpler case
when a € A is normal (i.e. is such that a*a = aa*). In this case the
unital x-algebra generated by a is

A = span{a®(a*)' | k,1 > 0}; (1.4)

the job of the x-distribution of ¢ must thus be to keep track of the
values ¢(a*(a*)!), where k and [ run in NU {0}. The kind of object
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which does this job and which we prefer to have whenever possible is
a compactly supported probability measure on C.

DEFINITION 1.8. Let (A, ) be a x-probability space and let a be a
normal element of A. If there exists a compactly supported probability
measure 4 on C such that

/zk ZHdu(z) = p(a®(a*)), for every k,l € N, (1.5)

then this g is uniquely determined and we will call the probability
measure u the x-distribution of a.

REMARKS 1.9. (1) The fact that a compactly supported probabil-
ity measure p on C is uniquely determined by how it integrates func-
tions of the form z +— 2*z! with k,! € N is an immediate consequence
of the Stone—Weierstrass theorem. Or more precisely: due to Stone—
Weierstrass, 4 is determined as a linear functional on the space C(K)
of complex-valued continuous functions on K, where K is the support
of u; it is then well known that this in turn determines p uniquely.

(2) It is not said that every normal element in a x-probability space
has to have a *-distribution in the sense defined above. But this turns
out to be true in a good number of important examples. Actually,
this is always true when we look at x-probability spaces which have a
representation on a Hilbert space, in the sense of the above Definition
1.6 (see Corollary 3.14 in Lecture 3); and civilized examples do have
representations on Hilbert spaces — see Lecture 7.

REMARK 1.10. (The case of a selfadjoint element)
Let (A, @) be a s-probability space, and let a be a selfadjoint element
of A (that is, we have a = a*, which implies in particular that a is
normal). Suppose that a has *-distribution g, in the sense of Definition
1.8. Then p is supported in R. Indeed, we have

J1a=zPaue) = =26 -2 aue)

= /(CQZZ — 22— 2 du(z)
= 2¢p(aa”) — p(a”) — p((a")*) = 0.

Since z +— | z — z |? is a continuous non-negative function, we must
have that z — Z vanishes on the support supp(u) of our measure, and
hence:

supp(p) C{z € C|z=2z} =R
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So in this case p is really a measure on R, and Equation (1.5) is better
written in this case as

/tp du(t) = p(a?), VpeN. (1.6)

Conversely, suppose that we have a compactly supported measure p
on R such that (1.6) holds. Then clearly u is the *-distribution of a in
the sense of Definition 1.8 (because [ 2*z! du(z) becomes [ ¥ dpu(t),
while o( a*(a*)!) becomes ¢(a**)).

The conclusion of this discussion is that for a selfadjoint element
a € A it would be more appropriate to talk about the distribution
of a (rather than talking about its *-distribution); this is defined as a
compactly supported measure on R such that (1.6) holds. But there
is actually no harm in treating a as a general normal element, and in
looking for its #-distribution, since in the end we arrive at the same
result.

ExamMmpPLES 1.11. (1) Consider the framework of Example 1.4.1,
where the algebra of random variables is L>°(€2, P). Let a be an element
in A; in other words, a is a bounded measurable function, a : 2 — C.
Let us consider the probability measure v on C which is called “the
distribution of a” in usual probability; this is defined by

V(E) = P({we:a(w)e E}), ECC Borel set. (1.7)

Note that v is compactly supported. More precisely, if we choose a
positive r such that |a(w)| < r, V w € €, then it is clear that v is
supported in the closed disc centered at 0 and of radius r.

Now, a is a normal element of A (all the elements of A are normal,
since A is commutative). So it makes sense to place a in the framework
of Definition 1.8. We will show that the above measure v is exactly the
x-distribution of a in this framework.

Indeed, Equation (1.7) can be read as

/f ) dv(z /f (w), (1.8)

where f is the characteristic function of the set E. By going through the
usual process of taking linear combinations of characteristic functions,
and then doing approximations of a bounded measurable function by
step functions, we see that Equation (1.8) actually holds for every
bounded measurable function f : C — C. (The details of this are
left to the reader.) Finally, let k,[ be arbitrary non-negative integers,
and let r > 0 be such that |a(w)| < r for every w € 2. Consider a
bounded measurable function f : C — C such that f(z) = z*z' for
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every z € C having |z| < r. Since v is supported in the closed disc of
radius r centered at 0, it follows that

/C f(2) dv(z) = /C 2 du(2),

and, consequently, that

l

Afww»dmw::lfomwcﬁ@)zwm%ww

Thus for this particular choice of f, Equation (1.8) gives us that
[ ave) = el
C

and this is precisely (1.5), implying that v is the x-distribution of a in
the sense of Definition 1.8.

(2) Consider the framework of Example 1.4.2, and let a € My(C)
be a normal matrix. Let A\{,..., Ay be the eigenvalues of a, counted
with multiplicities. By diagonalizing a we find that

d
1 _
tr(a®(a*)") = y Y MX,  kleN
=1

The latter quantity can obviously be written as [ 2*z" du(z), where

wi= 225& (1.9)

(05 stands here for the Dirac mass at A € C). Thus it follows that a
has a *-distribution g, which is described by Equation (1.9). Usually
this p is called the eigenvalue distribution of the matrix a.

One can consider the question of how to generalize the above fact
to the framework of random matrices (as in Example 1.4.3). It can be
shown that the formula which appears in place of (1.9) in this case is

d
1
= a;/Q(SW) dP(w), (1.10)

where a = a* € My(L>* (9, P)), and where \j(w) < --- < A\j(w) are
the eigenvalues of a(w), w € Q. (Strictly speaking, Equation (1.10)
requires an extension of the framework used in Definition 1.8, since
the resulting averaged eigenvalue distribution p will generally not have
compact support. See Lecture 22 for more details about this.)

Our next example will be in connection to a special kind of element
in a *-probability space, called a Haar unitary.
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DEFINITION 1.12. Let (A, ¢) be a x-probability space.
(1) An element u € A is said to be a Haar unitary if it is a unitary
(ie. if uu* = v*u = 1) and if

ou*) =0, YkeZ\{0}. (1.11)

(2) Let p be a positive integer. An element u € A is said to be a
p-Haar unitary if it is a unitary, if «? = 1, and if

o(uF) =0, for all k € Z such that p does not divide k. (1.12)

REMARKS 1.13. (1) The name “Haar unitary” comes from the fact
that if v is a Haar unitary in a x-probability space, then the normalized
Lebesgue measure (also called “Haar measure”) on the circle serves as
«-distribution for w. Indeed, for every k,l € NU {0} we have

o e o itk £
¢w%m®—ﬂww—{1ﬁkzh

and the computation of the integral

21
[ an= [T owondt
T 0 2

(where T = {z € C | |z| = 1} and dz is the normalized Haar measure
on T) gives exactly the same thing.

(2) Haar unitaries appear naturally in the framework of Example
1.4.4. Indeed, if g is any element of infinite order in the group G,
then one can verify immediately that g viewed as an element of the
«-probability space (CG, 7¢) is a Haar unitary.

(3) The p-Haar unitaries also appear naturally in the framework of
Example 1.4.4 — an element of order p in G becomes a p-Haar unitary
when viewed in (CG,7g). It is immediately verified that a p-Haar
unitary has x-distribution

1 p
Nzgzd)\ﬁ (113)
j=1
where Aq,..., A, € C are the roots of order p of unity.

ExAMPLE 1.14. Let (A, ) be a x-probability space, and let u € A
be a Haar unitary. We consider the selfadjoint element v + u* € A,
and we would like to answer the following questions.

(1) Does u 4 u* have a *-distribution?

(2) Suppose that u + u* does have a x-distribution p. Then, as
observed in Remark 1.10, i is a probability measure on R, and satisfies
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Equation (1.6). Do we have some “nice” formula for the moments
[ % du(t) which appear in Equation (1.6)?

Let us note that the second question is actually very easy. Indeed,
this question really asks for the values p( (u +u*)*), k € N, which are
easily derived from Equation (1.11). We argue like this: due to the fact
that v and v* commute, we can expand

(u+u*)F = i} (’;) O

Then we use the fact that u* = u~
the latter equation, to obtain:

s =3 () et

k
J=0

and we apply ¢ to both sides of

It only remains to take (1.11) into account, in order to get that:

/tk dult) = {(()k if k is odd 114

k/2) if k£ is even.

This is the answer to the second question.

Now we could treat the first question as the problem of finding a
compactly supported probability measure x4 on R which has moments
as described by Equation (1.14). This is feasible, but somewhat cum-
bersome. It is more convenient to forget for the moment the calculation
done in the preceding paragraph, and attack question (1) directly, by
only using the fact that we know the *-distribution of u. (The distri-
bution of u+ u* has to be obtainable from the *-distribution of u!) We
go like this:

pllutu')) =

k o
(j) /z]zk_j dz (by Remark 1.13.1)
T

I
<
S— 1
—~
N
+
N
SN—"
=
<N
N
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- %(/0 (2cost)* dt + /OW(Qcost)k dt)

—Tr

1 7T
= —/ (2cost)" dt.
™ Jo

For the last integral obtained above, our goal is not to compute it ex-
plicitly (this would only yield a more complicated derivation of Equa-
tion (1.14)), but to rewrite it in the form [ ¢*p(¢)dt, where p is an
appropriate density. This is achieved by the change of variable

2cost =, dt = d(arccos(r/2)) = —dr/v4 —r2,

which gives us that

1 [7 1 /[ dr
— 2COStkdt:—/ R —
R B

In this way we obtain that

pllusuw)) = [ dotydr, k=0, (115)
R
where p(t) is the so-called “arcsine density on [—2,2]”:
—— if |t <2
t g TV4—t2 116
() {o if [t > 2. (1.16)

So, as a solution to the first question of this example, we find that
the distribution of u 4+ u* is the arcsine law.

x-distributions (general case)

Let us now consider the concept of x-distribution for an arbitrary (not
necessarily normal) element a in a x-probability space (A, ¢). The
unital x-subalgebra of A generated by a is

A, = span{a®® ... a*®) | k>0, e(1),...,e(k) € {1,%} },  (1.17)

i.e. it is the linear span of all the “words” that one can make by using
the “letters” a and a*. The values of ¢ on such words are usually
referred to under the name of x-moments.

DEFINITION 1.15. Let a be a random variable in a *-probability
space (A, ¢). An expression of the form

o(a®® ... af®) with k> 0and e(1),...,e(k) € {1,%},  (1.18)

is called a *-moment of a.
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So in this case the *-distribution of @ must be a device which keeps
track of its x-moments. Unlike in the case of normal elements, there
is no handy analytic structure which does this. As a consequence, we
will have to define the x-distribution of a as a purely algebraic object.

NOTATION 1.16. We denote by C(X, X*) the unital algebra which
is freely generated by two non-commuting indeterminates X and X*.
More concretely, C{X, X*) can be described as follows. The monomials
of the form XM ... X)) where k > 0 and (1), ...,e(k) € {1, *}, give
a linear basis for C(X, X*), and the multiplication of two such mono-
mials is done by juxtaposition. C(X, X*) has a natural x-operation,
determined by the requirement that the x-operation applied to X gives
X

DEFINITION 1.17. Let a be a random variable in a *-probability
space (A, ¢). The %-distribution of a is the linear functional

p:CX, X*) = C
determined by the fact that:
p(XEW . .Xs(k)) - QD(CLE(I) .. .aé‘(k))7 (1.19)
for every k > 0 and all £(1),...,e(k) € {1, *}.

REMARKS 1.18. (1) The advantage of the formal definition made
above is that even when we consider random variables which live in
different x-probability spaces, the corresponding *-distributions are all
defined on the same space C(X, X*) (and hence can be more easily
compared with each other).

(2) Definition 1.17 will apply to a even if a happens to be normal. In
this case the functional u of (1.19) could actually be factored through
the more familiar commutative algebra C[X, X*] of polynomials in two
commuting indeterminates. But this would not bring much benefit to
the subsequent presentation. (In fact there are places where we will
have to consider all the possible words in @ and a* despite knowing
a to be normal — see e.g. the computations shown in the section on
Haar unitaries of Lecture 15.) So it will be easier to consistently use
C(X, X*) throughout these notes.

(3) If a is a normal element of a x-probability space, then the *-
distribution of a is now defined twice, in Definition 1.8 and in Definition
1.17. When there is a risk of ambiguity, we will distinguish between
the two versions of the definition by calling them “k-distribution in
analytic sense” and respectively “«-distribution in algebraic sense.”

DEFINITION 1.19. Let (A, ¢) be a x-probability space, and let a be
a selfadjoint element of A. In this case, the *-moments from (1.18) are
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just the numbers (a*), k > 0, and they are simply called moments of
a. Following the standard terminology from classical probability, the
first moment ¢(a) is also called the mean of a, while the quantity

Var(a) := ¢(a®) — ¢(a)?
is called the variance of a.

REMARK 1.20. We would like next to introduce an important ex-
ample of x-distribution, which is in some sense a non-normal counter-
part of the Haar unitary; and moreover, we would like to show how
the analog of the questions treated in Example 1.14 can be pursued
for this non-normal example. The discussion will be longer than that
for the Haar unitary (precisely because we do not have an analytic
«-distribution to start from), and will be the object of the next lecture.

Exercises

EXERCISE 1.21. (1) Let (A, ) be a x-probability space, and let a, b
be elements of A. By examining the quadratic function

t— o((a—th)*(a—1tb)), teR,
prove that
(Rep(ta))” < pla*a)p(b).

(2) Prove the Cauchy—Schwarz inequality which was stated in Re-
mark 1.2.2.

EXERCISE 1.22. Let (2, Q, P) be a probability space, and consider
the space of functions

L7(Q,P):= (] L’(QP)

1<p<oo

(as in Example 1.4.1).

(1) Prove that the spaces intersected on the right-hand side of the
above equation form a decreasing family (that is, L(Q2, P) D L4(Q), P)
for p < q).

(2) Observe that L>*~ (€, P) could also be defined as N,LP(<2, P)
with p running in N\ {0}. Or equivalently, observe that L>*~(, P)
could be defined as the algebra of complex random variables on {2 which
have finite moments of all orders.

(3) Prove that L>~(Q, P) is closed under multiplication.

[Hint for part (3): use the Cauchy—Schwarz inequality in L?(€2, P).]
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EXERCISE 1.23. Let (A, ¢) be a x-probability space and let d be a
positive integer. Let My(A) be the space of d x d matrices over A,

Md(A) = {(aij>zj:1 | CLU < A for 1 S Z,j S d}
On My(A) we can define canonically a x-operation by
( (aij)gl,jzl )t = (bz'j)?,j:p

where b;; = aj; for 1 < i,j < d; thus My(A) becomes a *-algebra.
Then consider the linear functional ¢4 : My(A) — C defined by

d
pa(A) == elai), for A= (a;)};; € Ma(A).
=1

SHN

Note that M,(A) is canonically isomorphic to M;(C) ® A, and that
under this isomorphism ¢, corresponds to tr ® ¢.

(1) Verify that (My(.A), q) is a x-probability space.

(2) Show that if the x-probability space (A, ) is tracial, then so is
(Ma(A), pa).

(3) Show that if the functional ¢ is faithful, then so is ¢g.

EXERCISE 1.24. Let (A, ¢) and (B, 1) be x-probability spaces, and
suppose that ¢ is faithful. Let ® be a morphism between (A, ¢) and
(B, ). Prove that ® is one-to-one.

EXERCISE 1.25. (1) Consider the *-probability space discussed in
Example 1.4.1. Write a representation of this x-probability space, living
on the Hilbert space L*(Q, Q, P).

(2) Consider the *-probability space discussed in Example 1.4.2.
Write a representation of this x-probability space, living on the Hilbert
space C%.

(3) Consider the x-probability space discussed in Example 1.4.4.
Write a representation of this *-probability space, living on the Hilbert

space I*(G) :={§: G — C |3 4 &)* < oo}

EXERCISE 1.26. Let (A, ¢) be a x-probability space, let a be a nor-
mal element of A, and suppose that a has x-distribution p in analytic
sense (i.e. in the sense of Definition 1.8).

(1) Let P : C — C be a polynomial in z and Zz, and let v be the
probability measure on C defined by:

v(E) = u(PYE)), for E C C Borel set.

Show that v is compactly supported and that the normal element b :=
P(a,a*) € A has *-distribution v.
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(2) By using the result in part (1), describe the -distributions of
the following elements: i) a*; ii) a+ «, where « is an arbitrary complex
number; iii) ra, where r is an arbitrary positive number.

EXERCISE 1.27. Do the analog of the first question treated in Ex-
ample 1.14 for a p-Haar unitary.






LECTURE 2

A case study of non-normal distribution

In this lecture we study the example of the so-called “vacuum-state”
on the x-algebra generated by the one-sided shift operator, and see how
the important concept of semicircular random variable is connected to
it.

Description of the example

NOTATION 2.1. Throughout the lecture we fix a x-probability space
(A, ¢) and an element a € A, such that:
(i) a*a = 14 # aa™;
(ii) @ generates A as a *-algebra.

One refers to the condition a*a = 14 by saying that a is an isom-
etry; since the above assumption (i) also requires that aa* # 14, one
can rephrase it by saying that “a is a non-unitary isometry.”

Some more assumptions made on a and (A, ¢) will be stated after
we observe the following simple consequence of (i) and (ii).

LEMMA 2.2. A = span{a™(a*)" | m,n > 0}.

PRrooOF. The condition a*a = 14 immediately implies that for every
m,n,p,q > 0 we have:

a™ P (@*) ifn<p
(am(a*)”> : (ap(a*)q) =< a™(a*)? ifn=p (2.1)

a™(a*)"Pte if n > p.

Since the family {a™(a*)" | m,n > 0} is, clearly, also closed under
x-operation, it follows that its linear span has to be equal to the unital
x-subalgebra of A generated by a. But this is all of A, by (ii) of
Notation 2.1. OJ

NOTATION 2.3. In addition to what was stated in 2.1, we will make
the following assumptions on a and (A, ¢) :
(iii) the elements {a™(a*)™ | m,n > 0} are linearly independent;

19
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(iv) the functional ¢ : A — C satisfies (and is determined by) the
equation

1 ifm=n=0

p(a™(a®)") = { (2:2)

for m,n € NU{0}.

0 otherwise,

REMARK 2.4. As the reader may recognize, Equation (2.1) is con-
nected to a semigroup structure on (NU{0})?, where the multiplication

is defined by

(m+p—n,q) ifn<p
(m,n) - (p,q) = (m,q) ifn=p (2.3)
(m,n—p+gq) ifn>p.

This is called the bicyclic semigroup, and is a fundamental example in a
class of semigroups with a well-developed theory, which are called “in-
verse semigroups.” So from this perspective, the algebra A appearing
in this example could be called “the semigroup algebra of the bicyclic
semigroup.”

REMARK 2.5. From another perspective, the algebra A is related
to an important example from the theory of C*-algebras, called the
Toeplitz algebra, and obtained by completing A with respect to a suit-
able norm. Equivalently, the Toeplitz algebra can be defined as the
closure in the norm-topology of w(A) C B(I?), where 7 : A — B(I?) is
the natural representation described in what follows.

Consider the Hilbert space [* := [*(N U {0}). The vectors of [?
are thus of the form £ = (ay)r>0, where the oy are from C and have
> re o lag])? < co. The inner product of & = (ay)k>0 With 7 = (B )k>0 is

<€7 77) = Z akBk-
k=0

For every n > 0 we denote:
& = (0,0,...,0,1,0,...,0,...), (2.4)

with the 1 occurring on component n. Then &y,&4,...,&,,... form an
orthonormal basis for I2.
Let S € B(I?) be the one-sided shift operator, determined by
the fact that
Sgn = §n+17 Vn > 0.

Its adjoint S* is determined by
S* =0 and S*, =61, Vn>1.
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It is immediate that S*S = 1p(2) (the identity operator on [?), but
SS* # 1pa2).

Since (@™ (a*)"™ )mn>o form a linear basis in A, we can define a linear
map 7 : A — B(I?) by asking that:

mw(a™(a*)") = S™(S")", Vm,n >0.

It is easily verified that 7 is a unital *-homomorphism. (The mul-
tiplicativity of m follows from the fact that, as a consequence of the
relation S*S = 1p2), the product of two members of the family
(S™(S*)™ )m.n>o0 is described by the same rules as in Equation (2.1).)

Now, it is also easy to see that the operators (S™(S*)™ ).n>0 are
linearly independent (see Exercise 2.22 at the end of the lecture). This
implies that the x-homomorphism 7 defined above is one-to-one, hence
it actually gives us an identification between the algebra A fixed in
Notation 2.1 and an algebra of operators on 2.

Let ¢ : B(I?) — C be the functional defined by

eo(T) = (Té, &), T € B(I?), (2.5)

where & is the first vector of the canonical orthonormal basis considered
n (2.4). if myn € NU{0} and (m,n) # (0,0) then

po(S™(S7)") = (5™(57)"€0, Lo) = ((57)"60, (57)™&0),
which is equal to 0 because at least one of (S*)"¢, and (S*)"&, is
the zero-vector. Comparing this with (2.2) makes it clear that 7 is
a morphism between (A, ¢) and (B(I?), ¢o), in the sense discussed in
Definition 1.6 of Lecture 1. Or, in the sense of the same definition,
(12,7, &) is a representation of (A, ¢) on the Hilbert space [2.

As mentioned above, the closure 7 of 7(.4) in the norm-topology of
B(I?) is called the Toeplitz algebra. Moreover, the restriction to 7 of
the functional ¢y defined by Equation (2.5) is called “the vacuum-state
on the Toeplitz algebra” (which is why, by a slight abuse of terminology,

the x-algebraic example discussed throughout the lecture is also termed
in that way).

REMARK 2.6. Our goal in this lecture is to look at the x-distribution
of the non-normal element a which was fixed in Notation 2.1. But as
the reader has surely noticed, the equation describing A in Lemma 2.2
is a repeat of Equation (1.4) from the discussion on normal elements, in
Lecture 1. Does this indicate that we can treat a as if it was normal? It
is instructive to take a second to notice that this is not the case. Indeed,
the unique compactly supported probability measure on C which fits
the *-moments in (2.2) is the Dirac mass dp — so we would come to
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the unconvincing conclusion that a has the same *-distribution as the
zero-element of A.

The point here is that, besides the information given in (2.2), one
must also understand the process (quite different from the case of nor-
mal elements) of reducing a word a*V) - - - a*®) to the form a™(a*)". Or
at least, one should be able to understand how to distinguish the words
a*® ... a*®) which reduce to 14 from those which reduce to something
else. The latter question is best clarified by using a class of combina-
torial objects called Dyck paths.

Dyck paths

DEFINITION 2.7. (1) We will use the term NE-SE path for a path
in the lattice Z? which starts at (0,0) and makes steps either of the
form (1,1) (“North-East steps”) or of the form (1, —1) (“South-East
steps”).

(2) A Dyck path is a NE-SE path v which ends on the z-axis,
and never goes strictly below the z-axis. (That is, all the lattice points
visited by 7 are of the form (7, j) with j > 0, and the last of them is of
the form (k,0).)

REMARKS 2.8. (1) For a given positive integer k, the set of NE-SE
paths with k steps is naturally identified with {—1,1}*, by identifying
a path v with the sequence of +1s which appear as second components
for the k steps of ~.

Concrete example: here is the NE-SE path of length 6 which cor-
responds to the 6-tuple (1,—1,—1,1,—1,1).

This path is not a Dyck path, because it goes twice under the z-axis.

(2) Let k be a positive integer, and consider the identification de-
scribed above between the NE-SE paths with k steps and {—1,1}*. Tt
is immediately seen that a k-tuple (A1, ..., Ax) corresponds to a Dyck
path if and only if

A4+ X220, V1<) <Kk,
(2.6)
M4+ A =0

From the equality stated in (2.6) it is clear that Dyck paths with &
steps can only exist when k is even.
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Concrete examples: there are 5 Dyck paths with 6 steps. We draw
them in the pictures below, and for each of them we indicate the corre-
sponding tuple in {—1,1}% (thus listing the 5 tuples in {—1,1}% which
satisfy (2.6)).

(+1,+1,+1,-1,—-1,-1)

(+1,4+1,—1,+1,—1,-1)

(+1,+1,—-1,—-1,41,—1)

(+1,—1,4+1,+1,—1,-1)

(+1,—-1,41,—-1,41,—1)

The Dyck paths can be enumerated by using a celebrated “reflection
trick” of Desiré André, and turn out to be counted by the (even more
celebrated) Catalan numbers.
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NoTATION 2.9. For every integer n > 0 we will denote by C), the
nth Catalan number,

1 [2n (2n)!
¢ n—i—l(n) nl(n+1)! (2.7)
(with the convention that Cy = 1).

REMARK 2.10. An equivalent (and often used) way of introducing
the Catalan numbers is via the following recurrence relation:

CYO = Ol =1
(2.8)
Cp=232_1Cj-1Cpj, p2>2.

It is not hard to see that the numbers defined by (2.7) do indeed satisfy
the recurrence (2.8). One way of proving this fact can actually be read
from the following discussion about the enumeration of Dyck paths (see
the last paragraph in Remark 2.12).

PROPOSITION 2.11. For every positive integer p, the number of
Dyck paths with 2p steps is equal to the pth Catalan number C,,.

PROOF. Let us first count all the NE-SE paths which end at a given
point (m,n) € Z*. A NE-SE path with v NE-steps and v SE-steps ends
at (u+v,u—v), so there are NE-SE paths arriving at (m,n) if and only
if (m,n) = (u+ v,u —v) for some u,v € NU {0} with u + v > 0; this
happens if and only if m > 0, |n| < m, and m,n have the same parity.
If the latter conditions are satisfied, then the NE-SE paths arriving at
(m,n) are precisely those which have (m+n)/2 NE-steps and (m—n)/2
SE-steps. These paths are hence counted by the binomial coefficient
((mf;) /2), because Remark 2.8.1 identifies them with the m-tuples in
{—1,1}™ which have precisely (m + n)/2 components equal to 1.

In particular, it follows that the total number of NE-SE paths ar-
riving at (2p,0) is (*7).

We now look at the NE-SE paths arriving at (2p,0) which are not
Dyck paths. Let us fix for the moment such a path, ~, and let 5 €
{1,...,2p — 1} be minimal with the property that v goes under the
x-axis after j steps. Then ~ is written as a juxtaposition of two paths,
v =7 V9’ where 7/ goes from (0,0) to (j,—1), and 4" goes from
(j,—1) to (2p,0). Let 7" be the reflection of 4" in the horizontal line
of equation y = —1; thus ”;7’ is a path from (7, —1) to (2p, —2). Then
let us define F(y) :=+' V4", a NE-SE path from (0,0) to (2p, —2).

[Concrete example: suppose that p = 10 and that ~ is the NE-SE
path from (0,0) to (20,0) which appears drawn in bold-face fonts in
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the following picture. It is not a Dyck path, and the first time when
it goes under the z-axis is after 5 steps. Thus for this example, the
decomposition v = 4" V 4" described above looks as follows: ~' has
5 steps, going from (0,0) to (5,—1), and 4" has 15 steps, going from
(5,—1) to (20,0).

0
-2
The reflection of 4" in the horizontal line of equation = —1 is shown

in the above picture as a thinner line, going from (5, —1) to (20, —2).
The path F(v) goes from (0,0) to (20, —2); it is obtained by pursuing
the first five steps of v, and then by continuing along the thinner line.]

So, the construction described in the preceding paragraph gives a
map F' from the set of NE-SE paths ending at (2p,0) and which are
not Dyck paths, to the set of all NE-SE paths ending at (2p, —2). The
map F is a bijection. Indeed, if (3 is a NE-SE path ending at (2p, —2),
then there has to be a minimal j € {1,...,2p — 1} such that [ is at
height y = —1 after j steps. Write § = 3’ v #” with ' from (0,0)
to (j,—1) and 8" from (j,—1) to (2p, —2), and let 3" be the reflection
of " in the line y = —1; then v := 'V @ is the unique path in the
domain of F' which has F(v) = (.

It follows that the number of NE-SE paths which end at (2p,0) but
are not Dyck paths is equal to the total number of NE-SE paths ending
at (2p, —2), which is (prl). Finally, the number of Dyck paths with 2p

steps is
2 2 1 2
() -62) =70 o
p p—1 p+1\p

REMARK 2.12. Another approach to the enumeration of Dyck paths
is obtained by making some simple remarks about the structure of such
a path, which yield a recurrence relation. Let us call a Dyck path ~
irreducible if it only touches the x-axis at its starting and ending points
(but never in between them). For instance, out of the 5 Dyck paths
pictured in Remark 2.8.2; 2 paths are irreducible and 3 are reducible.

Given an even integer k > 2. If v is an irreducible Dyck path with &
steps, then it is immediate that the k-tuple in {—1, 1}* associated to
is of the form (1,\;,..., A\_2,—1), where (A\y,..., \p_2) € {—1,1}F2

O
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corresponds to a Dyck path with & — 2 steps. Conversely, it is also
immediate that if (A1,...,\p_2) € {—1,1}¥72 corresponds to a Dyck
path, then (1,\;,...,  \y_2,—1) € {—1,1}* will correspond to an irre-
ducible Dyck path with k£ steps. Thus the irreducible Dyck paths with
k steps are in natural bijection with the set of all Dyck paths with k—2
steps.

On the other hand, suppose that v is a reducible Dyck path with
k steps, and that the first time when ~ touches the z-axis following
to its starting point is after j steps (1 < j < k). Then v splits as
a juxtaposition v = +' V ~”, where 4/ is an irreducible Dyck path
with j steps and 7" is a Dyck path with k — j steps. Moreover, this
decomposition is unique, if we insist that its first piece, v/, is irreducible.

For every p > 1, let then D, denote the number of Dyck paths with
2p steps, and let D, be the number of irreducible Dyck paths with 2p
steps. The observation made in the preceding paragraph gives us that

D, =D\Dyp 1+ DyDp o +---+ D, \Di+D,, p>2. (2.9)

(Every term D’ D,,_; on the right-hand side of (2.9) counts the reducible
Dyck paths with 2p steps which touch for the first time the z-axis after
2j steps.) The observation made one paragraph before the preceding
one says that D, = D, 4, V p > 2. This equality is also true for p =1,
if we make the convention to set Dy := 1. So we get the recurrence

Dy=D; =1
(2.10)
D), = ?:1 D 1Dy j, p=2.
This is exactly (2.8), and shows that D, = C,, V p > 1.
The argument presented above can be viewed as an alternative proof
of Proposition 2.11. On the other hand, since the derivation of (2.10)
was made independently from Proposition 2.11, a reader who is not
already familiar with Catalan numbers can view the above argument
as a proof of the fact that the numbers introduced in Notation 2.9 do
indeed satisfy the recurrence (2.8).

The distribution of a + a*

We now return to the example of (A, ¢) and a € A introduced in
Notations 2.1 and 2.3. The connection between the x-distribution of a
and Dyck paths appears as follows.
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PROPOSITION 2.13. Let k be a positive integer, let (1), ... (k) be
in {1,%}, and consider the monomial a®" ---a*® € A. Let us set
1 e
A = e =x po i << (2.11)
-1 ife(j)=1

and let us denote by v the NE-SE path which corresponds to the tuple
(A, .oy Ap) € {—=1,1}*. Then

QO(CLE(U . as(k)) _ 1 if v 1s a Dyck path (2.12)
0 otherwise.

PROOF. It is convenient to use the representation of (A, ) dis-
cussed in Remark 2.5. With notations as in that remark, we write:

o(a®M ... a*®) = (Sa(l) SR &o)
= (€0, (5°W) - (5°W)g). (2.13)

Applying successively the operators (S5(M)*, ... (SE®)* to &, takes us
either to a vector of the orthonormal basis {&, | n > 0} of I2, or to the
zero-vector. More precisely: by keeping track of how Ay,..., Ay were
defined in Equation (2.11) in terms of (1), ...,e(k), the reader should
have no difficulty to verify by induction on j, 1 < 5 < k, that
Engtr, A >0,A+ X >0,
(S5 ... (55 W)*g, = oM RN >0 (214)
0 otherwise.

If we make j = k in (2.14) and substitute this expression into (2.13),
then we obtain:

oD .. ")y = (0 Enpotne) AN 20, 1< <k
0 otherwise
1 it N>0for1<j<k
and if Y5 A =0
0 otherwise
_J1 ifyisaDyck path
10 otherwise

(where at the last equality sign we used Equation (2.6) of Remark
2.8). 0

Let us next consider the selfadjoint element a + a* € A, and ask
the following two questions (identical to those asked in Example 1.14
of Lecture 1, in connection to Haar unitaries).
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(1) Does a+ a* have a *-distribution in analytic sense (as discussed
in Definition 1.8) 7

(2) Suppose that a + a* does have a x-distribution pu. Then (as ob-
served in Remark 1.10) p is a compactly supported probability measure
on R, determined by the fact that

/Rtk du(t) = o((a+a*)*), Vk>0.

Do we have some “nice” formula for the moments of u (or in other
words, for the values of p( (a + a*)¥), k> 0) ?

We can derive the answer to the second question as an immediate
consequence of Proposition 2.13.

COROLLARY 2.14. If k is an odd positive integer, then
p((a+a’)f)=0.
If k = 2p 1is an even positive integer, then
p((a+a’)f) =G,
where Cy, s the pth Catalan number.

PROOF.

ata))=p( > a0t
e(1),e(k)E{1,}
— Z o at@W ... ek )
e(1), e (k) {1}
— Z 1 (by Proposition 2.13).
Dyck paths
with k steps

So ¢((a + a*)¥) is equal to the number of Dyck paths with k steps,
and the result follows from Proposition 2.11. O

It remains to look at the first question asked above about a + a*,
that of finding (if it exists) a compactly supported probability measure
p on R which has moment of order k equal to ¢( (a+a*)*), k > 0. The
answer to this question turns out to be the following.

PROPOSITION 2.15. The distribution of a+a* in (A, ) is the mea-
sure du(t) = 5=v/4 — t2dt on the interval [—2,2).
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ProoOF. By taking into account Corollary 2.14, what we have to
show is that

2 0 if £ is odd
/ BVI— Bt = O (2.15)
_9 ﬁ(p) if k is even, k = 2p.

The case of odd k is obvious, because in that case t — t*v/4 — 2 is an
odd function. When k is even, k = 2p, we use the change of variable
t = 2cosf, dt = —2sinfdf, with # running from 7 to 0. We obtain
that:

2 s
/ tPV4 — 12 dt = / 2212 cos™ ) sin® 0 df) = 47T (1, — I,41),
—2

0
where

I, := / cos®0df, p>0.
0

The integral I, has already appeared in Example 1.14 of Lecture 1; in
fact, if we combine Equation (1.14) of that example with the calcula-
tions following it (in the same example), we clearly obtain that

T (2p
IP:E(I))? pzoa

and (2.15) quickly follows. O

Proposition 2.15 can be rephrased by saying that a 4+ a* is a semi-
circular element of radius 2, in the sense of the next definition.

DEFINITION 2.16. Let (A, ) be a x-probability space, let x be
a selfadjoint element of A and let r be a positive number. If x has
distribution (in analytical sense, as in Remark 1.10 of Lecture 1) equal
to —25v/r? — t2dt on the interval [—r, 7], then we will say that z is a
semicircular element of radius r.

REMARKS 2.17. (1) It is customary to talk about semicircular el-
ements, despite the fact that the graph of a function of the form
[—r,7] 3t — 23/r? — 2 is not exactly a semicircle (but rather a
semi-ellipse). Semicircular elements will play an important role in sub-
sequent lectures — see e.g. Lecture 8. The semicircular distribution is
also a fundamental object in random matrix theory; we will address
this relation in Lecture 22.

(2) The semicircular elements of radius 2 are also called standard
semicircular, due to the fact that they are normalized by the variance.
Indeed, it is immediate that a semicircular element = of radius r has
its variance Var(z) := p(x?) — p(x)? given by

Var(z) = r%/4.
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(It is in fact customary to talk about semicircular elements in terms
of their variance, rather than radius. Of course, the above equation
shows that either radius or variance can be used, depending on the
user’s preference.)

(3) Strictly speaking, the above definition has only introduced the
concept of a centered semicircular element; it is quite straightforward
how to adjust it in order to define a “semicircular element of mean
m € R and radius » > 0,” but this will not be needed in the sequel.

(4) The proof shown above for Proposition 2.15 was immediate, but
not too illuminating, as it does not show how one arrives to consider
the semicircular density in the first place. (It is easier to verify that
the given density has the right moments, rather than derive what the
density should be!) We will conclude the lecture by elaborating on this
point. The object which we will use as an intermediate in order to
derive p from the knowledge of its moments is an analytic function in
the upper half plane called the Cauchy transform.

Using the Cauchy transform

DEFINITION 2.18. Let p be a probability measure on R. The
Cauchy transform of ;. is the function G, defined on the upper half
plane Ct ={s+ it |s,t € R, t > 0} by the formula:

G#(z):/R L dque), zect.

z—1

REMARKS 2.19. (1) It is easily verified that G, is analytic on C*
and that it takes values in C™ := {s+ it | s,t € R, t < 0}.

(2) Suppose that p is compactly supported, and let us denote r :=
sup{|t| | t € supp(p)}. We then have the power series expansion:

[e.9]
Qn

G,u(z) = Z ﬁ? |Z| >, (216)

n=0
where o, 1= [, t" du(t) is the nth moment of y, for n > 0. Indeed, for
|z| > r we can expand:

[e.9]

1
z—1

tn
= Z g V t € supp(pu).

n=0

The convergence of the latter series is uniform in ¢t € supp(u); hence
we can integrate the series term by term against du(t), and (2.16) is
obtained.
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Note that the expansion (2.16) of G, around the point at infinity
has as an obvious consequence the fact that

lim 2G,(z) = 1. 2.17

ceedm2Gu(2) (2.17)

REMARK 2.20. The property of the Cauchy transform that we want

to use is the following: there is an effective way of recovering the prob-

ability measure p from its Cauchy transform G, via the Stieltjes in-

version formula. If we denote

1
he(t) .= —=QG,(t+ig), Ve >0, VteR (2.18)
m

(where “Q” stands for the operation of taking the imaginary part of a

complex number), then the Stieltjes inversion formula says that
du(t) = liné he(t) dt. (2.19)

The latter limit is considered in the weak topology on the space of
probability measures on R, and thus amounts to the fact that

/R PO aut) =t [ FOh(2) . (2.20)

for every bounded continuous function f: R — C.

The fact that (2.19) holds is a consequence of the connection be-
tween the Cauchy transform and the family of functions (P.).~q defined
by

1 ¢
F(t) = T2+ 2’
which forms the so-called “Poisson kernel on the upper half plane.” For
every € > (0 and ¢t € R we have that

helt) = =29 | e duls)

fore >0and t € R,

T t+1—s

1 t—s—1¢e
-y —° = q

w\y/R(t—s)2+52 p(s)

1 €
= Lt
= /RPE(t — s)du(s).

The last expression in the above sequence of equalities is called a con-
volution integral, and one of the fundamental properties of the Poisson
kernel is that the h. given by such an integral will converge weakly to
u for e — 0.
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Let us record explicitly how the Stieltjes inversion formula looks in
the case when the Cauchy transform G, happens to have a continuous
extension to C* UR. The values on R of this extension must of course
be given by the function g obtained as

gt) = lm G, (t +i2), tER, (2.21)

It is immediate that in this case the measures h.(t) dt converge weakly
to —%Sg(t) dt. Hence in this case the Stieltjes inversion formula is
simply telling us that:

du(t) = —%%g(t) dt. (2.92)

with ¢ defined as in (2.21).

Let us now look once more at the random variable a fixed at the
beginning of the lecture, and see how we can use the Cauchy transform
in order to derive the distribution of a + a* from the knowledge of its
moments.

LEMMA 2.21. Suppose that i is a probability measure with compact
support on R such that

0 if k is odd
/tk d:u(t) = 1 (2p i ki —
R m(p) if k 1s even, k = 2p.

Then the Cauchy transform of i is
z—Vz2—4
2 )
(Note: on the right-hand side of (2.23) we can view

V22 —4:=Vz—-2-Vz+42,

where z +— /2 + 2 is analytic on C\ {F2 — it | t > 0} D C*, and is
defined such that it gives the usual square root for z € R, z > 2.)

z e CH. (2.23)

PROOF. We know that for |z| sufficiently large we have the series
expansion (2.16), which becomes here

= C
G“(z) - Z ZZpi—l’

p=0

with C, the pth Catalan number. The recurrence relation (2.8) of the
Catalan numbers and some elementary manipulations of power series
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then give us that:

I 1 /¢

Gu(z) = P Z S2ptl (Z Cj*lcp*j)
p=1 J=1

- _ZZZQJ 1 Z?p ])-I—l

p=1 j=1
C<ZC—>
j— p=j
oo
:§+£GAd2

It follows that G, satisfies the quadratic equation

G.(2)> —2Gu(z) +1=0, z€C™.
(The above computations only obtain this for a z such that |z| is large
enough, but after that the fulfilling of the quadratic equation is ex-
tended to all of C* by analyticity.) By solving this quadratic equa-
tion we find that G,(2) = (¢ £ V22 —4)/2, and from the condition

lim|; oo 2G(2) = 1 we see that the “—” sign has to be chosen in the
“+” of the quadratic formula. O

Finally, let us remark that the analytic function found in Equation
(2.23) has a continuous extension to C* UR, where the extension acts

on R by:
(t—iv4a—1t2)/2 if|t] <2
t—g(t) = :
(t—Vt2—4)/2 if |t| > 2.
By taking the imaginary part of g, and by using the observation made

at the end of Remark 2.20, we see why the semicircular density is the
appropriate choice in the statement of Proposition 2.15.

Exercises

EXERCISE 2.22. Let S € B(I?) be the shift operator considered
in Remark 2.5, and let {&, | n > 0} be the orthonormal basis of 2
considered in the same remark.

(1) Let (m,n) # (0,0) be in (NU {0})2. Based on the fact that
(S™(S*)"& y &m) = 1, show that

S™(S*)" & span{S*(S*)" | either k >m, or k =m and [ >n }.
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(2) By using the result in part (1) and the lexicographic order on

(Nu {O})Z, prove that the operators (.S™(S*)™ ), n>0 form a linearly
independent family in B(I?).

EXERCISE 2.23. Write a proof of Proposition 2.13 which only uses
the framework introduced in Notations 2.1 and 2.3, and does not appeal
to the representation of a as a shift operator.

EXERCISE 2.24. Re-derive the formula (1.16) from Example 1.14,
by starting from Equation (1.14) of the same example and by using the
Stieltjes inversion formula.



LECTURE 3
C*-probability spaces

C*-algebras provide a natural environment where non-commutative
probabilistic ideas can be seen at work. In this lecture we provide
some basic background for our readers who are not familiar with them.
The emphasis will be on the concept of C*-probability space and on the
relations between spectrum and *-distribution for a normal element in
a C*-probability space.

The line followed by our sequence of lectures does not require any
substantial C*-algebra apparatus, and we hope it will be comprehensi-
ble to present the fairly few and elementary C*-algebra facts which are
needed, at the places where they appear. We will keep to minimum
the number of statements which have to be accepted without proof —
for instance in the present lecture the only such statement is that of
Theorem 3.1, which collects some fundamental facts about the spectral
theory of normal elements.

Functional calculus in a C*-algebra

A C*-probability space is a x-probability space (A, ) where the
x-algebra A is required to be a unital C*-algebra. Being a unital C*-
algebra means that (in addition to being a unital x-algebra) A is

endowed with a norm || - || : A — [0,00) which makes it a complete
normed vector space, and such that we have:

[adl] < lal[ - [[b]], ¥ a,b€ A; (3.1)

[|la*al| = HaHQ, VacA. (3.2)

Out of the very extensive theory of C*-algebras we will only need some
basic facts of spectral theory, which are reviewed in a concentrated way
in the following theorem. Recall that if A is a unital C*-algebra and if
a € A, then the spectrum of a is the set

Sp(a) = {z € C| z1l4 — a is not invertible}.
THEOREM 3.1. Let A be a unital C*-algebra.

(1) For every a € A, Sp(a) is a non-empty compact subset of C,
contained in the disc {z € C | |z| < ||a||}.

35
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(2) Let a be a normal element of A, and consider the algebra
C(Sp(a)) of complex-valued continuous functions on Sp(a). There ex-
ists a map ® : C(Sp(a)) — A which has the following properties:

(i) @ is a unital x-algebra homomorphism.

(i) [ = I[fll, ¥V f € C(Sp(a)) (where for f € C(Sp(a)) we
define || f]|oo :=sup{[f(2)| | z € Sp(a)}).

(iii) Denoting by id : Sp(a) — C the identity function id(z) = z, we
have that ®(id) = a.

REMARKS 3.2. Let A be a unital C*-algebra, let a be a normal
element of A, and let ® : C(Sp(a)) — A have the properties (i), (ii)
and (iii) listed in Theorem 3.1.2.

(1) Condition (ii) (together with the linearity part of (i)) implies
that & is one-to-one. Hence in a certain sense, ® provides us with a
copy of the algebra C'(Sp(a)) which sits inside A.

(2) Suppose that p : Sp(a) — C is a polynomial in z and Zz, i.e. it
is of the form

p(z) = Z ;22 2 € Sp(a). (3.3)

4,k=0
Then the properties (i) and (iii) of ® immediately imply that

d(p) = Z ;i ra (a*)". (3.4)
4,k=0

(3) The preceding remark shows that the values of ® on polynomi-
als in z and z are uniquely determined. Since these polynomials are
dense in C'(Sp(a) ) with respect to uniform convergence, and since (by
(1)+(ii)) ® is continuous with respect to uniform convergence, it follows
that the properties (i), (ii) and (iii) determine ® uniquely.

(4) The name commonly used for ¢ is functional calculus with
continuous functions for the element a. A justification for this name
is seen by looking at polynomials p such as the one appearing in Equa-
tion (3.3). Indeed, for such a p, the corresponding element ®(p) € A
(appearing in (3.4)) is what one naturally tends to denote as “p(a).”
It is in fact customary to use the notation

“f(a)” instead of “®(f)” (3.5)

when f is an arbitrary continuous function on Sp(a) (not necessarily a
polynomial in z and z). The notation (3.5) will be consistently used in
the remainder of this lecture.

REMARKS 3.3. Let A be a unital C*-algebra. Theorem 3.1.2 con-
tains in a concentrated way a good amount of information about the
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spectra of the normal elements of A. We record here a few facts which
are immediately implied by it. (Note: it is handy to record these facts
as consequences of Theorem 3.1; but the reader should be warned that
in a detailed development of basic C*-algebra theory, some of these
facts would be proved directly from the axioms, preceding the discus-
sion about functional calculus.)

(1) If @ is a normal element of 4, then

|lal| = [|a"|| = sup{|z[ | = € Sp(a)}. (3.6)
This is seen by using (ii) of Theorem 3.1.2 for the functions id and id
on Sp(a).

(2) If = is a selfadjoint element of A then Sp(z) C R. Indeed, when
we apply (ii) of Theorem 3.1.2 to the function id — id on Sp(z), we
get that

||z — 2*|| = sup{|z — z| | = € Sp(z)}. (3.7)
The left-hand side of (3.7) is 0; hence so must be the right-hand side
of (3.7), and this implies that Sp(z) C {zr€ C:2—-2z=0} =R.

Conversely, if € A is normal and has Sp(x) C R, then it follows
that x = x*; this is again by (3.7), where now we know that the right-
hand side vanishes.

(3) If u is a unitary element of A, then Sp(u) C T={2€ C: |z| =
1}. And conversely, if u € A is normal and has Sp C T then u has to
be a unitary. The argument is the same as in part (2) of this remark,
where now we use the equation:

11— wull = sup{| 1 — [2*| | = € Sp(u)}.

The following statement is known as the “spectral mapping theo-
rem.”

THEOREM 3.4. Let A be a unital C*-algebra, let a be a normal
element of A, and let f : Sp(a) — C be a continuous function. Then
the element f(a) € A (defined by functional calculus) has

Sp(f(a)) = f(Sp(a)). (3.8)

PROOF. By considering functions of the form z — f(z) — A on
Sp(a) (where A € C), one immediately sees that it suffices to prove the
following statement. Let A and a be as above, and let g : Sp(a) — C
be a continuous function, then:

g(a) is invertible in A < 0 & g( Sp(a)). (3.9)

The implication “<” in (3.9) is immediate: if 0 € g(Sp(a) ), then
one can define the continuous function h = 1/g : Sp(a) — C, and the
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properties of functional calculus imply that the element h(a) € A is an
inverse for g(a).

In order to prove the implication “=" in (3.9), we proceed by con-
tradiction. Assume that g(a) is invertible in A, but that nevertheless
there exists z, € Sp(a) such that g(z,) = 0. Let us pick a positive num-
ber o > ||g(a)~!||. Because of the fact that g(z,) = 0, one can construct
a function h € C(Sp(a)) such that h(z,) = « while at the same time
llg - h||le < 1. (Indeed, there exists € > 0 such that |g(z)| < 1/« for
all z € Sp(a) with |z — z,| < €, and one can construct h with values in
[0, ] and supported inside the disc of radius €/2 centered at z,. For
instance h(z) := a-max(0,1—2|z—z2,|/¢) will do.) From the properties
of functional calculus it follows that the element h(a) € A is such that
its norm equals

[[R(a)[| = [|[loc > o
while at the same time we have:
lg(a) - h(a)[| = ||g - hllo < 1.
We then get that
a < ||h(a)|] = Ilg(a)™" - (g(a) - R(a))]] < llg(a)™|| - [lg(a) - A(a)]] < o,
a contradiction. O

REMARK 3.5. Let A be a unital C*-algebra. It is customary to
define the set of positive elements of A as

At :={pe A|p=p" and Sp(p) C [0,00)}. (3.10)
It is fairly easy to show that
P, €A, a,f€0,00) = ap+ fBge AT, (3.11)

i.e. that AT is a convex cone in the real vector space of selfadjoint
elements of A — see Exercise 3.18 at the end of the lecture. Moreover,
the cone A" is “pointed,” in the sense that AT N (—A") = {0}. (Or
in other words: if a selfadjoint element z € A is such that both = and
—x are in A", then z = 0. This is indeed so, because z, —z € AT =
Sp(x) C [0.00) N (=00,0] = {0} = al| = sup{|2| | = € Sp(x)} = 0.

Note also that the spectral mapping theorem provides us with a rich
supply of positive elements in A. Indeed, if a is an arbitrary normal
element of A and if f : Sp(a) — [0,00) is a continuous function, then
the element f(a) is in A* (it is selfadjoint because f = f, and has
spectrum in [0, co) by Theorem 3.4).

Recall from Lecture 1 that a linear functional ¢ : A — C is declared
to be positive when it satisfies the condition ¢(a*a) > 0,V a € A. This
brings up the question of whether there is any relation between A" and
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the set {a*a | a € A}. It is quite convenient that these two sets actually
coincide.

PROPOSITION 3.6. Let A be a unital C*-algebra, and consider the
set AT of positive elements of A (defined as in Equation (3.10) of the
preceding remark). Then

A" ={a*a | a € A} (3.12)

PROOF. “C” Let p be in A", and define a = f(p) (functional cal-
culus) where f is the square root function on the spectrum of p. Then
the properties of functional calculus immediately give us that a = a*
(coming from f = f) and that a*a = a® = (f?)(p) = p.

“D” Fix an a € A, for which we want to prove that a*a € A™. Tt is
clear that a*a is selfadjoint, the issue is to prove that Sp(a*a) C [0, 00).

Consider the functions f, g : Sp(a*a) — [0, 00) defined by

f(t) == max(0,t), g¢(t):=max(0,—t), t€ Sp(a“a),

and denote f(a*a) =: x, g(a*a) =: y. We have that z,y € A" (cf. the
second paragraph of Remark 3.5). The properties of functional calculus
also give us that
r—y=a‘a, zy=yxr=0. (3.13)
Consider now the element b := ay € A. We have (by direct calcu-
lation and by using (3.13)) that

b'b = ya*ay = y(x —y)y = —yS.

Since y € AT, it is immediate by functional calculus that y* € AT;
hence it follows that b*b € —A"T. We leave it as an exercise to the
meticulous reader to go through the details of why “b*b € —A™” implies
“b = 0" — cf. Exercise 3.20 at the end of the lecture. Here we will
assume that this is proved, and will finish the argument as follows:

y'=-0b=0 = {t|teSp(y)}="Sp(y’) = {0}
= Sp(y) ={0}
= |yl =sup{[t| | t € Sp(y)} = 0.
So we found that y = 0, and therefore a*a =z —y =12 € A". 0

C*-probability spaces

DEFINITION 3.7. A C*-probability space is a *-probability space
(A, @) where A is a unital C*-algebra.

Let us note that in the C*-framework, the expectation functional
is automatically continuous. More precisely, we have the following.
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PROPOSITION 3.8. Let (A, ¢) be a C*-probability space. Then
lp(a)] < |lall, VaeA (3.14)

PRrROOF. We first pick an arbitrary element p € A". We know that
©(p) € [0,00) (by Proposition 3.6 and the positivity of ¢). We claim
that:

w(p) < [lpll (3.15)

Indeed, we have (by Theorem 3.1.1 and Equation (3.10) of Remark 3.5)
that

Sp(p) € {z € C | |z] < [Ip[[} N'[0,00) = [0, [[pl|]-
As a consequence, we can use functional calculus to define the ele-
ment b := (||p|| — p)/? € A (or more precisely, b := f(p) where
f € C(Sp(p)) is defined by f(t) = (|lp|]| —¢)"*, t € Sp(p)). It is
immediate that b = b* and that p + b* = ||p|| - 14; therefore

[Ipll = @ (p) = @ (b") = 0,
and (3.15) is obtained.
Now for an arbitrary a € A we have
p(a)] = le(1y - a)
< ¢(a*a)"*  (by Cauchy-Schwarz — cf. Lecture 1)
< ||a*al|*? (by (3.15), where we take p = a*a)
= [[al] (by (3.2)).
O
REMARK 3.9. The following partial converse of Proposition 3.8 is
also true. Let A be a unital C*-algebra. Let ¢ : A — C be a linear
functional such that |p(a)| <|la||, V a € A, and such that p(14) =1

(where 14 is the unit of A). Then ¢ is positive, and hence (A, ¢) is a
C*-probability space. See Exercise 3.21 at the end of the lecture.

ExAMPLE 3.10. Let 2 be a compact Hausdorff topological space,
and let u be a Radon probability measure on the Borel o-algebra of 2.
(Asking the probability measure i to be “a Radon measure” amounts
to requesting that for every Borel set A C 2 one has

pu(A) = sup{u(K) | K C A, compact} = inf{u(D) | D D A, open}.

In many natural situations — when 2 is a compact metric space, for
instance — one has that every probability measure on the Borel o-
algebra of ) is actually a Radon measure.)
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Consider the algebra A = C(Q) of complex-valued continuous func-
tions on €2, and let ¢ : A — C be defined by

w(f)z/gf du, fe€A (3.16)

Then (A, ¢) is a C*-probability space, and all the elements of A are nor-
mal. The functional calculus with continuous functions for an element
a € A is reduced in this case to performing a functional composition —
see Exercise 3.22 below.

There are two important theorems in functional analysis which are
worth recalling in connection to this example. First, a basic theorem
of Riesz states that every positive linear functional on C(£2) can be
put in the form (3.16) for an appropriate Radon probability measure p.
Second, a theorem of Gelfand states that every commutative unital C*-
algebra A can be identified as C'(2) for a suitable compact Hausdorff
space €. Hence the example presented here is the “generic” one, as far
as commutative C*-probability spaces are concerned.

In non-commutative examples, C*-algebras appear most frequently
as #-subalgebras A C B(H) (H Hilbert space), such that A is closed in
the norm-topology of B(H). We present here the example of this kind
which is the C*-counterpart of Example 1.4.4 from Lecture 1.

ExAMPLE 3.11. Let G be a discrete group, and let A : G —
B(I?(G)) be its left regular representation. This is defined by
the formula

ANg)en = Egny Y g, h € G, (3.17)

where {&, | h € G} is the canonical orthonormal basis of I?(G). (That
is, every A(g) is a unitary operator on [*(G), which permutes the or-
thonormal basis {¢;, | h € G} according to the formula (3.17).) It is not
hard to show that the operators (A(g) )gec are linearly independent,
and that their linear span is a unital *-algebra of B([*(G)), isomor-
phic to the group algebra CG from Example 1.4.4. (See Exercise 3.24
below.) The closure in the norm-topology:

a(G) = cl(span{A(g) | g € G} )

is then a unital C*-algebra of operators on [?(G); it is called the re-
duced C*-algebra of the group G.

Let e be the unit of G and let & be the corresponding vector in
the canonical basis of [*(G). Let 7 be the vector-state defined by &, on
C:ed(G):

T(T) = (T&, &), T € Cry(G). (3.18)
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Then (C(G), 1) is an example of C*-probability space.

Let us observe that when T is the image of > a,9 € CG via the
canonical isomorphism CG ~ span{A(g) | g € G} C C*,(G), then we
get

T(T) = <(Z O‘g)‘(g))geaée> = <Z ag£g>€e> = Q.

So, via natural identifications, 7 extends the trace 7 on CG which
appeared in Example 1.4.4. Thus, in a certain sense, (C%4(G), T) is an
upgrade of (CG, 7¢) from the x-algebraic framework to the C*-algebraic
one.

Moreover, the C*-probability space (C*,,(G), 7) retains the pleasing
features which we trust that the reader has verified (in the course of
solving Exercise 1.5) for the canonical trace on CG. That is, we have
the following.

PROPOSITION 3.12. In the framework of the preceding example, the
functional T is a faithful trace on C}4(G).

PRrooOF. The traciality of 7 is immediate. Indeed, since 7 is con-
tinuous (by Proposition 3.8) and since the linear span of the operators

{\(g) | g € G} is dense in C% 4(G), it suffices to check that

T(Mg1) - Mg2) ) = 7(Mg2) - Mg1) ), YV g1,92€G. (3.19)

But (3.19) is obviously true — both sides are equal to 1 when g; = g5 ',
and are equal to 0 otherwise.

In order to prove that 7 is faithful on C},(G), it is convenient that
(in addition to the left translation operators A(g)) we look at right
translation operators on [*(G). So, for every g € G let us consider
the unitary operator p(g) on I2(G) which permutes the canonical basis
(&n)neq according to the formula:

p(9)én = &g, heG.

Then p : G — B(I*(G)) is a unitary representation, called the right
regular representation of G. It is immediately verified that the left and
the right translation operators commute with each other:

p(9)A\g') = AMg)plg), Y g,9 €G. (3.20)

If in (3.20) we fix an element ¢ € G and make linear combinations
of the operators A\(¢'), followed by approximations in norm, we obtain
that

p(g)T =Tp(g), VgeG, VT eC,4G). (3.21)
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Now, let T' € C¥ 4(G) be such that 7(7T*T") = 0. Since
T(T*°T) = (T*T¢,, &) = ||TE|,
we thus have that T'¢, = 0. But then for every g € G we find that

T& =T(plg ")) = plg™ ) (TE) = plg™")-0=0.

(The second equality follows by Equation (3.21).) So T" vanishes on the
orthonormal basis (§;)sec of [*(G), and this implies that 7 =0. O

x-distribution, norm and spectrum for a normal element

PROPOSITION 3.13. Let (A, @) be a C*-probability space, and let a
be a normal element of A Then a has a x-distribution p in analytic
sense (as described in Definition 1.8). Moreover:

(1) The support ofu z's contained in the spectrum of a.

(2) For f € C(Sp(a)) we have the formula

/fdu e(f(a)), (3.22)

where on the right-hand side f(a) € A is obtained by functional calcu-
lus, and on the left-hand side p is viewed as a probability measure on

Sp(a).

PRrROOF. Let @ : C(Sp(a)) — A be the functional calculus for a,
as in Theorem 3.1.2 (®(f) = f(a), for f € C(Sp(a))). Then o ® :
C(Sp(a)) — C is a positive linear functional, so by the theorem of
Riesz mentioned in Example 3.10 there exists a probability measure u
on the Borel o-algebra of Sp(a) such that

(po®)(f) = / fdu, ¥ feC(Spla)). (3.23)

If we set f in (3.23) to be of the form f(z) = z"2z" for some m,n > 0,
then ®(f) = a™(a*)" (cf. Remark 3.2.2), and (3.23) gives us that

e(a™(a")") = / 2mZ" du(z), ¥ m,n>0. (3.24)
Sp(a)

Of course, the measure p of (3.23), (3.24) can also be viewed as a
compactly supported measure on C, with supp(x) C Sp(a). In this in-
terpretation, (3.24) tells us that p is the -distribution of a, in analytic
sense, while (3.23) becomes (3.22). O

COROLLARY 3.14. Let (A, @) be a x-probability space. If (A, )
admits a representation on a Hilbert space (in the sense of Definition
1.6), then every normal element of A has a *-distribution in analytic
sense.
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PRoOOF. The existence of representations means in particular that
we can find a C*-probability space (B, 1)) and a unital x-homomorphism
® : A — B such that 1) o ® = . For every normal element a € A, it
is clear that b := ®(a) is a normal element of B; hence, by Proposition
3.13, b has a *-distribution g in analytic sense. But then for every
m,n > 0 we can write:

pa™(a")") = (®(a™(a®)")) = p(b™(b")") = /Z’”Z" dp(z),
which shows that p is the x-distribution of a as well. U

In the rest of this section we look at some additional facts which can
be derived for a C*-probability space where the expectation is faithful.

PROPOSITION 3.15. Let (A, ) be a C*-probability space such that
@ is faithful. Let a be a normal element of A, and let u be the *-
distribution of a in analytic sense. Then the support of i is equal to

Sp(a).

PRroOOF. The inclusion “C” was observed in Proposition 3.13, so we
only have to prove “2”. Let us fix an element A € Sp(a), and assume
by contradiction that A ¢ supp(p). Since C\ supp(u) is an open set of
p-measure 0, it follows that we can find » > 0 such that u( B(A;r) ) =0,
where B(A\;r) :={2 € C | |z = A <r}. Let f:Sp(a) — [0,1] be a
continuous function such that f(A) = 1 and such that f(z) = 0 for all
z € Sp(a) with |z — A| > r (e.g. f(z) = max(0,1 — |A — z|/r) will do);
and let us define b := f(a) € A, by functional calculus. Property (ii)

from Theorem 3.1.2 gives us that ||b|| = 1, so in particular we know
that b # 0. On the other hand we have that
©o(b*b) = p(b?) (since f = f, which implies b = b*)

/f2 du (since b* = f*(a), and by Prop. 3.13)

< / L dp,
B(\;r)

with the last inequality holding because f? is bounded above by the
characteristic function of B(A;r). We thus get

p(b°0) < p(B(A;r)) =0,
and this contradicts the faithfulness of ¢. O

REMARK 3.16. The above proposition can be read as follows: if
(A, ) is a C*-probability space such that ¢ is faithful, and if a is a
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normal element of A, then knowledge of the x-distribution u of a allows
us to compute the spectrum of a, via the formula

Sp(a) = supp(k). (3.25)

Note that knowledge of p will then also give us the norm of a — indeed,
from (3.25) and Equation (3.6) of Remark 3.3.1 it follows that

|lal| = sup{|z| | 2 € supp(u)}. (3.26)

The following proposition indicates another (more direct) way of com-
puting the norm of a from combinatorial information on *-moments.

PROPOSITION 3.17. Let (A, ) be a C*-probability space such that
@ 18 faithful. For every a € A (normal or not) we have that

lall = tim o ( (a*a)" )2 (327

PrROOF. Equivalently, we have to show that
[pll = lim o(p™)"", (3.28)
where p := a*a € A" and where we used the C*-axiom (3.2). An

immediate application of functional calculus shows that p" € A",V n >
1; so the sequence appearing on the right-hand side of Equation (3.28)
consists of non-negative numbers. Note also that for every n > 1 we
have:

o)V < (||]p"|)Y" (by Proposition 3.8)
< ([lplI")*™  (by Equation (3.1))
= [lpll-
So what we actually have to do is to fix an « € (0, ||p||), and show that
o(p™)Y/™ > « if n is sufficiently large.
Now, we have that Sp(p) C [0, ||p||] (same argument as in the proof
of Proposition 3.8). Moreover, from Remark 3.3.1 we infer that ||p|| €

Sp(p). Let u be the x-distribution of p, in analytic sense. Then ||p|| €
supp(u) (by Proposition 3.15), and it follows that we have

u(18,[lpll1) >0, v 0 <5 <|pll. (3.29)

For the number a € (0, ||p||) which was fixed above, let us choose
a [ € (a,]||p|]) (for instance 5 = (a + ||p||)/2 will do). Then we can
write, for every n > 1:

o) = / ZOE / e du(t) = 5" u( 18, 1p1]).

Sp(P)N[B,|Ipll]
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(The first equality follows by Proposition 3.13.2.) Hence

PV > 6 p([8, PV, V> 1, (3.30)
and the right-hand side of (3.30) exceeds o when n is sufficiently large
(since (3.29) implies that u([3, ||p|[])*/™ — 1 as n — o). O

Exercises

Exercises 3.18-3.20 fill in the details left during the discussion on pos-
itive elements of a C*-algebra (cf. Remark 3.5, proof of Proposition

3.6).

EXERCISE 3.18. Let A be a unital C*-algebra.
(1) By using functional calculus, prove that if z is a selfadjoint
element of A and if o € R is such that a > ||z||, then we have

oo — ]| = a — inf(Sp(x) ).

(2) By using the formula found in part (1) of the exercise, prove
that if z,y are selfadjoint elements of A, then

inf(Sp(z +y)) > inf(Sp(z) ) + inf(Sp(y) ).

(3) Consider the set AT of positive elements of A (defined as in
Equation (3.10) of Remark 3.5). Prove that if p,q € AT and if a, 8 €
[0,00), then ap + Bq € AT.

EXERCISE 3.19. Let A be a unital C*-algebra and let a,b be ele-
ments of A. Prove that Sp(ab) U {0} = Sp(ba) U {0}.
[This is a version of the exercise, usually given in a basic algebra course,
which goes as follows: for a, b elements of a unital ring, prove that 1—ab
is invertible if and only if 1 — ba is invertible.]

EXERCISE 3.20. Let A be a unital C*-algebra, and let b € A be
such that Sp(b*b) C (—o00,0]. The goal of this exercise is to draw the
conclusion that b = 0.

(1) Prove that b*b+bb* € — A" (where A" is defined as in Equation
(3.10) of Remark 3.5).

[Hint: One has —b*b € A" by hypothesis and —bb* € A' due to
Exercise 3.19. Then use Exercise 3.18.]

(2) Let z := (b+0%)/2 and y := (b—0*)/2i be the real and imaginary
parts of b. Verify that b*b + bb* = 2(z* + y?), and conclude from there
that 22 +y> € AT N (—A").

(3) Prove that b= 0.
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EXERCISE 3.21. (1) Let K be a non-empty compact subset of
[0,00), and consider the algebra C(K) of complex-valued continuous
functions on K. Suppose that ¢ : C(K) — C is a linear functional such
that |o(f)] < ||flls, V f € C(K), and such that ¢(1ok)) = 1 (where
Lok is the function constantly equal to 1). Let h be the function in
C(K) defined by h(t) =t, for t € K. Prove that ¢(h) > 0.

[Hint: In order to verify that ¢(h) € R look at functions of the form
h + ialek)y, @ € R. Then in order to verify that ¢(h) > 0 look at
functions of the form h — aleky, o € [0,00).]

(2) Let A be a unital C*-algebra. Let ¢ : A — C be a linear
functional such that |p(a)| < [la||, ¥ a € A, and such that p(14) = 1.
Prove that ¢ is a positive functional, and hence that (A, ) is a C*-
probability space.

[Hint: Given p € AT, observe that the inequality ¢(p) > 0 can be
reduced to the statement of part (1), by using functional calculus for
the element p.]

EXERCISE 3.22. Consider the framework of Example 3.10 (A =
C(€2), where Q is a compact Hausdorff space).

(1) Show that for every a € A we have that Sp(a) = {a(w) | w € Q}
(i.e. it is the range of a when a is a viewed as a function from 2 to C).

(2) Let a be an element in A, and let f be a function in C'(Sp(a)).
Note that, from part (1) of this exercise, it makes sense to define the
composition foa: ) — C, by (foa)(w) = f(a(w)), w € Q. Prove that
the functional calculus with continuous functions for a € A gives the
equality f(a) = foa.

EXERCISE 3.23. Let A and B be unital C*-algebras, and let ¥ :
A — B be a unital *-homomorphism. Let a be a normal element of A,
and denote ¥(a) =: b (so b is a normal element of B).

(1) Observe that Sp(b) C Sp(a).

(2) Let f be a function in C'(Sp(a)), and denote the restriction of
f to Sp(b) by f,. Prove that ¥(f(a)) = fo(b). [In other words, prove
the “commutation relation” ¥(f(a)) = f(¥(a)), for f € C(Sp(a).]

EXERCISE 3.24. Consider the framework of Example 3.11 (where A
is the left regular representation of a discrete group G).

(1) Let g1, ..., g, be some distinct elements of G, let ay, ..., a, be
in C, and consider the operator T'=>"" | a;\(g;) € B(I*(G) ). Verify
the equality [IT€.[12 = S0, Jail®

(2) By using part (1) of the exercise, prove that the family of oper-
ators (A(g))geq is linearly independent in B(1*(G)).






LECTURE 4

Non-commutative joint distributions

The discussion of the concept of joint distribution is a point where
things really start to have a different flavor in non-commutative prob-
ability, compared to their classical counterparts. To exemplify this,
let us look for instance at the situation of selfadjoint elements in *-
probability spaces. During the discussion in Lecture 1 the reader prob-
ably sensed the fact that, when taken in isolation, such an element
is more or less the same thing as a classical real random variable —
it is only that we allow this real random variable to live in a fancier
(non-commutative) environment. Thus studying the distribution of
one selfadjoint element in a x-probability space is not much of a de-
parture from what one does in classical probability. In this lecture we
will observe that the situation really becomes different when we want
to study at the same time two or more selfadjoint elements which do
not commute, and we look at the joint distribution of these elements.

Besides introducing the relevant definitions and some examples, the
present lecture brings up only one (simple, but important) fact: the
class of isomorphism of a x-algebra/C*-algebra A is determined by
knowledge of the joint *-distribution of a family of generators, with
respect to a faithful expectation functional ¢ : A — C. This is sig-
nificant because it opens the way, at least in principle, to studying
isomorphisms of C*-algebras by starting from combinatorial data on
sx-moments of generators.

Joint distributions

NOTATIONS 4.1. Let s be a positive integer.

(1) We denote by C(Xj,...,X;) the unital algebra freely gener-
ated by s non-commuting indeterminates X1, ..., X;. More concretely,
C(Xy,...,X,) can be described as follows. The monomials of the form
XXy, - X, wheren > 0and 1 < rq,...,1, < s give a linear ba-
sis for C(X1, ..., X;), and the multiplication of two such monomials is
done by juxtaposition.

(2) Let A be a unital algebra, and let ay,...,as be elements of
A. For every P € C(Xj,...,X;) we will denote by P(ay,...,as) the

49
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element of A which is obtained by replacing X, ..., X, with aq, ..., as,
respectively, in the explicit writing of P. Equivalently,
C<X1,...,XS>BPHP(al,...,GS)EA (41)

is the homomorphism of unital algebras uniquely determined by the
fact that it maps X, to a,, for 1 <r <s.

DEFINITION 4.2. Let (A, ¢) be a non-commutative probability

space, and let aq, ..., as be elements of A.
(1) The family
{p(ap, -+-a.)|n>1,1<r,....,r, <s} (4.2)
is called the family of joint moments of a4, ..., a;.
(2) The linear functional p : C(Xj, ..., X;) — C defined by
W(P)i=(Play,....a)) ), PeC(Xy,..., X))  (43)

is called the joint distribution of ay,...,as in (A, p).

The joint distribution of aq, ..., as is thus determined by the fact
that it maps every monomial X,, --- X, into the corresponding joint
moment, ¢(a,, - a,, ), of ay, ..., as.

REMARK 4.3. It is clear that the above definitions can, without
any problems, be extended to the case of an arbitrary family (a;)ier
of random variables. (/ is here an index set which might be infinite,
even uncountable.) The joint distribution of (a;);e; is then a linear
functional on the unital algebra C(X; |i € I'), which is freely generated
by non-commuting indeterminates X; (i € I). We leave it to the reader
to write down the exact wording of Definition 4.2 for this case.

ExAMPLES 4.4. (1) Let (€2, Q, P) be a probability space, and let
fi,..-, fs :  — R be bounded random variables. Then fi,..., f; are
at the same time elements of the non—commutative probability space
L>*(Q, P) appearing in Example 1.4.1 (with ¢(a) = [, a( ) for
a € L*(8, P)). The joint distribution p of fl, ooy fsin L°°(Q P)
determined by the formula:

WX,y X)) / Fr(@) o fon (@) dP(w), (4.4)

holding for every n > 1 and 1 <ry,...,7, < s.

In this particular example, there exists a parallel concept of joint
distribution of fi,..., f; coming from classical probability: this is the
probability measure v on the Borel o-algebra of R® which has, for every
Borel set £ C R?,

v(E) =P{we Q| (filw), .., fs(w)) € E}). (4.5)
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(Note that the assumption that fi,..., fs are bounded implies that v
has compact support.) The functional p of Equation (4.4) is closely
related to this probability measure. Indeed, an argument very similar
to the one shown in Example 1.11.1 gives us that for every ki, ..., ks >
0 we have:

/St’fl- R du(ty, .t /f1 fo(w)rdP(w);

this implies that the above Equation (4.4) can be written as

M(Xn..-xm):/ bty du(ty, 1) (4.6)

(forn>Tand 1 <ry,...,r <s).

It is clear that the probability measure v is better suited for study-
ing the s-tuple (f1, ..., fs) than the functional g on C(Xjy, ..., X;); this
is not surprising, since the concept of non-commutative joint distribu-
tion is not meant to be particularly useful in commutative situations.
However, what one should keep in mind in this example is that the
non-commutative joint distribution for fi,..., fs is an algebraic (albeit
clumsy) incarnation of its classical counterpart.

(2) Let d be a positive integer, and consider the x-probability space
(M4(C), tr) from Example 1.4.2 (the normalized trace on complex d x d
matrices). Let A;, Ay € My(C) be Hermitian matrices. Their joint
distribution p : C(X;, X3) — C is determined by the formula

WX o X, ) =tr(A, - A), Yn>1, V1<ry,...,r, <2

Unless A; and As happen to commute, the functional p cannot be
replaced by a simpler object (like a probability measure on R?) which
records the same information.

EXAMPLE 4.5. Let (A, ¢) be a x-probability space, and let x,y be
selfadjoint elements of A. For every n > 1 one can expand (z + y)"
as a sum of 2" non-commutative monomials in x and y (even though,
of course, the usual binomial formula does not generally apply). As a
consequence, the moments ¢((x 4+ y)™), n > 1 (and hence the distri-
bution of x + y) are determined by knowledge of the joint distribution
of x and y.

On the other hand it is quite clear that, for x and y as above, just
knowing what are the individual distributions of x and of y will not
generally suffice in order to determine the distribution of = + y. In
the remainder of this example we point out how this can be nicely
illustrated in the situation of the group algebra (cf. Example 1.4.4).
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Let G be a group and let g,h € G be two elements of infinite
order. Consider the *-probability space (CG, 7¢), as in Example 1.4.4.
Recall that CG has a canonical linear basis indexed by G; the elements
of this basis are denoted by the same letters as the group elements
themselves, and they are unitaries in CG. Thus we have in particular
that g, h € CG, and that ¢* = g~ !, h* = h™L.

As observed in Lecture 1 (cf. Remark 1.13) each of g and h becomes
a Haar unitary in (CG,74); as a consequence, each of the selfadjoint
elements x := g+ ¢ ! and y := h + h~! has an arcsine distribution
(cf. Lecture 1, Example 1.14).

So, if in the framework of the preceding paragraph, we look at the
element

A=r+y=g+g'+h+h'eCq, (4.7)

then A will always be a sum of two selfadjoint elements with arcsine
distributions. Nevertheless, the distribution of A is not uniquely de-
termined, but will rather depend on what group G and what elements
g, h € G we started with. A way of understanding how the distribution
of A relates to the geometry of the group GG goes by considering the
subgroup of GG generated by ¢g and h, and by looking at closed walks in
the corresponding Cayley graph — see Exercise 4.15 below (which also
contains the relevant definitions). In order to try one’s hand at how
this works in concrete situations, the reader could consider for instance
the situations when

(1) G = 7Z?, with g = (1,0) and h = (0, 1), or

(2) G is the non-commutative free group on two generators, G = [y,
and g, h are two free generators of [Fy.

In situation (1) the corresponding Cayley graph is the lattice Z2,
and the counting of closed walks which yields the moments of A is
quite straightforward (see Exercise 4.16 at the end of the lecture). The
formula obtained is

. 0 if n is odd
T2 (A") = (4.8)

(2;’)2 if n is even, n = 2p.

In situation (2), the Cayley graph which appears is a tree (i.e. a
graph without circuits), and the counting of closed walks which gives
the moments of A is a well-known result of Kesten. One obtains a
recurrence relation between moments, which can be expressed concisely
as a formula giving the moment generating series:

= 21— 1222 — 1
3 T, (A7) = 1442242824 4+232:5 4 (4.9)
n=0

1— 1622
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Among the several possible derivations of the formula (4.9), there is
one which illustrates the methods of free probability — this is because
in situation (2) the elements x = u 4+ u* and y = v + v* of CF, will
turn out to be freely independent (in a sense to be defined precisely in
the next Lecture 5), and consequently one can use the technique for
computing the distribution of a sum of two freely independent elements
— see Example 12.8.2 in Lecture 12.

Joint *-distributions

REMARK 4.6. Let (A, ) be a s-probability space and let a be an
element of A. By looking at what is the x-distribution of a in algebraic
sense (Definition 1.17), we see that this really is the same thing as
the joint distribution of a and a*, with the only difference that we re-
denoted the indeterminate Xy of C(X;, X5) by X7, and we used this
notation to introduce a *-operation on C(X7, X5). It will be convenient
to have this formalism set up for tuples of elements as well. We thus
introduce the following notations.

NOTATIONS 4.7. Let s be a positive integer.

(1) We denote by C(Xy, X7, ..., Xs, X7) the unital algebra freely
generated by 2s non-commuting indeterminates X;, X7,..., X, X}
(this is the same thing as C(Xj,..., Xas) but where we re-denoted
Xsi1,---, Xos as X7, ..., X7, respectively). C(Xy, X7, ..., X, X7) has
a natural x-operation, determined by the requirement that the -
operation applied to X, gives X, for 1 <r <s.

(2) Let A be a unital x-algebra and let ay, ..., as be elements of A.
For every @ € C(X1, X7,..., X, X)) we will denote by Q(aq, ..., as)
the element of A which is obtained by replacing X; with a;, X; with
aj, ..., X, with ag, X7 with a? in the explicit writing of ). Equivalently,

C<X1,Xik,...,XS,X:>BQHQ(&l,...,aS)GA (410)

is the unital *-homomorphism uniquely determined by the fact that it
maps X, to a,, for 1 <r <s.

DEFINITION 4.8. Let (A, ) be a x-probability space, and let

ai,...,as be elements of A.
(1) The family

€L ... qgfn n>1,1<r,...,m, <s }
{<P(am a) €1y En € {1, %}

is called the family of joint x-moments of ay, ..., as.

(4.11)
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(2) The linear functional u : C(Xy, X,..., X5, X¥) — C defined
by

W@ = o(Qar, ), QECXyX{, . X0 X)  (412)
is called the joint x-distribution of ay,...,a, in (A, ¢).

In a certain sense, the main goal of this monograph is to study
joint *-distributions which appear in connection to the framework of
free independence. This means in particular that many interesting
examples will come into play once we start to discuss free independence
(beginning in the next lecture, and continuing throughout the rest of
the book). For the time being let us have a quick look at an example
which (by adjusting the corresponding name from C*-theory) could be
called “the x-algebra of the rotation by 6.”

EXAMPLE 4.9. Let 6 be a number in [0, 27]. Suppose that (A, ¢)
is a x-probability space where the x-algebra A is generated by two
unitaries uy, us which satisfy

Uty = ePuguy, (4.13)
and where ¢ : 4 — C is a faithful positive functional such that
{ 1 iftm=n=0

0 otherwise,

n

e(uftuy) = for m,n € Z. (4.14)

We will discuss later in this lecture why such a x-probability space
does indeed exist; right now let us assume it does, and let us make
some straightforward remarks about it. Observe that from (4.13) we
get

umu?) - (WPul) = et um+pu”+q
{ ( ! (inlufg)*l 2) _ 6zmn6((u1—muzn)) m,n € Z. (415)
1 %2 - 1 2

This in turn implies that
A = span{uf*ul | m,n € Z} (4.16)

(since the right-hand side of (4.16) is, as a consequence of (4.15), a
unital x-algebra which contains u; and uy). In particular this shows
that the linear functional ¢ is completely described by Equation (4.14).
Another fact which quickly follows is that ¢ is a trace. Indeed, verifying
this fact reduces to checking that for every m,n,p,q € Z we have

p((u'ug) - (uju3) ) = @( (uyu3) - (ui'uy) );
but (from (4.14) and (4.15)) both sides of this equation are equal to

e~ when (p,q) = —(m,n), and are equal to 0 in all other cases.

Let p : C(X1, X7, X2, X3) — C be the joint *-distribution of the
unitaries u; and us. Then for every n > 1 and rq,...,7, € {1,2},
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€1,...,6n € {1,%}, the value of  on the monomial X7!--- X7 is ei-
ther 0 or of the form e*? for some k € Z. More precisely: an im-
mediate computation (left to the reader) shows that p(X;1--- X;") is
non-zero precisely when the number of X; appearing in the sequence
X7t ..., X5 is equal to the number of X{ appearing in the sequence,
and the same when counting the occurrences of X, and of X;. In the
case when the latter conditions are fulfilled, we get that

HXG - X5 = e, (4.17)

where k € Z can be interpreted as the oriented area enclosed by a
suitably traced walk on the lattice Z? — see Exercise 4.17 at the end of
the lecture.

Joint x-distributions and isomorphism

THEOREM 4.10. Let (A, ) and (B,1) be x-probability spaces such
that ¢ and v are faithful. We denote the units of A and of B by 14
and 1g, respectively. Suppose that aq,...,as € A and by,...,by € B
are such that:

(i) a1,...,as and 14 generate A as a *-algebra;

(ii) by, ...,bs and 1g generate B as a x-algebra;

(iii) the joint *-distribution of ay,...,as in (A, p) is equal to the
joint x-distribution of by, ..., bs in (B,1).

Then there exists a *-isomorphism ® : A — B, uniquely deter-
mined, such that ®(ay) = by, ..., P(as) = bs. This ® is also an isomor-
phism between (A, @) and (B,1)), i.e. it has the property that o® = (.

PROOF. Observe that the hypotheses (i) and (ii) amount to

A={P(ai,...,as) | P C(X, X},..., X,,X])}
(4.18)
BZ{P(bl,...,bS) ‘ P€C<X1,XT,...,XS,X:>}

(since on the right-hand sides of Equations (4.18) we have unital x-
subalgebras of A and of B which contain aq,...,as and by, ..., by, re-
spectively).

Let p : C(Xy,X7,..., X5, X}) — C be the common joint *-
distribution of ay,...,as and of by,...,bs. From the definition of
and the fact that the functionals ¢ and ¢ are faithful, it is immediate
that for P,Q € C(Xy, X7, ..., X, X}) we have:

P(ay,...,as) = Qar,...,a)) &  w((P=Q)(P—-Q))=0
& P(by,...,bs) = Q(by,...,by).
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As a consequence, it makes sense to define a function ® : A — B by
the formula

®( Play,...,a;) ) = P(by,....b,), PeC(Xy,X5,..., X, X5,

and moreover this function is bijective. Indeed, from the equivalences
observed above it follows that the definition of ® is coherent and that
® is injective, whereas Equations (4.18) imply that ® is defined on all
of A and it is surjective.

The formula defining ® clearly implies that & is a unital *-
homomorphism and that ®(a,) = b,, 1 < r < s. Moreover, we have
that 1 o & = ¢; indeed, this amounts to the equality

W( Pby,....b)) =o( Play,...,a;)), VPeCXy, X5, ... X5, X,

which is true, since both its sides are equal to u(P). The uniqueness
of ® with the above properties is clear. O]

We now upgrade the preceding theorem to the framework of a
C*-probability space. What is different in this framework is that, if
ai,...,as generate A as a unital C*-algebra, then the polynomials
P(ay,...,as) (with P € C(Xy, X7,..., X5, X)) do not necessarily ex-
haust A, they will only give us a dense unital *-subalgebra of A. But
this issue can be easily handled by using a norm-preservation argument.

THEOREM 4.11. Let (A, ¢) and (B, 1) be C*-probability spaces such
that ¢ and v are faithful. We denote the units of A and of B by 14
and lg, respectively. Suppose that aq,...,as € A and by,...,by € B
are such that:

(i) a1,...,as and 14 generate A as a C*-algebra;

(ii) by,...,bs and 1z generate B as a C*-algebra;

(iii) the joint x-distribution of ay,...,as in (A, ) is equal to the
joint x-distribution of by, ..., bs in (B,v).

Then there exists an isometric x-isomorphism ® : A — B, uniquely
determined, such that ®(ay) = by,...,P(as) = bs. This ¢ is also an
isomorphism between (A, ) and (B,1)), i.e. it has the property that

Yod=op.
PRrRoOOF. Let us denote
./4.0 = {P(al,...,as) | P c (C(Xl,Xf,...,XS,X*>},

and

B() = {P(bl,...7b5) | P - C<X1,XT,‘..,XS7X:>}.
It is clear that A, is a unital x-subalgebra of A, and hypothesis (i)
of the theorem gives us that Ay is dense in A in the norm-topology.
(Indeed, it is immediate that the closure of Ay in the norm-topology
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is the smallest unital C*-subalgebra of A which contains ay, ..., as.)
Likewise, we have that By is a dense unital x-subalgebra of B.

The x-probability spaces (Ao, ¢|Ag) and (By, ¥|By) satisfy the hy-
potheses of Theorem 4.10 (with respect to the given aq,...,as and
bi,...,bs). So from that theorem and its proof we know that the map
D : Ay — By defined by

QO(P(al,...,as)):P(bl,...,bs)

(where P runs in C(Xy, X;,..., X5, X7)) is an isomorphism of x-
probability spaces between (Ao, ¢|Ag) and (B, |By).

The point of the proof is to observe that the map ®, is isometric
on Ap, i.e. that for every P € C(Xy, X7, ..., X, XI) we have

|P(ay, ... as)||a=||P(bi,...,bs)||s (4.19)
Indeed, given a polynomial P € C(X1, X7, ..., X, X), we compute:
I|P(ay,...,a5)||a = lim ¢( (P(ay,...,as) Play, ... a))" )™

n—oo

= lim ¢( (P*P)"(ay,...,a,) )"/*"

where ;1 denotes the common joint *-distribution of aq,...,as and of
by, ...,bs, and where at the first equality sign we used Proposition 3.17
from the preceding lecture. Clearly, the same kind of calculation can
be done for the norm ||P(by,...,bs)||s, and (4.19) follows.

Now, a standard argument of extension by continuity shows that
there exists a unique continuous function ® : A — B such that
®| Ay = Py. The properties of g of being a *-homomorphism and
of being isometric are immediately passed on to ®, by continuity. We
have that ® is one-to-one because it is isometric. The range of ® is com-
plete (being an isometric image of A), hence closed in B; since ran(®)
contains the dense x-subalgebra By of B, it follows that ran(®) = B,
hence that ® is onto. Thus ® has all the properties appearing in the
statement of the theorem. The uniqueness of ® follows from the fact
that, in general, a unital *-homomorphism defined on A is determined
by its values on ay, ..., as. O

REMARKS 4.12. (1) The kind of isomorphism which appeared
in Theorem 4.11 is suitable for the category of unital C*-algebras,
i.e. it includes the appropriate metric property of being isometric
(||®(a)||ls = ||al| 4, for every a € A). It is worth mentioning here that
in fact a bijective unital *-homomorphism between unital C*-algebras
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is always isometric (the metric property is an automatic consequence
of the algebraic ones). See Exercise 4.18 at the end of the lecture.

(2) Theorem 4.11 has a version where the families ay,...,as and
bi,...,bs consist of selfadjoint elements (of A and of B, respectively),
and where hypothesis (iii) in the theorem is adjusted to require that the
joint distribution of a, ..., asin (A, ¢) is equal to the joint distribution
of by,...,bs in (B,1). In order to obtain this version of the theorem
one can either repeat (with trivial adjustments) the proof shown above,
or one can invoke the actual statement of Theorem 4.11 in conjunction
with the (trivial) trick described in Exercise 4.19

(3) Another possible generalization of Theorem 4.11 is in the direc-
tion of allowing the families of generators considered for A and B to
be infinite. The precise statement appears in Exercise 4.20 at the end
of the lecture.

ExAMPLE 4.13. We look again at the situation of Example 4.9,
but now considered in the C*-framework. So let 6 be a fixed number
in [0, 27]. Suppose that (A, ¢) is a C*-probability space where the C*-
algebra A is generated by two unitaries uq, us which satisfy Equation
(4.13), and where ¢ : A — C is a faithful positive functional satisfy-
ing Equation (4.14). Then exactly as in Example 4.9 we see that the
relations (4.15) hold, and imply that

(i) A = clspan{ufuy | m,n € Z} (where “cl span” stands for
“norm-closure of linear span”), and

(ii) ¢ is a trace.

Now, Theorem 4.11 implies that a C*-probability space (A, ¢) as
described in the preceding paragraph is uniquely determined up to
isomorphism. In particular, the isomorphism class of the C*-algebra
A involved in the example is uniquely determined; it therefore makes
sense (and it is customary) to refer to such an A by calling it the
C*-algebra of rotation by 6.

Of course, in order to talk about the C*-algebra of rotation by 6
one must also show that it exists —i.e. one must construct an example
of C*-probability space (A, ¢) where ¢ is faithful and where Equations
(4.13) and (4.14) are satisfied. In the remainder of this example we
show how this can be done.

Consider the Hilbert space [*(Z?), and denote its canonical or-
thonormal basis by {{mmn) | m,n € Z}. It is immediate that one
can define two unitary operators Uy, Uy on [2(Z?*) by prescribing their
action on the canonical orthonormal basis to be as follows:

Ulf(m n) — g(m—&—l n)
’ —im ’ m,n € Z. 4.20
{ UQg(m,n) = € 6?g(m,n-l—l)v ( )
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Let A be the C*-subalgebra of B(I*(Z?)) which is generated by U; and
Us, and let ¢ : A — C be the vector-state defined by the vector g );
that is,

p(T) = (T0,0),¢00), T €A (4.21)

From (4.20) it is immediate that U,Us = ¢?UsU; (indeed, both U U,
and eU,U; send §(mom) tO e*imef(mﬂynﬂ), for every m,n € Z). So in
order for the C*-probability space (A, ¢) to have the required proper-
ties, we are only left to check that ¢ is faithful.

Observe that even without knowing that ¢ is faithful, we can
see that it is a trace. This is checked exactly as in Example 4.9,
where Equation (4.16) is now replaced by the fact that A equals
cl span{U]"Uy" | m,n € Z}; the details of this are left to the reader.

Now suppose that 7" € A is such that p(7*T) = 0. Since o(T*T) =
[|T¢0,0)||?, we thus have that 7€) = 0. But then for every m,n, p,q €
Z we can write:

(TEmmn), ) = (T(UTU3)€0,0), (UTUS)E(0,0))

(UYUS) T(UT"U3)€(0,0), £(0,0))

{
{

= ((UTU3) T (U"U3))

= p((U"U)(UYUNHT) (since ¢ is a trace)
= <(U1mU§L)<UfU§)*T€(0,0),f(o,o))

=0 (because T¢,0) = 0).

Hence (T¢(mn), &(p,q)) = 0 for all m,n, p,q € Z, and this clearly implies
that 7' = 0 (thus completing the verification of the faithfulness of ).

Without going into any details, we mention here that the univer-
sality and uniqueness properties of the C*-algebra A of rotation by 6
can be obtained without taking the canonical trace ¢ : A — C as part
of our initial data (but then the arguments are no longer as simple as
shown above).

Exercises

Exercises 4.14-4.16 fill in some of the details remaining from the dis-
cussion in Example 4.5.

EXERCISE 4.14. Let G be a group which is generated by two el-
ements g, h € G, both of infinite order and such that none of them
generates G by itself. Consider the #-probability space (CG, 7¢) and
the element A = g+ ¢! +h+ h™! € CG (as in Example 4.5). Verify
that 7¢(A) = 0, 7¢(A?) = 4, 7¢(A3) = 0, but that the value of 75(A*)
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is not uniquely determined. What are the minimal and maximal values
which 7¢(A*) can have, under the given hypotheses?

EXERCISE 4.15. Consider the framework of Exercise 4.14, and
consider the Cayley graph of G with respect to the set of genera-
tors {g,g ', h,h='}. (The vertices of this graph are the elements
of G. Two vertices ¢g1,90 € G are connected by an edge of the
graph precisely when g; g2 € {g,97", h,h™'}, or, equivalently, when
g1 € {9,97 ", h,h™'}.) Prove that for every n > 1, the moment
Ta(A™) is equal to the number of closed paths of length n in the Cay-
ley graph, which begin and end at the unit element e of G.

EXERCISE 4.16. (1) Consider the framework of Exercises 4.14 and
4.15, where we set G = Z* and g = (1,0),h = (0,1). Observe that in
this case the Cayley graph of G with respect to the set of generators
{9,971, h, h~'} is precisely the square lattice Z2.

(2) Prove that the number of closed paths in the square lattice Z>
which have length n and which begin and end at (0,0) is equal to

{ 0 if n is odd

(2;’)2 if n is even, n = 2p.

Observe that this implies formula (4.8) stated in Example 4.5.

EXERCISE 4.17. Refer to the notations in the last paragraph of
Example 4.9. Given a positive integer n and some values r,...,7, €
{1,2}, €1,...,en € {1, %}, consider the n-step walk ~ in the lattice Z?
which starts at (0,0) and has its jth step (1 < j < n) described as
follows:

o if r; =1 and ¢; = 1, then the jth step of v is towards East;

o if r; =1 and ¢; = —1, then the jth step of v is towards West;

o if r; = 2 and ¢; = 1, then the jth step of v is towards North;

o if r; = 2 and ¢; = —1, then the jth step of v is towards South.

(1) Prove that pu(X;!--- X:) is different from 0 if and only if the
path v is closed (that is, v ends at (0, 0)).

(2) Suppose that v is closed. Verify the formula stated in Equation
(4.17) of Example 4.9, where k € Z denotes the signed area enclosed
by the path v that is, k£ is given by the contour integral

k:/xdy——/ydx.
¥ gl

EXERCISE 4.18. (1) (Detail left from the Remark 4.12) Let A and
B be unital C*-algebras, and let ® : A — B be a bijective unital
x-homomorphism. Prove that ||®(a)||g = ||a||4, ¥V a € A.
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(2) (A generalization of part (1), which is used in Lecture 7) Let
A and B be unital C*-algebras, and let & : A — B be a unital -
homomorphism which is one-to-one. Prove that ||®(a)|lz = ||a||4,
VacA
[Hint: It suffices to check that ||®(p)||s = ||p||4 for p € AT. In part (1)
this is because Sp(p) = Sp(®(p)). In part (2), one only has Sp(®(p)) C
Sp(p); but if it happened that ||®(p)|| < ||p||, then one could use the
functional calculus of p and Exercise 3.23 to obtain a contradiction.]

EXERCISE 4.19. (1) Let (A, ¢) be a x-probability space, and let
aiy,...,as be selfadjoint elements of A. Let p: C(X;,..., X;) — C be
the joint distribution of ay,...,as and let g : C(Xy, X7 ..., X, X)) —
C be the joint *-distribution of ai,...,as; (in (A, ¢)). Prove the
relation g = p o II, where II is the unital homomorphism from
C(Xy, X7 ..., X5, X¥) to C(X4,...,X;) uniquely determined by the
condition that I1(X,) =II(X}) = X,, for 1 <r < s.

(2) By using the first part of this exercise, give a proof of the self-
adjoint version of Theorem 4.11 which is described in Remark 4.12.

EXERCISE 4.20. (Generalization of Theorem 4.11 to the case of
infinite families of generators) Let (A, ¢) and (B, 1) be C*-probability
spaces such that ¢ and v are faithful. We denote the units of A and
of B by 14 and 1g, respectively. Suppose that (a;);e; and (b;);e; are
families of elements of A and respectively of B, indexed by the same
index set I, such that:

(j) {a; | i € I} U {14} generate A as a C*-algebra;

(Gj) {b; | i € I} U{1p} generate B as a C*-algebra;

(jij) for every finite subset {iy,...,is} of I, the joint x-distribution
of a;,...,a;, in (A, ) is equal to the joint *-distribution of b;,, ..., b;,
in (B, ).

Prove that there exists an isometric *-isomorphism ® : A — B,
uniquely determined, such that ®(a;) = b; for every i € I. Prove
moreover that this ® is also an isomorphism between (A, ¢) and (B, 1),
i.e. it has the property that ¥ o & = .

[Hint: Reduce these statements to those of Theorem 4.11, by consid-
ering the unital C*-subalgebras of A and of B which are generated by
finite subfamilies of the a; and the b;.]

s






LECTURE 5

Definition and basic properties of free
independence

In this lecture we will introduce the basic concept which refines “non-
commutative probability theory” to “free probability theory” — the no-
tion of free independence. As the name indicates, this concept should
be seen as an analog of the notion of independence from classical prob-
ability theory. Thus, before we define free independence we recall this
classical notion. Since we are working with algebras which might be
non-commutative, it is more appropriate to formulate the concept of
classical independence on this more general level, where it corresponds
to the notion of a tensor product.

We will also derive some very basic properties of free independence
in this lecture. A more systematic theory, however, will be deferred to
Part 2.

The classical situation: tensor independence

DEFINITION 5.1. Let (A, ¢) be a non-commutative probability
space and let I be a fixed index set.

(1) Unital subalgebras (A;);cr are called tensor independent, if
the subalgebras A; commute (i.e. ab = ba for all a € A; and all b € A;
and all 7,5 € I with ¢ # j) and if ¢ factorizes in the following way:

o([Tas) =TT (@) (5.1)

jedJ jeJ

for all finite subsets J C I and all a; € A; (j € J).

(2) Tensor (or classical) independence of random variables is defined
by tensor independence of the generated unital algebras; hence “a and
b tensor independent” means nothing but a and b commute and mixed
moments factorize, i.e.

ab = ba and e(a™ ™) = p(a™)e(d™) Yn,m > 0. (5.2)

From a combinatorial point of view one can consider tensor inde-
pendence as a special rule, namely (5.2), for calculating mixed moments

63
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of independent random variables from the moments of the single vari-
ables. Free independence will just be another such specific rule.

REMARK 5.2. Note that in the non-commutative context we have to
specify many more mixed moments than in the commutative case. If a
and b commute then every mixed moment in ¢ and b can be reduced to
a moment of the form ¢(a"b™) and thus the factorization rule in (5.2)
for these contains the full information about the joint distribution of
a and b, provided we know the distribution of a and the distribution
of b. If, on the other hand, a and b do not commute then ¢(a™b™) is
only a very small part of the joint distribution of a and b, because we
have to consider moments like p(a™b™a™b™2 - --a™b™ ), and these
cannot be reduced in general to just @(a™™). As first guess for a
factorization rule for non-commutative situations one might think of a
direct extension of the classical rule, namely

p(a™b™ - a™ ™) = p(a™) - (b™) -+ p(a™) - (b™).  (5.3)
This, however, is not the rule of free independence. One sees easily
that (5.3) is not consistent in general if one puts, for example, some
of the m; or some of the n; equal to 0. If one is willing to accept
this deficiency then the rule (5.3) can be used to define the so-called
“Boolean independence.” One can develop elements of a Boolean prob-
ability theory, however, its structure is quite trivial compared to the
depth of free probability theory. We will not elaborate more on this
Boolean factorization rule, but want to present now the more interest-
ing rule for free independence. As the reader might have guessed from
the preceding remarks, the rule for free independence is not as straight-
forward as the above factorization rules. Actually, the definition of free
independence might look somewhat artificial at first, but we will see
throughout the rest of the book that this is a very important concept
and deserves special attention. In the last section of this lecture we
will also comment on the way in which free independence is, despite
the more complicated nature of its rule for calculating mixed moments,
a very natural concept.

Definition of free independence

DEFINITION 5.3. Let (A,¢) be a non-commutative probability
space and let I be a fixed index set.

(1) Let, for each i € I, A; C A be a unital subalgebra. The
subalgebras (A4;);cr are called freely independent, if
Sp(al...ak> :O
whenever we have the following.
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k is a positive integer;

aj € Ay (i(j) € I) forall j =1,... k;

o(aj) =0forall j=1,... k;

and neighboring elements are from different subalgebras, i.e.
i(1) #£1i(2), i(2) #i(3), ..., i(k—1) #i(k).

(2) Let X; C A (i € I) be subsets of A. Then (X;);c; are called
freely independent if (A;);c; are freely independent, where, for i € I,
A; = alg(1, &;) is the unital algebra generated by X;.

(3) In particular, if the unital algebras A; := alg(1, a;) generated by
elements a; € A (i € I) are freely independent, then (a;);c; are called
freely independent random variables.

(4) If, in the context of a x-probability space, the unital x-algebras
A; = alg(1, a;,af) generated by the random variables a; (i € I) are
freely independent, then we call (a;);c; *-freely independent.

REMARKS 5.4. (1) Clearly, free independence is a concept with
respect to a linear functional ¢; random variables which are freely in-
dependent with respect to some functional ¢ are in general not freely
independent with respect to some other functional ¢. So a more pre-
cise name would be “freely independent with respect to ¢.” However,
usually it is clear to which ¢ we refer. In particular, it is understood
that if we are working in a non-commutative probability space (A, p),
then our free independence is with respect to this .

(2) Note: the condition on the indices in the definition of free in-
dependence is only on consecutive indices; i(1) = i(3), for example, is
allowed. We also do not require that the first and the last element are
from different subalgebras, thus i(1) = i(k) is in general allowed.

(3) Let us state more explicitly the requirement for freely inde-
pendent random variables: (a;);e; are freely independent if we have
¢(Pi(ai) - .. Pe(aiw)) = 0 for all polynomials Py,..., P, € C(X)
in one indeterminate X and all i(1) # i(2) # --- # i(k), such that
©(Pj(a;;))) =0forall j =1,... k.

(4) Note that the index set I might be infinite, even uncountable;
but this is not really an issue. Free independence of (\A;);c; is the same
as free independence of (A;);e, for all finite subsets J of I.

(5) Free independence of random variables is defined in terms of
the generated algebras, but one should note that it extends also to the
generated C*-algebras; see Exercise 5.23.

(6) Sometimes we will have free independence between sets of ran-
dom variables where some of the sets consist only of one element. Usu-
ally, we will replace these sets just by the random variables. So, for
example, free independence between {aj, a2} and b (for some random
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variables a, as, b in a non-commutative probability space) means free
independence between {a,as} and {b}, which is by definition the same
as free independence between the unital algebra generated by a; and
as and the unital algebra generated by b.

NoTATION 5.5. Instead of saying that algebras, sets, or random
variables are “freely independent” we will often just say that they are
free. In the same way, *-free means the same as “x-freely indepen-
dent.” Instead of “free independence” one often also uses freeness.

The example of a free product of groups

Before we start to take a closer look at the structure of our definition,
we want to present one basic model for freely independent random vari-
ables. Indeed, this example was the starting point of Voiculescu and
motivated the above definition of free independence. This example
takes place in the probability space (CG, 7¢) of the group algebra of a
group G, in the special situation where the group G is the free prod-
uct of subgroups G;. Let us first recall what it means that subgroups
are free. Freeness in the context of groups is a purely algebraic con-
dition (i.e. does not depend on any linear functional) and means that
we do not have non-trivial relations between elements from different
subgroups.

DEFINITION 5.6. Let G be a group and (G,);er subgroups of G. By
e we will denote the common neutral element of all these groups. The
subgroups (G;);er are free if for all & > 1, all i(1),...,i(k) € I with

i(1) #i(2) # -+ #i(k) and all g1 € Gin)\{e}, ..., g% € Gign)\{e} we
have that g, --- gr # e.

ExXAMPLE 5.7. Let F,, be the free group with n generators,
i.e. F, is generated by n elements fi,..., f,, which fulfill no other
relations apart from the group axioms. Then we have F; = Z and
within

F, . m = group generated by fi,..., fiin
the groups
F,, = group generated by fi,..., fi
and
F,, = group generated by fri1,---, fmin

are free.
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If one has the notion that groups are free then a canonical question
is whether for any given collection (G;);er of groups (not necessarily
subgroups of a bigger group) one can construct some group G such that
the G; are (isomorphic to) subgroups of this G and that, in addition,
they are free in G. The affirmative answer to this is given by the free
product construction.

DEFINITION 5.8. Let G; (i € I) be groups with identity elements
e; (1 € I), respectively. The free product G := *;c;G; is the group
which is generated by all elements from all G; (i € I) subject to the
following relations:

(1) the relations within each G; (i € I);

(2) the identity element e; of G;, for each i € I, is identified with
the identity element e of G:

e=e; for all 7 € I.

ExAMPLE 5.9. With the notion of the free product we can rephrase
the content of Example 5.7 also as

Fm+n = Fm * ]Fn

REMARKS 5.10. (1) An important property of the free product of
groups is its universality property. Whenever we have a group F' and
group homomorphisms 7; : G; — F for all ¢+ € I, then there exists a
unique homomorphism 7 : x;c;G; — F, which extends the given 7;,
i.e. n|g, = mi, where we, of course, identify G; with a subgroup of the
free product. This universality property determines the free product
uniquely (up to group isomorphism), the only non-trivial point is to see
that such an object indeed exists. The above, more explicit definition,
can be used to show this existence.

(2) Even more explicitly, we can describe the free product G =
*;c1G; as follows:

G ={e}U{gr-..gr [ g; € Gijy,i(1) #i(2) # - -~ # (k) g; # e }
and multiplication in G is given by juxtaposition and reduction to
the above form by multiplication of neighboring terms from the same
group.

(3) In particular, for g; € G,y such that g; #e (j =1,...,k) and
i(1) # -+ #i(k) we have gy --- g, # e; i.e. the G; (i € I) are indeed

free in *x;¢;G;.

The relation between the group algebra of the free product of groups
and the concept of free independence is given in the following propo-
sition. Of course, this relation is the reason for calling this concept
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“free” independence. Let us emphasize again, that whereas “free” in
an algebraic context (as for groups or algebras) just means the absence
of non-trivial algebraic relations, in our context of non-commutative
probability spaces “free” is a very specific requirement for a fixed lin-
ear functional.

PROPOSITION 5.11. Let G; (i € I) be subgroups of a group G. Then
the following are equivalent.

(1) The groups (G;)icr are free.

(2) The algebras (CG;)ier (considered as subalgebras of CG) are

freely independent in the non-commutative probability space (CG,1g).

PROOF. First, we prove the implication (1) = (2). Consider

Y aflgeCGyy (1<j<hk)

9€Gi)

such that (1) # i(2) # --- # i(k) and 7¢(a;) = 0 (i.e. al) = 0) for all
1 < j < k. Then we have

oo =7o(( X (3 o)

91€G;(1) 9kEGik)

_ 1 k
— E : aél)...aék)m(gl...gk).
91€G; (1), 9k EGi(k)

For all ¢q,...,gr with @E,P...aé? # 0 we have g; # e for all j =

.k and i(1) # i(2) # - -+ # i(k), and thus, by Definition 5.6, that
g1-..gx # €. This implies 7¢(a; - - - ax) = 0, and thus the assertion.

Now let us prove (2) = (1). Consider k € N, i(1),...,i(k) € [
with i(1) # i(2) # --- # i(k) and g1 € Giy)\{e}, ..., 9 € Giw)\{e}
The latter means that 7¢(g;) = 0 for all j =1,...,k and thus, by the
definition of free independence, we also have 7¢(g; - - - gx) = 0, which is
exactly our assertion that g; - -- g # e. U

REMARKS 5.12. (1) The group algebra CG can be extended in a
canonical way to the so-called group von Neumann algebra L(G). We
will not address von Neumann algebras and the corresponding W*-
probability spaces in this book, but let us make at least some remarks
about this on an informal level. In Example 3.11, we saw how one
can extend the group algebra CG of a discrete group to a C*-algebra

* 4(G) by taking the norm closure of CG in the left regular represen-
tation. If one takes instead a closure in a weaker topology, then one
gets a bigger object, the group von Neumann algebra L(G). The desire
to understand the structure of such von Neumann algebras is a driving
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force for investigations in operator algebras. In particular, Voiculescu’s
motivation for starting free probability theory was to understand the
structure of such L(G) in the case where G = G x Gy is a free product
group. Similarly, as G % Gy is built out of G; and G5 and C(G1 xGy) is
built out of CG; and CGy, one would hope to understand L(G; %G2) by
building it out of L(G;) and L(G2). However, this cannot be a purely
algebraic operation. There is no useful way of saying that L(G;) and
L(G5) are algebraically free in L(G). (Note that by completing the
group algebra in some topology we necessarily have to go over from
finite sums over group elements to infinite sums.) What, however, can
be extended from the level of group algebras to the level of von Neu-
mann algebras is the characterization in terms of 7. 7¢ extends to a
faithful state (even trace) on L(G) (in the same way as it extends to
*4(G), see Example 3.11) and we still have that L(G) and L(G)
are freely independent in (L(G; * G3),7g). Thus understanding free
independence may shed some light on the structure of L(G; x Gs).

(2) In particular we have that L(F,) and L(F,,) are freely indepen-
dent in (L(Fy4m), Tw,,,.).- This was the starting point of Voiculescu;
in particular he wanted to attack the (still open) problem of the iso-
morphism of the free group factors, which asks the following: is it true
that L(F,) and L(TF,,) are isomorphic as von Neumann algebras for all
n,m > 27

(3) Free independence has in the mean time provided a lot of infor-
mation about the structure of L(FF,,). The general philosophy is that
these so-called free group factors are one of the most interesting class of
von Neumann algebras after the well-understood hyperfinite ones and
that free probability theory provides the right tools for studying this
class.

Free independence and joint moments

Let us now start to examine the concept of free independence a bit more
closely. Although not as obvious as in the case of tensor independence,
free independence is from a combinatorial point of view nothing but
a very special rule for calculating joint moments of freely independent
variables out of the moments of the single variables. Or in other words,
we have the following important fact.

If a family of random variables is freely independent, then the joint
distribution of the family is completely determined by the knowledge of
the individual distributions of the variables.

The proof of the following lemma shows how this calculation can
be done in principle.
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LEMMA 5.13. Let (A, ) be a non-commutative probability space
and let the unital subalgebras A; (i € 1) be freely independent. Denote
by B the algebra which is generated by all A;, B := alg(A; | i € I).
Then @|g is uniquely determined by |4, for all i € I and by the free
independence condition.

PRrROOF. Each element of B can be written as a linear combination
of elements of the form a; - - - ay where a; € A;;) (i(j) € I). We can
assume that (1) # (2) # --- # i(k). (Otherwise, we just multiply
some neighbors together to give a new element.) Let a;---a; € B
be such an element. We have to show that ¢(a;...ax) is uniquely
determined by the ¢|4, (i € I).

We prove this by induction on k. The case k£ = 1 is clear because
a; € A;1). In the general case we put

aj = a; — p(a;)1 € Ay (7=1,... k).

Then we have
plar---ax) = ((aS + @(a)1) - - - (af + p(ax)1))

o

= p(af---ay) + rest,
where
rest = Z 90(@;;(1) T a2<s>) ~p(agy) - p(agr—s)),

and the sum runs over all disjoint decompositions

(p(1) <---<p(s)U(g(1) <--- < qlk—s))=(1,...,k) (s < k).
Since p(aj) = 0 for all j it follows, by the definition of free indepen-
dence, that ¢(a$---al) = 0. On the other hand, all terms in rest are
of length smaller than k£, and thus are uniquely determined from the
induction hypothesis. 0

NOTATION 5.14. The operation of going over from some random
variable a to

a®:=a—p(a)l

is usually called the centering of a.

EXAMPLES 5.15. Let us look at some concrete examples. In the
following we fix a non-commutative probability space (A, ¢) and con-
sider two free subalgebras A and B. For elements a,a;,as € A and
b,bi, by € B we want to calculate concretely some mixed moments of
small length. The main trick is to reduce a general mixed moment to
the special ones considered in the definition of free independence by
centering the involved variables.
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(1) According to the definition of free independence we have directly
w(ab) = 0 if p(a) = 0 and p(b) = 0. To calculate ¢(ab) in general we
center our variables as in the proof of the lemma:

0=p((a—p(@)1)(b— b))
= p(ab) — @(al)p(b) — p(a)p(1b) + p(a)e(b)e(1)
= p(ab) — p(a)p(b)
which implies
p(ab) = p(a)p(b) if @ and b are free. (5.4)
(2) In the same way we write
p((a1 = p(a1)1)(b = @(b)1)(az — p(az)1)) =0
implying
p(arbay) = p(araz)p(b) if {ay,as} and b are free. (5.5)

(3) All the examples up to now yielded the same result as we would
get for tensor independent random variables. To see the difference
between “free independence” and “tensor independence” we consider
now ¢(aibiasbs). Starting from

p((ar = @(ar)1)(br — @(b1)1)(az — p(az)1)(bz — @(b2)1)) =0

one arrives after some calculations at

p(arbaasba) = p(aras)p(br)p(be) + @(ar)p(az)p(bibs)
— p(a1)p(bi)p(az)p(bs), (5.6)
if {aq1,as} and {by, by} are free.

Some basic properties of free independence

Although the above examples are only the tip of an iceberg they allow
us to infer some general statements about freely independent random
variables. In particular, one can see that the concept of free indepen-
dence is a genuine non-commutative one and only trivial shadows of it
can be seen in the commutative world.

REMARKS 5.16. (1) When can commuting random variables a and
b be freely independent? We claim that this can only happen if at least
one of them has vanishing variance, i.e. if

p((a—p(@1)?) =0 or  o((b—p®)1)?) =0
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Indeed, let a and b be free and such that ab = ba. Then, by combining
Equations (5.4) (for a® and b* instead of a and b) and (5.6) (for the
case that a; = ay = a and by = by = b), we have

p(a®)p(b?) = p(a®h?)
= @(abab)

= p(a®)(b)” + p(a)’(b*) — p(a)’o(b),
and hence
0= (p(a®) — @(a)®) (¢(b%) — @(b)*)
= ¢((a—¢(a)1)?) (b= @(b)1)?),
which implies that at least one of the two factors has to vanish.

(2) In particular, if @ and b are classical random variables then
they can only be freely independent if at least one of them is almost
surely constant. This shows that free independence is really a non-
commutative concept and cannot be considered as a special kind of
dependence between classical random variables.

(3) A special case of the above is the following. If a is freely in-
dependent from itself then we have p(a?) = ¢(a)®. If we are in a
x-probability space (A, ¢) where ¢ is faithful, and if a = a*, then this
implies that a is a constant: a = ¢(a)l. Another way of putting this
is as follows. If the algebras A; and A, are x-free in the s-probability
space (A, ¢) and if ¢ is faithful then

AinA, =ClL.

Another general statement about freely independent random vari-
ables which can be inferred directly from the definition is that constant
random variables are freely independent from everything. Because of
its importance we state this observation as a lemma.

LEMMA 5.17. Let (A, ) be a non-commutative probability space
and B C A a unital subalgebra. Then the subalgebras C1 and B are
freely independent.

Proor. Consider ai,...,a; as in the definition of free indepen-
dence, with k& > 2 (the case k = 1 is clear). Then we have at least one
a; € C1 with ¢(a;) = 0. But this means a; = 0, hence a;---a; = 0
and thus ¢(a; - - - a) = 0. O

In the next proposition we observe the fact that free independence
behaves nicely with respect to the tracial property. To prove this we
need a bit of information on how to calculate special mixed moments
of freely independent random variables.
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LEMMA 5.18. Let (A, p) be a non-commutative probability space,
and let (A;)icr be a freely independent family of unital subalgebras of A.
Let ay, ... ay be elements of the algebras A;qy, ..., Aix), respectively,
where the indices i(1),...,i(k) € I are such that

and where we have p(ay) = -+- = @(ay) = 0. Likewise, let by, ..., b, be
elements of Ajqy, ..., Ajq, respectively, such that

J) #5(2), .., =1) #5(0),
and such that p(by) = -+- = (b)) = 0. Then we have

gp(al "'akbl"'b1>

el k= i) =300 =30 o)

PROOF. One has to iterate the following observation: either we
have i(k) # j(l), in which case
()O(al...akbl...bl) = O,
or we have i(k) = j(1), which gives

Qo(al cee akbl s bl) = QD(CLl o Al ((akbl)o + @(akbl)l) : bl—l cee bl)

=0+ o(arh) - p(ay ...ag_1b_1...b1).
O

PROPOSITION 5.19. Let (A, ) be a non-commutative probability
space, let (A;)ier be a freely independent family of unital subalgebras of
A, and let B be the subalgebra of A generated by User A;i. If p|a, is a
trace for every i € I, then p|g is a trace.

PrOOF. We have to prove that ¢(ab) = ¢(ba) for all a,b € B.
Since every element a from B can be written as a linear combination
of 1 and elements of the form a; - --a;, (for k > 1, a, € A such that

i(1) #i(2) # ... #i(k) and p(a;) = --- = p(ag) = 0), it suffices to
prove the assertion for a and b of the special form a = a;---a and b =

bi--- by with a, € Ay and by € Ajq) where i(1) # i(2) # ... # i(k)

and j(1) # j(2) # ... # j(l), and such that p(a;) = -+ = p(ax) =0
and ¢(by) = -+ = ¢(b;) = 0. But in this situation we can apply the
previous Lemma 5.18 and get

90(&1 ceeagbp - bl) = O - 5i(k)j(k) s 5i(1)j(1) : Sp(albl) s @(akbk)
and

o(by---bray - - ax) = Oy - 5j(1)i(1) o '5j(l)i(l) ~p(biay) - - - p(bray).
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The assertion follows now from the assumption that ¢ is a trace on
each A;, since this means that ¢(a,b,) = ¢(bya,) for all p. O

For some more general observations which one can derive directly
from the definition of free independence, see Exercises 5.22—5.25.

REMARK 5.20. One general observation which is worth spelling
out explicitly is that free independence is (in the same way as classical
independence) commutative and associative, in the sense that

Ai, Ay free — As, A; free

and

Xl,XQ UXg free } — { Xl UXQ,X?) free

Xy, X3 free Xy, Xy free } — X, Ay, X5 free

The commutativity is obvious from the definition, associativity will be
addressed in Exercise 5.25.

REMARK 5.21. The fact that the joint distribution of a free family
is determined by the individual distributions can be combined with
Theorem 4.11 of the preceding lecture — this will enable us to talk
about C*-algebras defined by a family of *-free generators with given
«-distributions. (At least it will be clear that the class of isomorphism
of such a C*-algebra is uniquely determined. The issue of why the
C*-algebra in question does indeed exist will be discussed separately
in the next two lectures.)

For instance one can talk about

{ “the unital C*-algebra generated by 3 free

selfadjoint elements with arcsine distributions.” (5-8)

This means: a unital C*-algebra A endowed with a faithful posi-
tive functional ¢, and generated by 3 free selfadjoint elements 1, x9, x3,
where each of x1, x5, x3 has arcsine distribution with respect to ¢. (Re-
call that the arcsine distribution was discussed in Example 1.14.) The
C*-algebra A is, up to isomorphism, uniquely determined, by the fact
that the above conditions determine the joint distribution of x1, zs, x3,
and by Theorem 4.11 (see also Remark 4.12.1).

Of course, when referring to a C*-algebra introduced as in (5.8),
one must also make sure that a C*-algebra satisfying the required con-
ditions does indeed exist. For the example at hand, this is (inciden-
tally) very easy — we can just take A to be the unital C*-subalgebra
of C*  (IF3) which is generated by the real parts of the 3 canonical uni-

(]

tary generators of C ;(F3). In general, this kind of approach does not

necessarily take us to look at the reduced C*-algebra of a free group,
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but rather to a more general type of free product construction, which
is discussed in the next two lectures.

Are there other universal product constructions?

Before we continue our investigation of the structure of free indepen-
dence we want to pause for a moment and consider the question how
special free independence is. Has it some very special properties or is it
just one of many examples of other forms of independence? We know
that we have free independence and tensor independence. What are
other examples?

Let us formalize a bit what we mean by a concept of independence.
Independence of subalgebras A; (i € I) should give us a prescription for
calculating a linear functional on the algebra generated by all A; if we
know the value of the functional on each of the subalgebras (as Lemma
5.13 assures us for the case of free independence). This prescription
should be universal in the sense that it does not depend on the actual
choice of subalgebras, but works in the same way for all situations.

So what we are looking for are universal product constructions in
the following sense: given any pair of non-commutative probability
spaces (Aj, 1) and (A, v2), we would like to construct in a universal
way a new non-commutative probability space (A, ¢), where A consists
of all linear combinations of possible words made of letters from A; and
from As. (Thus, A := A; % As is the so-called algebraic free product
of A; and Ay. We will say more about this in the next lecture.)

One can formulate this in an abstract way by using the language
of category theory (one is looking for a construction which is natu-
ral, i.e. commutes with homomorphisms), but it can be shown that
in the end this comes down to having formulas for mixed moments
o(arbiagbs - - - apby,) (where a; € Ay and b; € Ay) which involve only
products of moments of the a; and moments of the b;, such that in each
such product all a; and all b; appear exactly once and in their original
order.

Let us make the type of formulas a bit clearer by writing down some
examples for small n. The case n = 1 yields only one possibility for
such a product, thus

p(aib) = epi(ar)pa(br), (5.9)

whereas n = 2 gives rise to four possible contributions:
plarbiazbs) = api(araz)pa(bibe) + Bior(ar)er(asz)p2(bibs)
+yp1(ar1az)pa(b1)pa(b2) + dp1(ar)pi(az)pa(b)pa(be). (5.10)
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Universality of the construction means that the coefficients €, o, 3, v, 0
do not depend on the special choice of the non-commutative probability
spaces (A1, 1), (A2, p2), nor the special choice of the elements a;, b;,
but that these coefficients are just some fixed numbers.

The question is now: how much freedom do we have to choose the
coefficients ¢, «, 3,7,0 in the above formulas? Of course, the coeffi-
cients cannot be totally arbitrary, because we clearly want to impose
the following consistency requirements:

(1) the formulas must be consistent if we put some of the a; or b;
equal to 1;

(2) the formulas must respect associativity, i.e. in the iterated case
of three or more algebras the resulting formula must be independent of
the order in which we iterate.

The first requirement, for example, gives us directly

L=¢p(1-1) =ep(D)ga(1) =&,

so for n = 1 we have no choice but

p(ab) = p1(a)ps(b). (5.11)

This means in particular that
o(a) = p1(a) Vae A, (5.12)
©(b) = ¢2(b) Vb€ A, (5.13)

which agrees with our expectation that such an universal product con-
struction should be an extension of given states to the free product of
the involved algebras.
For n = 2, we get, by putting a; = ay = 1 in (5.10):
©2(brb2) = @(b1b2)
= api(1-1)pa(bib2) + Be1(1)p1(1)pa(bibs)
+7¢1(1 - 1)pa(b1)p2(ba) + o1 (1)1 (1)p2(b1)p2(b2)
= (a+ B)p2(bibz) + (v + 6)p2(b1)p2(b2).
Since we can choose any probability space (Asg, p2) and arbitrary el-

ements by, by € Aj, the above equality has to be true for arbitrary
©a(b1by) and arbitrary ¢o(by)ps(by), which implies that

a+pB=1 and v+ =0. (5.14)
Similarly, by putting b; = by = 1 in (5.10), we obtain
a+y=1 and G+ =0. (5.15)
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Note that these relations imply in particular (by putting b, = 1 in
(5.10)) that

p(arbiaz) = p(araz)e(b).
The relations (5.14) and (5.15) give us some substantial restrictions for
our allowed coefficients in (5.10), but still it looks as if we could find a
1-parameter family of such formulas for n = 2.

However, associativity will produce more restrictions. Let us con-
sider three probability spaces (Aj, ¢1), (A2, ¥2), (As, ¢3) with elements
ar,as € Ay, by, by € Ag, 1,0 € Az and let us calculate ¢(ajc1bicaasghs).
We can do this in two different ways. We can read it either as
w(ai(crbico)aghs) or as p((ajcr)b(caag)bs). In the first case we cal-
culate

p(ai(cibica)agby) = ap(araz)p(cibicabe) + Bp(ar)p(az)p(cibicabs)
+yp(araz)p(crbica)p(bz) + dp(ar)p(az)p(cibica)p(bs),

and reformulate this further by using

p(cibieaba) = ap(cica)p(bibe) + Bo(er)p(ca)p(bibs)
+ v¢p(crc2)p(br)p(ba) + dp(c1)p(c2)p(br)p(b2)
and
plarbica) = p(cica)p(br).
This leads to a final expression where the term (ajas)@(b1be)e(c1c2)
appears with coefficient o?, i.e.,
o(a1(crbics)aghy) = a*p(aras)p(bibs)p(cicy) + -+ - .

On the other hand, in the second case we calculate

@((ar1c1)bi(c2a2)be) = ap(arcicaas)(bibs) + Be(aicr)p(caas)p(bibs)
+ yp(arcicaaz)p(br)p(bz) + dp(arct)p(caaz)p(b)p(bs).
By using

p(arcicas) = p(ar(crcz)az) = @(arag)p(cicy)
and
plarcr) = p(ar)p(cr), p(c2a2) = p(c2)p(az),
we finally get an expression in which the term p(ajaz)p(b1bs)p(cico)
appears with coefficient «,

@((arc1)bi(caaz)by) = ap(arag)p(biba)p(cicz) + -+ - .

Since the other appearing moments can be chosen independently

from ¢(aas2)p(b1bs)p(c1ca), comparison of both calculations yields that

a? = . Thus we only remain with the two possibilities « = 1 or a = 0.
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By (5.14) and (5.15), the value of a determines the other coefficients
and finally we arrive at the conclusion that, for n = 2, we only have
the two possibilities that either « = 1 and § = v = § = 0, which means

plarbrazba) = p(araz)p(bibs),
or that « =0, 3 =+ =1, § = —1, which means

p(arbiarby) = p(araz)(b1)p(ba) + @(ai)w(az)p(bibs)
— p(a1)p(az)p(bi)p(bs).

But the first case is the formula which we get for tensor independent
variables (see Equation (5.2)), whereas the second case, is exactly the
formula (5.6), which describes freely independent random variables.
Thus we see from these considerations that on the level of words of
length 4 there are only two possibilities for having universal product
constructions. It can be shown that this is also true for greater lengths:
although the number of coefficients in universal formulas for expressions
o(arbragbs - - - apby,) grows very fast with n, the consistency conditions
(in particular, associativity) give such strong relations between the al-
lowed coefficients that in the end only two possibilities survive — either
one has tensor independence or one has free independence.

This shows that free independence, which might appear somewhat
artificial on first look, is a very fundamental concept — it is the only
other possibility for a universal product construction.

Exercises

EXERCISE 5.22. (1) Prove that functions of freely independent ran-
dom variables are freely independent: if a and b are freely independent
and f and g polynomials, then f(a) and g(b) are freely independent,
too.

(2) Make the following statement precise and prove it: free inde-
pendence is preserved via taking homomorphic images of algebras.

EXERCISE 5.23. Let (A, ) be a C*-probability space, and let
(A;)icr be a freely independent family of unital x-subalgebras of A.
For every i € I, let B; be the closure of A; in the norm-topology. Prove
that the algebras (B;);cr are freely independent.

EXERCISE 5.24. Let (A, ¢) be a s-probability space. Consider a
unital subalgebra B C A and a Haar unitary u € A such that {u, u*}
and B are free. Show that then also B and u*Bu are free. (The algebra
u*Bu is of course u*Bu := {u*bu | b € B} C A.)



EXERCISES 79

EXERCISE 5.25. In this exercise we prove that free independence
behaves well under successive decompositions and thus is associative.
Let (A;)ier be unital subalgebras of A and, for each i € I, (B]);cu
unital subalgebras of A;. Then we have the following.

(1) If (A;)ier are freely independent in A and, for each i € I,
(B])jcaq) are freely independent in A;, then all (B!);cr,jesq) are freely
independent in A.

(2) If all (B))icrjesq) are freely independent in A and if, for each
i € I, A; is the algebra generated by all B! for j € J(i), then (A;)ics
are freely independent in A.

EXERCISE 5.26. If we consider, instead of unital algebras and unital
linear functionals, just algebras and linear functionals, then we might
also ask about the existence of universal product constructions in this
frame. We have to give up the first consistency requirement about set-
ting some of the random variables equal to 1, and we can only require
associativity of the universal product construction. Of course, the ten-
sor product and the free product are still examples of such products.
Show that in such a frame there exists exactly one additional example
of a universal product if we also require the natural extension properties
(5.12), (5.13) and the factorization property (5.11) to hold. Describe
this additional example.






LECTURE 6

Free product of x-probability spaces

In order to use free independence we have to be able to find suf-
ficiently many situations where freely independent random variables
arise. In particular, given a family of non-commutative probability
spaces (A;, ¢;), i € I, we should be able to find “models” of the (A;, ¢;)
sitting inside some bigger non-commutative probability space (A, ¢),
such that the A; are freely independent in (A, ). To put it in other
words: if free independence is to be a structure as powerful as classical
independence, then it should allow us to make assumptions such as
“let x; be freely independent and identically distributed random vari-
ables” (with a given distribution). In classical probability theory it is
of course the existence of product measures (or of tensor products in
the more general algebraic frame) which ensures this. In this lecture
we discuss the free counterpart of this construction — free products of
non-commutative probability spaces.

Free product of unital algebras

Similar to the free product of groups discussed in the preceding lecture,
the free product of a family {A; | i € I} of unital algebras will be a
unital algebra A whose elements are words made with “letters” from
the A;. Before describing how exactly we make words with letters from
the A;, let us state the formal definition of the free product in terms of
its universality property (this is analogous to the universality property
stated for free products of groups in Remark 5.10.1 of the preceding
lecture).

DEFINITION 6.1. Let (A;)ic; be a family of unital algebras over
C. The (algebraic) free product with identification of units of
the A; is a unital algebra A, given together with a family of unital
homomorphisms (V; : A; — A);e;, such that the following universality
property holds: whenever B is a unital algebra over C and (®; : A; —
B);cr is a family of unital homomorphisms, there exists a unique unital
homomorphism & : A — B such that o V; = ®,, Vi€ I.

81
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NOTATIONS 6.2. We now make some clarifying comments related
to the preceding definition (and also introduce at the same time a num-
ber of useful notations). So let us consider the setting of Definition 6.1.
Quite clearly, the free product algebra A is determined up to isomor-
phism (in the obvious way, common to all situations when objects are
defined by universality properties). On the other hand, the homomor-
phisms V; : A; — A turn out to be one-to-one (see the discussion in
the next Remark 6.3); so by a slight notational abuse we can assume
that A contains every A; as a unital subalgebra. This makes the map
V; disappear (or rather, V; simply becomes the inclusion of A; into A).
This version of the free product algebra (which contains every A4; as a
unital subalgebra) is somewhat more “canonical”; it is the one which
is usually considered, and is denoted as

A = % A, (6.1)

We should warn the reader here that the simplified notation in Equation
(6.1) comes together with the following convention: by relabeling the
A; if necessary, we assume that they all share the same unit, while on
the other hand an intersection A;, N A;, for 7; # i3 does not contain
any element which is not a scalar multiple of the unit. (This is the case
even if we are looking at a free product of the form, say, A = B* B* B,
for some given unital algebra B. Before being embedded inside A, the 3
copies of B that we are dealing with have to be relabeled as B, By, Bs,
with B, N B; = Cl 4 for i # j.)

The structure of the free product A = *,c;.A; is better understood
if one identifies A as being spanned by certain sets of “words” made
with “letters” from the algebras A;. In order to describe this, let us
choose inside every A; a subspace A$ of codimension 1 which gives a
complement for the scalar multiples of the unit of A;. (A way of finding
such a subspace A? which fits very well the spirit of these lectures is
by setting A¢ := ker(y;), where ¢; : A; — C is a linear functional such
that ¢;(14,) = 1.) Once the subspaces A¢ are chosen, we get a direct
sum decomposition for the free product algebra A = x;c;.A;, as follows:

A=Clo® (é @ Wil,...,in>7 (6.2)

01, yin €1

i15£i27~-~7in717éin

where for every n > 1 and every i4y,...,i, € [ such that i; #
19y ..y ipn_1 7 ip We set
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Thus every Wi, ;. is a set of “words” of a specified type, and the free
product #;c7.A; can be understood in terms of such linear subspaces
of words via Equation (6.2). It is also worth recording that for every
n > 1 and every iy,...,7, € I such that iy # 4s,...,1,_1 # i, the
space W, _;, of Equation (6.3) is canonically isomorphic to the tensor
product A7 ® ---® A7 , via the linear map determined by

Al @ @A) 2a1®@--®ap > ar--a, € Wiy, (6.4)
fora, € AY ... a, € A7 .

11

REMARK 6.3. One might object at this point that our presentation
of the free product A = *;c;.A; lacks in the following respects: first we
did not give a proof that an algebra A with the universality property
stated in Definition 6.1 does indeed exist, and then in Notations 6.2 we
presented some properties of this hypothetical algebra A which again
we gave without proof. For the reader interested in filling in these gaps,
let us make the observation that the two shortcomings mentioned above
can be made to cancel each other, by reasoning in the following way. Let
(A;)ier be a family of unital algebras for which we want to construct the
free product. For every ¢ € I consider a linear functional ¢; : A; — C
such that ¢;(14,) = 1, and the subspace A9 := ker(¢;) C A;. Then
consider the vector space

A:C1@<é D A§1®---®Ag’n>. (6.5)
n=l g

i1789 i1 Fin

The point to observe is that on this vector space A one can rigorously
define a multiplication which reflects the intuitive idea of how “words”
can be multiplied by concatenation. Thus A becomes a unital algebra
over C, and the algebras A; are naturally embedded inside it (via A; ~
Cl @ A¢, i € I); finally, the universality properties known for tensor
products and direct sums can be used in order to deduce that A indeed
has the universality property required by Definition 6.1.

In this approach, the tedious details which have to be verified are
then concentrated in the process of making sure that the “natural”
definition of the multiplication on A indeed makes sense, and gives
us an algebra. We will leave it as an exercise to the conscientious
reader to work out the formula for how to multiply two general tensors
af®---®al, and af ® --- @ all — see Exercise 6.15. Here we will only
discuss, for illustration, one simple example of such a multiplication.

Say for instance that we have chosen two distinct indices i1 # o in [
and some elements a1,b; € A? | as, by € A9 | and that we want to figure

217 1927

out the formula for multiplying the elements a; ® as and by ® by of A.
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The first candidate which comes to mind as result of this multiplication
is a1 ® (azbe) ® by (obtained by concatenating the two given tensors
and by using the multiplication of A;,). But a; ® (agbs) ® by does not
necessarily belong to any of the summands in the direct sum in (6.5),
as azby may not belong to A7,. In order to fix this, we thus consider
(similar to the pattern of notation used in Lecture 5) the centering of
azba,
(a/2b2)0 = a/2b2 — @iz(agbg) . ].AZ.Q € ./42?2.
Then the candidate for the product of a; ® ay and by ® by becomes:
aq (024 (agbg)o X aq + Pis (agbg) . (albl).
This is closer to what we need, but still requires the centering of a,b,
(a1b1)° = a161 — i (albl) : ]'Ail € Agl.

By replacing a,b; by (a1b1)° + @i, (a1b1) - 1 in the preceding form of the
candidate for the product, we arrive at the correct definition:

(a1 @ az) - (by ® by) = (i, (a1by) iy (a2bs)) - 1
+ Pis (CLng) . (albl)o + a X (a2b2)0 X bl.

(Thus (a1®as)-(b2®b,) is an element of CIOAY © (A7 @A RA7 ) C A.)

A final point: from the approach suggested in this remark, it would
seem that the free product *;c;.4; actually depends on the choice of
a family of linear functionals ¢; : A; — C, ¢ € I. It is indeed true
that the decomposition of A4 appearing on the right-hand side of (6.5)
depends on the choice of ¢;. But the class of isomorphism of A itself
does not depend on the ; — this is immediate from the fact that A has
the universality property required in Definition 6.1.

Free product of non-commutative probability spaces

DEFINITION 6.4. Let (A;, vi)ic; be a family of non-commutative
probability spaces. Consider the free product algebra A = ;.7 A; and
its direct sum decomposition as described in Equation (6.2) of Nota-
tions 6.2, where the subspaces A C A; are defined as A? := ker(y;),
i € I. The free product of the functionals (¢;);cr is defined as the
unique linear functional ¢ : A — C such that ¢(14) = 1 and such
that @|Wi, ..., = 0 for every n > 1 and every iy,...,i, € [ with
i1 # 19,19 # 13,...,1,_1 # 1, The notation used for this functional
¢ : A — Cis x;crp;. The corresponding non-commutative probability
space (A, p) is called the free product of the non-commutative
probability spaces (A;, y;) for i € I, and one writes sometimes

(A, p) = *ier (A, i)
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(instead of (A, @) = (*kierAi, *ic1pi ).

REMARK 6.5. In the situation of Definition 6.4, the restriction of
the free product functional ¢ to an A; is equal to the original ¢; :
A; — C which we started with. Indeed, ¢ is defined such that ker(¢) D
A? = ker(p;); hence the functionals ¢|4, and ¢; coincide on A? and
on C1, and must therefore be equal to each other. Thus if (A, ¢) =
x;c1(Ai, pi), then every (A;, ¢;) is indeed “a subspace” of (A, ¢).

PROPOSITION 6.6. Let (A;, @;)icr be a family of non-commutative
probability spaces, and let (A, p) be their free product. Then we have
the following.

(1) The subalgebras A;, i € I, are freely independent in (A, ).

(2) (A, ) has a universality property, described as follows. Let
(B,v) be a non-commutative probability space, suppose that for every
i € I we have a homomorphism ®; between (A;, ;) and (B,v) (in
the sense that ®; : A; — B is a unital homomorphism such that 1 o
O, = ¢;), and suppose moreover that the images ( ®;(A;) )ics are freely
independent in (B,1). Then there ezists a homomorphism ® between
(A, p) and (B,), uniquely determined, such that ®|A; = ®; for every
1el.

PRrooFr. (1) Let iy,...,i, € I be such that iy # is,... 0, 1 #
in, and let a; € A;,...,a, € A;, be such that p(a;) = -+ =
¢(an,) = 0. In the terminology used in Definition 6.4 we thus have
ay € A9 ... ,a, € A7 . But then a;---a, € Wi, _;, Cker(p), and we
get that ¢(ay - --a,) = 0, as required by the definition of free indepen-
dence.

(2) By the universality property of A (cf. Definition 6.1) we know
that there exists a unique unital homomorphism ® : A — B such that
®|A; = ;, Vi € I. We have to show that ® also has the property that
Yo ® = p. In view of the definition of ¢, it suffices to check that ¢ o ®
vanishes on each of the linear subspaces W;, . ; of A, for every n > 1

.....

and every iy # 19,...,i,_1 # i, in 1. So in other words it suffices to
fix such n and 4y, ..., 1,, then to pick some elements a; € A7 ..., a, €
A, and to prove that (¢ o ®)(ay---a,) = 0.
For the aq,...,a, picked above, let us denote
O(ay) = D4, (ar) =: by, . ®(a,) = ;, (a,) =: by.

Then for every 1 < k < n we have that b, € ®;, (A;,) and that

»(br) = (P, (ar))
= o5 (ar) (since ¢ o @;, = ;)
—0 (since az, € A7).
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But now, since the algebras (®(A;) );er are free in (B,1)), it follows
that ¢(by - - - bx) = 0. Thus

(?ﬁ © (I))(al e 'an) = ¢(‘D(a1) T (I)(an)) = w(bl T bn) =0,
as desired. H

EXERCISE 6.7. Let G4,...,G,, be groups and G = Gy % --- x G,
the free product of these groups (as discussed in the part of Lecture 5
about free products of groups). Show that

(CGy,76,) % - % (CGom, 76,) = (CG,7¢). (6.6)

We conclude this section by noting that a free product of tracial
non-commutative probability spaces is again tracial.

PROPOSITION 6.8. Let (A;, vi)icr, be a family of non-commutative
probability spaces, and let (A, ) be their free product. If p; is a trace
on A; for every i € I, then o is a trace on A.

ProOF. This is an immediate consequence of Proposition 5.19: the
subalgebras (A;);c; of A are freely independent and | A; = ¢; is a
trace for every ¢ € I, hence ¢ is a trace on the subalgebra generated
by U;erA; (which is all of A). O

Free product of #-probability spaces

REMARK 6.9. Let (A;, ¢;)icr be a family of x-probability spaces.
One can of course view the (A;, ;) as plain non-commutative prob-
ability spaces, and consider their free product (A, ) defined in the
preceding section. It is moreover fairly easy to see that the algebra
A = %1 A; has in this case a natural x-operation on it, uniquely de-
termined by the fact that it extends the kx-operations existing on the
algebras A;, i € I. Referring to the direct sum decomposition

A:C1@<é D W)
n=1 i1,

i1 #09,.in_1Fin

discussed in the preceding sections (cf. Equations (6.2) and (6.3)
above), we have that the *-operation on A maps W,, _;, onto W, .,
via the formula

(al...an>*:a2...a>{

(holding for ay € A7 ,...,a, € AY , where n > 1 and where 4y,. .., 4, €

11 ?

I are such that iy # is,...,i,-1 # i,). This immediately implies that



FREE PRODUCT OF %-PROBABILITY SPACES 87

the free product functional ¢ = *;c7¢p; is selfadjoint on A, in the sense
that it satisfies the equation

o(a*) = p(a), Yac A

Nevertheless, it is not clear from the outset that the free product (A, ¢)
of the (A;, p;) is a x-probability space — indeed, it is not clear whether
¢ satisfies the positivity condition ¢(a*a) > 0, a € A. The main goal
of the present section is to prove that the desired positivity of ¢ does
actually take place. The proof will rely on some basic facts about
positive matrices, which are reviewed next.

REMARK 6.10. Recall that a matrix A € M,,(C) is said to be pos-
itive when it satisfies one (hence all) of the following equivalent con-
ditions:

(1) A is selfadjoint and all its eigenvalues are in [0, 00);

(2) A can be written in the form A = X*X for some X € M, (C);

(3) one has (A, &) > 0 for every £ € C", where (, ) is the standard

inner product on C".
(The equivalence between (1) and (2) above is a particular case of
Proposition 3.6, used for the C*-algebra M,,(C). But, of course, in this
particular case we do not have to refer to Proposition 3.6, for example
for (1) = (2) one can simply find X by diagonalizing the matrix A.)

A fact about positive matrices which we want to use concerns the
entry-wise product — also called Schur product — of matrices. Given
A = (aiy)};=1 and B = (by)};=; in M,(C), the Schur product of A
and B is the matrix S := (a;;045)7 ;-

LEMMA 6.11. Let A = (aij)i ;=1 and B = (by)};=, be two posi-
tive matrices in M, (C). Then the Schur product S = (as;bi;)i ;= is a
positive matrix as well.

ProOOF. We will show that S satisfies condition (3) from Remark
6.10. For & = (&1,...,&,) € C" we clearly have:

n

(S6,6) =Y aibi&;&. (6.7)

,j=1

But then let us write A = X*X, where X = (2);;-, € M,(C). For
every 1 <4,j <n we have a;; = Y ,_, T;xx;, and substituting this in
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(6.7) we get:

Sg f Z zkzmkg zggjgz

i,5,k=1

= i(i bij (§5ms) ( Eithi ))

k=1 ij=1

3

<Bnk7 nk> Z 07
k=1

where ng == (1281, - -, §nTpn) € C* for 1 < k < n. d

Positive matrices appear in the framework of a x-probability space
in the following way.

LEMMA 6.12. Consider a unital x-algebra A equipped with a linear
functional ¢ : A — C. Then the following statements are equivalent:

(1) ¢ is positive, i.e. we have p(a*a) >0,V a € A;

(2) for alln > 1 and aq,...,a, € A, the matriz (gp(a;‘aj))zjzl €
M, (C) is positive.

PROOF. (2) = (1) is clear ((1) is the particular case “n = 1" of

(2)).

(1) = (2): Givenn > 1 and ay, ..., a, € A, we verify that the ma-

trix A = ( (afa; )7,1. satisfies condition (3) of Remark 6.10. Indeed,
for every £ = (&, . .. ,Sn) € C™ we can write:
<A€>§> = Z (CL Q; 5]51 = <Z gjfla’ (I])

i?j 1 Z] 1

= <P< (Xj: §iai)” (Zj: &ia;) > >0
]

We can now give the positivity result announced at the beginning
of this section.

THEOREM 6.13. Let (A;, v;i)icr be a family of x-probability spaces.
Then the functional @ := ;1. A; is positive, and hence the free product
(A, ) := %1 (A, i) is a x-probability space.
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PRrROOF. In order to prove the positivity of ¢, we will rely on the
direct sum decomposition

n=0 D] 5eees in€l

This is the same as in Equation (6.2) above, with the additional con-
vention that, for n = 0, the subspace W, ;. indexed by the empty
0-tuple is C1. Observe that, as an immediate consequence of Lemma
5.18 from the preceding lecture we have that, for iy # is, ..., 0,1 # iy

and ji # Jo, ..., jm—1 # Jm in I:

(ila ce ,Zm) 7£ (jl; e 7]m> = go(a,*b) = 0, Vac Wi17.,,7l'n (68)
VbeW, .

Consider now an element a € A and write it as
N

n=0 LSS in€l
i) FigF - Fin
for some N > 0 and where a;, . ;, € Wi, ;, for every 0 <n < N and
every iy # iy # - - 7é in in I. Then we have

-y Z Z AT,
m,n=0

N

:Z Z SO(GZ,...,inail,...,in)a (69)

n=0 i1, in€l
i1 Fig - Fin

where at the last equality sign we made use of the implication (6.8).
In view of (6.9), we are clearly reduced to proving that ¢(b*b) > 0

when b belongs to a subspace W, ;.. Fix such a b. We can write
p
b= Z agk)a;k) alh),
k=1

where aff? € A;?m for 1 <m <mn, 1<k <p. We thus have:

p
eb) = > ¢((af - al) - (@ - ah))

J=1

p
=3 g0<agc)* g .agp)

J=1

Eo

=
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— Z (@ alDy - p(a®*a®) (by Lemma 5.18).
k=1

Since | A; = p; for all i, what we have obtained is that:

Z i (a i (alPal). (6.10)

Now for every 1 < m < n let us consider the matrix B,, =
(o5 (@ o)y Joa—1 € Mp(C), and let S be the Schur product of the
matrices By,...,B,. Lemma 6.12 gives us that each of By,..., B, is
positive, and a repeated application of Lemma 6.11 gives us that S is
positive as well. Finally, we observe that Equation (6.10) amounts to
the fact that o(b*b) is the sum of all the entries of S; hence, by taking
¢=(1,1,...,1) € CP, we have p(b*b) = (S¢, () > 0. O

Finally, let us point out that the two basic properties of the expecta-
tion functional which were followed throughout the preceding lectures
— traciality and faithfulness — are preserved when one forms free prod-
ucts of x-free probability spaces. The statement about traciality is a
particular case of Proposition 6.8 from the preceding section, while the
statement about faithfulness is treated in the next proposition.

PROPOSITION 6.14. Let (A;, vi)icr, be a family of x-probability
spaces, and let (A, @) be their free product. If p; is faithful on A,
for every i € I, then ¢ is faithful on A.

PROOF. As in the proof of Theorem 6.13, we will use the direct
sum decomposition of A into subspaces W;, ;. (for n > 0 and iy #
ig # -+ # i, in I). The very same calculation which led to Equation
(6.9) in the proof of Theorem 6.13 shows that it suffices to prove the
implication “p(b*b) = 0 = b = 0" for an element b which belongs to one
of the subspaces W, ;.. We will prove this implication by induction
on n.

The cases n = 0 and n = 1 of our proof by induction are clear.
Indeed, in the case n = 0 we have that b € C1, hence the implication
to be proved reduces to “|A? = 0 = XA = 0" (for some A € C). In
the case n = 1 we have that b € W, C A; for some ¢ € I, and the
implication “@(b*b) = 0 = b = 0” follows from the hypothesis that
¢|A; (which is just ¢;) is faithful.

So it remains that we verify the induction step, n — 1 = n, for
n > 2. Consider some indices iy # iy # --- # i, in I and an element
b € Wi, ..., such that ¢(b*b) = 0. In view of how the space W, . ;, is

7in
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defined, we can write
b=z + -+ 2 (6.11)

for some p > 1, where zy,...,2, € W;, and vy1,...,yp € Wi, .-
Moreover, by appropriately regrouping the terms and by incorporating
the necessary linear combinations, we can assume that in (6.11) the
elements z1, ..., z, are linearly independent. The fact that p(b*b) =0
entails that:

0= <,0< (Z -Tkyk)*(z 1) > = Z O(YpTpT1YL)-

k=1

If we also make use of Lemma 5.18 from the preceding lecture, we thus
see that we have obtained:

p

> eyrm)e(ana) = 0. (6.12)

k=1

Now, the matrix (go(y,jyl) ) is positive (since ¢ is positive, and

P
k=1
by Lemma 6.12), hence we can find a matrix B = (0x.),—, such that
(cp(y;;yl) )Z ,—; = B*B. Written in terms of entries, this means that we

have:
p —
o(yiy) = Y BukBu, ¥ 1<k 1<p.
h=1

We substitute this in (6.12) and we get:

@( i %ﬁhliﬁzfﬂl)

h=1 kl=1
90( (Z 5hk$k)* : (Z 6hkxk> ) .
k=1 k=1

By using the positivity of ¢, we infer that:

h=1

90((2 Bur)™ - (O &m)) =0,V1<h<np. (6.13)
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Moreover, since p|A;, is ¢;, and is thus faithful (by hypothesis), Equa-
tion (6.13) has as consequence that

p
Zﬁhiﬂk:(), V1<h<p.

k=1

This in turn implies that G = 0 for every 1 < h, k < p, because the
elements 1, ...,x, € W;, are linearly independent. As a consequence,
we obtain that

NE

e(Wiye) =Y BB =0, 1<k <p.
h=1
But ¢ is faithful on W,, ., by the induction hypothesis; so from the
latter equalities we infer that y; = --- =y, = 0, and we can conclude
that b= >"7_, zxyx = 0. O
Exercises

EXERCISE 6.15. In the setting of Remark 6.3, describe precisely the
multiplication operation on the vector space A introduced in Equation
(6.5), and prove that in this way A becomes a unital algebra.

[Hint: In order to spell out the multiplication of two tensors @} ®- - -®al,
and a] ® - - - ®a;,, one can proceed by induction on m+n. If aj, € A7
and af € Aj with i, # ji, then the desired product is simply defined
tobed|®---®d, ®a]®---®al. If i, = j; =: i, then consider the
element

b= (@ ® - Bafyy) (D @)

which is defined by the induction hypothesis, and define the product
ofdf ®---®a, and af ® --- ® al’ to be

d®---®a, ®(ad)de - @ad +ea.a) b]

EXERCISE 6.16. (f.i.d. sequences)

Let 1 be a probability measure with compact support on R. Show
that one can find a x-probability space (A, ) where ¢ is a faithful
trace, and a sequence (z,),>1 of freely independent selfadjoint random
variables in A, such that each of the x; has distribution .

EXERCISE 6.17. Let (A, ) be a x-probability space and let a be
an element of 4. Sometimes we need to make the following kind of
assumption (see e.g. Lecture 15 below): “by enlarging (A, ¢) (if neces-
sary), we may assume that there exists a Haar unitary u € A such that
a and u are x-free.” Explain why one can make such an assumption.
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EXERCISE 6.18. State and prove an analog of Proposition 6.6, hold-
ing in the framework of s-probability spaces.

EXERCISE 6.19. Let (A, ) be a x-probability space. Let (x;)es

be a freely independent family of selfadjoint elements of A, such that
the unital *-algebra generated by {z; | i € I} is all of A. Suppose in
addition that for every ¢ € I the element z; has distribution p; with
respect to ¢, where p; is a compactly supported probability measure
on R (as in Remark 1.10 of Lecture 1), and such that the support of
; is an infinite set. Prove that ¢ is a faithful trace on A.
[Hint: For faithfulness, it suffices to check that the restriction of ¢ to
{P(x;) | P € C[X]} is faithful, for every i € I. This happens because a
non-zero polynomial in C[X] cannot vanish everywhere on the support
of fu;.]






LECTURE 7

Free product of C*—probability spaces

After discussing free products for non-commutative probability spaces
and for x-probability spaces in the preceding lecture, we will now look
at the corresponding concept for C*-probability spaces. We will restrict
our attention to the technically simpler case of C*-probability spaces
(A, p) where ¢ is a faithful trace. We will show how for such spaces the
free product at the C*-level can be obtained from the free product as
x-probability spaces by using the basic concept of Gelfand—Naimark—
Segal (or GNS for short) representation.

The GNS representation

In this section we consider the framework of x-probability spaces. Re-
call from Lecture 1 (Definition 1.6) that by a representation of a -
probability space (A, ¢) we understand a triple (H, 7, &) where H is a
Hilbert space, 7 : A — B(H) is a unital *-homomorphism and ¢ is a
vector in H, such that the relation ¢(a) = (m(a)¢, &) holds for every
ae€ A

REMARK 7.1. (The space L*(A, p))
Let (A, ¢) be a x-probability space. Consider the positive definite
sesquilinear form on 4 defined by:

(a,b) == p(b*a), a,be A. (7.1)

By using the Cauchy—Schwarz inequality for ¢ (Lecture 1, Equation
(1.1)), one sees immediately that N := {a € A | (a,a) = 0} can also
be described as {a € A | (a,b) = 0 for all b € A}, and is therefore
a linear subspace of A. It is a standard procedure to consider the
quotient space A/N, endowed with the inner product inherited from
the sesquilinear form (7.1), and then to take the completion of A/N
with respect to this inner product. The result is a Hilbert space which
is customarily denoted as “L%(A, ¢).”

Rather than remembering the (somewhat uncomfortable) procedure
described above for constructing L?(A, ), it is easier to remember
L?*(A, ¢) in the following way: there exists a linear map

Ada—aeL*(Ap) (7.2)
95
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such that:
(i) {@]a € A} is a dense subspace of L?(A, ¢), and
(ii) (@,b) = p(b*a), ¥ a,be A
Referring to the notations of the preceding paragraph, the map from
(7.2) sends an element a € A to its coset in the quotient A/N C
L?(A, ). But in the concrete manipulations of L?(\A, o) this actually

never appears, it is always the combination of properties (i) + (ii) from
(7.3) that is used.

The GNS representation for (A, ¢) is defined in the way described
in the next proposition. Some comments around the condition (7.4)
imposed on A in this proposition are made in Remark 7.4.

(7.3)

PROPOSITION 7.2. Let (A, ) be a x-probability space, and let us
assume that

A = span{u | u € A, u is a unitary }. (7.4)

Then for every a € A there exists a unique bounded linear operator

m(a) € B(L*(A, ¢)) such that
m(a)b=ab, Vbe A (7.5)
The map 7 : A — B(L*(A, ¢)) so defined is a unital x-homomorphism.

Moreover, the triple (L2(A,p),m,1) is a representation of (A, ),

where 1 is defined according to the conventions of notation in (7.3),
with 1 = 14, the unit of A.

DEFINITION 7.3. This special representation of (A, ) described in
the preceding proposition is called the GNS representation.

PROOF. Most of the verifications required in order to prove this
proposition are trivial (and will be left to the reader). The only point
that we will examine here is why the formula (7.5) defines a bounded
linear operator on L?(A,p). It is immediate that (given a € A) it
suffices to prove the existence of a constant k(a) > 0 such that

[labl|2(ag) < k@) - |[bllr2cag), ¥ bE A (7.6)
indeed, once this is done, a standard continuity argument will extend
the map b — ab from the dense subspace {b | b € A} to a bounded

linear operator on L?(A, ¢).
Now, the set

{a € A| there exists k(a) > 0 such that (7.6) holds} (7.7)

is a linear subspace of A. The verification of this fact is immediate
(the reader should have no difficulty in noticing that k(a1) + k(az) can
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serve as k(a; + az) and that |a|k(a) can serve as k(aa)). But on the
other hand, let us observe that the set introduced in (7.7) contains all
the unitaries of A. Indeed, if u € A is a unitary then (7.6) is satisfied
for the constant k(u) = 1:

ub||z2(ap) = (ub, ub)'? = p(b*u ub)/? = p(b*b)* = |[b]|12(4.0),

for all b € A.

Consequently, the hypothesis that A is the linear span of its
unitaries implies that the set appearing in (7.7) is all of A (as we
wanted). O

REMARK 7.4. The hypothesis (7.4) that A is the span of its uni-
taries is for instance satisfied whenever A is a unital C*-algebra — see
Exercise 7.20 at the end of the lecture. It is fairly easy to relax this
hypothesis without changing too much the argument presented above
— see Exercise 7.22. On the other hand, one should be warned that this
hypothesis cannot be simply removed (that is, the boundedness of the

operators b — ab on L?(A, ) cannot be obtained in the framework of
an arbitrary x-probability space — see Exercise 7.23).

We next point out how GNS representations can be recognized (up
to unitary equivalence) by using the concept of a cyclic vector.

DEFINITION 7.5. Let A be a unital x-algebra, let H be a Hilbert
space, and let 7 : A — B(H) be a unital *-homomorphism. A vector
1 € 'H is said to be cyclic for 7 if it satisfies:

c{r(a)n|a€ A} =H, (7.8)
where “cl” denotes closure with respect to the norm-topology of H.

It is obvious that, in the notations of Proposition 7.2, the vector
1 is cyclic for the GNS representation 7 : A — B(L?(A, ¢)) - indeed,
the subspace {m(a)1 | a € A} is nothing but the dense subspace {a |
a € A} from (i) of (7.3). On the other hand, we have the following
proposition, which says that in a certain sense the GNS representation
is the “unique” representation (H,m,&) of (A, ) such that £ is cyclic
for 7.

PROPOSITION 7.6. Let (A, @) be a x-probability space, and assume
that (A, ) satisfies the hypothesis of Proposition 7.2 (hence that it has
a GNS representation). Let (H,p,&) be a representation of (A, ) such
that £ is cyclic for p. Then (H,p,§) is unitarily equivalent to the GNS
representation (L?(A, go),w,/l\), in the sense that there exists a linear
operator U : L*(A, @) — H which is bijective and norm preserving,

such that U(1) =&, and such that Un(a)U* = p(a) for every a € A.



98 7. FREE PRODUCT OF C*-PROBABILITY SPACES

PROOF. Let us observe that

p(a)éllr = [[al|12ap), ¥V a€ A (7.9)

Indeed, both sides of Equation (7.9) are equal to p(a*a)'/?; for instance
for the left-hand side we compute like this:

p(@)él5, = (p(a)é, p(a)€)n = (pla*a)é, &)y = p(a*a).

Due to (7.9), it makes sense to define a function Uy : {a | a € A} —
‘H by the formula

Us(a) = p(a)é, a€ A. (7.10)
Indeed, if a vector in the domain of Uy can be written as both @ and

b for some a,b € A, then we get that H@/_\Z)HLQ(A,@ = 0, hence that
l|p(a — b)¢|l = 0 (by (7.9)); and the latter fact implies that p(a)é =
p(b)§.

It is immediate that the map U, defined by (7.10) is linear, and
Equation (7.9) shows that Uy is isometric. The usual argument of
extension by continuity then shows that one can extend U, to a lin-
ear norm preserving operator U : L?(A,p) — H. The range-space
ran(U) is complete (since it is an isometric image of the complete
space L*(A,)), hence it is closed in H. But we also have that
ran(U) D ran(Up) = {p(a)¢ | a € A}, and the latter space is dense
in ‘H, by the hypothesis that ¢ is cyclic for p. In this way we obtain
that U is surjective.

We have thus defined a linear operator U : L?(A, ¢) — H which is
bijective and norm preserving, and has the property that U(a) = p(a)¢
for every a € A. The latter property gives in particular that U (/1\) =
p(14)€ = &£. From the same property we also infer that

Ur(a)b = p(a)Ub, Y a,be A (7.11)

(we leave it as an immediate exercise to the reader to check that both
sides of (7.11) are equal to p(ab)§). Equation (7.11) implies in turn that
Un(a) = p(a)U, ¥ a € A, hence that Un(a)U* = p(a), V a € A. O

REMARK 7.7. We conclude this section with an observation con-
cerning faithfulness. Let A be a unital *-algebra, let 7 : A — B(H) be
a unital *-homomorphism, and let n be a vector in the Hilbert space
H. It is customary to say that 7 is separating for 7 if the map
A 3> a— 7w(a)n € H is one-to-one (equivalently, if for a € A we have
the implication w(a)n =0 = a = 0).

Now let (A, p) be a s-probability space which satisfies the hy-
pothesis of Proposition 7.2, and consider the GNS representation
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(L2(A, @), m,1). Tt is an immediate exercise, left to the reader, that
we have the equivalence:

¢ is faithful < 1 is a separating vector for . (7.12)

A consequence of (7.12) which is worth recording is that if ¢ is faithful,
then 7 : A — B(L*(A, ¢)) is one-to-one (indeed, the injectivity of 7 is
clearly implied by the existence of a separating vector).

Free product of C*-probability spaces

We will restrict our attention to the main situation considered through-
out these lectures, when the expectation functional is a faithful trace.
The construction of a free product of C*-probability spaces will be ob-
tained from the corresponding construction at the level of x-probability
spaces, by using the GNS representation. Before going into the precise
description of this, it is useful to note the following fact.

LEMMA 7.8. Let (Ay, po) be a x-probability space such that p, is
a faithful trace. Suppose that A, satisfies the hypothesis of Proposi-
tion 7.2, and consider the GNS representation (L2(A0,900),7T,T), as
described in that proposition. Let us denote

A= el(n(A) © BILH(Aq ).
If T € A is such that T1 =0, then T = 0.
PRrROOF. Observe that for every a,b,c € A, we have:
(r(c)a,b) = (r(c)1, ba*). (7.13)

~

Indeed, the left-hand side of (7.13) is (¢a, b) = ¢(b*ca), while the right-
hand side is <E,b/a\*) = p(ab*c). But ¢(b*ca) = ¢(ab*c), due to the
assumption that ¢ is a trace.

By approximating an arbitrary operator T € A with operators of
the form 7(c), ¢ € A, (while a,b € A, are fixed), we immediately infer
from (7.13) that we actually have

(Ta,b) = (T1,ba*), VT € A, a,be A, (7.14)
Let now T' € A be such that 71 = 0. From (7.14) we then obtain

~

that (T'a,b) =0,V a,b € A,. Since {a | a € A,} is a dense subspace
of L*(A,, ¢,), and T is a bounded linear operator, this in turn gives us
that "= 0. O

THEOREM 7.9. Let (A;, p:)icr be a family of C*-probability spaces
such that the functionals ¢; : A; — C, i € I, are faithful traces. Then
there exists a C*-probability space (A, p) with ¢ a faithful trace, and
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a family of norm-preserving unital *-homomorphisms W; : A; — A,
1 € I, such that:

(1) SOOWZ':(P’L'? ViEI,’

(ii) the wnital C*-subalgebras (W;(A;))icr form a free family in
(A p);

(iil) UserWi(A;) generates A as a C*-algebra.

Moreover, (A, @) and (W; : A — A)icr are uniquely determined
up to isomorphism, in the sense that if (A',¢") and (W} : A; — A')ier
have the same properties, then there exists a C*-algebra isomorphism
O A— A such that ¢' o ® = ¢ and such that P o W; =W/ Vi€ I.

PROOF. In order to construct (A, ¢), let us first consider the free
product of x-probability spaces (A,, ©,) = *icr(A;, vi), as discussed in
Lecture 6. Recall that in particular we have A, = *;c;1.A; as in Equation
(6.1) of Notations 6.2, and that every A; is hence viewed as a unital
x-subalgebra of A,. Let us also record here the fact that ¢, is a faithful
trace on A, (by Propositions 6.8 and 6.14).

We claim that the linear span W := span{u € A, | v is unitary} is
all of A,. Indeed, for every ¢ € I we have that

W D span{u € A; | u is unitary} = A,

(with the latter equality holding because A; is a C*-algebra, and by
Exercise 7.20). Hence W D U;er A;. But W is a unital x-subalgebra of
A, (immediate verification); so it follows that Y contains the unital
x-subalgebra of A, generated by U,cr.A;, which is all of A,,.

We thus see that (A,,¢,) satisfies the hypothesis of Proposi-
tion 7.2, and we can therefore consider the GNS representation
(L*(A,, o), m,1) for (A, @,). Since @, is faithful, we have that
7: A, — B(L*(A,, ¢,)) is one-to-one (cf. Remark 7.7).

Let us consider the unital C*-subalgebra

A= cl(m(Ay)) C B(L* (Ao, 05)).-

Moreover, for every ¢ € I let us denote by W; : A; — A the unital *-
homomorphism which is obtained by suitably restricting 7 (this makes
sense, since A; is contained in the domain of 7w, while A contains its
range). We have that W; is one-to-one (because m was like that); in
view of the fact that A; and A are unital C*-algebras, we can thus infer
that W; is norm preserving (cf. Exercise 4.18).

Let ¢ : A — C be the positive functional defined by the vector
1 e L*(A,,¢,); that is,

~

o(T):=(T1,1), T € A.
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Then, clearly, (A, ) is a C*-probability space. Note that Lemma 7.8
gives us the faithfulness of ¢ on A. Indeed, for T € A we have that
o(T*T) = ||T1||% so we get that (T*T) =0 = T1 =0= T = 0,
with the last implication given by Lemma 7.8.

By taking into account how the GNS representation is defined, it
is immediate that we have

o(m(a)) = pola), Vace A,. (7.15)

Since the W; considered above are obtained by restricting 7, Equation
(7.15) says in particular that ¢ o W; = ¢;, for every i € I.

In order to complete the required list of properties for (A, ¢) and
for (W;)ier, one is left to make the following three remarks.

(a) From (7.15) and the fact that (\A;);cr are freely independent in
(A, o), it follows that the family (W;(A;))icr is freely independent in
(A, p).

(b) From (7.15) and the fact that ¢, is a trace on A4, it follows (by
using the density of 7(A4,) in A) that ¢ is a trace on A.

(c) From the fact that (A;);c; generate A, as a *-algebra and the
density of 7(A,) in A it follows that (W;(A;))ics generate A as a C*-
algebra.

The easy verifications required in the three remarks (a), (b), (¢)
listed above are left as an exercise to the reader.

Finally, the uniqueness part of the theorem is a consequence of
Theorem 4.11 (in the version described in Exercise 4.20, which allows
infinite families of generators). u

DEFINITION 7.10. Let (A;, ¢;)ier be a family of C*-probability
spaces such that the functionals ¢; : A; — C, i € I, are faithful
traces. A C*-probability space (A, p) together with a family of ho-
momorphisms (W; : A; — A);c; as appearing in Theorem 7.9 will be
called a free product of the C*-probability spaces (A;, p;)ic;-

It was observed in Theorem 7.9 that, up to isomorphism, there
actually exists only one free product (A, ¢) of the C*-probability spaces
(A;, pi)ier, and the corresponding homomorphisms (W; : A; — A)ier
are one-to-one and norm preserving. Same as in the algebraic case
(cf. Notations 6.2), we will make a slight notational abuse and assume
that A contains every A; as a unital C*-subalgebra. This will make
the W; disappear out of the notations (they become the inclusion maps
of the A; into A), and will give us a more “canonical” incarnation of
(A, ¢) which we will call the free product of the C*-probability spaces
(A, pi)ier- The customary notation for this canonical free product is:

(A, ) = *ier(Ai, @i).- (7.16)
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(This happens to be the same notation as used for the free product of
x-probability spaces in Lecture 6 — we will make sure in what follows
to state explicitly which of the two is meant, whenever there can be
some ambiguity about this.)

When we deal with the canonical C*-free product of Equation
(7.16), the C*-algebra A will be a completion of the algebraic free
product *;c7A; which was described in Notations 6.2. In the operator
algebra literature it is customary (for reasons that we do not go into
here) to say that A is the reduced free product of the C*-algebras
(A;)ier, with respect to the family of functionals (¢; : A; — C)e.

Example: semicircular systems and the full Fock space

In this section we present an important situation involving a C*-algebra
which appears as reduced free product — the C*-algebra generated by
a semicircular system.

DEFINITION 7.11. Let (A, ¢) be a x-probability space. A semicir-
cular system in (A, p) is a family xy, ...,z of selfadjoint elements
of A such that:

(i) each of z1,...,x) is a standard semicircular element in (A, ¢)
(in the sense of Definition 2.16 and Remarks 2.17);

(ii) @1, ...,z are free with respect to ¢.

REMARK 7.12. (The C*-algebra of a semicircular system)

Let (A, ) and (B,v) be C*-probability spaces such that ¢ and 9
are faithful. Let xy,...,x; be a semicircular system in (A, ), and
let y1,...,yx be a semicircular system in (B,%). Let M C A and
N C B be the unital C*-subalgebras generated by {z1,...,z;} and by
{yi,...,yr}, respectively. Then the C*-probability spaces (M, p|M)
and (N, 9¥|N) satisfy the hypotheses of Theorem 4.11, with respect
to their systems of generators xi,...,x; and yi,...,yx. Hence, by
Theorem 4.11, there exists a C*-algebra isomorphism ® : M — N
such that ®(z;) = y;, 1 < i < k. (This is analogous to the discussion
in Remark 5.21.)

Thus we see that all the semicircular systems of the kind appearing
in the preceding paragraph generate, up to isomorphism, the same C*-
algebra My. This M is called the C*-algebra of a semicircular
system with k elements.

Of course, in order to introduce the C*-algebra My, one must also
make sure that semicircular systems with k elements can indeed be
constructed in the C*-framework. This is a direct consequence of the
fact that one can form free products of C*-probability spaces, as ex-
plained in the preceding section. In fact, it is immediate that My is
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nothing but the reduced free product of k copies of C[—2,2], where
the expectation functional ¢ : C[—2,2] — C is integration against the
semicircular density, ¢(f) = % f_22 f(t)vV4 —t2dt.

On the other hand it is noteworthy that semicircular systems may
arise naturally without requiring us to manifestly perform a free prod-
uct construction. The remaining part of this lecture will be devoted to
showing how this happens in the framework of the so-called creation
and annihilation operators on the full Fock space.

DEFINITIONS 7.13. Let 'H be a Hilbert space.
(1) The full Fock space over H is defined as

F(H) = EPH" (7.17)
n=0
The summand H®" on the right-hand side of the above equation is a
one-dimensional Hilbert space. It is customary to write it in the form
CQ for a distinguished vector of norm one, which is called the vacuum
vector.
(2) The vector state 73 on B(F(H)) given by the vacuum vector,

™(T) = (T, Q), T € B(F(H)), (7.18)

is called the vacuum expectation state.
(3) For each & € H, the operator I(§) € B(F(H)) determined by
the formula

1 = ¢
6@ @8 = (6@ B, (7.19)
Vn>1,VE&,. .. & eH

is called the (left) creation operator given by the vector &.
(4) As one can easily verify, the adjoint of () is described by the
formula:

£)
LEE® - ® &y, (7.20)

vn227 vgla"')éneHa

and is called the (left) annihilation operator given by the vector &.

REMARKS 7.14. Consider the framework of the preceding defini-
tions.

(1) Instead of Equation (7.17), one could describe the full Fock
space F(H) by using an orthonormal basis. More precisely: if an
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orthonormal basis {& | ¢ € I} of ‘H is given, then (just from how
tensor products and direct sums of Hilbert spaces are formed) we get
an orthonormal basis of F(H) described as:

(2) The third part of the preceding definitions states implicitly that
the formulas (7.19) do indeed define a bounded linear operator [(§) on
F(H), the adjoint of which acts by the formulas (7.20). A quick proof
of the first of these two facts is obtained by considering an orthonormal
basis {¢; | i € I} of H such that one of the & is a scalar multiple of
¢, and by examining how [(£) acts on the corresponding basis (7.21) of
F(H). What one gets is that, more than just being a bounded linear
operator on F(H), [(£) is actually a scalar multiple of an isometry. The
verification that [(§)* acts indeed as stated in (7.20) is immediate, and
is left to the reader.

(3) From (7.19) it is clear that the map H 3 & — [(¢) € B(F(H))
is linear.

(4) Another important formula (also immediate to verify, and left
as an exercise) is that

As a consequence of this formula, note that a finite product of operators
from {I(§) | £ € H}U{l(&)* | £ € H} can always be put in the form

- 1(&n) - - UEm)L(m)" - - - Uom)” (7.23)

forsomea € C,n,m > 0,and &, ..., &m, 1y -+, M0 € H. (We carry the
scalar « for convenience of notation — but clearly, o can be absorbed
into [(&;) whenever m > 1, and « can be absorbed into [(1;)* whenever
n > 1.) Indeed, suppose we are starting with a product

Q- Z(Q)a(l) e l(Cp)‘f(p) (7.24)

with a € C, (1,...,( € H and €(1),...,e(p) € {1, }. If there exists
1 <k <p—1such that e(k) = * and e(k 4+ 1) = 1, then:

UG M) = 1(G) " UCht1) = (Gt Ge) L0y

thus (at the cost of adjusting the scalar a by a factor of ((x41, (k) we
can remove the kth and the (k + 1)th factors in the product (7.24),
and replace the monomial appearing there by one of a shorter length.
By repeating this process of shortening the length as many times as
possible, we will bring the monomial (7.24) to a stage where there is
no 1 <k < p—1such that (k) = % and €(k + 1) = 1; and when this
is done, the monomial (7.24) will have to look as in (7.23).
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The connection between free probability and the framework intro-
duced in Definitions 7.13 comes from the fact that orthogonality of
vectors translates into free independence of the corresponding creation
and annihilation operators.

PROPOSITION 7.15. Let 'H be a Hilbert space and consider the C*-
probability space (B(F(H)), ). Let Hy, ..., Hy be a family of linear
subspaces of ‘H, such that H; L H; fori # j (1 < i,j < k). For
every 1 < i < k let A; be the unital C*-subalgebra of B(F(H)) gen-
erated by {1(§) | £ € H;}. Then Ay, ..., A are freely independent in
(B(F(H)), n)-

PrOOF. For 1 <i < klet B; C A; be the unital x-algebra generated
by {l(€) | € € H;}. It will suffice to prove that By,..., By are freely
independent (cf. Lecture 5, Exercise 5.23).

For 1 <1 < k, the elements of B; are obtained as linear combina-
tions of finite products of operators from {I(§) | £ € H;} U{l(&)* | € €
H;}. By taking into account Remark 7.14.4, it then follows that every
T € B; can be put in the form:

= algm) + Zl (&) - W& m)l M) - 1) (7.25)

where for 1 < j < p we have (m(j),n(j)) # (0,0) and &1, ..., &m();

7]]'71,...,7/]]” EH
Note also that for T as in (7.25) we have 7¢(T") = a. This is because
for every 1 < j < p we have:

Tr(1(&i1) - UEGmG)LMi1)" - L(Mjin(i)) ")
= {L50)" - Aim)) 0 U Eim())™ - - 1(E5,0)72) = 0, (7.26)
where the last equality occurs because
m(j) # 0= U&my)" -+ 1&2)" 2 =0,
while
n(j) # 0 =1n;1)" - lnjng) 2 =0.

A moment’s thought shows that the discussion in the preceding para-
graph has the following consequence: if for 1 < i < k we denote

B .= {T € B; | m4(T) = 0},

then BY can also be described as

B = spen{U&) A&l -1y | 20D A 7o)
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Now let us go ahead and prove the required free independence of
By, ...,By. To this end we fix some indices 7y,...,4, € {1,...,k} such
that i1 # 4a,...,%9p-1 # ip and some elements Ty € B},,...,T, € B} .
Our goal is to show that (17 ---1,) = 0.

By taking (7.27) into account, we can assume without loss of gen-
erality that for every 1 < j < p the operator Tj is of the form

Ty = U&) - U&m)l i)™ Lnjni))” (7.28)

for some (m(j),n(j)) # (0,0) and some vectors &j1,...,&m(),
Mjts - Min() € Hi,- We distinguish two possible cases.

Case 1. There exists j € {1,...,p — 1} such that n(j) # 0 and
m(j+ 1) # 0.

In this case, when we replace T; and Tj;; from (7.28) we get a
product containing two neighboring factors (7, ,,¢;))* and [(§41,1). But
the product of these two factors is (§41,1,Mjn(j)) 1), and is hence
equal to 0, due to the hypothesis that H;, L H;, . So in this case we
get that T;T;,1 = 0, and the vanishing of 73(T - - - T,,) follows.

Case 2. The situation of Case 1 does not hold. That is, for every
j€{1,...,p— 1} we have that either n(j) =0 or m(j +1) =0.

In this case it is immediate that when we replace each of T, ..., 7T,
from (7.28) we get a product of the form [(&1) -+ 1(&n)l(m)* - 1(n,)*
with m+n =372 (m(j) +n(j)) > 0. The vacuum expectation of this
product is 0, by exactly the same argument as in (7.26). So we obtain
that 7p¢(T7 ---T,) is equal to 0 in this case as well. O

Let us note, moreover, that semicircular elements also appear nat-
urally in the framework of creation and annihilation operators on the
full Fock space.

PROPOSITION 7.16. Let ‘H be a Hilbert space and consider the C*-
probability space (B(F(H)), ). Then for every & # 0 in H, the ele-
ment (&) +1(&)* is semicircular of radius 2||&|| (in the sense of Lecture
2, Definition 2.16).

PROOF. Due to the linearity of £ — [(£) we may assume that |||| =

1. Then we have [(§)*I(§) = 1z (by (7.22)), while I()I(£)* # 1rm
(as implied for instance by the fact that [(£)*Q2 = 0). Also, by exactly
the same argument as in (7.26) we see that we have

I (CRUCS DR S

otherwise.



EXAMPLE: SEMICIRCULAR SYSTEMS AND THE FULL FOCK SPACE 107

Now, let us consider again the x-probability space (A, ) and the
special non-unitary isometry a € A4 which were considered (and fixed)
throughout Lecture 2. Based on the properties of [(£) which were
put into evidence in the preceding paragraph, we can proceed ex-
actly as in the discussion of Remark 2.5 in order to define a unital
s-homomorphism ¢ : A — B(F(H)) such that ®(a) = [(¢) and such
that 7y o ® = . Then we have that ®(a + a*) = [(§) + 1(£)*, and it
follows that the distribution of I(£) + I(£)* in (B(F(H)), ) coincides
with the distribution of a + a* in (A, ¢). But the latter distribution
is indeed the semicircular one of radius 2, as verified in Proposition
2.15. O

As a consequence of the preceding two propositions, we see that
semicircular systems do indeed arise in the framework of the full Fock
space.

COROLLARY 7.17. Let 'H be a Hilbert space and consider the C*-
probability space (B(F(H)), ™). Let &1, ..., & be an orthonormal sys-
tem of vectors in H. Then the elements

&) +U(&)" -, L&) + 1(&)"

form a semicircular system in (B(F(H)), 7).

PROOF. The free independence of 1(&1) + 1(&1)*, ..., 1(&) + (€ )
follows from Proposition 7.15, and the fact that every [(&;) + 1(&;)* 1
standard semicircular follows from Proposition 7.16. D

We will conclude this discussion by pointing out that the above
considerations on the full Fock space really give us a concrete realization
of the C*-algebra Mj introduced in Remark 7.12. The only thing
which prevents us from plainly applying Remark 7.12 to the operators
&)+ &) ... 1(&) + (&)™ is that, obviously, the vacuum state 73
is not faithful on B(F(H)). A way of circumventing this problem is
indicated by the next proposition.

PROPOSITION 7.18. Suppose that H is a Hilbert space of dimen-
sion k, and that &1, ..., & is an orthonormal basis of H. Consider the
C*-probability space (B(F(H)), ™), and let M denote the unital C*-
subalgebra of B(F(H)) generated by (&) +1(&)*, ..., 1(&) +1(&)*. Let
us also make the notation 7| M =: p. Then

(1) the vacuum vector § is cyclic for M - that is, {TQY | T € M}
is a dense subspace of F(H),

(2) ¢ is a trace on M,

(3) ¢ is faithful on M.
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ProoF. Throughout the proof we will denote by M, the unital
x-algebra generated by 1(&1) + 1(&1)*, ..., 1(&) + 1(&)* (thus M, is a
dense unital *-subalgebra of M).

(1) Let us denote {TQ | T' € M, } =: F, (linear subspace of F(H)).
Observe that 2 € F, (since Q = 1p(#x) 2), and that & € F, for every
1 <i <k (since & = (I(&) + 1(&))N2). Going one step further, we see
that &, ® &, € Fo, V 1 <iy,i5 < k — indeed, we can write

&1 ® £i2 = (1(511) + l(fll)*)glz - 52’172'2Q € FO'
In general, it is easy to prove by induction on n that
§, ®--- &, €F,, Yn2>1, V1<iy... i, <k (7.29)

The induction step “n — 1 = n” (for n > 3) follows immediately by
using the identity, for all 1 < 4y,... 4, <k,

§i @ @&, = (1(&, +1(8,)" )0 ® - ®&,) = 61,6 @ - ®E&,).

From (7.29) (and the fact that F, 5 Q) we infer that F, contains an
orthonormal basis of F(H). This implies that F, is a dense subspace
of F(H), and the same must then be true for {TQ | T € M} D F,.

(2) Proposition 5.19 gives us that ¢ is a trace on M,; then a
straightforward approximation argument shows that ¢ must also be
a trace on M = cl(M,).

(3) This is a repetition of the argument presented in Lemma 7.8.
We start by observing that

(T(AQ), BQ) = (TQ,BA*Q), ¥V A,B,Te M. (7.30)

Indeed, the left-hand side of (7.30) is ¢(B*T'A), while the right-hand
side is ¢(AB*T'), and these quantities are equal to each other due to
the traciality of .

Now let T € M be such that p(7*T) = 0; this means that
TQ = 0 (since (T*T) = ||TQ||*). But then from (7.30) we get that
(T(AQ), BQ) = 0, for all A, B € M. Since (by part (1) of the proposi-
tion) AQ and B2 are covering a dense subspace of F(H), we conclude
that 7' = 0. O

COROLLARY 7.19. In the notations of the preceding proposition we
have that M = M, the C*-algebra of a semicircular system with k
elements.

PROOF. One only has to apply the considerations from Remark
7.12 to (M, p) where ¢ = 7| M. O
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Exercises

EXERCISE 7.20. Let A be a unital C*-algebra. Prove that A =
span{u € A | u is unitary}.
[Hint: It suffices to take an element x € A such that x = z* and
l|z|| <1, and write it as = (u + v)/2 with w, v unitaries. Find such
u and v by using the functional calculus of x.]

In the next exercise we will use the following definition.

DEFINITION 7.21. Let A be a unital x-algebra.

(1) An element p € A is said to be a projection if it satisfies
p=p"=p

(2) An element v € A is said to be an isometry if it satisfies
v*v = 1 4. (In particular every unitary is an isometry.)

(3) An element w € A is said to be a partial isometry if both
w*w and ww* are projections. (In particular every isometry is a partial
isometry, and every projection is a partial isometry.)

EXERCISE 7.22. Prove that the conclusion of Proposition 7.2 still
holds if the hypothesis (7.4) is replaced by the weaker condition that
A is generated (as a *-algebra) by the set

W ={w e A| w is a partial isometry }.
[Hint: Prove that the set appearing in (7.7) during the proof of Propo-
sition 7.2 is a subalgebra of A, which contains W]

EXERCISE 7.23. Let v be the standard normal distribution on R,

that is,

1 2
dy(t) = ——e™t/2 dt.

V271

Consider the x-probability space (A, ¢) where
A= L% (R,7) = M<pec P (R, 7),
and where ¢ : A — C is defined by

o(f) = /_OO f@®)dy(t), feA

Show that L?(A, p) = L*(R,~) and that there exists f € A such that
g — fg is not a bounded operator on L?(A, ).

The next two exercises take place in the framework of the full Fock
space F(H) over a Hilbert space ‘H. In addition to creation and anni-
hilation operators, one can also consider operators on F(H) defined as
follows.
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DEFINITION 7.24. Let H be a Hilbert space, and let F(H) be the
full Fock space over H (as in Definitions 7.13). For every T' € B(H),
the operator A(T') € B(F(H)) defined by the formula:

AT = 0
AT @ ©86 = (T&)R&E® @&, (7.31)
Vn>1,Veé,. . . €Mt

is called the gauge operator associated to T'.

EXERCISE 7.25. In the framework of the preceding definition, check
the following properties of the gauge operators A(T).

(1) For every T' € B(H), Equation (7.31) does indeed define a
bounded linear operator A(T) on F(H), and we have ||A(T)|| = ||T|.

(2) The map T — A(T) is a unital *-homomorphism from B(H) to
B(F(H)).

(3) For all {,n € H and all T € B(H) we have that

HE)*MT)(n) = (T, )17 () (7.32)

EXERCISE 7.26. Let H be a Hilbert space and consider the C*-
probability space (B(F(H)), 7). Let Hy, ..., Hy be a family of linear
subspaces of H, such that H; L H; for i # j (1 <1i,j < k). For every
1 <i < klet A; be the unital C*-subalgebra of B(F(H)) generated by
{U&) | £ e Hi}U{A(T) | T € B(H), T(H;) C H; and T vanishes on HO
H;}. Prove that Ay, ..., Ay are freely independent in (B(F(H)), 7).

EXERCISE 7.27. By using the framework of the full Fock space,
prove the following statement. Let (A, ¢) be a x-probability space and
let a1, as € A be semicircular elements of radii r; and respectively 7,
such that ay is free from ay. Then a; + a9 is a semicircular element of

radius /r? + 3.

EXERCISE 7.28. Let (A, ¢) be a C*-probability space such that ¢
is faithful, and let = be a selfadjoint element of A. Suppose that the
distribution of z is of the form p(t) dt on an interval [a,b] C R, where

p : [a,b] — R is a continuous function such that fab p(t)dt = 1 and such
that p is not identically equal to zero on any subinterval (¢, d) C [a, b]
(a < ¢ < d<b). Prove that there exists an element y = y* € A such
that:

(i) the unital C*-subalgebra of A generated by y is equal to the
unital C*-subalgebra generated by z, and

(ii) the distribution of y is precisely the uniform distribution on the
interval [0, 1].
[Hint: Try y = f(x) where f : [a,b] — [0,1] is defined by f(t) =
f; p(s)ds, a <t <b]



EXERCISES 111

EXERCISE 7.29. (1) Consider the unital C*-algebra A described in
expression (5.8), in Remark 5.21. Prove that A is isomorphic to the C*-
algebra (denoted in the above Remark 7.12 by M3j) of a semicircular
system with 3 elements.

(2) Generalize part (1) of the exercise to the unital C*-algebra gen-
erated by k free selfadjoint elements x1, ..., z; such that the distribu-
tion of each of xy,...,x; satisfies the hypotheses of Exercise 7.28.
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LECTURE 8

Motivation: free central limit theorem

One of the main ideas in free probability theory is to consider the notion
of free independence in analogy with the notion of classical or tensor
independence. In this spirit, the first investigations of Voiculescu in
free probability theory focused on free analogs of some of the most
fundamental statements from classical probability theory. In particu-
lar, he proved a free analog of a central limit theorem and introduced
and described a free analog of “convolution.” His investigations were
quite analytical and centered around the concept of the “R-transform,”
an analytic function which plays the same role in free probability the-
ory as the logarithm of the Fourier transform in classical probability
theory. However, in this analytic approach it is not so obvious why
the R-transform and the logarithm of the Fourier transform should be
analogous.

Our approach to free probability theory is much more combinato-
rial in nature and will reveal in a clearer way the parallelism between
classical and free probability theory.

In order to see what kind of combinatorial objects are relevant for
free probability theory, we will begin by giving an algebraic proof of the
free central limit theorem. This approach will show the similar nature
of classical and free probability theory very clearly, because the same
kind of proof can be given for the classical central limit theorem. Most
of the arguments will be the same, only in the very end one has to
distinguish whether one is in the classical or in the free situation. For
convenience, we will restrict the discussion to the simplest case where
we have identically distributed variables.

Convergence in distribution

Let (A, ) be a x-probability space and ay,as,... € A a sequence of
identically distributed selfadjoint random variables which are either
tensor independent or freely independent. Furthermore, assume that
the variables are centered, ¢(a,) = 0 (r € N), and denote by ¢? :=
¢(a?) the common variance of the variables. (Note that p(a?) > 0

T
because ¢ is positive and a, selfadjoint.) A central limit theorem asks

115
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about the limit behavior of
aq + 4 an

VN
if N tends to infinity.
Of course, one has to specify the kind of convergence, and the only
meaningful way for this is convergence of all moments or “convergence
in distribution.” So let us first define this concept.

DEFINITION 8.1. Let (An,¢n) (N € N) and (A,¢) be non-
commutative probability spaces and consider random variables ay €
Ay for each N € N, and a € A. We say that ay converges in
distribution towards a for N — oo, and denote this by

if we have
]\}im en(ay) = p(a™) Vn eN.

REMARKS 8.2. (1) This form of convergence seems to be weaker
than the usual form of convergence appearing in the classical central
limit theorem. There statements are usually in terms of “weak conver-
gence.” If ay and a have distributions in analytical sense py and u,
respectively — which are, by our Definition 1.8, compactly supported
probability measures on R — then the classical notion of “convergence
in distribution” (or “convergence in law”) of the random variables ay
to the random variable a means by definition the weak convergence of
un towards p, i.e.

hm f(t) dun(t) / f(t) du(t) for all bounded continuous f.

Clearly, by an application of Stone-Weierstrass, the convergence of all
moments is enough to ensure the convergence of all continuous func-
tions f on the compact support of u, and thus our notion of conver-
gence in distribution coincides in this situation with the corresponding
classical notion.

(2) Note that the above remark applies only to situations where
the limit element a has a compactly supported distribution (as it is
required in our Definition 1.8 of “distribution in analytical sense”).
Thus this remark does not seem to be relevant for the classical central
limit theorem. Since the normal density does not have compact sup-
port, a classical normal random variable does not have a distribution
in our analytical sense and Stone—Weierstrass is not enough to ensure
that the convergence of moments in the classical central limit theorem
implies weak convergence. However, the normal distribution is still
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“nice” enough to allow this conclusion, namely it is determined by its
moments.

DEFINITION 8.3. Let p be a probability measure on R with mo-

ments
My, = /t”du(t).
R

We say that p is determined by its moments, if y is the only
probability measure on R with these moments, i.e. if for any probability
measure v on R we have

/t”du(t):mn VneN = V=L
R

REMARKS 8.4. (1) It makes sense to push our definition of distri-
bution in analytical sense a bit further and allow probability measures
which are determined by their moments as candidates for such a distri-
bution, even if they do not have compact support. This gives us more
flexibility in connecting our combinatorial considerations with classical
analytical considerations. We will point out explicitly if we want to
consider distributions in analytical sense in this more general frame.

(2) The relevance for us of probability measures determined by their
moments comes from the following two well-known facts from classical
probability theory.

(i) The normal distribution is determined by its moments.
(ii) Let probability measures p and py (N = 1,2,...) on R be
given such that p is determined by its moments and that the
i have moments of all orders. If we have
lim [ t"dun(t) :/t"du(t) Vn=1,2,...,
R R

N—o0
then py converges weakly to u.

These two facts imply that for the weak convergence of classical random
variables to a normal distribution it is enough to check the convergence
of all moments. Thus, in order to prove the classical central limit theo-
rem (in the case where all involved random variables possess moments
of all orders) it is enough to prove the convergence of all moments —
which is exactly what our notion of convergence in distribution asks
for.

General central limit theorem

In order to see that we have convergence in distribution of
(a1 +---+an)/V N we should calculate the limit N — oo of all mo-
ments of (a1 +---+ay)/VN. Let us first see how much we can say
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about such moments for finite N. In the following we fix a positive
integer n. Then we have

gp((al + e + aN)n> — Z gp(ar(l) . ar(n)).
1<r(1),...,r(n)<N

Since all a, have the same distribution we have

go(ar(l) .. .CLT(n)> = <,0(6Lp(1) cee ap(n))

whenever
r(@)=r() <= p@)=p{) V 1<ij<n

(This is a consequence of the fact that both tensor independence
and free independence give a rule for calculating mixed moments
from the values of the moments of the variables.) Thus the value
of p(a,y...arm)) depends on the tuple (r(1),...,7r(n)) only through
the information on which of the indices are the same and which are
different. We will encode this information by a partition (i.e. a decom-
position into disjoint subsets) m = {Vi,...,Vi} of the set {1,...,n}.
This partition 7 is determined as follows. Two numbers p and g be-
long to the same block V,,, of w (for some m = 1,...,s) if and only if
r(p) = r(q). We will write (r(1),...,7(n)) == in this case,

[(r(1),...,7(n))=7] <= [r(p) =r(q) if and only if p ~, ¢]. (8.1)
Furthermore we denote the common value of p(a,q)...aym)) for all
tuples (r(1),...,r(n)) with (r(1),...,r(n)) =7 by K.

For illustration, consider the following example. Since a; has the
same moments as ar, since as has the same moments as as, and since ag
has the same moments as ag, the free/tensor independence of ay, as, as
produces for ¢(ajasaiaiasas) the same result as the free/tensor inde-
pendence of az, as, ag for p(arasararasag), and we denote the common
value of both expressions by

K{(1,3,4),(2,5),(6)} = p(arazararazas) = p(arasararasasg).
With these notations we can continue the above calculation with
st = Y Al
7 partition of {1,...,n}
where AY is the number of tuples corresponding to 7, i.e.
AN = #{(r(1),...,r(n)) =7 |1 <r(1),...,7(n) < N}.

Note that the number of terms in the above sum does not depend on
N, the only dependence on N is via the numbers AY. It remains to
examine the contribution of the different partitions. We will see that
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most of them will give no contribution in the normalized limit, only
very special ones survive.

First, we will argue that partitions with singletons do not con-
tribute: Consider a partition 7 = {V3, ..., V;} with a singleton, i.e. we
have V,,, = {r} for some m and some r. Then we have

Ke = @(ar@y .- Qr .. Gpy) = P(ar) - @(ar@y - .. Gpy),

because {ar(1y; ..., 0y, ..., 0y} is either tensor independent or freely
independent from a,. (This factorization follows from Equation (5.2)
in the tensor case, and from Equation (5.5) in the free case.) However,
since our variables are centered, we get xk, = 0. Thus only such parti-
tions 7 contribute which have no singletons, i.e. only 7 = {V4,...,V,}
where each block V;,, (m = 1,...,s) has at least two elements. Note
that this implies in particular that in our sum we can restrict to
m={W,...,Vs} for which s <n/2.

Consider now a m = {V4, ..., Vi}; then we have N possibilities for
the common index corresponding to the first block V;, N —1 possibilities
for the common index corresponding to the second block V5 (since this
index has to be different from the one of the first block), and so on.
Thus, if we denote by |r| the number of blocks of 7, we have that

A7 =N(N=1) (N = |7 + 1),
which grows asymptotically like NIl for large N. Thus

, ar+ - +av\"\ AY
J&LI%O@((T> )—NIE%OZW"W

= lim ZN‘“I*(”/Z)/@T.

N—o0

Now note that for each appearing 7 the factor NITI=(*/2) has a limit
(because only |7| < n/2 appear in our sum), and that this limit is either
1 or 0, depending on whether |7| = n/2 or |r| < n/2. This means, in
the limit N — oo all partitions with |7| < n/2 are suppressed and we
get exactly a contribution k, for each m which has the property that
it has no singleton and that its number of blocks is equal to n/2. This
means of course that 7 has to be a pair partition or pairing, i.e. a
partition where each block V,,, consists of exactly two elements.
Thus, we have now arrived at the following result:

() )= X e ey

7 pair partition
of {1,..., n}
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Up to now, there has been no difference between the case of tensor
independence and the case of free independence. The structure of the
limiting moments is in both cases the same, namely they are calculated
by summing over pair partitions. However, we still have not determined
the weighting factors k. for these pair partitions. That is the point
where we have to distinguish the two cases.

However, before we do this, let us note that the general formula
(8.2) is enough to conclude that odd moments vanish in both cases.
This conclusion comes from the simple observation that there are no
pair partitions of a set with an odd number of elements. Thus:

_ a + -+ anym\
]\}Enoogp(<T> ) =0 for n odd. (8.3)

Classical central limit theorem

The actual calculation of the limit distribution will now depend on
whether we have classically independent or freely independent vari-
ables. Let us first consider the classical case. The factorization rule
(5.2) for tensor independent random variables gives directly that for
any pair partition m, the corresponding k, factorizes into a product of
second moments, thus we have k, = ¢". So we get in this case

. apt---+an\"\ _ . . "
A}lgl)ogp <<T> ) =0 <#palr partitions of {1,... ,n(}))
8.4

[t is easy to see that the number of pair partitions of the set {1,...,n}
is, in the case n even, given by (n —1)-(n —3)---5-3- 1.

On the other hand, one can also check quite easily that these num-
bers are exactly the moments of a centered normal distribution. We
leave this as an exercise to the reader, see Exercise 8.22.

Putting all this together, we have thus proved the following version
of the classical central limit theorem.

THEOREM 8.5. (Classical central limit theorem)
Let (A, ) be a x-probability space and ay,as,... € A a sequence of
independent and identically distributed selfadjoint random variables.
Furthermore, assume that all variables are centered, ¢(a,) =0 (r € N),
and denote by 02 := @(a?) the common variance of the variables. Then

we have
a;+ -+ an distr

VN

where x is a normally distributed random variable of variance o?.
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REMARKS 8.6. (1) Let us recall that this statement means explicitly

. ap+ -+ an\" 1 / 4270 2
lim (— = the=t/20% qt Vn e N.
Noo ? ( VN ) ) V2ro? Jr

(2) According to our Remarks 8.4, the normal distribution is deter-
mined by its moments and our algebraic form of the classical central
limit theorem is equivalent to the usual formulation in terms of weak
convergence.

(3) Note also that it is implicit in the definition of a s-probability
space (A, p) that all variables have moments of all orders. In our
algebraic frame we are not able to deal with situations where some
moments do not exist.

Free central limit theorem

Now we want to switch to the free case. So we start off again with
the general formula (8.2) and it remains to specify what the weighting
factors K, are in the case of freely independent random variables.

Since we know that the odd moments vanish in this case, too, it
suffices to consider even moments. So let n = 2k be even and consider
a pair partition # = {V;,...,Vi}. Let (r(1),...,7(n)) be an index-
tuple corresponding to this m, (r(1),...,r(n))=m. Then there exist
the following two possibilities.

(1) All consecutive indices are different:

r(1) #r(2) # - #r(n).
Since @(ar@m)) = 0 for all m = 1,...,n, we have by the definition of
free independence
Ry = gp(ar(l) e ar(n)) = 0.
(2) Two consecutive indices coincide, i.e.
r(m)=r(m+1)=r for somem=1,...,n— 1.

Because the index r does not appear any more among the other in-
dices we have that {a,(1),. .., Gr@m-1); Grmt2)s- -Gy} Is free from
Ar(m)Ar(m+1) = Gra, and we get by the factorization property (5.5)
that
Ry = Sp(ar(l) GGyt ar(n))
- Qo(ar(l) T ar(m—l)ar(m+2) e ar(n)) ' QO(CLT(IT>
= (A1) 1) 0r(m+2) * - Qo)) - O
It is clear that we can repeat the above argument in the second

case and either get zero for x, or reduce the length of the considered
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moment further. We repeat this iteration until either we get zero in one
of the steps or until we arrive at the moment ¢(1). In the latter case,
the corresponding pairing will give a contribution o™. Thus we see that
in the free case only special pairings will make a contribution. These
special pairings are exactly those for which in each iteration step we
are in the second case, i.e. we successively can find consecutive indices
which coincide.

Let us consider a pairing 7= which does not have this property
(i.e. which will contribute k. = 0). We want to see that we can char-
acterize such a pairing in a geometrical way. The fact kK, = 0 means
that eventually our iterative procedure produces a pairing 7 of m > 0
elements to which case (1) applies. Thus 7 does not pair any neighbors.
Take any pair a; < as of 7. This does not consist of neighbors, thus
there must be some elements between a; and as. If we find another
pair a} < a) between a; and ay (i.e. a1 < @} < a) < as) then we rename
this pair (af,a)) to (a1, as). We continue in this way until we find no
other pair between a; < ay. But there must still be at least one other
element b with a; < b < as (otherwise the pair a;, ay would consist of
neighbors), and this b must be paired with a ¢ with either ¢ < ay or
¢ > ay. Thus we see that 7 must be “crossing” in the sense that there
exist p1 < q1 < pa < @2 such that p; is paired with py and ¢; is paired
with go. Clearly, the original 7 must exhibit the same crossing prop-
erty. Thus we have seen that x, = 0 implies that 7 must be crossing in
the above sense. On the other hand, if k, = ¢™, which means that we
can reduce 7 by iterated application of case (1) to the empty pairing,
then 7 cannot have this crossing property.

So we have arrived at the conclusion that in the free case exactly
those pairings contribute which are not crossing in the above sense.
This “non-crossing” feature is the basic property on which our descrip-
tion of free probability theory will rest.

NOTATION 8.7. A pairing of {1,...,n} is called non-crossing if
there does not exist 1 < p; < ¢1 < p2 < g2 < n such that p; is paired
with py and ¢; is paired with ¢;. The set of non-crossing pairings of

{1,...,n} is denoted by NCsy(n).

Thus we have shown

. al+..._|_aN n B n
Jvlli“J((T> >—D"°" (85)

where

D, = #{7? | m non-crossing pair partition of {1, ... ,n}}
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ExaMPLES 8.8. It is quite easy to calculate the number of non-
crossing pair partitions explicitly. Let us first count them for small n.
Of course, for odd n we have D, = 0; thus we only have to consider
even n. In the pictures below, the geometrical meaning of the property
“non-crossing” will become obvious; namely, a pairing = of {1,...,n}
is non-crossing if we can draw the connections for the pairs of 7 in
the half-plane below the numbers 1,...,n in such a way that these
connections do not cross.

e Dy = 1; there is only one pairing of 2 elements, and this is

also non-crossing;: L9

L

e Dy = 2: here are the two non-crossing pairings of 4 elements:
1934 1234

JU Y

Note that there is one additional, crossing, pairing for n = 4,

namely
1234

&J

e Dg = 5; here are the five non-crossing pairings of 6 elements:

193456 1234|_|56 12‘_|3456
L L L | |
123456 123456

The other 10 of the 15 pairings of 6 elements are crossing.

We see that the Catalan numbers 1,2,5 show up here. It is quite
easy to see that this is true in general

LEMMA 8.9. The number Doy, of non-crossing pair partitions of the
set {1,...,2k} is given by the Catalan number Cl.

PROOF. Since clearly D, = 1 = (1, it suffices to check that the
Dy, fulfill the recurrence relation of the Catalan numbers. Let m =
{Vi,...,Vk} be a non-crossing pair partition. We denote by V; that
block of 7 which contains the element 1, i.e. it has to be of the form
Vi = (1,m). Then the property “non-crossing” enforces that, for each
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V; (j # 1), we cannot have a crossing between V; and Vj, i.e. we have
either 1 < V; <mor 1 <m < V,. (In particular, this implies that m
has to be even, m = 2[.) This means that 7 restricted to {2,...,m—1}
is a non-crossing pair partition of {2,...,m — 1} and 7 restricted to
{m+1,...,n} is a non-crossing pair partition of {m+1,...,n}. There
exist D,, o many non-crossing pair partitions of {2,...,m — 1} and
D,,_,, many non-crossing pair partitions of {m-+1, ..., n}, where we put
consistently Dy := 1. Both these possibilities can appear independently
from each other and m = 2/ can run through all even numbers from 2
to n. Hence we get

k
Dy, = Z Doq—1yDa—1py.-

=1

But this is the recurrence relation for the Catalan numbers, so the
assertion follows. O

Another possibility for proving Ds, = Cj is addressed in Exercise
8.23.

Since we know from Lecture 2 that the Catalan numbers are also the
moments of a semicircular variable, we have thus proved the following
version of the free central limit theorem.

THEOREM 8.10. (Free central limit theorem)
Let (A, ) be a x-probability space and ai,as,... € A a sequence
of freely independent and identically distributed selfadjoint random
variables. Assume furthermore ¢(a,) = 0 (r € N) and denote by
o2 := p(a?) the common variance of the variables. Then we have

a1+"'+aN distr
—_— — 5,
vVIN

where s is a semicircular element of variance o>.

REMARKS 8.11. (1) According to the free central limit theorem the
semicircular distribution has to be considered as the free analog of the
normal distribution and is thus one of the basic distributions in free
probability theory.

(2) As in the classical case, the assumptions in the free central limit
theorem can be weakened considerably. For example, the assumption
“identically distributed” is essentially chosen to simplify the argument;
the same proof works if one replaces this by

sup jp(al)| <oco  VneN
ieN
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and
” ZZJ&:H;O—ZSO

Our parallel treatment of the classical and the free central limit
theorem shows the similarity between these two theorems very clearly.
In particular, we have learned the simplest manifestation (on the level
of pairings) of the following basic observation: the transition from clas-
sical to free probability theory is equivalent, on a combinatorial level,
to the transition from all partitions to non-crossing partitions.

The multi-dimensional case

One of the main advantages of our combinatorial approach to free prob-
ability theory is the fact that, in contrast to an analytical treatment, a
lot of arguments can be extended from one variable to several variables
without any problems. In the following we want to demonstrate this
for the free central limit theorem.

ExAMPLE 8.12. To motivate the problem, let us consider the case
of two variables. So we now have two sequences aq, as, ... and by, bs, . ..
of selfadjoint variables such that the sets {a1, b1}, {ag, b2}, ... are free
and have the same joint distribution. We do not necessarily assume
that the a are free from the b. Then, under the assumption that all
our variables are centered, we get from our one-dimensional free central
limit theorem 8.10 that

ay + -+ an distr

HS
VN 1

for a semicircular element s; and that
b1++bN distr

%S
VN i

for another semicircular element s,. However, what we want to know
in addition is the relation between s; and s,. We will see that the
joint distribution of the pair (sq, s9) is determined by knowledge of the

covariance matrix

p(ara.) o(arb)

w(brar)  o(brb;)
of a, and b, (which is independent of r by our assumption on identical
joint distribution of the families {a,,b,}). Furthermore, calculation
of the joint distribution of s; and sy from this covariance matrix is
very similar to calculation of the moments of a semicircular element
from its variance o?. This will be the content of our multi-dimensional
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free central limit theorem 8.17. We will present and prove this in the
following in full generality for arbitrarily many sequences; however, it
might be illuminating for the reader to restrict its statement to the
case of two sequences ai,as,... and by, b, ..., as considered in this
example.

We will now treat the general multi-dimensional case by looking
at arbitrarily many sequences, which will be indexed by a fixed index
set I (which might be infinite). So, we replace each a, from the one-
dimensional case by a family of selfadjoint random variables (aff))ie I
and assume that all these families are free and each of them has the
same joint distribution and that all appearing random variables are
centered. We want to investigate the convergence of the joint distribu-
tion of the random variables ((aﬁ” +- a%))/\/ﬁ)iel when N tends
to infinity. Let us first define the obvious generalization of our notion
of convergence to this multi-dimensional setting.

DEFINITIONS 8.13. (1) Let (An,¢n) (N € N) and (A, ¢) be non-
commutative probability spaces. Let I be an index set and consider
for each i € I random variables ol € Ay and a; € A. We say that
(ag\l,))iel converges in distribution towards (a;);c; and denote this
by

i distr
(agv))ief — (@i)ier,
if we have that each joint moment of (ag\i,))ie 1 converges towards the
corresponding joint moment of (a;);ey, i.e. if we have for all n € N and
all i(1),...,i(n) € I
: i(1 i(n
lim @N(ag\,( R as\,( ))) = () - i) (8.6)

N—oo

(2) In the context of x-probability spaces we will say that (ag\?)ie I

converges in x-distribution towards (a;);c; and denote this by
- —dist
(ai)ier =" (ai)ier,
if we have that each joint *-moment of (ag\?)ie 1 converges towards the
corresponding joint s-moment of (a;);cs, i.e. if

(3) (3)\ % distr %
(a]\lf ) (a]\zf) )Z‘Ej - (ai7az‘ )iEI-

REMARK 8.14. Since free independence is equivalent to the validity
of a collection of equations between moments, it is an easy but impor-
tant observation that free independence goes over to the limit under
convergence in distribution. Exercise 8.25 will ask for a proof of that
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statement. An application of this idea will appear later in the proof of
Proposition 8.19.

Let us now look at our multi-dimensional version of the free central
limit theorem. The calculation of the joint distribution of our normal-
ized sums ((agi) + -t a%))/\/ﬁ)ig works in the same way as in the
one-dimensional case. Namely, we now have to consider for all n € N
and all i(1),...,i(n) € I

g0<(agi<1)>Jr,,,Jra%(n))_, () 4 ... 1 gl )))

= Z gp(a (1 ))) --afj(%))). (8.7)

1<r(1),...,r(n)<N

Again, we have that the value of cp(aii(ll))) . r(n) ) depends on the tuple

(r(1),...,7(n)) only through the information on which of the indices
are the same and which are different, which we will encode as before

by a partition m of {1,...,n}. The common value of go(aii((ll))) e a(i((")))

for all tuples (r(1),...,r(n)) =7 will now, in addition, also depe)nd
on the tuple (i(1),...,i(n)) and we will denote it by k.[i(1),...,i(n)].
The next steps are the same as before. Singletons do not contribute
because of the centeredness assumption and only pair partitions give

the leading order in N and survive in the limit. Thus we arrive at

Q) |y gl ) | )

lim ( 1 N L. )
N VN o
7 pair partition
of {1,..., n}
It only remains to identify the contribution x,[i(1),...,i(n)] for a pair
partition w. As before, the free independence assumption implies that
Keli(1),...,i(n)] = 0 for crossing 7. So consider finally a non-crossing

m. Remember that in this case we can find two consecutive indices
which coincide, i.e. r(m) = r(m + 1) = r for some m. Then we have

kali(D), ... i(n)] = 90( () aftmDaftren) .. afD)

r(l) T T
( (1)) (i(m=1)) (i(m+2)) (i(n) i(m))  (i(m+1
( (1)) (i(m=1)) (i(m+2)) (i(n)
- (70( r(1) ar(m—l) ar(m+2) T ar(n) ) " Ci(m)i(m+1)
where (c;j)ijer with ¢; = o(aa)) is the covariance matrix of

(ag‘i))z‘el-
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[terating this will lead to the final result that r.[i(1),...,i(n)]
is, for a non-crossing pairing 7, given by the product of covariances
[T(p.)ex Ciwyita) (ome factor for each block (p, g) of ).

This form of the limiting moments motivates the following general-
ization of the notion of a semicircular element to the multi-dimensional
case.

DEFINITION 8.15. Let (c¢;;); jer be a positive definite matrix. A fam-
ily (s;)ier of selfadjoint random variables in some x-probability space
is called a semicircular family of covariance (c¢;;); jes, if its distri-
bution is of the following form: for all n € N and all i(1),...,i(n) € I
we have

©(Si(1y - - - Si(n)) = Z Kr[Si(1)s - - -5 Si(n)) (8.8)
7 non-crossing pair partition
of {1,..., n}
where
flsicy, - sion) = |1 cimi- (8.9)
(pa)em

EXAMPLES 8.16. (1) For illustration, let us write down the formulas
(8.8) explicitly for small moments:

©(S45p) = Cab, ©(Sa565eSd) = CabCed + CadChes

O(Sa5bScSdSeSf) = CabCedCef + CabCefCae
+ CadCbcCef + CafChcClde + CafCbeCed-

(2) If I consists just of one element then the above definition re-
duces, of course, to the definition of a semicircular element. More
generally, each element s; from a semicircular family is a semicircular
element. Note, however, that in general the s; are not free. In Corol-
lary 8.20 we will see that the free independence of the s; is equivalent
to the diagonality of the covariance matrix. So in the case that the
covariance matrix is just the identity matrix, our semicircular family
reduces to a “semicircular system” in the sense of our Definition 7.11.
We have to warn the reader that many authors mean by “semicircular
family” the more restricted notion of a “semicircular system.”

With our notion of a semicircular family we can summarize our cal-
culations in the following multi-dimensional version of the free central
limit theorem.

THEOREM 8.17. (Free CLT, multi-dimensional version)
Let (A, ) be a x-probability space and {a(f)}ig,{ag’)}ig,-- CAa
sequence of freely independent sets of selfadjoint random variables with
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the same joint distribution of (ag))ief for allr € N — the latter meaning
that, for any choice of n € N and i(1),...,i(n) € I, the moment
(@ . )Y does not depend on r. Assume furthermore that all

variables are centered

ey =0 (reNjiel)
and denote the covariance of the variables by

cij = plalal)) (1,5 € I).
Then we have

(4) )
= ) , o (si)ier (8.10)
el

(agi)jL--‘—l—a
VN

where (s;)ier s a semicircular family of covariance (¢;j); jer-

REMARKS 8.18. (1) Clearly, we can also prove a multi-dimensional
version of the classical central limit theorem in the same way. Then
the limit is a “Gaussian family” (multivariate normal distribution),
whose joint moments are given by a similar formula as for semicircular
families, the only difference is again that the summation runs over all
pairings instead of non-crossing pairings. So for a Gaussian family
(x;)ier of covariance (c;;); jer we have

O(X12923%4) = C12C34 + C14C23 + C13C2

and the moment p(z12923242576) is given as a sum over the 15 pairings
of 6 elements. This combinatorial description of the joint moments of
Gaussian families usually goes under the name of “Wick formula” (in
particular, in the physical community).

(2) According to the previous remark, a semicircular family is to
be considered as the free analog of a multivariate normal distribution.

A simple special case of a semicircular family is given if the covari-
ance is a diagonal matrix. We can use our free central limit theorem
to conclude quite easily that this is equivalent to having freely inde-
pendent semicircular elements. This is a special case of the following
proposition.

PROPOSITION 8.19. Let (s;)ie; be a semicircular family of covari-
ance (¢ij)ijer and consider a disjoint decomposition I = Uizllp. Then
the following two statements are equivalent.

(1) The sets {s; |i € I1i},...,{s; | i € 14} are freely independent.

(2) We have ¢;; = 0 whenever i € I, and j € I, with p # q.
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PROOF. Assume first that the families ({s; | i € ]P})p:1 _, are free
and consider ¢ € I, and j € I, with p # ¢g. Then the free independence

of s; and s; implies in particular

cij = ¢(si55) = p(si)p(s) = 0.

If however we have ¢;; = 0 whenever ¢ € I, and j € I, with p # ¢, then
we can use our free central limit theorem in the following way. Choose
in some *-probability space (B,) a freely independent sequence of
sets {a\"Vier, {a"Vicr, ... of random variables such that (al”);c; has
for each r = 1,2, ... the same joint distribution, which is prescribed in
the following way:

e for each p = 1,...,d, the family (aff))igp has the same joint

distribution as the family (s;)icr, ;

e the sets {a,(ﬂi) |ie L},..., {CL?@ | i € I} are free.

Note that the free product construction for x-probability spaces from
Lecture 6 ensures that we can find such elements asfl). Furthermore, by
the free independence between elements corresponding to different sets

I,,, we have for ¢ € I, and j € [, with p # ¢ that
Y(aa?) = ¢(a?) - (a) = 0 = p(sis;).

Thus the covariance of the family (ag))ie 7 is the same as the covariance
of our given semicircular family (s;);c;. But now our free central limit
theorem tells us that
(1) (1)

a; +---+&N) distr

— \ S )ierl, 8.11
( \/N el ( ) el ( )
where the limit is given exactly by the semicircular family from
which we started (because this has the right covariance). But by

our construction of the aﬁz) we have now in addition that the sets
{(@? +.- 4+ a%))/\/ﬁ}idp (p =1,...,d) are freely independent. As
we observed in Remark 8.14 (see also Exercise 8.25), free independence
passes over to the limit, and so we get the wanted result that the sets
{si}icr, (p=1,...,d) are freely independent. O

Note that this proposition implies that xr[s;), . .., Sitn)] vanishes if
the blocks of m couple elements which are free.

COROLLARY 8.20. Consider a semicircular family (s;)iesr of covari-
ance (cij)ijer- Then the following are equivalent.

(1) The covariance matriz (¢;j); jer is diagonal.

(2) The random variables (s;);cr are free.
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EXAMPLE 8.21. Assume s; and s, are two semicircular elements
which are free. Let us also assume that both have variance 1. Then
the above tells us that their mixed moments are given by counting
the non-crossing pairings which connect s; with s; and sy with sy (no
blocks connecting s; with sy are allowed). For example, we have in
such a situation

©(5151528251828281) = 2,

because there are two contributing non-crossing pairings, namely

5151825251525251
5151525281 8252851 |_| U
u u \_l and

Conclusion and outlook

The general conclusion which we draw from this lecture is that non-
crossing partitions appear quite naturally in free probability. From a
combinatorial point of view, the transition from classical probability
theory to free probability theory consists of replacing all partitions by
non-crossing partitions.

But there are also more specific features shown by our treatment
of the free central limit theorem. In the next lectures we will gener-
alize to arbitrary distributions what we have learned from the case of
semicircular families, namely:

(1) it seems to be canonical to write moments as sums over non-
crossing partitions;

(2) the summands s are multiplicative in the sense that they fac-
torize in a product according to the block structure of m;

(3) the summands «, reflect free independence quite clearly, since
Kr[Si(1)s - - - » Si(n)) Vanishes if the blocks of 7 couple elements which are
freely independent.

More concretely, we will write moments of random variables as

olay -+ ap,) = Z Krlai, ..., an), (8.12)

7T non-crossing partition

where the k. (“free cumulants™) factorize in a product according to the
block structure of m. The difference from the present case is that we do
not only have to consider non-crossing pairings, but we have to sum over
all non-crossing partitions. Before we introduce free cumulants in full
generality, we have to talk about the definition and basic properties of
non-crossing partitions. In particular, we should also understand how
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to invert the relation (8.12) by so-called “Mdbius inversion.” This will
be the content of the next two lectures.

Exercises

EXERCISE 8.22. Show that

1 ) 2 0 1fn0dd
/t"e FRe gt =
V2mo? Jr o"-(n—1)-(n—3)---5-3-1 if n even.

EXERCISE 8.23. Another possibility for proving Do, = C} is to
present a bijection between non-crossing pair partitions and Dyck
paths. Here is one: we map a non-crossing pair partition 7 to a Dyck

path (iy,...,i,) by
Im = +1 <= m is the first element in some V; € 7

Iy = —1 — m is the second element in some V; € 7

Here are some examples for this mapping:

on =2
. L
oen=4
. L L
2
en==06

2]
E=all
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2]

Prove that this mapping gives a bijection between Dyck paths and
non-crossing pair partitions.

~

EXERCISE 8.24. (1) Prove that for every positive definite matrix
(¢ij)ijer one can find a semicircular family of covariance (¢;;);jer in
some x-probability space.

[Hint: one possibility is to use the free central limit theorem and the
fact that positivity is preserved under limit in distribution; another
possibility is to use the next part of this problem.]

(2) Show that each semicircular family can be written as a linear
combination of free semicircular elements.

EXERCISE 8.25. Let (A,¢) and (An,¢on) (N € N) be non-

commutative probability spaces, and consider random variables a,b €
distr

A and ay,by € Ay (N € N) such that (ay,by) — (a,b). Assume
that for each N € N the random variables ay and by are free (with
respect to ¢y ). Show that then also a and b are free (with respect to
).

EXERCISE 8.26. Fill in the details in the following use of the free
central limit theorem to infer that the distribution of the sum of cre-
ation and annihilation operators on a full Fock space has a semicircular
distribution.

Consider in the non-commutative probability space (B(F(H)), )
for a fixed f € H the variable {(f) +{*(f). Show that, for each natural
N, this has the same distribution as the random variable

f@...@f . f@...@f
{ JN )+ ( JN )
in the non-commutative probability space (B(F(Hy)), T, ) With
Hy=H®---OH.
————

N times

(8.13)

Show that the random variable (8.13) is the sum of N free random
variables and apply the free central limit theorem to infer that the
random variable [(f) 4 {*(f) is a semicircular element.






LECTURE 9

Basic combinatorics I: non-crossing partitions

In the preceding lecture we saw that a special type of partitions seems to
lie underneath the structure of free probability. These are the so-called
“non-crossing” partitions. The study of the lattices of non-crossing
partitions was started by combinatorialists quite some time before the
development of free probability. In this and the next lecture we will
introduce these objects in full generality and present their main com-
binatorial properties which are of relevance for us.

The preceding lecture has also told us that, from a combinatorial
point of view, classical probability and free probability should behave
as all partitions versus non-crossing partitions. Thus, we will also keep
an eye on similarities and differences between these two cases.

Non-crossing partitions of an ordered set

DEFINITIONS 9.1. Let S be a finite totally ordered set.

(1) We call 7 = {V4,...,V,} a partition of the set S if and only
if the V; (1 <4 < r) are pairwise disjoint, non-void subsets of S such
that ViU---UV, = 5. We call Vi,...,V, the blocks of 7. The number
of blocks of 7 is denoted by |7|. Given two elements p, ¢ € S, we write
p ~x q if p and ¢ belong to the same block of .

(2) The set of all partitions of S is denoted by P(S). In the special
case S = {1,...,n}, we denote this by P(n).

(3) A partition 7 of the set S is called crossing if there exist p; <
q1 < p2 < g2 in S such that p; ~x p2 £ @1 ~r g2

.pl... ql... p2 PPN q2...

If 7 is not crossing, then it is called non-crossing.
(4) The set of all non-crossing partitions of S is denoted by NC(.S).
In the special case S = {1,...,n}, we denote this by NC(n).

We get a linear graphical representation of a partition 7 by writing
all elements from S in a linear way, supplying each with a vertical

135
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line under it and joining the vertical lines of the elements in the same
block with a horizontal line. For example, consider the partition
{{1,4,5,7},{2,3},{6} } of the set {1,2,3,4,5,6,7}. Graphically this
looks as follows:
1234567
LJ |

The name “non-crossing” becomes evident in such a representation.
An example of a crossing partition is 7 = {{1,3,5},{2,4} } which
looks like this:

12345

(4]

REMARKS 9.2. (1) Of course, NC(S) depends only on the number
of elements in S. In the following we will use the natural identification
NC(S1) = NC(Sz) for #5; = #S5 without further comment.

(2) In many cases the following recursive description of non-crossing
partitions is of great use: a partition 7 of {1,...,n} is non-crossing if
and only if at least one block V' € 7 is an interval and 7\V is non-
crossing, i.e. V € 7 has the form V = {k,k+ 1,... k + p} for some
1<k<nandp>0,k+p<n and we have

m\VeNCH{1,....k—=1k+p+1,...,n})=ZNCn—-(p+1)).
As an example consider the partition
m={{1,10},{2,5,9},{3,4},{6},{7,8} }
of {1,...,10}:

Let us verify that 7 € NC(10) by doing successive “interval-stripping”
operations. We first remove the intervals {3,4}, {6}, and {7, 8}, which
reduces us to:

I

Now {2,5,9} i