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Abstract: These expository notes are centered around the circular law
theorem, which states that the empirical spectral distribution of a n × n
random matrix with i.i.d. entries of variance 1/n tends to the uniform law
on the unit disc of the complex plane as the dimension n tends to infinity.
This phenomenon is the non-Hermitian counterpart of the semi circular
limit for Wigner random Hermitian matrices, and the quarter circular limit
for Marchenko-Pastur random covariance matrices. We present a proof in
a Gaussian case, due to Silverstein, based on a formula by Ginibre, and a
proof of the universal case by revisiting the approach of Tao and Vu, based
on the Hermitization of Girko, the logarithmic potential, and the control of
the small singular values. Beyond the finite variance model, we also consider
the case where the entries have heavy tails, by using the objective method
of Aldous and Steele borrowed from randomized combinatorial optimiza-
tion. The limiting law is then no longer the circular law and is related to the
Poisson weighted infinite tree. We provide a weak control of the smallest sin-
gular value under weak assumptions, using asymptotic geometric analysis
tools. We also develop a quaternionic Cauchy-Stieltjes transform borrowed
from the Physics literature.
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These expository notes are split in seven sections and an appendix. Section 1
introduces the notion of eigenvalues and singular values and discusses their
relationships. Section 2 states the circular law theorem. Section 3 is devoted to
the Gaussian model known as the Complex Ginibre Ensemble, for which the law
of the spectrum is known and leads to the circular law. Section 4 provides the
proof of the circular law theorem in the universal case, using the approach of
Tao and Vu based on the Hermitization of Girko and the logarithmic potential.
Section 5 presents some models related to the circular law and discusses an
algebraic-analytic interpretation via free probability. Section 6 is devoted to the
heavy tailed counterpart of the circular law theorem, using the objective method
of Aldous and Steele and the Poisson Weighted Infinite Tree. Finally, section 7
lists some open problems. The notes end with appendix A devoted to a novel
general weak control of the smallest singular value of random matrices with
i.i.d. entries, with weak assumptions, well suited for the proof of the circular
law theorem and its heavy tailed analogue.

All random variables are defined on a unique probability space (Ω,A,P). A
typical element of Ω is denoted ω. Table 1 gathers frequently used notations.

1. Two kinds of spectra

The eigenvalues ofA ∈ Mn(C) are the roots in C of its characteristic polynomial
PA(z) := det(A− zI). We label them λ1(A), . . . , λn(A) so that

|λ1(A)| ≥ · · · ≥ |λn(A)|
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Table 1

Main frequently used notations

log natural Neperian logarithm function (we never use the notation ln)
a := · · · the mathematical object a is defined by the formula · · ·

lim and lim inferior and superior limit
N set of non-negative integers 1, 2, . . .

R+ set of non-negative real numbers [0,∞)
C+ set of complex numbers with positive imaginary part

H+ set of 2× 2 matrices of the form
( η z

z̄ η

)

with z ∈ C and η ∈ C+

i complex number (0, 1) or some natural integer (context dependent)
Mn(K) set of n× n matrices with entries in K

Mn,m(K) set of n×m matrices with entries in K
A⊤ transpose matrix of matrix A (we never use the notation A′ or tA)
Ā conjugate matrix of matrix A or closure of set A

A−1 and A∗ inverse and conjugate-transpose of A
Tr(A) and det(A) trace and determinant of A

I (resp. In) identity matrix (resp. of dimension n)
A− z the matrix A− zI (here z ∈ C)
sk(A) k-th singular value of A (descending order)
λk(A) k-th eigenvalue of A (decreasing module and growing phase order)
PA(z) characteristic polynomial of A at point z, namely det(A− zI)

µA empirical measure built from the eigenvalues of A
νA empirical measure built from the singular values of A

Uµ(z) logarithmic potential of µ at point z
mµ(z) Cauchy-Stieltjes transform of µ at point z
Mµ(q) quaternionic transform of µ at point q ∈ H+

ΓA(q) quaternionic transform of µA at point q ∈ H+ (i.e. MµA (q))
span(· · · ) vector space spanned by the arguments · · ·

〈·, ·〉 Scalar product in Rn or in Cn

dist(v, V ) 2-norm distance of vector v to vector space V
V ⊥ orthogonal vector space of the vector space V

supp support (for measures, functions, and vectors)
|z| and card(E) module of z and cardinal of E

‖v‖2 2-norm of vector v in Rn or in Cn

‖A‖2→2 operator norm of matrix A for the 2-norm (i.e. spectral norm)
‖A‖2 Hilbert-Schmidt norm of matrix A (i.e. Schur or Frobenius norm)

o(·) and O(·) classical Landau notations for asymptotic behavior
D most of the time, diagonal matrix

U, V,W most of the time, unitary matrices
H most of the time, Hermitian matrix
X most of the time, random matrix with i.i.d. entries
G most of the time, complex Ginibre Gaussian random matrix

1E indicator of set E

∂, ∂, ∆ differential operators 1
2
(∂x − i∂y),

1
2
(∂x + i∂y), ∂2

x + ∂2
y on R2

P(C) set of probability measures on C integrating log |·| at infinity
D′(C) set of Schwartz-Sobolev distributions on C = R2

C, c, c0, c1 most of the time, positive constants (sometimes absolute)
X ∼ µ the random variable X follows the law µ

µn  µ the sequence (µn)n tends weakly to µ for continuous bounded functions
N (m,Σ) Gaussian law with mean vector m and covariance matrix Σ

Qκ and Cκ quarter circular law on [0, κ] and circular law on {z ∈ C : |z| ≤ κ}
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A

Fig 1. Largest and smallest singular values of A ∈ M2(R). Taken from [33].

with growing phases. The spectral radius is |λ1(A)|. The eigenvalues form the
algebraic spectrum of A. The singular values of A are defined by

sk(A) := λk(
√
AA∗)

for all 1 ≤ k ≤ n, where A∗ = Ā⊤ is the conjugate-transpose. We have

s1(A) ≥ · · · ≥ sn(A) ≥ 0.

The matrices A,A⊤, A∗ have the same singular values. The 2n× 2n matrix

HA :=

(
0 A
A∗ 0

)

is Hermitian and has eigenvalues s1(A),−s1(A), . . . , sn(A),−sn(A). This turns
out to be useful because the mapping A 7→ HA is linear in A, in contrast with
the mapping A 7→

√
AA∗. Geometrically, the matrix A maps the unit sphere

to an ellipsoid, the half-lengths of its principal axes being exactly the singular
values of A. The operator norm or spectral norm of A is

‖A‖2→2 := max
‖x‖2=1

‖Ax‖2 = s1(A) while sn(A) = min
‖x‖2=1

‖Ax‖2.

We have rank(A) = card{1 ≤ i ≤ n : si(A) 6= 0}. If A is non-singular then
si(A

−1) = sn−i(A)
−1 for all 1 ≤ i ≤ n and sn(A) = s1(A

−1)−1 = ‖A−1‖−1
2→2.

Since the singular values are the eigenvalues of a Hermitian matrix, we have
variational formulas for all of them, often called the Courant-Fischer varia-
tional formulas [82, Th. 3.1.2]. Namely, denoting Gn,i the Grassmannian of all
i-dimensional subspaces, we have

si(A) = max
E∈Gn,i

min
x∈E

‖x‖2=1

‖Ax‖2 = max
E,F∈Gn,i

min
(x,y)∈E×F

‖x‖2=‖y‖2=1

〈Ax, y〉.

Most useful properties of the singular values are consequences of their Hermitian
nature via these variational formulas, which are valid on Rn and on Cn. In
contrast, there are no such variational formulas for the eigenvalues in great
generality, beyond the case of normal matrices. If the matrix A is normal1 (i.e.
A∗A = A∗A) then for every 1 ≤ i ≤ n,

si(A) = |λi(A)|.
1We always use the word normal in this way, and never as a synonym for Gaussian.
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Beyond normal matrices, the relationships between the eigenvalues and the sin-
gular values are captured by a set of inequalities due to Weyl [153]2, which can
be obtained by using the Schur unitary triangularization3, see for instance [82,
Theorem 3.3.2 page 171].

Theorem 1.1 (Weyl). For every n× n complex matrix A and 1 ≤ k ≤ n,

k∏

i=1

|λi(A)| ≤
k∏

i=1

si(A).

The reversed form
∏n

i=n−k+1 si(A) ≤
∏n

i=n−k+1 |λi(A)| for every 1 ≤ k ≤ n
can be easily deduced (exercise!). Equality is achieved for k = n and we have

n∏

k=1

|λk(A)| = | det(A)| =
√
| det(A)|| det(A∗)| = | det(

√
AA∗)| =

n∏

k=1

sk(A).

(1.1)
By using majorization techniques4 one may deduce from theorem 1.1 that for ev-
ery real function ϕ such that t 7→ ϕ(et) is increasing and convex on [sn(A), s1(A)],
we have, for every 1 ≤ k ≤ n,

k∑

i=1

ϕ(|λi(A)|) ≤
k∑

i=1

ϕ(si(A)), (1.2)

see [82, Theorem 3.3.13]. In particular, taking k = n and ϕ(t) = t2 gives

n∑

i=1

|λi(A)|2 ≤
n∑

i=1

si(A)
2 = Tr(AA∗) =

n∑

i,j=1

|Ai,j |2. (1.3)

Since s1(·) = ‖·‖2→2 we have for any A,B ∈ Mn(C) that

s1(AB) ≤ s1(A)s1(B) and s1(A+B) ≤ s1(A) + s1(B). (1.4)

We define the empirical eigenvalues and singular values measures by

µA :=
1

n

n∑

k=1

δλk(A) and νA :=
1

n

n∑

k=1

δsk(A).

Note that µA and νA are supported respectively in C and R+. There is a rigid

2Horn [80] showed a remarkable converse to theorem 1.1: if a sequence s1 ≥ · · · ≥ sn of
non-negative real numbers and a sequence λ1, . . . , λn of complex numbers of non increasing
modulus satisfy to all Weyl inequalities in theorem 1.1 then there exists A ∈ Mn(C) with
eigenvalues λ1, . . . , λn and singular values s1, . . . , sn.

3If A ∈ Mn(C) then there exists a unitary matrix U such that UAU∗ is upper triangular.
4The concept is standard in convex and matrix analysis, see for instance [82, Section 3.3].



6 C. Bordenave and D. Chafäı

determinantal relationship between µA and νA, namely from (1.1) we get

∫
log |λ| dµA(λ) =

1

n

n∑

i=1

log |λi(A)|

=
1

n
log | det(A)|

=
1

n

n∑

i=1

log(si(A))

=

∫
log(s) dνA(s).

This identity is at the heart of the Hermitization technique in sections 4 and 6.
The singular values are quite regular functions of the matrix entries. For

instance, the Courant-Fischer formulas imply that the mapping

A 7→ (s1(A), . . . , sn(A)) (1.5)

is 1-Lipschitz for the operator norm and the ℓ∞ norm: for any A,B ∈ Mn(C),

max
1≤i≤n

|si(A)− si(B)| ≤ s1(A−B). (1.6)

Recall that Mn(C) or Mn(R) are Hilbert spaces for A ·B = Tr(AB∗), and the
associated norm ‖·‖2, called the trace norm5, satisfies to

‖A‖22 = Tr(AA∗) =
n∑

i=1

si(A)
2 = n

∫
s2 dνA(s). (1.7)

The Hoffman-Wielandt inequality states that for all A,B ∈ Mn(C),

n∑

i=1

(si(A)− si(B))2 ≤ ‖A−B‖22. (1.8)

In other words the mapping (1.5) is 1-Lipschitz for the trace norm and the
ℓ2-norm. See [82, equation (3.3.32)] and [81, Theorem 6.3.5] for a proof.

We say that a sequence of (possibly signed) measures (ηn)n≥1 on C (respec-
tively on R) tends weakly to a (possibly signed) measure η, and we denote

ηn  η,

when for all continuous and bounded f : C → R (respectively f : R → R),

lim
n→∞

∫
f dηn =

∫
f dη.

This type of convergence does not capture the behavior of the support and of
the moments. However, for empirical spectral distributions in random matrix
theory, most of the time the limit is characterized by its moments, and this
allows to deduce weak convergence from moments convergence.

5Also known as the Hilbert-Schmidt norm, the Schur norm, or the Frobenius norm.
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Example 1.2 (Spectra of non-normal matrices). The eigenvalues depend con-
tinuously on the entries of the matrix. It turns out that for non-normal ma-
trices, the eigenvalues are more sensitive to perturbations than the singular
values. Among non-normal matrices, we find non-diagonalizable matrices, in-
cluding nilpotent matrices. Let us recall a striking example taken from [137]
and [11, Chapter 10]. Let us consider A,B ∈ Mn(R) given by

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0




and B =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
κn 0 0 · · · 0




where (κn) is a sequence of positive real numbers. The matrix A is nilpotent,
and B is a perturbation with small norm (and rank one!):

rank(A−B) = 1 and ‖A−B‖2→2 = κn.

We have λ1(A) = · · · = λκn(A) = 0 and thus

µA = δ0.

In contrast, Bn = κnI gives λk(B) = κ
1/n
n e2kπi/n for all 1 ≤ k ≤ n and then

µB  Uniform{z ∈ C : |z| = 1}

as soon as κ
1/n
n → 1 (this allows κn → 0). On the other hand, from the identities

AA∗ = diag(1, . . . , 1, 0) and BB∗ = diag(1, . . . , 1, κ2n)

we get

s1(A) = · · · = sn−1(A) = 1, sn(A) = 0

and

s1(B) = · · · = sn−1(B) = 1, sn(B) = κn

and therefore, for any choice of κn, since the atom κn has weight 1/n,

νA  δ1 and νB  δ1.

This example shows the stability of the limiting distribution of singular values
under an additive perturbation of rank 1 of arbitrary large norm, and the in-
stability of the limiting eigenvalues distribution under an additive perturbation

of rank 1 of arbitrary small norm (κ
1/n
n → 0).

Beyond square matrices, one may define the singular values s1(A), . . . , sm(A)
of a rectangular matrix A ∈ Mm,n(C) with m ≤ n by si(A) := λi(

√
AA∗)
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for every 1 ≤ i ≤ m. The famous Singular Value Decomposition6 states then
that

A = UDV ∗

where U and V are the unitary matrices of the eigenvectors of AA∗ and A∗A
and where D = diag(s1(A), . . . , sn(A)) is a m × n diagonal matrix. The SVD
is at the heart of many numerical techniques in concrete applied mathemat-
ics (pseudo-inversion, regularization, low dimensional approximation, principal
component analysis, etc). Note that if A is square then the Hermitian matrix
H := V DV ∗ and the unitary matrix W := UV ∗ form the polar decomposition
A =WH of A. Note also that if W1 and W2 are unitary matrices then W1AW2

and A have the same singular values.
We refer to the books [82] and [65] for more details on basic properties of the

singular values and eigenvalues of deterministic matrices. The sensitivity of the
spectrum to perturbations of small norm is captured by the notion of pseudo-
spectrum. Namely, for a matrix norm ‖·‖ and a positive real ε, the (‖·‖, ε)-
pseudo-spectrum of A is defined by

Λ‖·‖,ε(A) :=
⋃

‖A−B‖≤ε

{λ1(B), . . . , λn(B)}.

If A is normal then its pseudo-spectrum for the operator norm ‖·‖2→2 coin-
cides with the ε-neighborhood of its spectrum. The pseudo-spectrum can be
much larger for non-normal matrices. For instance, if A is the nilpotent matrix
considered earlier, then the asymptotic (as n → ∞) pseudo-spectrum for the
operator norm contains the unit disc if κn is well chosen. See [150] for more.

2. Quarter circular and circular laws

The variance of a random variable Z on C is Var(Z) = E(|Z|2) − |E(Z)|2. Let
(Xij)i,j≥1 be an infinite table of i.i.d. random variables on C with variance 1.

We consider the square random matrix X := (Xij)1≤i,j≤n as a random variable
in Mn(C). We write a.s., a.a., and a.e. for almost surely, Lebesgue almost all,
and Lebesgue almost everywhere respectively.

We start with a reformulation in terms of singular values of the classical
Marchenko-Pastur theorem for the “empirical covariance matrix” 1

nXX
∗. As

for the classical central limit theorem, theorem 2.1 expresses a universality in
the sense that the limiting distribution does not depend on the law of X11.

Theorem 2.1 (Marchenko-Pastur quarter circular law). a.s. νn−1/2X  Q2 as
n→ ∞, where Q2 is the quarter circular law7 on [0, 2] ⊂ R+ with density

x 7→ π−1
√
4− x2 1[0,2](x).

6Known as the SVD in numerical analysis, see for instance [82, Theorem 3.3.1].
7Actually, it is a quarter ellipse rather than a quarter circle, due to the normalizing factor

1/π. However, one may use different scales to see a true quarter circle, as in figure 2.
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The n−1/2 normalization is easily understood from the law of large numbers:

∫
s2 dνn−1/2X(s) =

1

n2

n∑

i=1

si(X)2

=
1

n2
Tr(XX∗)

=
1

n2

n∑

i,j=1

|Xi,j |2 a.s.−→
n→∞

E(|X1,1|2). (2.1)

The central subject of these notes is the following counterpart for eigenvalues.

Theorem 2.2 (Girko circular law). a.s. µn−1/2X  C1 as n→ ∞, where C1 is
the circular law8 which is the uniform law on the unit disc of C with density

z 7→ π−1 1{z∈C:|z|≤1}.

Note that if Z is a complex random variable following the uniform law on
the unit disc {z ∈ C : |z| ≤ 1} then the random variables Re(Z) and Im(Z)
follow the semi circular law on [−1, 1], but are not independent. Additionally, the
random variables |Re(Z)| and |Im(Z)| follow the quarter circular law on [0, 1],
and |Z| follows the law with density ρ 7→ 1

2ρ1[0,1](ρ). We will see in section 5
that the notion of freeness developed in free probability is the key to understand
these relationships. An extension of theorem 2.1 is the key to deduce theorem
2.2 via a Hermitization technique, as we will see in section 4.

The circular law theorem 2.2 has a long history. It was established through
a sequence of partial results during the period 1965–2009, the general case be-
ing finally obtained by Tao and Vu [149]. Indeed Mehta [112] was the first to
obtain a circular law theorem for the expected empirical spectral distribution
in the complex Gaussian case, by using the explicit formula for the spectrum
due to Ginibre [53]. Edelman was able to prove the same kind of result for the
far more delicate real Gaussian case [41]. Silverstein provided an argument to
pass from the expected to the almost sure convergence in the complex Gaussian
case [84]. Girko worked on the universal version and came with very good ideas
such as the Hermitization technique [54, 56, 58, 59, 60]. Unfortunately, his work
was controversial due to a lack of clarity and rigor9. In particular, his approach
relies implicitly on an unproved uniform integrability related to the behavior
of the smallest singular values of random matrices. Let us mention that the
Hermitization technique is also present in the work of Widom [154] on Toeplitz
matrices and in the work of Goldsheid and Khoruzhenko [63]. Bai [10] was the
first to circumvent the problem in the approach of Girko, at the price of bounded

8It is not customary to call it instead the “disc law”. The terminology corresponds to what
we actually draw: a circle for the circular law, a quarter circle (actually a quarter ellipse) for
the quarter circular law, even if it is the boundary of the support in the first case, and the
density in the second case. See figure 2. Here we do not follow Girko, for whom the phrase
“circular law” must be understood as the phrase “law of large numbers” or “law of nature”.

9Girko’s writing style is also quite original, see for instance the recent paper [61].
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Fig 2. Illustration of universality in the quarter circular law and the circular law theorems
2.1 and 2.2. The plots are made with the singular values (upper plots) and eigenvalues (lower
plot) for a single random matrix X of dimension n = 1000. On the left hand side, X11

follows a standard Gaussian law on R, while on the right hand side X11 follows a symmetric
Bernoulli law on {−1, 1}. Since X has real entries, the spectrum is symmetric with respect
to the real axis. A striking fact behind such simulations for the eigenvalues (lower plots) is
the remarkable stability of the numerical algorithms for the eigenvalues despite the sensitivity
of the spectrum of non-normal matrices. Is it the Śniady regularization of Brown measure
theorem [137] at work due to floating point approximate numerics?

density assumptions and moments assumptions10. Bai improved his approach
in his book written with Silverstein [11]. His approach involves the control of
the speed of convergence of the singular values distribution. Śniady considered
a universal version beyond random matrices and the circular law, using the
notion of ∗-moments and Brown measure of operators in free probability, and
a regularization by adding an independent Gaussian Ginibre noise [137]. Gold-

10. . . I worked for 13 years from 1984 to 1997, which was eventually published in Annals
of Probability. It was the hardest problem I have ever worked on. Zhidong Bai, interview with
Atanu Biswas in 2006 [36].
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sheid and Khoruzhenko [64] used successfully the logarithmic potential to derive
the analogue of the circular law theorem for random non-Hermitian tridiagonal
matrices. The smallest singular value of random matrices was the subject of
an impressive activity culminating with the works of Tao and Vu [144] and of
Rudelson and Vershynin [127], using tools from asymptotic geometric analysis
and additive combinatorics (Littlewood-Offord problems). These achievements
allowed Götze and Tikhomirov [66] to obtain the expected circular law theorem
up to a small loss in the moment assumption, by using the logarithmic poten-
tial. Similar ingredients are present in the work of Pan and Zhou [115]. At the
same time, Tao and Vu, using a refined bound on the smallest singular value
and the approach of Bai, deduced the circular law theorem up to a small loss in
the moment assumption [145]. As in the works of Girko, Bai and their follow-
ers, the loss was due to a sub-optimal usage of the Hermitization approach. In
[149], Tao and Vu finally obtained the full circular law theorem 2.2 by using the
full strength of the logarithmic potential, and a new control of the count of the
small singular values which replaces the speed of convergence estimates of Bai.
See also their synthetic paper [146]. We will follow essentially their approach in
section 4 to prove theorem 2.2.

The a.s. tightness of µn−1/2X is easily understood since by theorem 1.1,

∫
|λ|2 dµn−1/2X(λ) =

1

n2

n∑

i=1

|λi(X)|2 ≤ 1

n2

n∑

i=1

si(X)2 =

∫
s2 dνn−1/2X(s).

The convergence in theorems 2.1 and 2.2 is the weak convergence of probability
measures with respect to continuous bounded functions. We recall that this
mode of convergence does not capture the convergence of the support. More
precisely, we only get from theorems 2.1 and 2.2 that a.s.

lim
n→∞

sn(n
−1/2X) = lim

n→∞
|λn(n−1/2X)| = 0

and
lim
n→∞

s1(n
−1/2X) ≥ 2 and lim

n→∞
|λ1(n−1/2X)| ≥ 1.

Following [14, 12, 11, 13, 115], if E(X1,1) = 0 and E(|X1,1|4) <∞ then a.s.11

lim
n→∞

s1(n
−1/2X) = 2 and lim

n→∞
|λ1(n−1/2X)| = 1.

The asymptotic factor 2 between the operator norm and the spectral radius
indicates in a sense that X is a non-normal matrix asymptotically as n → ∞
(note that if X11 is absolutely continuous then X is absolutely continuous and
thus XX∗ 6= X∗X a.s. which means that X is non-normal a.s.). The law of
the modulus under the circular law has density ρ 7→ 2ρ1[0,1](ρ) which differs

completely from the shape of the quarter circular law s 7→ π−1
√
4− s2 1[0,2](s),

see figure 3. The integral of “log” for both laws is the same.

11The argument is based on Gelfand’s spectral radius formula: if A ∈ Mn(C) then
|λ1(A)| = limk→∞ ‖Ak‖1/k for any norm ‖·‖ on Mn(C) (recall that all norms are equiv-
alent in finite dimension). In the same spirit, the Yamamoto theorem states that for every
A ∈ Mn(C) and 1 ≤ i ≤ n, we have limk→∞ si(A

k)1/k = |λi(A)|, see [82, Theorem 3.3.21].
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Fig 3. Comparison between the quarter circular distribution of theorem 2.1 for the singular
values, and the modulus under the circular law of theorem 2.2 for the eigenvalues. The sup-
ports and the shapes are different. This difference indicates the asymptotic non-normality of
these matrices. The integral of the function t 7→ log(t) is the same for both distributions.

3. Gaussian case

This section is devoted to the case where X11 ∼ N (0, 12I2). From now on, we
denote G instead of X in order to distinguish the Gaussian case from the general
case. We say that G belongs to the Complex Ginibre Ensemble. The Lebesgue
density of the n× n random matrix G = (Gi,j)1≤i,j≤n in Mn(C) ≡ Cn×n is

A ∈ Mn(C) 7→ π−n2

e−
∑n

i,j=1 |Aij|2 (3.1)

where A∗ the conjugate-transpose of A. This law has energy

A 7→
n∑

i,j=1

|Aij |2 = Tr(AA∗) = ‖A‖22 =

n∑

i=1

s2i (A).

This law is unitary invariant, in the sense that if U and V are n × n unitary
matrices then UGV and G are equally distributed. IfH1 andH2 are independent
copies of GUE12 then (H1+ iH2)/

√
2 has the law of G. Conversely, the matrices

(G+G∗)/
√
2 and (G−G∗)/

√
2i are independent and belong to the GUE.

The singular values of G are the square root of the eigenvalues of the positive
semidefinite Hermitian matrix GG∗. The matrix GG∗ is a complex Wishart

12Up to scaling, a random n × n Hermitian matrix H belongs to the Gaussian Unitary
Ensemble (GUE) when its density with respect to the Lebesgue measure is proportional to
H 7→ exp(− 1

2
Tr(H2)) = exp(− 1

2

∑n
i=1 |Hii|2 −

∑

1≤i<j≤n |Hij |2). Equivalently {Hii,Hij :

1 ≤ i ≤ n, i < j ≤ n} are independent and Hii ∼ N (0, 1) and Hij ∼ N (0, 1
2
I2) for i 6= j.
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matrix, and belongs to the complex Laguerre Ensemble (β = 2). The empirical
distribution of the singular values of n−1/2G tends to the Marchenko-Pastur
quarter circular distribution (Gaussian case in theorem 2.1). This section is
rather devoted to the study of the eigenvalues of G, and in particular to the
proof of the circular law theorem 2.2 in this Gaussian settings.

Lemma 3.1 (Diagonalizability). The set of elements of Mn(C) with multiple
eigenvalues has zero Lebesgue measure in Cn×n. In particular, the set of non-
diagonalizable elements of Mn(C) has zero Lebesgue measure in Cn×n.

Proof. If A ∈ Mn(C) has characteristic polynomial

PA(z) = zn + an−1z
n−1 + · · ·+ a0,

then a0, . . . , an−1 are polynomials of the entries of A. The resultant R(PA, P
′
A) of

PA, P
′
A, called the discriminant of PA, is the determinant of the (2n−1)×(2n−1)

Sylvester matrix of PA, P
′
A. It is a polynomial in a0, . . . , an−1. We have also the

Vandermonde formula

|R(PA, P
′
A)| =

∏

i<j

|λi(A)− λj(A)|2.

Consequently, A has all eigenvalues distinct if and only if A lies outside the
proper polynomial hyper-surface {A ∈ Cn×n : R(PA, P

′
A) = 0}.

Since G is absolutely continuous, we have a.s. GG∗ 6= G∗G (non-normality).
Additionally, lemma 3.1 gives that a.s. G is diagonalizable with distinct eigen-
values. Following Ginibre [53] – see also [113, Chapter 15] and [49, Chapter 15]
– one may then compute the joint density of the eigenvalues λ1(G), . . . , λn(G)
of G by integrating (3.1) over the eigenvectors matrix. The result is stated in
theorem 3.2 below. The law of G is invariant by the multiplication of the entries
with a common phase, and thus the law of the spectrum of G has also the same
property. In the sequel we set

∆n := {(z1, . . . , zn) ∈ C
n : |z1| ≥ · · · ≥ |zn|}.

Theorem 3.2 (Spectrum law). (λ1(G), . . . , λn(G)) has density n!ϕn1∆n where

ϕn(z1, . . . , zn) =
π−n2

1!2! · · ·n! exp
(
−

n∑

k=1

|zk|2
)

∏

1≤i<j≤n

|zi − zj |2.

In particular, for every symmetric Borel function F : Cn → R,

E[F (λ1(G), . . . , λn(G))] =

∫

Cn

F (z1, . . . , zn)ϕn(z1, . . . , zn) dz1 · · · dzn.

We will use theorem 3.2 with symmetric functions of the form

F (z1, . . . , zn) =
∑

i1,...,ik distinct

f(zi1) · · · f(zik).
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The Vandermonde determinant comes from the Jacobian of the diagonalization,
and can be interpreted as an electrostatic repulsion. The spectrum is a Gaussian
determinantal point process, see [83, Chapter 4].

Theorem 3.3 (Correlations). For every 1 ≤ k ≤ n, the “k-point correlation”

ϕn,k(z1, . . . , zk) :=

∫

Cn−k

ϕn(z1, . . . , zk) dzk+1 · · · dzn

satisfies

ϕn,k(z1, . . . , zk) =
(n− k)!

n!
π−k2

γ(z1) · · · γ(zk) det [K(zi, zj)]1≤i,j≤k

where γ(z) := π−1e−|z|2 is the density of N (0, 12I2) on C and where

K(zi, zj) :=

n−1∑

ℓ=0

(ziz
∗
j )

ℓ

ℓ!
=

n−1∑

ℓ=0

Hℓ(zi)Hℓ(zj)
∗ with Hℓ(z) :=

1√
ℓ!
zℓ.

In particular, by taking k = n we get

ϕn,n(z1, . . . , zn) = ϕn(z1, . . . , zn) =
1

n!
π−n2

γ(z1) · · · γ(zn) det [K(zi, zj)]1≤i,j≤n.

Proof. Calculations made by [113, Chapter 15 page 271 equation 15.1.29] using

∏

1≤i<j≤n

|zi − zj |2 =
∏

1≤i<j≤n

(zi − zj)
∏

1≤i<j≤n

(zi − zj)
∗

and

det
[
zi−1
j

]
1≤i,j≤n

det
[
(z∗j )

i−1
]
1≤i,j≤n

=
1

n!
det [K(zi, zj)]1≤i,j≤n.

Recall that if µ is a random probability measure on C then Eµ is the deter-
ministic probability measure defined for every bounded measurable f by

∫
f dEµ := E

∫
f dµ.

Theorem 3.4 (Mean circular Law). Eµn−1/2G  C1 as n→ ∞.

Proof. From theorem 3.3, with k = 1, we get that the density of EµG is

ϕn,1 : z 7→ γ(z)

(
1

n

n−1∑

ℓ=0

|Hℓ|2(z)
)

=
1

nπ
e−|z|2

n−1∑

ℓ=0

|z|2ℓ
ℓ!

.

Following Mehta [113, Chapter 15 page 272], for every compact C ⊂ C

lim
n→∞

sup
z∈C

∣∣nϕn,1(
√
nz)− π−11[0,1](|z|)

∣∣ = 0.
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The n in front of ϕn,1 is due to the fact that we are on the complex plane C = R2

and thus d
√
nxd

√
ny = ndxdy. Here is the start of the calculus: for r2 < n,

er
2 −

n−1∑

ℓ=0

r2ℓ

ℓ!
=

∞∑

ℓ=n

r2ℓ

ℓ!
≤ r2n

n!

∞∑

ℓ=0

r2ℓ

(n+ 1)ℓ
=
r2n

n!

n+ 1

n+ 1− r2

while for r2 > n,

n−1∑

ℓ=0

r2ℓ

ℓ!
≤ r2(n−1)

(n− 1)!

n−1∑

ℓ=0

(
n− 1

r2

)ℓ

≤ r2(n−1)

(n− 1)!

r2

r2 − n+ 1
.

By taking r2 = |√nz|2 we obtain the convergence of the density uniformly on
compact subsets, which implies in particular the weak convergence.

The sequence (Hk)k∈N forms an orthonormal basis (orthogonal polynomials)
of square integrable analytic functions on C for the standard Gaussian on C. The
uniform law on the unit disc is the law of

√
V e2iπW where V and W are i.i.d.

uniform random variables on the interval [0, 1]. This can be used to interpolate
between complex Ginibre and GUE via Girko’s elliptic laws, see [99, 90, 19].

We are ready to prove a Gaussian version of the circular law theorem 2.2.

Theorem 3.5 (Circular law). a.s. µn−1/2G  C1 as n→ ∞.

Proof. We reproduce Silverstein’s argument, published by Hwang [84]. The ar-
gument is similar to the quick proof of the strong law of large numbers for
independent random variables with bounded fourth moment. It suffices to es-
tablish the result for compactly supported continuous bounded functions. Let
us pick such a function f and set

Sn :=

∫

C

f dµn−1/2G and S∞ := π−1

∫

|z|≤1

f(z) dxdy.

Suppose for now that we have

E[(Sn − ESn)
4
] = O(n−2). (3.2)

By monotone convergence (or by the Fubini-Tonelli theorem),

E

∞∑

n=1

(Sn − ESn)
4
=

∞∑

n=1

E[(Sn − ESn)
4
] <∞

and thus
∑∞

n=1 (Sn − ESn)
4 <∞ a.s. which implies limn→∞ Sn −ESn = 0 a.s.

Since limn→∞ ESn = S∞ by theorem 3.4, we get that a.s.

lim
n→∞

Sn = S∞.

Finally, one can swap the universal quantifiers on ω and f thanks to the separa-
bility of the set of compactly supported continuous bounded functions C → R
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equipped with the supremum norm. To establish (3.2), we set

Sn − ESn =
1

n

n∑

i=1

Zi with Zi := f
(
λi

(
n−1/2G

))
.

Next, we obtain, with
∑

i1,...
running over distinct indices in 1, . . . , n,

E

[
(Sn − ESn)

4
]
=

1

n4

∑

i1

E[Z4
i1 ]

+
4

n4

∑

i1,i2

E[Zi1Z
3
i2 ]

+
3

n4

∑

i1,i2

E[Z2
i1Z

2
i2 ]

+
6

n4

∑

i1,i2,i3

E[Zi1Zi2Z
2
i3 ]

+
1

n4

∑

i1,i2,i3,i3,i4

E[Zi1Zi3Zi3Zi4 ].

The first three terms of the right are O(n−2) since max1≤i≤n |Zi| ≤ ‖f‖∞. Some
calculus using the expressions of ϕn,3 and ϕn,4 provided by theorem 3.3 allows to
show that the remaining two terms are also O(n−2). See Hwang [84, p. 151].

It is worthwhile to mention that one can deduce theorem 3.5 from a large
deviations principle, bypassing the mean theorem 3.4 (see section 5).

Following Kostlan [96] (see also [121] and [83]) the integration of the phases
in the joint density of the spectrum given by theorem 3.2 leads to the following.

Theorem 3.6 (Layers). If Z1, . . . , Zn are independent non-negative real random
variables with13 Z2

k ∼ Γ(k, 1) for all 1 ≤ k ≤ n, then

(|λ1(G)|, . . . , |λn(G)|) d
= (Z(1), . . . , Z(n))

where Z(1), . . . , Z(n) is the non-increasing reordering of the sequence Z1, . . . , Zn.

Note by the way that14 (
√
2Zk)

2 ∼ χ2(2k) which is useful for
√
2G. Since

Z2
k

d
= E1 + · · ·+Ek where E1, . . . , Ek are i.i.d. exponential random variables of

unit mean, we get, for every r > 0,

P
(
|λ1(G)| ≤

√
nr
)
=

∏

1≤k≤n

P

(
E1 + · · ·+ Ek

n
≤ r2

)

The law of large numbers suggests that r = 1 is a critical value. The central limit
theorem suggests that

∣∣λ1(n−1/2G)
∣∣ behaves when n ≫ 1 as the maximum of

13Here Γ(a, λ) is the probability measure on R+ with density x 7→ λaΓ(a)−1xa−1e−λx.
14Here χ2(n) stands for the law of ‖V ‖22 where V ∼ N (0, In).
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i.i.d. Gaussians, for which the fluctuations follow the Gumbel law. A quantitative
central limit theorem and the Borel-Cantelli lemma provides the follow result.
The full proof is in Rider [121].

Theorem 3.7 (Convergence and fluctuation of the spectral radius).

P

(
lim
n→∞

|λ1(n−1/2G)| = 1
)
= 1.

Moreover, if γn := log(n/2π)− 2 log(log(n)) then

√
4nγn

(
|λ1(n−1/2G)| − 1−

√
γn
4n

)
d−→

n→∞
G

where G is the Gumbel law with cumulative distribution function x ∈ R 7→ e−e−x

.

The convergence of the spectral radius was obtained by Mehta [113, chapter
15 page 271 equation 15.1.27] by integrating the joint density of the spectrum
of theorem 3.2 over the set

⋂
1≤i≤n{|λi| > r}. The same argument is repro-

duced by Hwang [84, pages 149–150]. Let us give now an alternative derivation
of theorem 3.4. From theorem 3.7, the sequence (Eµn−1/2G)n≥1 is tight and
every accumulation point µ is supported in the unit disc. From theorem 3.2,
such a µ is rotationally invariant, and from theorem 3.6, the image of µ by
z ∈ C 7→ |z| has density r 7→ 2r1[0,1](r) (use moments!). Theorem 3.4 follows
immediately.

The large eigenvalues in modulus of the complex Ginibre ensemble are asymp-
totically independent. This gives rise to a Gumbel fluctuation, in contrast with
the GUE and its delicate Tracy-Widom fluctuation, see [90] for an interpolation.

Remark 3.8 (Real Ginibre Ensemble). Ginibre considered also in his paper
[53] the case where C is replaced by R or by the quaternions. These cases are
less understood than the complex case due to their peculiarities. Let us focus
on the Real Ginibre Ensemble, studied by Edelman and his collaborators. The
expected number of real eigenvalues is equivalent to

√
2n/π as n → ∞, see

[44], while the probability that all the eigenvalues are real is exactly 2−n(n−1)/4,
see [41, Corollary 7.1]. The expected counting measure of the real eigenvalues,
scaled by

√
n, tends to the uniform law on the interval [−1, 1], see [44, Theorem

4.1] and figures 4. The eigenvalues do not have a density in Cn, except if we
condition on the real eigenvalues, see [41]. The analogue of the weak circular
law theorem 3.4 was proved by Edelman [44, Theorem 6.3]. More material on
the Real Ginibre Ensemble can be found in [2], [27], and [49, Chapter 15] and
references therein.

On overall, one can remember that the Complex Ginibre Ensemble is “sim-
pler” than GUE while the Real Ginibre Ensemble is “harder” than GOE:

Real Ginibre ≥ GOE ≥ GUE ≥ Complex Ginibre
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Fig 4. Histograms of real eigenvalues of 500 i.i.d. copies of n−1/2X with n = 300. On the left
the standard real Gaussian case X11 ∼ N (0, 1), while on the right the symmetric Bernoulli
case X11 ∼ 1

2
(δ−1 + δ1). See remark 3.8.

Remark 3.9 (Quaternionic Ginibre Ensemble). The quaternionic Ginibre En-
semble was considered at the origin by Ginibre [53]. It has been recently shown
[18] by using the logarithmic potential that there exists an analogue of the cir-
cular law theorem for this ensemble, in which the limiting law is supported in
the unit ball of the quaternions field.

4. Universal case

This section is devoted to the proof of the circular law theorem 2.2 following
[149]. The universal Marchenko-Pastur theorem 2.1 can be proved by using
powerful Hermitian techniques such as truncation, centralization, the method
of moments, or the Cauchy-Stieltjes trace-resolvent transform. It turns out that
all these techniques fail for the eigenvalues of non-normal random matrices.
Indeed, the key to prove the circular law theorem 2.2 is to use a bridge pulling
back the problem to the Hermitian world. This is called Hermitization.

Actually, and as we will see in sections 5 and 6, there is a non-Hermitian
analogue of the method of moments called the ∗-moments, and there is an
analogue of the Cauchy-Stieltjes trace-resolvent in which the complex variable
is replaced by a quaternionic type variable.

4.1. Logarithmic potential and Hermitization

Let P(C) be the set of probability measures on C which integrate log |·| in
a neighborhood of infinity. The logarithmic potential Uµ of µ ∈ P(C) is the
function Uµ : C → (−∞,+∞] defined for all z ∈ C by

Uµ(z) = −
∫

C

log |z − λ| dµ(λ) = −(log |·| ∗ µ)(z). (4.1)
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For instance, for the circular law C1 we have for every z ∈ C,

UC1(z) =

{
− log |z| if |z| > 1,
1
2 (1− |z|2) if |z| ≤ 1,

(4.2)

see e.g. [129]. Let D′(C) be the set of Schwartz-Sobolev distributions on C. We
have P(C) ⊂ D′(C). Since log |·| is Lebesgue locally integrable on C, the Fubini-
Tonelli theorem implies that Uµ is a Lebesgue locally integrable function on C.
In particular, we have Uµ <∞ a.e. and Uµ ∈ D′(C).

Let us define the first order linear differential operators in D′(C)

∂ :=
1

2
(∂x − i∂y) and ∂ :=

1

2
(∂x + i∂y) (4.3)

and the Laplace operator ∆ = 4∂∂ = 4∂∂ = ∂2x + ∂2y . Each of these opera-
tors coincide on smooth functions with the usual differential operator acting on
smooth functions. By using Green’s or Stockes’ theorems, one may show, for
instance via the Cauchy-Pompeiu formula, that for any smooth and compactly
supported function ϕ : C → R,

−
∫

C

∆ϕ(z) log |z| dxdy = 2πϕ(0) (4.4)

where z = x+ iy. Now (4.4) can be written, in D′(C),

∆ log |·| = 2πδ0

In other words, 1
2π log |·| is the fundamental solution of the Laplace equation on

R2. Note that log |·| is harmonic on C \ {0}. It follows that in D′(C),

∆Uµ = −2πµ, (4.5)

i.e. for every smooth and compactly supported “test function” ϕ : C → R,

〈∆Uµ, ϕ〉D′ = −
∫

C

∆ϕ(z)Uµ(z) dxdy = −2π

∫

C

ϕ(z) dµ(z) = −〈2πµ, ϕ〉D′ (4.6)

where z = x+ iy. Also − 1
2πU· is the Green operator on R2 (Laplacian inverse).

Lemma 4.1 (Unicity). For every µ, ν ∈ P(C), if Uµ = Uν a.e. then µ = ν.

Proof. Since Uµ = Uν in D′(C), we get ∆Uµ = ∆Uν in D′(C). Now (4.5) gives
µ = ν in D′(C), and thus µ = ν as measures since µ and ν are Radon measures.
(Note that this remains valid if Uµ = Uν +h for some harmonic h ∈ D′(C)).

If A ∈ Mn(C) and PA(z) := det(A− zI) is its characteristic polynomial,

UµA(z) = −
∫

C

log |λ− z| dµA(λ) = − 1

n
log |det(A− zI)| = − 1

n
log |PA(z)|
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for every z ∈ C \ {λ1(A), . . . , λn(A)}. We have also the alternative expression15

UµA(z) = − 1

n
log det(

√
(A− zI)(A− zI)∗) = −

∫ ∞

0

log(t) dνA−zI(t). (4.7)

One may retain from this determinantal Hermitization that for any A ∈ Mn(C),

knowledge of νA−zI for a.a. z ∈ C ⇒ knowledge of µA

Note that from (4.5), for every smooth compactly supported function ϕ : C → R,

2π

∫
ϕdµA =

∫

C

(∆ϕ) log |PA| dxdy.

The identity (4.7) bridges the eigenvalues with the singular values, and is at the
heart of the next lemma, which allows to deduce the convergence of µA from the
one of νA−zI . The strength of this Hermitization lies in the fact that contrary
to the eigenvalues, one can control the singular values with the entries of the
matrix using powerful methods such as the method of moments or the trace-
resolvent Cauchy-Stieltjes transform. The price paid here is the introduction of
the auxiliary variable z. Moreover, we cannot simply deduce the convergence
of the integral from the weak convergence of νA−zI since the logarithm is un-
bounded on R+. We circumvent this problem by requiring uniform integrability.
We recall that on a Borel measurable space (E, E), a Borel function f : E → R is
uniformly integrable for a sequence of probability measures (ηn)n≥1 on E when

lim
t→∞

sup
n≥1

∫

{|f |>t}
|f | dηn = 0.

We will use this property as follows: if ηn  η as n → ∞ for some probability
measure η and if f is continuous and uniformly integrable for (ηn)n≥1 then

∫
|f | dη <∞ and lim

n→∞

∫
f dηn =

∫
f dη.

Remark 4.2 (Weak convergence and uniform integrability in probability). Let
T be a topological space such as R or C, and its Borel σ-field T . Let (ηn)n≥1

be a sequence of random probability measures on (T, T ) and η be a probabil-
ity measure on (T, T ). We say that ηn  η in probability if for all bounded
continuous f : T → R and any ε > 0,

lim
n→∞

P

(∣∣∣∣
∫
f dηn −

∫
f dη

∣∣∣∣ > ε

)
= 0.

This is implied by the a.s. weak convergence. We say that a measurable function
f : T → R is uniformly integrable in probability for (ηn)n≥1 when

∀ε > 0, lim
t→∞

sup
n≥1

P

(∫

|f |>t

|f | dηn > ε

)
= 0.

15Girko uses the name “V -transform of µA”, where V stands for “Victory”.
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We will use this property as follows: if ηn  η in probability and if f is uniformly
integrable for (ηn)n≥1 in probability then f is η-integrable and

∫
f dηn converges

in probability to
∫
f dη. This will be helpful in section 6 together with lemma 4.3

in order to circumvent the lack of almost sure bounds on small singular values
for heavy tailed random matrices.

The Hermitization goes back at least to Girko [54]. However, the proofs of
lemmas 4.3 and 4.5 below are inspired from the approach of Tao and Vu [149].

Lemma 4.3 (Hermitization). Let (An)n≥1 be a sequence of complex random
matrices where An is n×n. Suppose that there exists a family of (non-random)
probability measures (νz)z∈C on R+ such that, for a.a. z ∈ C, a.s.

(i) νAn−zI  νz as n→ ∞
(ii) log is uniformly integrable for (νAn−zI)n≥1.

Then there exists a probability measure µ ∈ P(C) such that

(j) a.s. µAn  µ as n→ ∞
(jj) for a.a. z ∈ C,

Uµ(z) = −
∫ ∞

0

log(s) dνz(s).

Moreover, if the convergence (i) and the uniform integrability (ii) both hold in
probability for a.a. z ∈ C (instead of for a.a. z ∈ C, a.s.), then (j-jj) hold with
the a.s. weak convergence in (j) replaced by the weak convergence in probability.

Proof of lemma 4.3. Let us give the proof of the a.s. part. We first observe that
one can swap the quantifiers “a.a.” on z and “a.s.” on ω in front of (i-ii). Namely,
let us call P (z, ω) the property “the function log is uniformly integrable for(
νAn(ω)−zI

)
n≥1

and νAn(ω)−zI  νz”. The assumptions of the lemma provide a

measurable Lebesgue negligible set C in C such that for all z 6∈ C there exists
a probability one event Ez such that for all ω ∈ Ez , the property P (z, ω) is
true. From the Fubini-Tonelli theorem, this is equivalent to the existence of
a probability one event E such that for all ω ∈ E, there exists a Lebesgue
negligible measurable set Cω in C such that P (z, ω) is true for all z 6∈ Cω .

From now on, we fix an arbitrary ω ∈ E. For every z 6∈ Cω, we set ν := νz
and we define the triangular arrays (an,k)1≤k≤n and (bn,k)1≤k≤n by

an,k := |λk(An(ω)− zI)| and bn,k := sk(An(ω)− zI).

Note that µAn(ω)−zI = µAn(ω) ∗ δ−z. Thanks to theorem 1.1 and to the assump-
tions (i-ii), one can use lemma 4.5 below, which gives that (µAn(ω))n≥1 is tight,
that for a.a. z ∈ C, log |z − ·| is uniformly integrable for (µAn(ω))n≥1, and that

lim
n→∞

UµAn(ω)
(z) = −

∫ ∞

0

log(s) dνz(s) = U(z).

Consequently, if the sequence (µAn(ω))n≥1
admits two probability measures µω

and µ′
ω as accumulation points for the weak convergence, then both µω and
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µ′
ω belong to P(C) and Uµω = U = Uµ′

ω
a.e., which gives µω = µ′

ω thanks to
lemma 4.1. Therefore, the sequence (µAn(ω))n≥1

admits at most one accumu-

lation point for the weak convergence. Since the sequence (µAn(ω))n≥1
is tight,

the Prohorov theorem implies that (µAn(ω))n≥1
converges weakly to some prob-

ability measure µω ∈ P(C) such that Uµω = U a.e. Since U is deterministic,
it follows that ω 7→ µω is deterministic by lemma 4.1 again. This achieves the
proof of the a.s. part of the lemma. The proof of the “in probability” part of
the lemma follows the same lines, using this time the “in probability” part of
lemma 4.5.

Remark 4.4 (Weakening uniform integrability in lemma 4.3). The set of z in
C such that z is an atom of EµAn for some n ≥ 1 is at most countable, and has
thus zero Lebesgue measure. Hence, for a.a. z ∈ C, a.s. for all n ≥ 1, z is not an
eigenvalue of An. Thus for a.a. z ∈ C, a.s. for all n ≥ 1,

∫
log(s) dνAn−zI(s) <∞.

Hence, assumption (ii) in the a.s. part of lemma 4.3 holds if for a.a. z ∈ C, a.s.

lim
t→∞

lim
n→∞

∫

{|f |>t}
|f | dνAn−zI(s) = 0

where f = log. Similarly, regarding “in probability” part of lemma 4.3, one can
replace the sup by lim in the definition of uniform integrability in probability.

The following lemma is the skeleton of proof of lemma 4.3 (no matrices), stat-
ing a propagation of a uniform logarithmic integrability for a couple of triangular
arrays, provided that a logarithmic majorization holds between the arrays.

Lemma 4.5 (Majorization and uniform integrability). Let (an,k)1≤k≤n and
(bn,k)1≤k≤n be triangular arrays in R+. Define the discrete probability measures

µn :=
1

n

n∑

k=1

δan,k
and νn :=

1

n

n∑

k=1

δbn,k
.

If the following properties hold

(i) an,1 ≥ · · · ≥ an,n and bn,1 ≥ · · · ≥ bn,n for n≫ 1,

(ii)
∏k

i=1 an,i ≤
∏k

i=1 bn,i for every 1 ≤ k ≤ n for n≫ 1,
(iii)

∏n
i=k bn,i ≤

∏n
i=k an,i for every 1 ≤ k ≤ n for n≫ 1,

(iv) νn  ν as n→ ∞ for some probability measure ν,
(v) log is uniformly integrable for (νn)n≥1,

then

(j) log is uniformly integrable for (µn)n≥1 (in particular, (µn)n≥1 is tight),
(jj) we have, as n→ ∞,

∫ ∞

0

log(t) dµn(t) =

∫ ∞

0

log(t) dνn(t) →
∫ ∞

0

log(t) dν(t),
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and in particular, for every accumulation point µ of (µn)n≥1,

∫ ∞

0

log(t) dµ(t) =

∫ ∞

0

log(t) dν(t).

Moreover, assume that (an,k)1≤k≤n and (bn,k)1≤k≤n are random triangular ar-
rays in R+ defined on a common probability space such that (i-ii-iii) hold a.s.
and (iv-v) hold in probability. Then (j-jj) hold in probability.

Proof. An elementary proof can be found in [23, Lemma C2]. Let us give an
alternative argument. Let us start with the deterministic part. From the de la
Vallée Poussin criterion (see e.g. [37, Theorem 22]), assumption (v) is equivalent
to the existence of a non-decreasing convex function J : R+ → R+ such that
limt→∞ J(t)/t = ∞, and

sup
n

∫
J(| log(t)|) dνn(t) <∞.

On the other hand, assumption (i-ii-iii) implies that for every real valued func-
tion ϕ such that t 7→ ϕ(et) is non-decreasing and convex, we have, for every
1 ≤ k ≤ n,

k∑

i=1

ϕ(an,k) ≤
k∑

i=1

ϕ(bn,k),

see [82, Theorem 3.3.13]. Hence, applying this for k = n and ϕ = J ,

sup
n

∫
J(| log(t)|) dµn(t) <∞.

We obtain by this way (j). Statement (jj) follows trivially.
We now turn to the proof of the “in probability” part of the lemma. Arguing

as in [37, Theorem 22], the statement (v) of uniform convergence in probability
is equivalent to the existence for all δ > 0 of a non-decreasing convex function
Jδ : R+ → R+ such that limt→∞ Jδ(t)/t = ∞, and

sup
n

P

(∫
Jδ(| log(t)|) dνn(t) ≤ 1

)
< δ.

Since Jδ is non-decreasing and convex we deduce as above

∫
Jδ(| log(t)|) dµn(t) ≤

∫
Jδ(| log(t)|) dνn(t).

This proves (j). Statement (jj) is then a consequence of remark 4.2.

Remark 4.6 (Logarithmic potential and Cauchy-Stieltjes transform). The
Cauchy-Stieltjes transform mµ : C → C ∪ {∞} of a probability measure µ
on C is

mµ(z) :=

∫

C

1

λ− z
dµ(λ).
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Since 1/|·| is Lebesgue locally integrable on C, the Fubini-Tonelli theorem im-
plies that mµ(z) is finite for a.a. z ∈ C, and moreover mµ is locally Lebesgue
integrable on C and thus belongs to D′(C). Suppose now that µ ∈ P(C). The
logarithmic potential is related to the Cauchy-Stieltjes transform via the identity

mµ = 2∂Uµ

in D′(C). In particular, since 4∂∂ = 4∂∂ = ∆ on D′(C), we obtain, in D′(C),

2∂mµ = −∆Uµ = −2πµ.

Thus we can recover µ from mµ. Note that for any ε > 0, mµ is bounded on

Dε = {z ∈ C : dist(z, supp(µ)) > ε}.

If supp(µ) is one-dimensional then one may completely recover µ from the knowl-
edge ofmµ on Dε as ε→ 0. Note also thatmµ is analytic outside supp(µ), and is
thus characterized by its real part or its imaginary part on arbitrary small balls
in the connected components of supp(µ)c. If supp(µ) is not one-dimensional then
one needs the knowledge of mµ inside the support to recover µ. If A ∈ Mn(C)
then mµA is the trace of the resolvent

mµA(z) = Tr((A − zI)−1)

for every z ∈ C \ {λ1(A), . . . , λn(A)}. For non-Hermitian matrices, the lack of a
Hermitization identity expressing mµA in terms of singular values explains the
advantage of the logarithmic potential UµA over the Cauchy-Stieltjes transform
mµA for the spectral analysis of non-Hermitian matrices.

Remark 4.7 (Logarithmic potential and logarithmic energy). The term “log-
arithmic potential” comes from the fact that Uµ is the electrostatic potential of
µ viewed as a distribution of charged particles in the plane C = R2 [129]. The
so called logarithmic energy of this distribution of charged particles is

E(µ) :=
∫

C

Uµ(z) dµ(z) = −
∫

C

∫

C

log |z − λ| dµ(z)dµ(λ). (4.8)

The circular law minimizes E(·) under a second moment constraint [129]. If
supp(µ) ⊂ R then E(µ) matches up to a sign and an additive constant the
Voiculescu free entropy for one variable in free probability theory [151, Propo-
sition 4.5] (see also the formula 5.1).

Remark 4.8 (From converging potentials to weak convergence). As for the
Fourier transform, the pointwise convergence of logarithmic potentials along a
sequence of probability measures implies the weak convergence of the sequence
to a probability measure. We need however some strong tightness. More pre-
cisely, if (µn)n≥1 is a sequence in P(C) and if U : C → (−∞,+∞] is such that

(i) for a.a. z ∈ C, limn→∞ Uµn(z) = U(z),
(ii) log(1 + |·|) is uniformly integrable for (µn)n≥1,
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then there exists µ ∈ P(C) such that Uµ = U a.e., µ = − 1
2π∆U in D′(C), and

µn  µ.

Let us give a proof inspired from [64, Proposition 1.3 and Appendix A]. From
the de la Vallée Poussin criterion (see e.g. [37, Theorem 22]), assumption (ii)
implies that for every real number r ≥ 1, there exists a non-decreasing convex
function J : R+ → R+, which may depend on r, such that limt→∞ J(t)/t = ∞,
and J(t) ≤ 1 + t2, and

sup
n

∫
J(log(r + |λ|)) dµn(λ) <∞.

Let K ⊂ C be an arbitrary compact set. Take r = r(K) ≥ 1 large enough so
that the ball of radius r − 1 contains K. Therefore for every z ∈ K and λ ∈ C,

J(| log |z − λ||) ≤ (1 + | log |z − λ||2)1{|λ|≤r} + J(log(r + |λ|))1{|λ|>r}.

The couple of inequalities above, together with the local Lebesgue integrability
of (log |·|)2 on C, imply, by using Jensen and Fubini-Tonelli theorems,

sup
n

∫

K

J(|Un(z)|) dxdy ≤ sup
n

∫∫
1K(z)J(| log |z − λ||) dµn(λ) dxdy <∞,

where z = x+ iy as usual. Since the de la Vallée Poussin criterion is necessary
and sufficient for uniform integrability, this means that the sequence (Uµn)n≥1

is locally uniformly Lebesgue integrable. Consequently, from (i) it follows that
U is locally Lebesgue integrable and that Uµn → U in D′(C). Since the differ-
ential operator ∆ is continuous in D′(C), we find that ∆Uµn → ∆U in D′(C).
Since ∆U ≤ 0, it follows that µ := − 1

2π∆U is a measure (see e.g. [79]). Since
for a sequence of measures, convergence in D′(C) implies weak convergence, we
get µn = − 1

2π∆Uµn  µ = − 1
2π∆U . Moreover, by assumptions (ii) we get

additionally that µ ∈ P(C). It remains to show that Uµ = U a.e. Indeed, for
any smooth and compactly supported ϕ : C → R, since the function log |·| is
locally Lebesgue integrable, the Fubini-Tonelli theorem gives

∫
ϕ(z)Uµn(z) dz = −

∫ (∫
ϕ(z) log |z − w| dz

)
dµn(w).

Now ϕ ∗ log |·| : w ∈ C 7→
∫
ϕ(z) log |z−w| dz is continuous and is O(log |1 + ·|).

Therefore, by (i-ii), Uµn → Uµ in D′(C), thus Uµ = U in D′(C) and then a.e.

4.2. Proof of the circular law

The proof of theorem 2.2 is based on the Hermitization lemma 4.3. The part (i)
of lemma 4.3 is obtained from corollary 4.10 below.
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Theorem 4.9 (Convergence of singular values with additive perturbation).
Let (Mn)n≥1 be a deterministic sequence such that Mn ∈ Mn(C) for every n.
If νMn  ρ as n → ∞ for some probability measure ρ on R+ then there exists
a probability measure νρ on R+ which depends only on ρ and such that a.s.
νn−1/2X+Mn

 νρ as n→ ∞.

Theorem 4.9 appears as a special case of the work of Dozier and Silverstein
for information plus noise random matrices [39]. Their proof relies on powerful
Hermitian techniques such as truncation, centralization, trace-resolvent recur-
sion via Schur block inversion, leading to a fixed point equation for the Cauchy-
Stieltjes transform of νρ. It is important to stress that νρ does not depend on
the law of X11 (recall that X11 has unit variance). One may possibly produce
an alternative proof of theorem 4.9 using free probability theory.

Corollary 4.10 (Convergence of singular values). For all z ∈ C, there ex-
ists a non random probability measure νz depending only on z such that a.s.
νn−1/2X−zI  νz as n→ ∞.

For completeness, we will give in section 4.5 a proof of corollary 4.10. Note
that z = 0 gives the quarter circular Marchenko-Pastur theorem 2.1.

It remains to check the uniform integrability assumption (ii) of lemma 4.3.
From Markov’s inequality, it suffices to show that for all z ∈ C, there exists
p > 0 such that a.s.

lim
n→∞

∫
s−p dνn−1/2X−zI(s) <∞ and lim

n→∞

∫
sp dνn−1/2X−zI(s) <∞. (4.9)

The second statement in (4.9) with p ≤ 2 follows from the strong law of large
numbers (2.1) together with (1.6), which gives, for all 1 ≤ i ≤ n,

si(n
−1/2X − zI) ≤ si(n

−1/2X) + |z|.

The first statement in (4.9) concentrates most of the difficulty behind theorem
2.2. In the next two sections, we will prove and comment the following couple
of key lemmas taken from [149] and [145] respectively.

Lemma 4.11 (Count of small singular values). There exist constants c0 > 0
and 0 < γ < 1 such a.s. for n≫ 1 and n1−γ ≤ i ≤ n− 1 and all M ∈ Mn(C),

sn−i(n
−1/2X +M) ≥ c0

i

n
.

It is worthwhile to note that lemma 4.11 is more meaningful when i is close
to n1−γ . For i = n − 1, it gives only a lower bound on s1. The linearity in i
corresponds to what we can intuitively expect on spacing.

Lemma 4.12 (Polynomial lower bound on least singular value). For every
a, d > 0, there exists b > 0 such that if M is a deterministic complex n × n
matrix with s1(M) ≤ nd then

P(sn(X +M) ≤ n−b) ≤ n−a.
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In particular there exists b > 0 which may depend on d such that a.s. for n≫ 1,

sn(X +M) ≥ n−b.

For ease of notation, we write si in place of si(n
−1/2X − zI). Applying lem-

mas 4.11 and 4.12 with M = −zI and M = −z√nI respectively, we get, for
any c > 0, z ∈ C, a.s. for n≫ 1,

1

n

n∑

i=1

s−p
i ≤ 1

n

n−⌊n1−γ⌋∑

i=1

s−p
i +

1

n

n∑

i=n−⌊n1−γ⌋+1

s−p
i

≤ c−p
0

1

n

n∑

i=1

(n
i

)p
+ 2n−γnbp.

The first term of the right hand side is a Riemann sum for
∫ 1

0 s
−p ds which

converges as soon as 0 < p < 1. We finally obtain the first statement in (4.9)
as soon as 0 < p < min(γ/b, 1). Now the Hermitization lemma 4.3 ensures that
there exists a probability measure µ ∈ P(C) such that a.s. µY  µ as n → ∞
and for all z ∈ C,

Uµ(z) = −
∫ ∞

0

log(s) dνz(s).

Since νz does not depend on the law of X11 (we say that it is then universal), it
follows that µ also does not depend on the law of X11, and therefore, by using
the circular law theorem 3.5 for the Complex Ginibre Ensemble we obtain that µ
is the uniform law on the unit disc. Alternatively, following Pan and Zhou [115,
Lemma 3], one can avoid the knowledge of the Gaussian case by computing
the integral of

∫∞
0

log(s) dνz(s) which should match the formula (4.2) for the
logarithmic potential of the uniform law on the unit disc.

4.3. Count of small singular values

This section is devoted to lemma 4.11 used in the proof of theorem 2.2 to check
the uniform integrability assumption in lemma 4.3.

Proof of lemma 4.11. We follow the original proof of Tao and Vu [149]. Up to
increasing γ, it is enough to prove the statement for all 2n1−γ ≤ i ≤ n − 1
for some γ ∈ (0, 1) to be chosen later. To lighten the notations, we denote by
s1 ≥ · · · ≥ sn the singular values of Y := n−1/2X+M . We fix 2n1−γ ≤ i ≤ n−1
and we consider the matrix Y ′ formed by the first m := n − ⌈i/2⌉ rows of√
nY . Let s′1 ≥ · · · ≥ s′m be the singular values of Y ′. By the Cauchy-Poincaré

interlacing16, we get
n−1/2s′n−i ≤ sn−i

16If A ∈ Mn(C) and if B ∈ Mm,n(C) is obtained from A by deleting r := n−m rows, then
si(A) ≥ si(B) ≥ si+r(A) for every 1 ≤ i ≤ m. In particular, [sm(B), s1(B)] ⊂ [sn(A), s1(A)]:
the smallest singular value increases while the largest is diminished. See [82, Corollary 3.1.3].
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Next, by lemma 4.14 we obtain

s′−2
1 + · · ·+ s′−2

n−⌈i/2⌉ = dist−2
1 + · · ·+ dist−2

n−⌈i/2⌉,

where distj := dist(Rj , Hj) is the distance from the jth row Rj of Y ′ to Hj , the
subspace spanned by the other rows of Y ′. In particular, we have

i

2n
s−2
n−i ≤ is′−2

n−i ≤
n−⌈i/2⌉∑

j=n−⌈i⌉
s′−2
j ≤

n−⌈i/2⌉∑

j=1

dist−2
j . (4.10)

Now Hj is independent of Rj and dim(Hj) ≤ n− i
2 ≤ n− n1−γ , and thus, for

the choice of γ given in the forthcoming lemma 4.13,

∑

n≫1

P




n−1⋃

i=2n1−γ

n−⌈i/2⌉⋃

j=1

{
distj ≤

√
i

2
√
2

}

 <∞

(note that the exponential bound in lemma 4.13 kills the polynomial factor due
to the union bound over i, j). Consequently, by the first Borel-Cantelli lemma,
we obtain that a.s. for n≫ 1, all 2n1−γ ≤ i ≤ n− 1, and all 1 ≤ j ≤ n− ⌈i/2⌉,

distj ≥
√
i

2
√
2
≥

√
i

4

Finally, (4.10) gives s2n−i ≥ (i2)/(32n2). Putting all together, we obtain the

desired result with c0 := 1/(4
√
2).

Lemma 4.13 (Distance of a random vector to a subspace). There exist γ > 0
and δ > 0 such that for all n ≫ 1, 1 ≤ i ≤ n, any deterministic vector v ∈ Cn

and any subspace H of Cn with 1 ≤ dim(H) ≤ n − n1−γ , we have, denoting
R := (Xi1, . . . , Xin) + v,

P

(
dist(R,H) ≤ 1

2

√
n− dim(H)

)
≤ exp(−nδ).

The exponential bound above is obviously not optimal, but is more than
enough for our purposes: in the proof of lemma 4.11, a polynomial bound on
the probability (with a large enough power) suffices.

Proof. The argument is due to Tao and Vu [149, Proposition 5.1]. We first
note that if H ′ is the vector space spanned by H , v and ER, then we have
dim(H ′) ≤ dim(H) + 2 and

dist(R,H) ≥ dist(R,H ′) = dist(R′, H ′),

where R′ := R−E(R). We may thus directly suppose without loss of generality
that v = 0 and that E(Xik) = 0. Then, it is easy to check that

E(dist(R,H)2) = n− dim(H)
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(see computation below). The lemma is thus a statement on the deviation prob-
ability of dist(R,H). We first perform a truncation. Let 0 < ε < 1/3. Markov’s
inequality gives

P(|Xik| ≥ nε) ≤ n−2ε.

Hence, from Hoeffding’s deviation inequality17, for n≫ 1,

P

(
n∑

k=1

1{|Xik|≤nε} < n− n1−ε

)
≤ exp(−2n1−2ε(1− n−ε)2) ≤ exp(−n1−2ε).

It is thus sufficient to prove that the result holds by conditioning on

Em := {|Xi1| ≤ nε, . . . , |Xim| ≤ nε} with m := ⌈n− n1−ε⌉.

Let Em[ · ] := E[ · |Em;Fm] denote the conditional expectation given Em and
the filtration Fm generated by Xi,m+1, . . . , Xi,n. Let W be the vector span of

H, u = (0, . . . , 0, Xi,m+1, . . . , Xi,n), w = (Em[Xi1], . . . ,Em[Xim], 0, . . . , 0).

By construction dim(W ) ≤ dim(H)+ 2 and W is Fm-measurable. We also have

dist(R,H) ≥ dist(R,W ) = dist(Y,W ),

where Y = (Xi1 −λ, . . . , Xim −λ, 0, . . . , 0) = R−u−w and λ = Em[Xi1]. Next

σ2 := Em

[
Y 2
1

]
= E

[(
Xi1 − E

[
Xi1

∣∣ |Xi1| ≤ nε
])2 ∣∣∣ |Xi1| ≤ nε

]
= 1− o(1).

Let us define the convex function f : x ∈ Dm 7→ dist((x, 0, . . . , 0),W ) ∈ R+

where D := {z ∈ C : |z| ≤ nε}. From the triangle inequality, f is 1-Lipschitz:

|f(x)− f(x′)| ≤ dist(x, x′).

We deduce from Talagrand’s concentration inequality18 that

Pm(|dist(Y,W )−Mm| ≥ t) ≤ 4 exp

(
− t2

16n2ε

)
, (4.11)

where Mm is the median of dist(Y,W ) under Em. In particular,

Mm ≥
√
Emdist2(Y,W )− cnε.

17If X1, . . . ,Xn are independent and bounded real random variables then the random
variable Sn := X1 + · · ·+Xn satisfies P(Sn − ESn ≤ tn) ≤ exp(−2n2t2/(d21 + · · ·+ d2n)) for
any t ≥ 0, where di := max(Xi)−min(Xi). See [109, Theorem 5.7].

18If X1, . . . ,Xn are i.i.d. random variables on D := {z ∈ C : |z| ≤ r} and if f : Dn → R

is convex, 1-Lipschitz, with median M , then P(|f(X1, . . . , Xn)−M | ≥ t) ≤ 4 exp(− t2

16r2
) for

any t ≥ 0. See [141] and [98, Corollary 4.9].
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Also, if P denotes the orthogonal projection on the orthogonal of W , we find

Emdist2(Y,W ) =

m∑

k=1

Em

[
Y 2
k

]
Pkk

= σ2

(
n∑

k=1

Pkk −
n∑

k=m+1

Pkk

)

≥ σ2(n− dim(W )− (n−m))

≥ σ2
(
n− dim(H)− n1−ε − 2

)

We select 0 < γ < ε. Then, from the above expression for any 1/2 < c < 1 and
n≫ 1,Mm ≥ c

√
n− dim(H). We take t = (c−1/2)

√
n− dim(H) in (4.11).

The following lemma ([149, Lemma A4]) is used in the proof of lemma 4.11.

Lemma 4.14 (Rows and norm of the inverse). Let 1 ≤ m ≤ n. If A ∈ Mm,n(C)
has full rank, with rows R1, . . . , Rm and R−i := span{Rj : j 6= i}, then

m∑

i=1

si(A)
−2 =

m∑

i=1

dist(Ri, R−i)
−2.

Proof. The orthogonal projection of R∗
i on the subspace R−i is B

∗(BB∗)−1BR∗
i

where B is the (m− 1)×n matrix obtained from A by removing the row Ri. In
particular, we have

|Ri|22 − dist2(Ri, R−i)
2 =

∣∣B∗(BB∗)−1BR∗
i

∣∣2
2
= (BR∗

i )
∗(BB∗)−1BR∗

i

by the Pythagoras theorem. On the other hand, the Schur block inversion for-
mula states for any M ∈ Mm(C) and any partition {1, . . . ,m} = I ∪ Ic,

(M−1)I,I = (MI,I −MI,Ic(MIc,Ic)−1MIc,I)
−1. (4.12)

We takeM = AA∗ and I = {i}, and we note that (AA∗)i,j = RiR
∗
j , which gives

((AA∗)−1)i,i = (RiR
∗
i − (BR∗

i )
∗(BB∗)−1BR∗

i )
−1 = dist2(Ri, R−i)

−2.

The desired formula follows by taking the sum over i ∈ {1, . . . ,m}.

Remark 4.15 (Local Wegner estimates). Lemma 4.11 provides the estimate
νn−1/2X−zI([0, η]) ≤ η/C for every η ≥ 2Cn−γ . This allows to see lemma 4.11 as
an upper bound on the counting measure nνn−1/2X−zI on a small interval [0, η].
This type of estimate has already been studied and is known as a Wegner (not
Wigner!) estimate. Notably, an alternative proof of lemma 4.11 can be obtained
following the work of [46] on the resolvent of Wigner matrices.
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4.4. Smallest singular value

This section is devoted to lemma 4.12 which was used in the proof of theorem 2.2
to get the uniform integrability in lemma 4.3.

The full proof of lemma 4.12 by Tao and Vu in [145] is based on Littlewood-
Offord type problems. The main difficulty is the possible presence of atoms in
the law of the entries (in this case X is non-invertible with positive probability).
Regarding the assumptions, the finite second moment hypothesis on X11 is not
crucial and can be considerably weakened. For the sake of simplicity, we give
here a simplified proof when the law of X11 has a bounded density on C or on
R (which implies that X +M is invertible with probability one). In lemma A.1
in Appendix A, we prove a general statement of this type at the price of a
weaker probabilistic estimate which is still good enough to obtain the uniform
integrability “in probability” required by lemma 4.3.

Proof of lemma 4.12 with bounded density assumption. It suffices to show the
first statement since the last statement follows from the first Borel-Cantelli
lemma used with a > 1.

For every x, y ∈ Cn and S ⊂ Cn, we set x · y := x1y1 + · · · + xnyn and
‖x‖2 :=

√
x · x and dist(x, S) := miny∈S ‖x− y‖2. Let R1, . . . , Rn be the rows

of X+M and set R−i := span{Rj ; j 6= i}. for every 1 ≤ i ≤ n. The lower bound
in lemma 4.16 gives

min
1≤i≤n

dist(Ri, R−i) ≤
√
n sn(X +M)

and consequently, by the union bound, for any u ≥ 0,

P(
√
nsn(X +M) ≤ u) ≤ n max

1≤i≤n
P(dist(Ri, R−i) ≤ u).

Let us fix 1 ≤ i ≤ n. Let Yi be a unit vector orthogonal to R−i. Such a vector is
not unique, but we may just pick one which is independent of Ri. This defines
a random variable on the unit sphere Sn−1 = {x ∈ Cn : ‖x‖2 = 1}. By the
Cauchy-Schwarz inequality,

|Ri · Yi| ≤ ‖πi(Ri)‖2‖Yi‖2 = dist(Ri, R−i)

where πi is the orthogonal projection on the ortho-complement of R−i. Let νi be
the distribution of Yi on Sn−1. Since Yi and Ri are independent, for any u ≥ 0,

P(dist(Ri, R−i) ≤ u) ≤ P(|Ri · Yi| ≤ u) =

∫

Sn−1

P(|Ri · y| ≤ u) dνi(y).

Let us assume that X11 has a bounded density ϕ on C. Since ‖y‖2 = 1 there ex-

ists an index j0 ∈ {1, . . . , n} such that yj0 6= 0 with |yj0 |−1 ≤ √
n. The complex

random variable Ri · y is a sum of independent complex random variables and
one of them is Xij0 yj0 , which is absolutely continuous with a density bounded
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above by
√
n ‖ϕ‖∞. Consequently, by a basic property of convolutions of proba-

bility measures, the complex random variable Ri ·y is also absolutely continuous
with a density ϕi bounded above by

√
n ‖ϕ‖∞, and thus

P(|Ri · y| ≤ u) =

∫

C

1{|s|≤u}ϕi(s) ds ≤ πu2
√
n ‖ϕ‖∞.

Therefore, for every b > 0, we obtain the desired result

P(sn(X +M) ≤ n−b−1/2) = O(n3/2−2b).

Note that the O does not depend on M . This scheme remains indeed valid in
the case where X11 has a bounded density on R (exercise!).

Lemma 4.16 (Rows and op. norm of the inverse). Let A ∈ Mn(C) with rows
R1, . . . , Rn. Define the vector space R−i := span{Rj : j 6= i}. We have then

n−1/2 min
1≤i≤n

dist(Ri, R−i) ≤ sn(A) ≤ min
1≤i≤n

dist(Ri, R−i).

Proof of lemma 4.16. The argument, due to Rudelson and Vershynin, is buried
in [127]. Since A and A⊤ have same singular values, one can consider the columns
C1, . . . , Cn of A instead of the rows. For every column vector x ∈ Cn and
1 ≤ i ≤ n, the triangle inequality and the identity Ax = x1C1 + · · ·+xnCn give

‖Ax‖2 ≥ dist(Ax,C−i)

= min
y∈C−i

‖Ax− y‖2
= min

y∈C−i

‖xiCi − y‖2
= |xi|dist(Ci, C−i).

If ‖x‖2 = 1 then necessarily |xi| ≥ n−1/2 for some 1 ≤ i ≤ n and therefore

sn(A) = min
‖x‖2=1

‖Ax‖2 ≥ n−1/2 min
1≤i≤n

dist(Ci, C−i).

Conversely, for every 1 ≤ i ≤ n, there exists a vector y with yi = 1 such that

dist(Ci, C−i) = ‖y1C1 + · · ·+ ynCn‖2 = ‖Ay‖2 ≥ ‖y‖2 min
‖x‖2=1

‖Ax‖2 ≥ sn(A)

where we used the fact that ‖y‖22 = |y1|2 + · · ·+ |yn|2 ≥ |yi|2 = 1.

Remark 4.17 (Assumptions for the smallest singular value). In the proof of
lemma 4.12 with the bounded density assumption, we have not used the as-
sumption on the second moment of X11 nor the assumption on the norm of M .

4.5. Convergence of singular values measure

This section is devoted to corollary 4.10. The proof is divided into five steps.
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Step One: Concentration of singular values measure

First, it turns out that it is sufficient to prove the convergence to νz ofEνn−1/2X−z.
Indeed, for matrices with independent rows, there is a remarkable concentration
of measure phenomenon. More precisely, recall that the total variation norm of
f : R → R is defined as

‖f‖TV := sup
∑

k∈Z

|f(xk+1)− f(xk)|,

where the supremum runs over all sequences (xk)k∈Z such that xk+1 ≥ xk for
any k ∈ Z. If f = 1(−∞,s] for some s ∈ R then ‖f‖TV = 1, while if f has a
derivative in L1(R), ‖f‖TV =

∫
|f ′(t)| dt. The following lemma is extracted from

[26], see also [74].

Lemma 4.18 (Concentration for the singular values empirical measure). If M
is a n× n complex random matrix with independent rows (or with independent
columns) then for any f : R → R going to 0 at ±∞ with ‖f‖TV ≤ 1 and every
t ≥ 0,

P

(∣∣∣∣
∫
f dνM − E

∫
f dνM

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2nt2

)
.

Note that ifM has independent entries which satisfy a uniform sub-Gaussian
tail behavior, then for all Lipschitz function, the concentration of

∫
f dνM has

exponential rate n2, not n, see e.g. the work of Guionnet and Zeitouni [72].

Proof. If A,B ∈ Mn(C) and if FA(·) := νA((−∞, ·)) and FB(·) := νB((−∞, ·))
are the cumulative distribution functions of the probability measures νA and νB
then it is easily seen from the Lidskii inequality for singular values19 that

‖FA − FB‖∞ ≤ rank(A−B)

n
.

Now for a smooth f : R → R, we get, by integrating by parts,
∣∣∣∣
∫
f dνA −

∫
f dνB

∣∣∣∣ =
∣∣∣∣
∫

R

f ′(t)(FA(t)− FB(t)) dt

∣∣∣∣ ≤
rank(A−B)

n

∫

R

|f ′(t)| dt.

Since the left hand side depends on at most 2n points, we get, by approximation,
for every measurable function f : R → R with ‖f‖TV ≤ 1,

∣∣∣∣
∫
f dνA −

∫
f dνB

∣∣∣∣ ≤
rank(A−B)

n
. (4.13)

From now on, f : R → R is a fixed measurable function with ‖f‖TV ≤ 1. For
every row vectors x1, . . . , xn in Cn, we denote by A(x1, . . . , xn) the n×n matrix
with rows x1, . . . , xn and we define F : (Cn)n → R by

F (x1, . . . , xn) :=

∫
f dµA(x1,...,xn).

19 If A,B ∈ Mn(C) with rank(A − B) ≤ k, then si−k(A) ≥ si(B) ≥ si+k(A) for any
1 ≤ i ≤ n with the convention si ≡ ∞ if i < 1 and si ≡ 0 if i > n. This allows the extremes
to blow. See [82, Theorem 3.3.16].
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For any i ∈ {1, . . . , n} and any row vectors x1, . . . , xn, x
′
i of C

n, we have

rank(A(x1, . . . , xi−1, xi, xi+1, . . . , xn)−A(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)) ≤ 1

and thus

|F (x1, . . . , xi−1, xi, xi+1, . . . , xn)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤

1

n
.

Finally, the desired result follows from the McDiarmid-Azuma-Hoeffding con-
centration inequality for bounded differences20 applied to the function F and
to the random variables R1, . . . , Rn (the rows of M).

Step Two: Truncation and centralization

In the second step, we prove that it is sufficient to prove the convergence for
entries with bounded support. More precisely, we define

Yij = Xij1{|Xij |≤κ},

where κ = κn is a sequence growing to infinity. Then if Y = (Yij)1≤i,j≤n, we
have from Hoffman-Wielandt inequality (1.8),

1

n

n∑

k=1

∣∣∣sk(n−1/2Y − zI)− sk(n
−1/2X − zI)

∣∣∣
2

≤ 1

n2

∑

1≤i,j≤n

|Xij |21{|Xij |>κ}.

By assumption E|Xij |21{|Xij |>κ} goes to 0 as κ goes to infinity. Hence, by the
law of large numbers, the right hand side of the above inequality converges
a.s. to 0. On the left hand side we recognize the square of the Wasserstein W2

coupling distance21 between νn−1/2Y−zI and νn−1/2X−zI . Since the convergence
inW2 distance implies weak convergence, we deduce that it is sufficient to prove
the convergence of Eνn−1/2Y−zI to νz .

Next, we turn to the centralization by setting

Zij = Yij − EYij = Yij − EX111{|X11|≤κ}.

Then if Z = (Zij)1≤i,j≤n, we have from the Lidskii inequality for singular values,

max
t>0

∣∣νn−1/2Y −zI([0, t])− νn−1/2Z−zI([0, t])
∣∣ ≤ rank(Y − Z)

n
≤ 1

n
.

20If X1, . . . ,Xn are independent random variables taking values in X1, . . . ,Xn then for
every function f : X1 × · · · × Xn → R such that f(X1, . . . , Xn) is integrable, we have
P(|f(X1, . . . ,Xn)−Ef(X1, . . . ,Xn)| ≥ t) ≤ 2 exp(−2t2/(c21 + · · ·+ c2n)) for any t ≥ 0, where
ck := supx,x′∈Dk

|f(x)− f(x′)| and Dk := {(x, x′) : xi = x′
i for all i 6= k}. See [109].

21The W2 distance between two probability measures η1, η2 on R is defined by
W2(η1, η2) := inf E(|X1 − X2|2)1/2 where the inf runs over the set of random variables
(X1,X2) on R × R with X1 ∼ η1 and X2 ∼ η2. In the case where η1 = 1

n

∑n
i=1 δai with

0 ≤ ai ր and η2 = 1
n

∑n
i=1 δbi with 0 ≤ bi ր then W2(η1, η2)2 = 1

n

∑n
i=1(ai − bi)

2.
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In particular, it is sufficient to prove the convergence of Eνn−1/2Z−zI to νz.
In summary, in the remainder of this section, we will allow the law of X11 to

depend on n but we will assume that

EX11 = 0 , P(|X11| ≥ κn) = 0 and E|X11|2 = σ2
n, (4.14)

where κ = κn ր ∞ with κn = o(
√
n) as n→ ∞ and σ = σn → 1 as n→ ∞.

Step Three: Linearization

We use a popular linearization technique: we remark the identity of the Cauchy-
Stieltjes transform, for η ∈ C+,

mν̌
n−1/2X−zI

(η) =
1

2n
Tr(H(z)− ηI)−1, (4.15)

where ν̌(·) = (ν(·) + ν(−·))/2 is the symmetrized version of a measure ν, and

H(z) :=

(
0 n−1/2X − z

(n−1/2X − z)∗ 0

)
.

Through a permutation of the entries, H(z) is equivalent to the matrix

B(z) = B − q(z, 0)⊗ In

where

q(z, η) :=

(
η z
z̄ η

)

and for every 1 ≤ i, j ≤ n,

Bij :=
1√
n

(
0 Xij

X̄ji 0

)
.

Note that B(z) ∈ Mn(M2(C)) ≃ M2n(C) is Hermitian, with resolvent

R(q) = (B(z)− ηI2n)
−1 = (B − q(z, η)⊗ In)

−1.

Then R(q) ∈ Mn(M2(C)) and, by (4.15), we deduce that

mν̌
n−1/2X−zI

(η) =
1

2n
TrR(q).

We set

R(q)kk =

(
ak(q) bk(q)
ck(q) dk(q)

)
∈ M2(C).

It is easy to check that

a(q) :=
1

n

n∑

k=1

ak(q) =
1

n

n∑

k=1

dk(q) and b(q) :=
1

n

n∑

k=1

bk(q) =
1

n

n∑

k=1

c̄k(q),

(4.16)
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(see the forthcoming lemma 4.19). So finally,

mν̌
n−1/2X−zI

(η) = a(q). (4.17)

Hence, in order to prove that Eνn−1/2X−zI converges, it is sufficient to prove
that Ea(q) converges to, say, α(q) which, by tightness, will necessarily be the
Cauchy-Stieltjes transform of a symmetric measure.

Step Four: Approximate fixed point equation

We use a resolvent method to deduce an approximate fixed point equation sat-
isfied by a(q). Schur’s block inversion (4.12) gives

Rnn =

(
1√
n

(
0 Xnn

X̄nn 0

)
− q −Q∗R̃Q

)−1

,

where Q ∈ Mn−1,1(M2(C)),

Qi =
1√
n

(
0 Xni

X̄in 0

)

and, with B̃ = (Bij)1≤i,j≤n−1, B̃(z) = B̃ − q(z, 0)⊗ In−1,

R̃ = (B̃ − q ⊗ In−1)
−1 = (B̃(z)− ηI2(n−1))

−1

is the resolvent of a minor. We denote by Fn−1 the smallest σ-algebra spanned

by the variables (Xij)1≤i,j≤n−1. We notice that R̃ is Fn−1-measurable and is
independent of Q. If En[ · ] := E[ · |Fn−1], we get, using (4.14) and (4.16)

En

[
Q∗R̃Q

]
=

∑

1≤k,ℓ≤n−1

En

[
Q∗

kR̃kℓQℓ

]

=
σ2

n

n−1∑

k=1

(
ãk 0

0 d̃k

)

=
σ2

n

n−1∑

k=1

(
ãk 0
0 ãk

)
,

where

R̃kk =

(
ãk b̃k
c̃k d̃k

)
.

Recall that B̃(z) is a minor of B(z). We may thus use interlacing as in (4.13)
for the function f = (· − η)−1, and we find

∣∣∣∣∣

n−1∑

k=1

ãk −
n∑

k=1

ak

∣∣∣∣∣ ≤ 2

∫

R

1

|x− η|2 dx = O
(

1

Im(η)

)
.
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Hence, we have checked that

En

[
Q∗R̃Q

]
=

(
a 0
0 a

)
+ ε1,

with ‖ε1‖2 = o(1) (note here that q(z, η) is fixed). Moreover, we define

ε2 := En

[(
Q∗R̃Q− En

[
Q∗R̃Q

])∗(
Q∗R̃Q− En

[
Q∗R̃Q

])]
.

Since ‖R̃‖2 ≤ Im(η)−1,

∥∥∥R̃∗
iiR̃ii

∥∥∥
2
≤ Im(η)−2 and Tr



∑

i,j

R̃∗
ijR̃ji


 = Tr

(
R̃∗R̃

)
≤ 2nIm(η)−2.

Also, by (4.14)

E|X2
ij − σ2|2 ≤ 2κ2σ2.

Then, an elementary computation gives

‖ε2‖2 = O

(
κ2

nIm(η)2

)
= o(1).

Also, we note by lemma 4.18 that a(q) is close to its expectation:

E|a(q)− Ea(q)|2 = O

(
1

nIm(η)2

)
= o(1).

Thus, the matrix

D =
1√
n

(
0 Xnn

X̄nn 0

)
−Q∗R̃Q+ E

(
a 0
0 a

)

has a norm which converges to 0 in expectation as n→ ∞. Now, we have

Rnn +

(
q + E

(
a 0
0 a

))−1

= RnnD

(
q + E

(
a 0
0 a

))−1

.

Hence, since
(
q + E

(
a 0
0 a

))−1
and Rnn have norms at most Im(η)−1, we get

ERnn = −
(
q + E

(
a 0
0 a

))−1

+ ε

with ‖ε‖2 = o(1). In other words, using exchangeability,

E

(
a b
b̄ a

)
= −

(
q + E

(
a 0
0 a

))−1

+ ε.
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Step Five: Unicity of the fixed point equation

From what precedes, any accumulation point of E
(
a b
b̄ a

)
is solution of the fixed

point equation (
α β
β̄ α

)
= −

(
q +

(
α 0
0 α

))−1

, (4.18)

with α = α(q) ∈ C+. We find

α =
α+ η

|z|2 − (α+ η)2
.

Hence, α is a root of a polynomial of degree 3. Hence, to conclude the proof of
corollary 4.10, it is sufficient to prove that there is unique symmetric measure
whose Cauchy-Stieltjes transform is solution of this fixed point equation. For
any η ∈ C+, it is simple to check that this equation has a unique solution in
C+ which can be explicitly computed. Alternatively, we know from (4.17) and
Montel’s theorem that η ∈ C+ 7→ α(q(z, η)) ∈ C+ is analytic. In particular, it is
sufficient to check that there is a unique solution in C+ for η = it, with t > 0.
To this end, we also notice from (4.17) that α(q) ∈ iR+ for q = q(z, it). Hence,
if h(z, t) = Im(α(q)), we find

h =
h+ t

|z|2 + (h+ t)2
.

Thus, h 6= 0 and

1 =
1 + th−1

|z|2 + (h+ t)2
.

The right hand side in a decreasing function in h on (0,∞) with limits equal to
+∞ and 0 as h→ 0 and h→ ∞. Thus, the above equation has unique solution.
We have thus proved that E

(
a b
b̄ a

)
converges, and corollary 4.10 is proved.

4.6. Quaternionic resolvent: an alternative look at the circular law

Motivation

The aim of this section is to develop an efficient machinery to analyze the spec-
tral measures of a non-Hermitian matrix which avoids a direct use of the loga-
rithmic potential and the singular values. This approach is built upon methods
already present in the physics literature, e.g. [48, 69, 126, 125]. As we will see,
the method appears as a refinement of the linearization procedure used in the
proof of corollary 4.10. Recall that the Cauchy-Stieltjes transform of a measure
ν on R is defined, for η ∈ C+, as

mν(η) =

∫

R

1

x− η
dν(x).
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The Cauchy-Stieltjes transform characterizes every probability measure on R,
and actually, following Remark 4.6, every probability measure on C. However, if
the support of the measure is not one-dimensional, then one needs the knowledge
of the Cauchy-Stieltjes transform inside the support, which is not convenient.
For a probability measure on C, it is tempting to define a quaternionic Cauchy-
Stieltjes transform. For q ∈ H+, where

H+ :=

{(
η z
z̄ η

)
, z ∈ C, η ∈ C+

}
,

we would define

Mµ(a) =

∫

C

((
0 λ
λ̄ 0

)
− q

)−1

dµ(λ) ∈ H+.

This transform characterizes the measure: in D′(C),

lim
t↓0

(∂Mµ(q(z, it))12 = −πµ,

where ∂ is as in (4.3) and

q(z, η) :=

(
η z
z̄ η

)
.

If A ∈ Mn(C) is normal thenMµA can be recovered from the trace of a properly
defined quaternionic resolvent. If A is not normal, the situation is however more
delicate and needs a more careful treatment.

Definition of quaternionic resolvent

For further needs, we will define this quaternionic resolvent in any Hilbert space.
Let H be an Hilbert space with inner product 〈·, ·〉. We define the Hilbert space
H2 = H × Z/2Z. For x = (y, ε) ∈ H2, we set x̂ = (y, ε + 1). In particular,

this transform is an involution ˆ̂x = x. There is the direct sum decomposition
H2 = H0 ⊕H1 with Hε = {x = (y, ε) : y ∈ H}.

Let A be a linear operator defined on a dense domain D(A) ⊂ H . This
operator can be extended to an operator on D(A) ⊗ Z/2Z by simply setting
Ax = (ay, ε), for all x = (y, ε) ∈ D(A) ⊗ Z/2Z (in other word we extend A by
A⊗ I2). We define the operator B in D(B) = D(A)⊗Z/2Z by

Bx =

{
A∗x̂ if x ∈ H0

Ax̂ if x ∈ H1.

For x ∈ H , if Πx : H2 → C2 denotes the orthogonal projection on ((x, 0), (x, 1)),
for x, y ∈ D(A), we find

Bxy := ΠxBΠ∗
y =

(
0 〈x,Ay〉

〈x,A∗y〉 0

)
∈ M2(C).
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The operator B will be called the bipartized operator of A, it is an Hermitian op-
erator (i.e. for all x, y ∈ D(B), 〈Bx, y〉 = 〈x,By〉). If B is essentially self-adjoint
(i.e. it has a unique self-adjoint extension), we may define the quaternionic re-
solvent of A for all q ∈ H+ as

RA(q) = (B − IH ⊗ q)−1

Indeed, if q = q(z, η), we note that RA is the usual resolvent at η of the essen-
tially self-adjoint operator B(z) = B−IH ⊗q(z, 0). Hence RA inherits the usual
properties of resolvent operators (analyticity in η, bounded norm). We define

RA(q)xy := ΠxRA(q)Π
∗
y .

If H is separable and (ei)i≥1 is a canonical orthonormal basis of H , we simply
write Rij instead of RA(q)eiej , i, j ∈ V . Finally, if A ∈ Mn(C), we set

ΓA(q) =
1

n

n∑

k=1

RA(q)kk.

If A is normal then it can be checked that R(q)kk ∈ H+ and ΓA(q) = MµA(q).
However, if A is not normal, this formula fails to hold. However, the next lemma
explains how to recover anyway µA from the resolvent.

Lemma 4.19 (From quaternionic transform to spectral measures). For every
A ∈ Mn(C) and q = q(z, η) ∈ H+ we have

ΓA(q) =

(
a(q) b(q)
b̄(q) a(q)

)
∈ H+.

Moreover, we have
mν̌A−z(η) = a(q)

and, in D′(C),

µA = − 1

π
lim

q(z,it):t↓0
∂b(q).

Proof. In order to ease the notations, let us assume that z = 0 and let us set
τ(·) = 1

nTr(·). If P is the permutation matrix associated to the permutation σ
defined by σ(2k − 1) = k, σ(2k) = n+ k for every k, we get

(B − IH ⊗ q)−1 = P ∗
(
−η A
A∗ −η

)−1

P

= −P
(
η(η2 −AA∗)−1 A(η2 −A∗A)−1

A∗(η2 −AA∗)−1 η(η2 −A∗A)−1

)
P.

Hence,

ΓA(q) = −
(

ητ(η2 −AA∗)−1 τ
(
A(η2 −A∗A)−1

)

τ
(
A∗(η2 −AA∗)−1

)
ητ(η2 −A∗A)−1

)
.
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Notice that

mν̌A(η) =
1

2

∫
1

x− η
− 1

x+ η
dνA(x)

=

∫
η

x2 − η2
dνA(x)

=

∫
η

x− η2
dµAA∗(x)

= ητ(AA∗ − η2)−1.

Note also that µA∗A = µAA∗ implies that

τ(η2 −AA∗)−1 = τ(η2 −A∗A)−1.

Finally, since τ is a trace,

τ
(
A(η2 −A∗A)−1

)
= τ

(
(η2 −A∗A)−1A

)

= τ((η2 −A∗A)−1A)
∗

= τ(A∗(η2 −AA∗)−1).

Applying the above to A− z, we deduce the first two statements.

For the last statement, we write

∫
log |s+it| dνA−z(s) =

1

2

∫
log(s2+t2) dνA−z(s) =

1

2
τ log((A−z)(A−z)∗+t2).

Hence, from Jacobi formula (see remark 4.6 for the definition of ∂ and ∂)

∂

∫
log |s+ it| dνA−z(s) =

1

2
τ
(
((A− z)(A− z)∗ + t2)−1∂((A− z)(A− z)∗ + t2)

)

= −1

2
τ
(
((A− z)(A− z)∗ + t2)−1(A− z)

)

= −1

2
b(q(z, it)).

The function
∫
log |s+ it| dνA−z(s) decreases monotonically to

∫
log(s) dνA−z(s) = −UµA(z)

as t ↓ 0. Hence, in distribution,

µA = lim
t↓0

2

π
∂∂

∫
log |s+ it| dνA−z(s).

The conclusion follows.
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Girko’s Hermitization lemma revisited

There is a straightforward extension of Girko’s lemma 4.3 that uses the quater-
nionic resolvent.

Lemma 4.20 (Girko Hermitization). Let (An)n≥1 be a sequence of complex
random matrices defined on a common probability space where An takes its val-
ues in Mn(C). Assume that for all q ∈ H+, there exists

Γ(q) =

(
a(q) b(q)
b̄(q) a(q)

)
∈ H+

such that for a.a. z ∈ C, η ∈ C+, with q = q(z, η),

(i’) a.s. (respectively in probability) ΓAn(q) converges to Γ(q) as n→ ∞
(ii) a.s. (respectively in probability) log is uniformly integrable for (νAn−zI)n≥1

Then there exists a probability measure µ ∈ P(C) such that

(j) a.s. (respectively in probability) µAn  µ as n→ ∞
(jj’) in D′(C),

µ = − 1

π
lim

q(z,it):t↓0
∂b(q).

Note that, by lemma 4.19, assumption (i’) implies assumption (i) of lemma 4.3:
the limit probability measure νz is characterized by

mν̌z (η) = a(q).

The potential interest of lemma 4.20 lies in the formula for µ. It avoids any use
the logarithmic potential.

Concentration

The quaternionic resolvent enjoys a simple concentration inequality, exactly as
for the empirical singular values measure.

Lemma 4.21 (Concentration for quaternionic resolvent). If A is a random
matrix taking its values in Mn(C), with independent rows (or with independent
columns), then for any q = q(z, η) ∈ H+ and t ≥ 0,

P(‖ΓA(q)− EΓA(q)‖2 ≥ t) ≤ 2 exp

(
−nIm(η)2t2

8

)
.

Proof. Let M,N ∈ Mn(C) with bipartized matrices B,C ∈ M2n(C). We have

‖ΓM (q)− ΓN (q)‖2 ≤ 4 rank(M −N)

nIm(η)
. (4.19)

Indeed, from the resolvent identity, for any q ∈ H+,

D = RM (q)−RN (q) = RM (q)(C −B)RN (q).
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It follows that D has rank r ≤ rank(B − C) = 2 rank(M − N). Also, recall
that the operator norm of D is at most 2Im(η)−1. Hence, in the singular values
decomposition

D =

r∑

i=1

siuiv
∗
i

we have si ≤ 2Im(η)−1. If Πk : C2n → C2 is the orthogonal projection on
span{e2k−1, e2k}, then

ΓM (q)− ΓN (q) =
1

n

n∑

k=1

ΠkDΠ∗
k =

1

n

r∑

i=1

si

n∑

k=1

(Πkui)(Πkvi)
∗.

Using Cauchy-Schwartz inequality,

‖ΓM (q)− ΓN (q)‖2 ≤ 1

n

r∑

i=1

si

√√√√
(

n∑

k=1

‖Πkui‖22

)(
n∑

k=1

‖Πkvi‖22

)
=

1

n

r∑

i=1

si.

We obtain precisely (4.19). The remainder of the proof is now identical to the
proof of lemma 4.18: we express ΓA(q)−EΓA(q) has a sum of bounded martin-
gales difference.

Computation for the circular law

As pointed out in [126], the circular law is easily found from the quaternionic
resolvent. Indeed, using lemma 4.21 and the proof of corollary 4.10, we get, for
all q ∈ H+, a.s.

lim
n→∞

Γn−1/2X(q) = Γ(q) =

(
α(q) β(q)
β̄(q) α(q)

)
,

where, from (4.18),

Γ = −(q + diag(Γ))
−122.

We have checked in the proof of corollary 4.10 that for η = it,

α(q) = ih(z, t) ∈ iR+ where 1 =
1 + th−1

|z|2 + (h+ t)2
.

We deduce easily that

lim
t↓0

h(z, t) =

{√
1− |z|2 if |z| ≤ 1

0 otherwise.

Then, from

β(q) =
−z

|z|2 − (a(q) + η)2
,

22This equation is the analog of the fixed point equation satisfied by the Cauchy-Stieltjes
transform m of the semi circular law: m(η) = −(η +m(η))−1 .
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we find

lim
q(z,it):t↓0

β(q) =

{
−z if |z| ≤ 1

0 otherwise.

As lemma 4.20 dictates, if we compose by −π−1∂ we retrieve the circular law.

5. Related results and models

5.1. Replacement principle and universality for shifted matrices

It is worthwhile to state the following lemma, which can be seen as a variant of
the Hermitization lemma 4.3. The next statement is slightly stronger than its
original version in [149, Theorem 2.1].

Lemma 5.1 (Replacement principle). Let (An)n≥1 and (Bn)n≥1 be two se-
quences where An and Bn are random variables in Mn(C). If for a.a. z ∈ C,
a.s.

(k) limn→∞ UµAn
(z)− UµBn

(z) = 0
(kk) log(1 + ·) is uniformly integrable for (νAn)n≥1 and (νBn)n≥1

then a.s. µAn − µBn  0 as n→ ∞.

A proof of the lemma follows by using the argument in the proof of lemma 4.3.
Using their replacement principle, Tao and Vu have proved in [149] that the
universality of the limit spectral measures of random matrices goes far beyond
the circular law. We state it here in a slightly stronger form than the original
version, see [22].

Theorem 5.2 (Universality principle for shifted matrices). Let X and G be
the random matrices considered in sections 3 and 4 obtained from infinite tables
with i.i.d. entries. Consider a deterministic sequence (Mn)n≥1 such that Mn ∈
Mn(C) and for some p > 0,

lim
n→∞

∫
sp dνMn(s) <∞.

Then a.s. µn−1/2X+Mn
− µn−1/2G+Mn

 0 as n→ ∞.

5.2. Related models

We give a list of models related to the circular law theorem 2.2.

Sparsity

The circular law theorem 2.2 may remain valid if one allows the entries law to
depend on n. This extension contains for instance sparse models in which the
law has an atom at 0 with mass pn → 1 at a certain speed, see [66, 145, 155].
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Outliers

The circular law theorem 2.2 allows the blow up of an arbitrary (asymptoti-
cally negligible) fraction of the extremal eigenvalues. Indeed, it was shown by
Silverstein [136] that if E(|X11|4) <∞ and E(X11) 6= 0 then the spectral radius
|λ1(n−1/2X)| tends to infinity at speed

√
n and has a Gaussian fluctuation. This

observation of Silverstein is the base of [31], see also the ideas of Andrew [8].
More recently, Tao studied in [142] the outliers produced by various types of
perturbations including general additive perturbations.

Sum and products

The scheme of proof of theorem 2.2 (based on Hermitization, logarithmic po-
tential, and uniform integrability) turns out to be quite robust. It allows for
instance to study the limit of the empirical distribution of the eigenvalues of
sums and products of random matrices, see [22], and also [67] in relation with
Fuss-Catalan laws. We may also mention [114]. The crucial step lies in the con-
trol of the small singular values.

Cauchy and the sphere

It is well known that the ratio of two independent standard real Gaussian vari-
ables is a Cauchy random variable, which has heavy tails. The complex ana-
logue of this phenomenon leads to a complex Cauchy random variable, which is
also the image law by the stereographical projection of the uniform law on the
sphere. The matrix analogue consists in starting from two independent copies
G1 and G2 of the Complex Ginibre Ensemble, and to consider the random ma-
trix Y = G−1

1 G2. The limit of µY was analyzed by Forrester and Krishnapur
[50]. Note that Y does not have i.i.d. entries.

Random circulant matrices

The eigenvalues of a non-Hermitian circulant matrix are linear functionals of
the matrix entries. Meckes [111] used this fact together with the central limit
theorem in order to show that if the entries are i.i.d. with finite positive variance
then the scaled empirical spectral distribution of the eigenvalues tends to a
Gaussian law. We can imagine a heavy tailed version of this phenomenon with
α-stable limiting laws.

Single ring theorem

Let D ∈ Mn(R+) be a random diagonal matrix and U, V ∈ Mn(C) be two
independent Haar unitary matrices, independent of D. The law of X := UDV ∗

is unitary invariant by construction, and νX = µD (it is a random SVD). Assume
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that µD tends to some limiting law ν as n→ ∞. It was conjectured by Feinberg
and Zee [47] that µX tends to a limiting law which is supported in a centered
ring of the complex plane, i.e. a set of the form {z ∈ C : r ≤ |z| ≤ R}. Under
some additional assumptions, this was proved by Guionnet, Krishnapur, and
Zeitouni [70] by using the Hermitization technique and specific aspects such
as the Schwinger-Dyson non-commutative integration by parts. Guionnet and
Zeitouni have also obtained the convergence of the support in a more recent work
[73]. The Complex Ginibre Ensemble is a special case of this unitary invariant
model.

Large deviations and logarithmic potential with external field

The circular law theorem 3.5 for the Complex Ginibre Ensemble can be seen as
a special case of the circular law theorem for unitary invariant random matrices
with eigenvalues density proportional to

(λ1, . . . , λn) 7→ exp

(
− 1

2n

n∑

i=1

V (λi)

)
∏

i<j

|λi − λj |2

where V : C 7→ R is a smooth potential growing enough at infinity. Since

exp

(
− 1

2n

n∑

i=1

V (λi)

)
∏

i<j

|λi − λj |2

= exp


− 1

2n

n∑

i=1

V (λi) +
1

2

∑

i<j

log |λi − λj |




we discover an empirical version of the logarithmic energy functional E(·) de-
fined in (4.8) penalized by the “external” potential V . Indeed, it has been shown
by Hiai and Petz [118] (see also Ben Arous and Zeitouni [17]) that the Com-
plex Ginibre Ensemble satisfies a large deviations principle at speed n2 for the
weak topology on the set of symmetric probability measures (with respect to
conjugacy), with good rate function given by

µ 7→ 1

2

(
E(µ) +

∫
V dµ

)
− 3

8

=
1

4

∫∫
(V (z) + V (λ)− 2 log |λ− z|) dµ(z)dµ(λ)− 3

8
. (5.1)

This rate function achieves its minimum 0 at point µ = C1. This is coherent with
the fact that the circular law C1 is the minimum of the logarithmic energy among
the probability measures on C with fixed variance, see the book of Saff and Totik
[129]. Note that this large deviations principle gives an alternative proof of the
circular law for the Ginibre Ensemble thanks to the first Borel-Cantelli lemma.
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Dependent entries

According to Girko, in relation to his “canonical equation K20”, the circular law
theorem 2.2 remains valid for random matrices with independent rows provided
some natural hypotheses [57]. A circular law theorem is available for random
Markov matrices including the Dirichlet Markov Ensemble [23], and random
matrices with i.i.d. log-concave isotropic rows23 [1]. Another Markovian model
consists in a non-Hermitian random Markov generator with i.i.d. off-diagonal
entries, which gives rise to a new limiting spectral distribution, possibly not
rotationally invariant, which can be interpreted using free probability theory,
see [24]. Yet another model related to projections in which each row has a
zero sum is studied in [142]. To end up this tour, let us mention another kind
of dependence which comes from truncation of random matrices with depend
entries such as Haar unitary matrices. Namely, let U be distributed according
to the uniform law on the unitary group Un (we say that U is Haar unitary).
Dong, Jiang, and Li have shown in [38] that the empirical spectral distribution
of the diagonal sub-matrix (Uij)1≤i,j≤m tends to the circular law if m/n → 0,
while it tends to the arc law (uniform law on the unit circle {z ∈ C : |z| = 1})
if m/n→ 1. Other results of the same flavor can be found in [89].

Tridiagonal matrices

The limiting spectral distributions of random tridiagonal Hermitian matrices
with i.i.d. entries are not universal and depend on the law of the entries, see [119]
for an approach based on the method of moments. The non-Hermitian version
of this model was studied by Goldsheid and Khoruzhenko [64] by using the
logarithmic potential. Indeed, the tridiagonal structure produces a three terms
recursion on characteristic polynomials which can be written as a product of
random 2×2 matrices, leading to the usage of a multiplicative ergodic theorem to
show the convergence of the logarithmic potential (which appears as a Lyapunov
exponent). In particular, neither the Hermitization nor the control the smallest
and small singular values are needed here. Indeed the approach relies directly
on remark 4.8. Despite this apparent simplicity, the structure of the limiting
distributions may be incredibly complicated and mathematically mysterious, as
shown on the Bernoulli case by the physicists Holz, Orland, and Zee [78].

5.3. Free probability interpretation

As we shall see, the circular law and its extensions have an interpretation in
free probability theory, a sub-domain of operator algebra theory. Before going
further, we should recall briefly certain classical notions of operator algebra. We
refer to Voiculescu, Dykema and Nica [152] for a complete treatment of free non-
commutative variables, see also the book by Anderson, Guionnet, and Zeitouni

23An absolutely continuous probability measure on Rn is log-concave if its density is e−V

with V convex.
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for the link with random matrices [7]. In the sequel, H is an Hilbert space and
we consider a pair (M, τ) where M is an algebra of bounded operators on H ,
stable by the adjoint operation ∗, and where τ : M → C is a linear map such
that τ(1) = 1, τ(aa∗) = τ(a∗a) ≥ 0.

Definition of Brown measure

For a ∈ M, define |a| =
√
aa∗. For b self-adjoint element in M, we denote by

µb the spectral measure of b: it is the unique probability measure on the real
line satisfying, for any integer k ∈ N,

τ(bk) =

∫
tkdµb(t).

Also, if a ∈ M, we define
νa = µ|a|.

Then, in the spirit of (4.7), the Brown measure [30] of a ∈ M is the unique
probability measure µa on C, which satisfies for almost all z ∈ C,

∫
log |z − λ| dµa(λ) =

∫
log(s) dνa−z(s).

In distribution, it is given by the formula24

µa =
1

2π
∆

∫
log(s) dνa−z(s). (5.2)

The fact that the above definition is indeed a probability measure requires a
proof, which can be found in [76]. Our notation is consistent: first, if a is self-
adjoint, then the Brown (spectral) measure coincides with the spectral measure.
Secondly, if M = Mn(C) and τ := 1

nTr is the normalized trace on Mn(C), then
we retrieve our usual definition for νA and µA. It is interesting to point out that
the identity (5.2) which is a consequence of the definition of the eigenvalues
when M = Mn(C) serves as a definition for general von Neumann algebras.

Beyond bounded operators, and as explained in Brown [30] and in Haagerup
and Schultz [76], it is possible to define, for a class M̄ ⊃ M of closed densely
defined operators affiliated withM, a probability measure on C called the Brown
spectral measure of a ∈ M̄.

Failure of the method of moments

For non-Hermitian matrices, the spectrum does not necessarily belong to the
real line, and in general, the limiting spectral distribution is not supported in
the real line. The problem here is that the moments are not enough to charac-
terize laws on C. For instance, if Z is a complex random variable following the

24The quantity exp

∫

log(t) dµ|a|(t) is the Fuglede-Kadison determinant of a ∈ M [51].
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uniform law Cκ on the centered disc {z ∈ C; |z| ≤ κ} of radius κ then for every
r ≥ 0, we have E(Zr) = 0 and thus Cκ is not characterized by its moments. Any
rotational invariant law on C with light tails shares with Cκ the same sequence
of null moments. One can try to circumvent the problem by using “mixed mo-
ments” which uniquely determine µ by the Weierstrass theorem. Namely, for
every matrix A ∈ Mn(C), if A = UTU∗ is the Schur unitary triangularization
of A then for every integers r, r′ ≥ 0 and with z = x+ iy and τ = 1

nTr,

∫

C

zrzr
′

dµA(z) =
1

n

n∑

i=1

λri (A)λi(A)
r′

= τ(T rT
r′

) 6= τ(T rT ∗r′) = τ(ArA∗r′).

Indeed equality holds true when T = T ∗, i.e. when T is diagonal, i.e. when A is
normal. This explains why the method of moments looses its strength for non-
normal operators. To circumvent the problem, one may think about using the
notion of ⋆-moments. Note that if A is normal then for every word Aε1 · · ·Aεk

where ε1, . . . , εn ∈ {1, ∗}, we have τ(Aε1 · · ·Aεk) = τ(Ak1A∗k2) where k1, k2 are
the number of occurrence of A and A∗.

⋆-distribution

The ⋆-distribution of a ∈ M is the collection of all its ⋆-moments:

τ(aε1aε2 · · · aεn),

where n ≥ 1 and ε1, . . . , εn ∈ {1, ∗}. The element c ∈ M is circular when it
has the ⋆-distribution of (s1 + is2)/

√
2 where s1 and s2 are free semi circular

variables with spectral measure of Lebesgue density x 7→ 1
π

√
4− x21[−2,2](x).

The ⋆-distribution of a ∈ M allows to recover the moments of the element
|a − z|2 = (a − z)(a − z)∗ for all z ∈ C, and thus νa−z for all z ∈ C, and thus
the Brown measure µa of a. Actually, for a random matrix, the ⋆-distribution
contains, in addition to the spectral measure, an information on the eigenvectors
of the matrix.

We say that a sequence of matrices (An)n≥1 where A takes it values inMn(C)
converges in ⋆-moments to a ∈ M, if all ⋆-moments converge to the ⋆-moments
of a ∈ M. For example, if G ∈ Mn(C) is our complex Ginibre matrix, then a.s.
as n→ ∞, n−1/2G converges in ⋆-moments to a circular element.

Discontinuity of the Brown measure

Due to the unboundedness of the logarithm, the Brown measure µa depends
discontinuously on the ⋆-moments of a [20, 137]. The limiting measures are
perturbations by “balayage”. A simple counter example is given by the matrices
of example 1.2. For random matrices, this discontinuity is circumvented in the
Girko Hermitization by requiring a uniform integrability, which turns out to be
a.s. satisfied the random matrices n−1/2X in the circular law theorem 2.2.



50 C. Bordenave and D. Chafäı

However, Śniady [137, Theorem 4.1] has shown that it is always possible to
regularize the Brown measure by adding an additive noise. More precisely, if G
is as above and (An)n≥1 is a sequence of matrices where An takes its values in
Mn(C), and if the ⋆-moments of An converge to the ⋆-moments of a ∈ M as
n→ ∞, then a.s. n→ ∞ µAn+tn−1/2G converges to µa+tc, c is circular element
free of a. In particular, by choosing a sequence tn going to 0 sufficiently slowly,
it is possible to regularize the Brown measure: a.s. µAn+tnn−1/2G converges to
µa. Note that the universality theorem 5.2 shows that the same result holds if
we replace G by our matrix X . We refer to Ryan [128] and references therein
for the analysis of the convergence in ⋆-moments. See also Tao’s book [143]. The
Śniady theorem was revisited recently by Guionnet, Wood, and Zeitouni [71].

6. Heavy tailed entries and new limiting spectral distributions

This section is devoted to the study of the analogues of the quarter circular
and circular law theorems 2.1-2.2 when X11 has an infinite variance (and thus
heavy tails). The approach taken from [26] involves many ingredients including
the Hermitization of section 4. To lighten the notations, we often abridge A−zI
into A− z for an operator or matrix A and a complex number z.

6.1. Heavy tailed analogs of quarter circular and circular laws

We now come back to an array X := (Xij)1≤i,j≤n of i.i.d. random variables on
C. We lift the hypothesis that the entries have a finite second moment: we will
assume that,

• for some 0 < α < 2,
lim
t→∞

tαP(|X11| ≥ t) = 1, (6.1)

• as t→ ∞, the conditional probability

P

(
X11

|X11|
∈ ·

∣∣ |X11| ≥ t

)

tends to a probability measure on the unit circle S1 := {z ∈ C : |z| = 1}.
The law of the entries belongs then to the domain of attraction of an α-stable
law. An example is obtained when |X11| and X11/|X11| are independent with
|X11| = |S| where S is real symmetric α-stable. Another example is given by
X11 = εW−1/α with ε and W independent such that ε is supported in the circle
S1 while W is uniform on the interval [0, 1].

The interest on this type of random matrices has started with the work of
the physicists Bouchaud and Cizeau [28]. One might think that the analog of
the Ginibre ensemble is a matrix with i.i.d. α-stable entries. It turns out that
this random matrix ensemble is not unitary invariant and there is no explicit
expression for the distribution of its eigenvalues. This lack of comparison with
a canonical ensemble makes the analysis of the limit spectral measures more
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Fig 5. The upper plot shows the spectrum of a single n × n matrix n−1/αX with n = 4000

and i.i.d. heavy tailed entries with X11
d
= εU−1/α with α = 1 and U uniform on [0, 1] and

ε uniform on {−1, 1} independent of U . The lower plot shows the histogram of the singular
values (blue) and the histogram of the module of the eigenvalues (red) of this random matrix.
The singular values vector is trimmed to avoid extreme values.

delicate. We may first wonder what is the analog of the quarter circular law
theorem 2.1. This question has been settled by Belinschi, Dembo and Guionnet
[15] (built upon the earlier work of Ben Arous and Guionnet [16]).
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Theorem 6.1 (Singular values of heavy tailed random matrices). There exists
a probability measure να on R+ such that a.s. νn−1/αX  να as n→ ∞.

This probability measure να depends only on α. It does not have a known
explicit closed form but has been studied in [16, 25, 15]. We know that να has a
bounded continuous density fα on R+, which is analytic on some neighborhood
of∞. The explicit value of fα(x) is only known for x = 0. But, more importantly,
we have

lim
t→∞

tα+1fα(t) = α.

In particular, να inherits the tail behavior of the entries:

lim
t→∞

tανα([t,∞)) = 1.

The measure να is a perturbation of the quarter circular law: it can be proved
that να converges weakly to the quarter circular law as α converges to 2. Con-
trary to the finite variance case, the n−1/α normalization cannot be understood
from the computation of

∫
s2 dνn−1/αX(s) =

1

n1+1/α

n∑

i,j=1

|Xij |2

since the later diverges. A proof of the tightness of νn−1/αX requires some extra
care that we will explain later on. However, at a heuristic level, we may remark
that if R1, . . . , Rn denotes the rows of n−1/αX then for each k,

‖Rk‖22 =
1

n2/α

n∑

i=1

|Xki|2

converges weakly to a non-negative α
2 -stable random variable. Hence the n−1/α

normalization stabilizes the norm of each row of X .
Following [26], we may also investigate the behavior of the eigenvalues of X .

Here is the analogue of the circular law theorem 2.2 for our heavy tailed entries
matrix model.

Theorem 6.2 (Eigenvalues of heavy tailed random matrices). There exists a
probability measure µα on C such that in probability µn−1/αX  µα as n→ ∞.
Moreover, if X11 has a bounded density, then the convergence is almost sure.

We believe that theorem 6.2 can be upgraded to an a.s. weak convergence,
but our method does not catch this due to slow “in probability” controls on
small singular values.

Again, the measure µα depends only on α and is not known explicitly. How-
ever, it is isotropic and has a bounded continuous density with respect to
Lebesgue measure dxdy on C: dµα(z) = gα(|z|)dxdy. The value of gα(r) is
explicit for r = 0. As r → ∞, the tail behavior of gα is up to multiplicative
constant equivalent to

r2(α−1)e−
α
2 rα .
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This exponential decay is quite surprising and contrasts with the power tail
behavior of fα. It indicates that X is typically far from being a normal ma-
trix. Also, we see that the eigenvalues limit spectrum is more concentrated than
the singular values limit spectrum. In fact, in the finite variance case, the phe-
nomenon is already present: the quarter circular law has support [0, 2] while the
circular law has support the unit disc. Again, the measure is µα is perturbation
of the circular law: µα converges weakly to the circular law as α converges to 2.

The proof of theorem 6.2 will follow the general strategy of Girko’s Hermi-
tization. Lemma 4.3 gives a characterization of the limit measure in terms of
its logarithmic potential. Here, it turns out to be not so convenient in order to
analyze the measure µα. We will rather use the quaternionic version of Girko’s
Hermitization, i.e. lemma 4.20. For statement (i′) in lemma 4.20, we will prove
a generalized version of theorem 6.1.

Theorem 6.3 (Singular values of heavy tailed random matrices). For every
z ∈ C there exists a non-random probability measure να,z on R+ depending only
on α and z such that a.s. νn−1/αX−z  να,z as n → ∞. Moreover, with the
notations used in lemma 4.20, for all q = q(z, η) ∈ H+, there exists Γ(q) ∈ H+,
such that a.s. Γn−1/αX(q) converges to Γ(q) and Γ(q)11 = mν̌α,z (η).

Objective method - sparse random graphs and trees

Our strategy for proving theorem 6.3, borrowed from [26], will differ significantly
from the one used for the proof of theorem 2.1. More precisely, we will prove
that n−1/αX converges in some sense, as n → ∞, to a limit random operator
A defined in the Hilbert space ℓ2(N). This will be done by using the “objective
method” initially developed by Aldous and Steele in the context of randomized
combinatorial optimization, see [6]. We build an explicit operator on Aldous’
Poisson Weighted Infinite Tree (PWIT) and prove that it is the local limit
of the matrices n−1/αX in an appropriate sense. While Poisson statistics arises
naturally as in all heavy tailed phenomena, the fact that a tree structure appears
in the limit is roughly explained by the observation that non-vanishing entries of
the rescaled matrix n−1/αX can be viewed as the adjacency matrix of a sparse
random graph which locally looks like a tree. In particular, the convergence to
PWIT is a weighted-graph version of familiar results on the local tree structure
of Erdős-Rényi random graphs.

Free probability

It is worthwhile to mention that one can associate to the PWIT a natural
operator algebraM with a tracial state τ . Then for some operator a affiliated to
M, the probability measure µα is equal to the Brown measure µa of a, and να =
µ|a| = νa is the singular value measure of a. See the work of Aldous and Lyons
[5, 105, Example 9.7 and Section 5]. The recent work of Male [106] provides
a combinatorial and algebraic interpretation of the local weak convergence, in
relation with the spectral analysis of heavy tailed random matrices.
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6.2. Tightness and uniform integrability

Large singular values

We first prove the a.s. tightness of (µn−1/αX)n≥1 and (νn−1/αX−z)n≥1 for every
z ∈ C. It is sufficient to prove that for some p > 0, for all z ∈ C,

lim
n→∞

∫
sp dνn−1/αX−z(s) <∞. (6.2)

From (1.6), for any A ∈ Mn(C), with have si(A− z) ≤ si(A) + |z| and thus
∫
sp dνn−1/αX−z(s) ≤

∫
(s+ |z|)p dνn−1/αX(s).

Moreover, from 1.2 we get, for any p > 0,
∫
|λ|p dµn−1/αX(λ) ≤

∫
sp dνn−1/αX(s).

In summary, it it is sufficient to prove that for some p > 0, a.s.

lim
n→∞

∫
sp dνn−1/αX(s) <∞. (6.3)

and (6.2) will follow. We shall use a Schatten bound: for all 0 < p ≤ 2,

∫
sp dνA(s) ≤

1

n

n∑

k=1

‖Rk‖p2.

for every A ∈ Mn(C), where R1, . . . , Rn are the rows of A (for a proof, see Zhan
[157, proof of Theorem 3.32]). The above inequality is an equality if p = 2 (for
p > 2, the inequality is reversed). For our matrix, A = n−1/αX , we find

∫
|s|p dνn−1/αX(s) ≤ 1

n

n∑

k=1

(
1

n2/α

n∑

i=1

|Xki|2
) p

2

.

The strategy of proof of (6.3) is now clear: the right hand side is a sum of i.i.d.
variables, and from (6.1), Yk,n = n−2/α

∑n
i=1 |Xki|2 is the domain attraction of

a non-negative α/2-stable law. We may thus expect, and it is possible to prove,
that for q small enough,

lim
n→∞

EY 4q
k,n <∞.

Then, the classical proof of the strong law of large numbers for independent
random variables bounded in L4 implies (6.3).

Uniform integrability

We will prove statement (ii) of lemma 4.20 in probability. Fix z ∈ C. Using
(6.2), we shall prove the uniform integrability in probability of min(0, log) for
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(νn−1/αX−z)n≥1
. By Markov’s inequality, it suffices to prove that for some c > 0,

lim
t→∞

lim
n→∞

P

(∫
s−c dνn−1/αX−z(s) > t

)
= 0. (6.4)

Arguing as in the finite variance case, this will in turn follow from two lemmas:

Lemma 6.4 (Lower bound on least singular value). For all d ≥ 0, there ex-
ist constants b, c ≥ 0 which may depend on the law of X11 such that for any
deterministic matrix M ∈ Mn(C), if ‖M‖2 ≤ nd, then for n≫ 1,

P(sn(X +M) ≤ n−b) ≤ c

√
logn

n
.

The next lemma asserts that the i-th smallest singular of the random matrix

n−1/αX +M is at least of order (i/n)
2α/(α+2)

in a weak sense. This bound is
not optimal but turns out to be enough for our purposes.

Lemma 6.5 (Count of small singular values). There exist 0 < γ < 1 and
c0 > 0 such that for all M ∈ Mn(C), there exists an event Fn such that
limn→∞ P(Fn) = 1 and for all n1−γ ≤ i ≤ n− 1 and n≫ 1,

E

[
s−2
n−i(n

−1/αX +M)
∣∣∣ Fn

]
≤ c0

(n
i

) 2
α+1

.

Let us first check that these two lemmas imply (6.4) (and thus statement (ii)
of lemma 4.20). Let us define the event En := Fn ∩ {sn(n−1/αX − z) ≥ n−b}.
Let us define also

En[ · ] := E[ · |En].

Since the probability of En tends to 1, the proof of (6.4) would follow from

lim
n→∞

En

[∫
x−p dνn−1/αX−z(s)

]
<∞.

For simplicity, we write si instead si(n
−1/αX − zI). Since sn ≥ n−b has proba-

bility tending to 1, by lemma 6.5, for all n1−γ ≤ i ≤ n− 1,

En

[
s−2
n−i

]
≤

E

[
s−2
n−i

∣∣∣ Fn

]

P(sn ≥ n−b)
≤ c1

(n
i

) 2
α+1

.

Then, for 0 < p ≤ 2, using Jensen inequality, we find

En

[∫
s−p dνn−1/αX−z(s)

]
=

1

n

⌊n1−γ⌋∑

i=0

En

[
s−p
n−i

]
+

1

n

n−1∑

i=⌊n1−γ⌋+1

En

[
s−p
n−i

]

≤ n−γnpb +
1

n

n−1∑

i=⌊n1−γ⌋+1

En

[
s−2
n−i

] p
2

≤ n−γ+pb +
1

n

n∑

i=1

c−p
1

(n
i

)( 2
α+1)( p

2 )

.



56 C. Bordenave and D. Chafäı

In this last expression we discover a Riemann sum. It is uniformly bounded if
p < γ/b and p < 2α/(α+ 2). The uniform bound (6.4) follows.

Proof of lemma 6.4. The probability that s1(X) ≥ n1+p is upper bounded by
the probability that one of the entries of X is larger that np. From Markov’s
inequality and the union bound, for p large enough, this event has probability
at most 1/n. In particular, s1(X + M) ≤ s1(X) + s1(M) is at most 2nq for
q = max(p, d) with probability at least 1−1/n. The statement is then a corollary
of lemma A.1. Note: a simplified proof in the bounded density case may be
obtained by adapting the proof of lemma 4.12 (see [26]).

Sketch of proof of lemma 6.5. We now comment the proof of lemma 6.5, the
detailed argument is quite technical and is omitted here. It can be found in
extenso in [26]. First, as in the finite variance case, the proof reduces to derive
a good lower bound on

dist2(X1,W ) = 〈X1, PX1〉,

where X1 is the first row of X , and where W is a vector space of co-dimension
n−d ≥ n1−γ (in Rn or Cn) and P is the orthogonal projection on the orthogonal
of W . However, in the finite variance case, dist2(X1,W ) concentrates sharply
around its average: n − d. Here, the situation is quite different, for instance if
W = vect(en−d+1, . . . , en), we have

(n− d)−
2
α dist2(X1,W ) = (n− d)−

2
α

n−d∑

i=1

|X1i|2.

and thus the random variable (n− d)−
2
α dist2(X1,W ) is close in distribution to

a non-negative α/2-stable random variable, say S.
On the other hand, if U is a n× n unitary matrix uniformly distributed on

the unitary group (normalized Haar measure), and if W is the span of the last
d row vectors, then it can be argued than dist2(X1,W ) is close in distribution

to c(n − d)n
2
α−1S. Hence, contrary to the finite variance case, the order of

magnitude of the distance of X1 to the vector spaceW depends on the geometry
of W with respect to the coordinate basis. We have proved some lower bound
on this distance which are universal onW . More precisely, for any 0 < γ < α/4,
there exists c1 > 0, such that for some event Gn with P(Gc

n) ≤ c1n
−(1−2γ)/α,

E
[
dist−2(X1,W )

∣∣ Gn

]
≤ c1(n− d)−

2
α .

The inequality above holds for n− d ≥ n1−γ . Note that we have crucially used
the fact that for all p > 0, ES−p is finite, i.e. the non-negative α/2-stable law is
flat in the neighborhood of 0. Note also that the result implies that the vector
space W = vect(en−d+1, . . . , en) reaches the worst possible order of magnitude,
but unfortunately, the upper bound on the probability of the event Gc

n is not
good enough, and we also have to define the proper event Fn given in lemma 6.5,
and this event Fn satisfies P(F c

n) ≤ c exp(−nδ) for some δ > 0 and c > 0.



Around the circular law 57

6.3. The objective method and the Poisson Weighted Infinite Tree

Local convergence

We now describe our strategy to obtain the convergence of EΓn−1/αX . It is an
instance of the objective method: we prove that our sequence of random matrices
converges locally to a limit random operator. To do this, we first notice that a
n× n complex matrix M can be identified with a bounded operator in

ℓ2(N) = {(xk)k∈N ∈ C
N :
∑

k

|xk|2 <∞}

by setting

Mei =

{∑n
j=1Mjiej if 1 ≤ i ≤ n

0 otherwise.

With an abuse of notation, without further notice, we will identify our ma-
trices with their associated bounded operator in ℓ2(N). The precise notion of
convergence that we will use is the following.

Definition 6.6 (Local convergence). Let D(N) be the set of compactly sup-
ported elements of ℓ2(N). Suppose (An) is a sequence of bounded operators on
ℓ2(N) and suppose that A is a linear operator on ℓ2(N) with domain D(A) =
D(N). For any u, v ∈ N we say that (An, u) converges locally to (A, v), and
write

(An, u) → (A, v)

if there exists a sequence of bijections σn : N → N such that

• σn(v) = u
• for all φ ∈ D(N), limn→∞ σ−1

n Anσnφ = Aφ in ℓ2(N).

With a slight abuse of notation we have used the same symbol σn for the
linear isometry σn : ℓ2(N) → ℓ2(N) induced in the obvious way. Note that the
local convergence is the standard strong convergence of the operator σ−1

n Anσn
to A. This re-indexing of N preserves a distinguished element. It is a local
convergence in the following way, if P (x, y) is a non-commutative polynomial in
C, then the definition implies

〈eu, P (An, A
∗
n)eu〉 → 〈ev, P (A,A∗)ev〉.

We shall apply this definition to random operators An and A on ℓ2(N): to
be precise, in this case we say that (An, u) → (A, v) in distribution if there
exists a random bijection σn as in definition 6.6 such that σ−1

n Anσnφ converges
in distribution to Aφ, for all φ ∈ D(N), where a random vector ψn ∈ ℓ2(N)
converges in distribution to ψ if

lim
n→∞

Ef(ψn) = Ef(ψ)
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for all bounded continuous functions f : ℓ2(N) → R. Finally, we may without
harm replace N by an infinite countable set V . All definitions carry over by
considering any bijection from N to V : namely ℓ2(V ), for v ∈ V , the unit vector
ev, D(V ) and so on.

The Poisson Weighted Infinite Tree (PWIT)

We now define our limit operator on an infinite rooted tree with random edge-
weights, the Poisson weighted infinite tree (PWIT) introduced by Aldous [4],
see also [6].

The PWIT is the random weighted rooted tree defined as follows. The vertex
set of the tree is identified with Nf := ∪k≥1N

k by indexing the root as N0 = ø,
the offsprings of the root asN and, more generally, the offsprings of some v ∈ Nk

as (v1), (v2), . . . ∈ Nk+1 (for short notation, we write (v1) in place of (v, 1)). In
this way the set of v ∈ Nn identifies the nth generation. We then define T as the
tree on Nf with (non-oriented) edges between the offsprings and their parents
(see figure 6).

We denote by Be(1/2) the Bernoulli probability distribution 1
2δ0+

1
2δ1. Also,

recall that by assumption limt→∞ P(X11/|X11| ∈ · | |X11| ≥ t) = θ(·), a prob-
ability measure on the unit circle S1. Now, assign marks to the edges of the
tree T according to a collection {Ξv}v∈Nf of independent realizations of the
Poisson point process with intensity measure (2ℓ) ⊗ θ ⊗ Be(1/2) on R+ ×
S1 × {0, 1}, where ℓ denotes the Lebesgue measure on R+. Namely, starting
from the root ø, let Ξø = {(y1, ω1, ε1), (y2, ω2, ε2), . . . } be ordered in such
a way that we have 0 ≤ y1 ≤ y2 ≤ · · · , and assign the mark (yi, ωi, εi)
to the offspring of the root labeled i. Now, recursively, at each vertex v of

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

o

1 2 3 4

11 12 13

111 112 113 114

ξ1
ξ2

ξ3 ξ4

ξ11 ξ12 ξ13

ξ111
ξ112 ξ113 ξ114

21 22 23

ξ21 ξ22 ξ23

Fig 6. Representation of the PWIT.
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generation k, assign the mark (yvi, ωvi, εvi) to the offspring labeled vi, where
Ξv = {(yv1, ωv1, εv1), (yv2, ωv2, εv2), . . . } satisfy 0 ≤ yv1 ≤ yv2 ≤ · · · . The
Bernoulli mark εvi should be understood as an orientation of the edge {v, vi}:
if εvi = 1, the edge is oriented from vi to v and from v to vi otherwise.

We may define a random operator A on D(Nf ), by, for all v ∈ Nf\{ø},

Aev =
∑

k≥1

(1− εvk)ωvky
−1/α
vk evk + εvωa(v)y

−1/α
v ea(v) (6.5)

where a(v) denotes the ancestor of v, while

Aeø =
∑

k≥1

(1− εk)ωvky
−1/α
k ek.

This defines a proper operator on D(Nf ). Indeed, since {yv1, yv2, . . . } is an
homogeneous Poisson point process of intensity 2 on R+, we have that a.s.
limk→∞ yvk/k = 2. We thus find for v ∈ Nf\{ø}

‖Aev‖22 =
∑

k≥1

(1− εvk)y
−2/α
vk + εa(v)y

−2/α
v <∞,

and similarly with ‖Aeø‖2.
Theorem 6.7 (Local convergence to PWIT). In distribution

(n−1/αX, 1) → (A, ø).

Sketch of proof. We start with some intuition behind theorem 6.7. The presence
of Poisson point processes is an instance of the Poisson behavior of extreme
ordered statistics. If V11 ≥ V12 ≥ · · · ≥ V1n is the ordered statistics of vector
(|X11|, . . . , |X1n|) then, it is well-known that the random variable in the space
of non-increasing infinite sequences

n−1/α(V11, V12, . . . , V1n, 0, . . .)

converges weakly, for the finite dimensional convergence, to
(
x
−1/α
1 , x

−1/α
2 , . . .

)
(6.6)

where x1 ≤ x2 ≤ . . . are the points of an homogeneous Poisson point process
of intensity 1 on R+. As observed by LePage, Woodroofe and Zinn [100], this
fact follows easily from a beautiful representation for the order statistics of
i.i.d. random variables. Namely, if G(u) = P(|X11| > u) is (one minus) the
distribution function of |X11|, then

(V11, . . . , V1n)
d
=
(
G−1(x1/xn+1), . . . , G

−1(xn/xn+1)
)
,

where
∀u ∈ (0, 1), G−1(u) = inf{y > 0 : G(y) ≤ u}.
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To obtain the convergence to (6.6), it remains to note that G−1(u) ∼ u−1/α as
u→ 0, and xn ∼ n a.s. as n→ ∞.

More generally, we may reorder non-increasingly the vector

((X11, X11), (X12, X21), . . . , (X1n, Xn1)),

and find a permutation π ∈ Sn such that
∥∥(X1π(1), Xπ(1)1)

∥∥
2
≥
∥∥(X1π(2), Xπ(2)1)

∥∥
2
≥ · · · ≥

∥∥(X1π(n), Xπ(n)1)
∥∥
2
.

Then, the random variable (in the space of infinite sequences in C2 of non-
increasing norm)

n−1/α
(
(X1π(1), Xπ(1)1), (X1π(2), Xπ(2)1), . . . , (X1π(n), Xπ(n)1), (0, 0), . . .

)

converges weakly, for the finite dimensional convergence, to
(
(ε1w1y

−1/α
1 , (1 − ε1)w1y

−1/α
1 ), (ε2w2y

−1/α
2 , (1− ε2)w2y

−1/α
2 ), . . .

)
. (6.7)

In particular, we may define a bijection σn fromNf to itself such that σn(ø) = 1,
σn(k) = π(k) if k 6= π−1(1), and σn arbitrary otherwise. Then, for this sequence
σn, we may check that n−1/ασ−1

n Xσneø converges weakly to Aeø in ℓ2(Nf ).
This is not good enough since we aim at the convergence for all φ ∈ D(Nf ),

not only eø. In particular, the above argument does not explain the presence of
a tree in the limit operator. Note however that from what precedes, only the
entries such that |Xij | ≥ δn1/α will matter for the operator convergence (for
some small δ > 0). By assumption,

P(|Xij | ≥ δn1/α) =
c

n
,

where c = c(n) ∼ δ−1/α. In other words, if we define G as the oriented graph on
{1, . . . , n} such that the oriented edge (i, j) is present if |Xij | ≥ δn1/α then G
is an oriented Erdős-Rényi graph (each oriented edge is present independently
of the other and with equal probability). An elementary computation shows
that the expected number of oriented cycles in G containing 1 and of length
k is equivalent to ck/n. This implies that there is no short cycles in G around
a typical vertex. At a heuristic level, this locally tree-like structure of random
graphs explains the presence of the infinite tree T in the limit.

We are not going to give the full proof of theorem 6.7. For details, we refer
to [25, 26]. We will describe only strategy. Namely, for integer m, we define

Jm = ∪m
k=0{1, . . . ,m}k ⊂ N

f

and we consider the matrix A|m obtained as the projection of the random oper-
ator A on Jm. We prove that for all integer m, there exists an injection πm from
Jm to {1, . . . , n} such that πm(ø) = 1 and the projection of n−1/αX on πm(Jm)
converges weakly to A|m. The conclusion of theorem 6.7 follows by extracting a
sequence mn → ∞ such that the latter holds.
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To construct such injection πm, we explore the entries of X : we first con-
sider the m largest entries of the vector in (C2)m, ((X12, X21), . . . , (X1n, Xn1)),
whose indices are denoted by i1, . . . , im. We then look at the m-largest entries of
((Xi1j , Xji1))j 6=(1,i1,...,ik)

, whose indices are i1,1, . . . , i1,m. We repeat this proce-

dure iteratively until we have discovered |Jm| indices, and we define the injection
πm as πm(v) = iv. The fact that the restriction of n−1/αX to (iv)v∈Jm converges
weakly to A|m can be proved by developing the ideas presented above.

Continuity of quaternionic resolvent for local convergence

Note that theorem 6.7 will have a potential interest for us, only if we know
how to link the local convergence of definition 6.6 to the convergence of the
quaternionic resolvent introduced in section 4.6.

Recall that an operator B on a dense domain D(B) is Hermitian if for all
x, y ∈ D(B), 〈x,By〉 = 〈Bx, y〉. This operator will be essentially self-adjoint if
there is a unique self-adjoint operator B1 on D(B1) ⊃ D(B) such that for all
x ∈ D(B), B1x = Bx (i.e. B1 is an extension of B).

Lemma 6.8 (From local convergence to resolvents). Assume that (An) and A
satisfy the conditions of definition 6.6 and (An, u) → (A, v) for some u, v ∈ N.
If the bipartized operator B of A is essentially self-adjoint, then, for all q ∈ H+,

RAn(q)uu → RA(q)vv .

Proof. Fix z ∈ C and let Bn(z) = Bn − q(z, 0)⊗ I, where Bn is bipartized op-
erator of An. By construction, for all φ ∈ D(B) = D(N×Z/2Z), σ−1

n Bn(z)σnφ
converges to B(z)φ (this is the strong operator convergence). The proof is then
a direct consequence of [120, Theorem VIII.25(a)]: in this framework, the strong
operator convergence implies the strong resolvent convergence. Namely, for all
φ, ψ ∈ D(B) and η ∈ C+,

〈φ, (σ−1
n Bn(z)σn − ηI)−1ψ〉 → 〈φ, (B(z) − ηI)−1ψ〉.

We conclude by applying this to φ, ψ ∈ {ev, ev̂}.
Remark 6.9 (A non-self-adjoint Hermitian operator). A key assumption in the
above lemma is the essential self-adjointness of the bipartized limit operator.
A local limit of Hermitian matrices will necessary be Hermitian. It may not
however be always the case that the limit is essentially self-adjoint. Since any
bounded Hermitian operator is essentially self-adjoint, we should look for an
unbounded operator. Let (ak)k∈N be a sequence onR+. Let us define an operator
B on D(N) by setting Be1 = a1e2, and for any k ≥ 2,

Bek = akek+1 + ak−1ek−1.

In matrix form, B is a tridiagonal symmetric infinite matrix. The work of Stielt-
jes [140] implies that B will be essentially self-adjoint if and only if

lim
n→∞

∑

k≥n

a−1
k = ∞.
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6.4. Skeleton of the main proofs

All ingredients have finally been gathered. The skeleton of proof of theorems 6.2,
6.3 and the characterization of µα and να,z is as follows:

1. By lemma 4.21, for all q ∈ H+, a.s., in norm,

Γn−1/αX(q)− EΓn−1/αX(q) → 0

2. Since X has exchangeable rows, for all q ∈ H+,

EΓn−1/αX(q) = ERn−1/αX(q)11

3. We prove in section 6.5 that the bipartized operator B of the random
operator A of section 6.3 is a.s. essentially self-adjoint

4. It follows by theorem 6.7 and lemma 6.8,

lim
n→∞

EΓn−1/αX(q) = ERA(q)øø =

(
a(q) b(q)
b̄(q) a(q)

)

5. By lemma 4.19, a.s. νn−1/αX−z  να,z as n → ∞, where να,z is the
probability measure on R characterized by the equation

mν̌α,z (η) = a(q)

6. We know from section 6.2 that statement (ii) of lemma 4.20 holds for
n−1/αX in probability. Then, in probability, µn−1/αX  µα as n → ∞,
where µα is characterized by, in D′(C),

µα = − 1

π
lim

q(z,it):t↓0
∂b(q)

7. We analyze RA(q)øø in section 6.5 to obtain the properties of να,z , µα.
8. Finally, when X12 has a bounded density we improve the convergence to

almost sure (in section 6.6).

6.5. Analysis of the limit operator

This section is devoted to items 3 and 7 which appear above in the skeleton of
proof of theorems 6.2 and 6.3.

Self-adjointness

Here we check the self-adjointness of the bipartized operator B of A.

Proposition 6.10 (Self-adjointness of bipartized operator on PWIT). Let A
be the random operator defined by (6.5). With probability one, the bipartized
operator B of A is essentially self-adjoint.
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Proposition 6.10 relies on the following self-adjointness criterion from [26].

Lemma 6.11 (Criterion of self-adjointness of the bipartized operator). Let
κ > 0 and T = (V,E) be an infinite tree on Nf and (wuv, wvu){v,u}∈E be a
collection of pairs of weight in C such that for all u ∈ V ,

∑

v:{u,v}∈E

|wuv|2 + |wvu|2 <∞.

Define the operator on D(V ) as

Aeu =
∑

v:{u,v}∈E

wvuev.

Assume also that there exists a sequence of connected finite subsets (Sn)n≥1 in
V , such that Sn ⊂ Sn+1, ∪nSn = V , and for every n and v ∈ Sn,

∑

u/∈Sn:{u,v}∈E

(
|wuv|2 + |wvu|2

)
≤ κ.

Then the bipartized operator B of A is essentially self-adjoint.

We will use a simple lemma on Poisson processes (see [25, Lemma A.4]).

Lemma 6.12 (Poisson process tail). Let κ > 0 and let 0 < α < 2 and let
0 < x1 < x2 < · · · be a Poisson process of intensity 1 on R+. If we define

τ := inf

{
t ∈ N :

∞∑

k=t+1

x
−2/α
k ≤ κ

}

then Eτ is finite and goes to 0 as κ goes to infinity.

Proof of proposition 6.10. For κ > 0 and v ∈ Nf , we define

τv = inf{t ≥ 0 :

∞∑

k=t+1

|yvk|−2/α ≤ κ}.

The variables (τv) are i.i.d. and by lemma 6.12, there exists κ > 0 such that
Eτv < 1. We fix such κ. Now, we put a green color to all vertices v such
that τv ≥ 1 and a red color otherwise. We consider an exploration procedure
starting from the root which stops at red vertices and goes on at green vertices.
More formally, define the sub-forest T g of T where we put an edge between v
and vk if v is a green vertex and 1 ≤ k ≤ τv. Then, if the root ø is red, we set
S1 = Cg(T ) = {ø}. Otherwise, the root is green, and we consider T g

ø = (V g
ø , E

g
ø )

the subtree of T g that contains the root. It is a Galton-Watson tree with offspring
distribution τø. Thanks to our choice of κ, T

g
ø is almost surely finite. Consider Lg

ø

the leaves of this tree (i.e. the set of vertices v in V g
ø such that for all 1 ≤ k ≤ τv,

vk is red). The following set satisfies the condition of Lemma 6.11:

S1 = V g
ø

⋃

v∈Lg
ø

{1 ≤ k ≤ τv : vk}.
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We define the outer boundary of {ø} as

∂τ{ø} = {1, . . . , τø}

and for v = (i1, . . . , ik) ∈ Nf\{ø} we set

∂τ{v} = {(i1, . . . , ik−1, ik + 1)} ∪ {(i1, . . . , ik, 1), . . . , (i1, . . . , ik, τv)}.

For a connected set S, its outer boundary is

∂τS =

(
⋃

v∈S

∂τ{v}
)
\S.

Now, for each vertex u1, . . . , uk ∈ ∂τS1, we repeat the above procedure to the
rooted subtrees Tu1 , . . . , Tuk

. We set

S2 = S1

⋃
∪1≤i≤kC

b(Tui).

Iteratively, we may thus almost surely define an increasing connected sequence
(Sn) of vertices with the properties required for lemma 6.11.

Computation of resolvent

As explained in section 6.4, the properties of the measures µα and να,z can
be deduced from the analysis of the limit resolvent operator. Resolvent are
notoriously easy to compute on trees. More precisely, let T = (V,E) be a tree
and A,B be as in lemma 6.11 and let ø ∈ V be a distinguished vertex of V
(in graph language, we root the tree T at ø). For each v ∈ V \{ø}, we define
Vv ⊂ V as the set of vertices whose unique path to the root ø contains v. We
define Tv = (Vv, Ev) as the subtree of T spanned by Vv. We may consider Av,
the projection of A on Vv, and Bv the bipartized operator of Av. Finally, we
note that if B is self-adjoint then so is Bv(z) for every z ∈ C. The next lemma
is an operator analog of the Schur inversion by block formula (4.12).

Lemma 6.13 (Resolvent on a tree). Let A,B be as in lemma 6.11. If B is
self-adjoint then for any q = q(z, η) ∈ H+,

RA(q)øø = −
(
q +

∑

v∼ø

(
0 wøv

wvø 0

)
R̃A(q)vv

(
0 wvø

wøv 0

))−1

,

where
R̃A(q)vv := ΠvRBv (q)Π

∗
v

where RBv (q) = (Bv(z)− η)−1 is the resolvent operator of Bv.

We come back to our random operator A defined on the PWIT and its quater-
nionic resolvent RA(q). We analyze the random variable

RA(q)øø :=

(
a(z, η) b(z, η)
b′(z, η) c(z, η)

)
.
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The random variables a(z, η) solves a nice recursive distribution equation (RDE).
This type of recursion equation is typical of combinatorial observable defined
on random rooted trees. More precisely, we define the measure on R+,

Λα =
α

2
x−

α
2 −1dx.

Lemma 6.14 (Recursive distribution equation). For all q = q(z, η) ∈ H+, if Lq

is the distribution on C+ of a(z, η) then Lq solves the equation in distribution:

a
d
=

η +
∑

k≥1 ξkak

|z|2 −
(
η +

∑
k≥1 ξkak

)(
η +

∑
k≥1 ξ

′
ka

′
k

) , (6.8)

where a, (ak)k∈N and (a′k)k∈N are i.i.d. with law Lq independent of {ξk}k∈N,
{ξ′k}k∈N two independent Poisson point processes on R+ with intensity Λα.

Moreover, with the same notation,

b
d
=

−z
|z|2 −

(
η +

∑
k≥1 ξkak

)(
η +

∑
k≥1 ξ

′
ka

′
k

) . (6.9)

Proof. This is sa simple consequence of lemma 6.13. Indeed, for k ∈ N, we define
Tk as the subtree of T spanned by kNf . With the notation of lemma 6.13, for
k ∈ N, RBk

(q) = (Bk(z)− η)−1 is the resolvent operator of Bk and set

R̃A(q)kk = ΠkRBk
(q)Π∗

k =

(
ak bk
b′k ck

)
.

Then, by lemma 6.13, we get

R(q)øø = −


q +

∑

k≥1

(
0 εkwky

−1/α
k

(1− εk)wky
−1/α
k 0

)(
ak bk
b′k ck

)

×
(

0 (1 − εk)wky
−1/α
k

εkwky
−1/α
k 0

))−1

= −
(
U +

(∑
k(1− εk)y

−2/α
k ck 0

0
∑

k εky
−2/α
k ak

))−1

= D−1

(
η +

∑
k εky

−2/α
k ak −z

−z̄ η +
∑

k(1 − εk)y
−2/α
k ck

)
,

with

D := |z|2 −


η +

∑

k≥1

εky
−2/α
k ak




η +

∑

k≥1

(1− εk)y
−2/α
k ck


.
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Now the structure of the PWIT implies that

(j) ak and ck have common distribution Lq

(jj) the variables (ak, ck)k∈N are i.i.d.

Also the thinning property of Poisson point processes implies that

(jjj) {εky−2/α
k }k∈N and {(1−εk)y−2/α

k }k∈N are independent Poisson point pro-
cess with common intensity Λα.

Even if (6.8) looks complicated at first sight, for η = it, it is possible to solve
it explicitly. First, for t ∈ R+, a(z, it) is pure imaginary and we set

h(z, t) = Im(a(z, it)) = −ia(z, it) ∈ (0, t−1].

The crucial ingredient, is a well-known and beautiful lemma. It can be derived
form a representation of stable laws, see e.g. LePage, Woodroofe, and Zinn [100]
and also Panchenko and Talagrand [116, Lemma 2.1].

Lemma 6.15 (Poisson-stable magic formula). Let {ξk}k∈N be a Poisson process
with intensity Λα. If (Yk) is an i.i.d. sequence of non-negative random variables,

independent of {ξk}k∈N, such that E[Y
α
2

1 ] <∞ then

∑

k∈N

ξkYk
d
= E[Y

α
2

1 ]
2
α

∑

k∈N

ξk
d
= E[Y

α
2

1 ]
2
αS,

where S is the positive α
2 -stable random variable with Laplace transform for all

x ≥ 0,

E exp(−xS) = exp
(
−Γ
(
1− α

2

)
x

α
2

)
. (6.10)

Proof of lemma 6.15. Recall the formulas, for y ≥ 0,






y−η = Γ(η)−1

∫ ∞

0

xη−1e−xy dx for η > 0,

yη = Γ(1− η)−1η

∫ ∞

0

x−η−1(1− e−xy dx for 0 < η < 1.
(6.11)

From the Lévy-Khinchin formula we deduce that, with s ≥ 0,

E exp

(
−s
∑

k

ξkYk

)
= exp

(
E

∫ ∞

0

(e−xsY1 − 1)βx−
α
2 −1dx

)

= exp
(
−Γ
(
1− α

2

)
s

α
2 E[Y

α
2

1 ]
)
.

Hence, by lemma 6.15, we may rewrite (6.8) as

h
d
=

t+ yS

|z|2 + (t+ yS)(t+ yS′)
, (6.12)
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where S and S′ are i.i.d. random variables with common Laplace transform
given by (6.10), and where the function y = y(|z|2, t) = E[hα/2]2/α is the unique
solution of the equation in y:

1 = E

(
ty−1 + S

|z|2 + (t+ yS)(t+ yS′)

)α
2

.

(since the left hand side is decreasing in y, the solution is unique). In the above
equations, it is also possible to consider the limits as t ↓ 0.

As explained in section 6.4, this implies that, in D′(C), µα is equal to

− 1

π
lim
t↓0

Eb(·, it).

Using (6.9), we find after a computation that the density gα of µα at z is

1

π

(
y2∗(|z|2)− 2|z|2y∗(|z|2)y′∗(|z|2)

)
E

SS′

(|z|2 + y2∗(|z|2)SS′)2

where y∗(r) = y(r) is the unique solution

1 = E

(
S

r + y2SS′

)α
2

.

After more computations, it is even possible to study the regularity of y∗, find
the explicit solution at 0, and an asymptotic equivalent as r → ∞. All these
results can then be translated into properties of µα. We will not pursue here
these computation which are done in [26]. We may simply point out that µα

converges weakly to the circular law as α → 2, is a consequence of the fact that
the non-negative α/2-stable random variable S/Γ(1 − α/2)2/α converges to a
Dirac mass as α → 2 (see (6.10)).

6.6. Improvement to almost sure convergence

Let να,z be as in theorem 6.3. In order to improve the convergence to a.s., it is
sufficient to prove that for all z ∈ C, a.s.

lim
n→∞

Uµ
n−1/αX

(z) = L where L := −
∫ ∞

0

log(s) dνα,z(s).

We have already proved that this convergence holds in probability. It is thus
sufficient to prove that there exists a deterministic sequence Ln such that a.s.

lim
n→∞

(
Uµ

n−1/αX
(z)− Ln

)
= 0. (6.13)

Now, thanks to the bounded density assumption and remark 4.17, one may use
lemma 4.12 for the matrix X − n1/αzI in order to show that that there exists
a number b > 0 such that a.s. for n≫ 1,

sn(n
−1/αX − zI) ≥ n−b.
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Similarly, up to an increase of b if needed, we also get from (6.2) that a.s. for
n≫ 1,

s1(n
−1/αX − zI) ≤ nb.

Now, we consider the function

fn(x) = 1{n−b≤|x|≤nb} log(x).

From what precedes, a.s. for n≫ 1,

Uµ
n−1/αX

(z) = −
∫ ∞

0

log(s) dνn−1/αX−zI(s) = −
∫ ∞

0

fn(s) dνn−1/αX−zI(s).

(6.14)
The total variation of fn is bounded by c logn for some c > 0. Hence by lemma
4.18, if

Ln := E

∫
fn(s) dνn−1/αX−zI(s),

then we have,

P

(∣∣∣∣
∫
fn(s) dνn−1/αX−zI(s)− Ln

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2

nt2

(c logn)2

)
.

In particular, from the first Borel-Cantelli lemma, a.s.,

lim
n→∞

(∫
fn(s) dνn−1/αX−zI(s)− Ln

)
= 0.

Finally, using (6.14), we deduce that (6.13) holds almost surely.

7. Open problems

We list in this section some open problems related to the circular law theorem.

Universality of Gaussian Ensembles

The universality dogma states that if a real or complex functional of X is enough
symmetric and depend on enough entries then it is likely that this functional
behaves asymptotically (n → ∞) like in the Gaussian case (Ginibre Ensemble
here) as soon as the first moments of X11 match the first moments of the Gaus-
sian (depends on the functional). This can be understood as a sort of non-linear
central limit theorem, and this actually boils down in many cases to some ver-
sion of the central limit theorem such as the Lindeberg principle for instance.
Among interesting functionals, we find for instance the following:

• Spectral radius (Gumbel fluctuations for the Complex Ginibre Ensemble);
• argument of λ1(X) (uniform on [0, 2π] for the Complex Ginibre Ensemble);
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• Law of λn(n
−1/2X) (see [49, Chapter 15] for the Complex Ginibre Ensem-

ble). Note that the square of the smallest singular value sn(n
−1/2G)2 of

the Complex Ginibre Ensemble follows an exponential law [40] and this
result is asymptotically universal [148];

• Gap probabilities and Voronöı cells (see [3, 62] for the Ginibre Ensemble);
• Linear statistics of µX (for some results, see [123, 124, 27, 122]);
• Empirical distribution of the real eigenvalues of n−1/2X when X11 is real
(tends to uniform law on [−1, 1] for the Real Ginibre Ensemble);

• Unitary matrix in the polar decomposition (Haar unitary for the Complex
Ginibre). This is connected to R-diagonal elements of free probability [75];

• If X11 has infinite fourth moment then the eigenvalues of largest modulus
blow up and are asymptotically independent (Poisson statistics);

• A large deviations principle for µX at speed n2 which includes as a special
case the one obtained for the Complex Ginibre Ensemble by Hiai and Petz
[118] (see also Ben Arous and Zeitouni [17]) and references therein. The
analogous question for Hermitian models (Wigner and GUE) is also open.
The answer depends on the scale, the class of deviations, and the topology.

One may group some functionals by seeing the spectrum as a point process.
It is also possible to consider universality beyond i.i.d. entries models. For

instance, if X has exchangeable entries as a random vector of Cn2

and if X
satisfies to suitable mean-variance normalizations, then we expect that EµX

tends to the circular law due to a Lindeberg type phenomenon, see [34] for the

Hermitian case (Wigner). Similarly, if X , as a random vector of Cn2

, is log-
concave (see footnote 23) and isotropic (i.e. its covariance matrix is identity)
then we expect that EµX tends to the circular law, see [1] for i.i.d. log-concave
rows. Since the indicator of a convex set is a log-concave measure, one may
think about the Birkhoff polytope formed by doubly stochastic matrices (convex
envelope of permutation matrices) and ask if the circular law holds for random
uniform doubly stochastic matrices, see [32] and [35].

Variance profile

We may consider the matrix Y defined as Yij = Xijσ(i/N, j/N) where σ :
[0, 1]2 → [0, 1] is a measurable function. The measure µn−1/2Y should con-
verge a.s. to a limit probability measure µσ on C. For finite variance Hermitian
matrices, this question has been settled by Khorunzhy, Khoruzhenko, Pastur
and Shcherbina [95], for heavy tailed Hermitian matrices, by Belinschi, Dembo,
Guionnet [15]. Girko has also results on the singular values of random matrices
with variance profile.

Elliptic laws

We add some dependence in the array (Xij)i,j≥1: we consider an infinite ar-
ray (Xij , Xji)1≤i<j≤n of i.i.d. pairs of complex random variables, independent
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of (Xii)i≥1 an i.i.d. sequence of random variables. Assume that Var(X12) =
Var(X21) = 1 and Cor(X12, X21) = t ∈ {z ∈ C : |z| ≤ 1}. There is a conjec-
tured universal limit for µn−1/2X computed by Girko [55], called the elliptic law.
This model interpolates between Hermitian and non-Hermitian random matri-
ces. When X =

√
(1 + τ)/2H1 + i

√
(1− τ)/2H2, with 0 ≤ τ ≤ 1 and H1, H2

two independent GUE, this model has been carefully analyzed by Bender in
[19], see also Ledoux [99] and Johansson [90].

Oriented r-regular graphs and Kesten-McKay measure

Random oriented graphs are host of many open problems. For example, for
integers n ≥ r ≥ 3, an oriented r-regular graph is a graph on n vertices such
that all vertices have r incoming and r outgoing oriented edges. Consider the
adjacency matrix A of a random oriented r-regular graph sampled from the
uniform measure25. It is conjectured that as n→ ∞, a.s. µA converges to

1

π

r2(r − 1)

(r2 − |z|2)2 1{|z|<√
r} dxdy.

It turns out that this probability measure is also the Brown measure of the
free sum of r unitary, see Haagerup and Larsen [75]. The Hermitian (actually
symmetric) version of this measure is known as the Kesten-McKay distribution
for random non-oriented r-regular graphs, see [94, 110]. We recover the circular
law when r → ∞ up to renormalization.

Invertibility of random matrices

The invertibility of random matrices is one of the keys behind the circular law
theorem 2.2. Let us consider the case wereX11 is Bernoulli

1
2 (δ−1+δ1). A famous

conjecture by Spielman and Teng (related to their work on smoothed analysis
of algorithms [139, 138]) states that there exists a constant 0 < c < 1 such that

P(
√
n sn(X) ≤ t) ≤ t+ cn

for n ≫ 1 and any small enough t ≥ 0. This was almost solved by Rudelson
and Vershynin [127] and Tao and Vu [148]. In particular, taking t = 0 gives
P(sn(X) = 0) = cn. This positive probability of being singular does not con-
tradict the asymptotic invertibility since by the first Borel-Cantelli lemma, a.s.
sn(X) > 0 for n≫ 1. Regarding the constant c, it has been conjectured that

P(sn(X) = 0) =

(
1

2
+ o(1)

)n

.

This intuition comes from the probability of equality of two rows, which im-
plies that P(sn(X) = 0) ≥ (1/2)n. Many authors contributed to the analysis
of this difficult nonlinear discrete problem, starting from Komlós, Kahn, and
Szemerédi. The best result to date is due to Bourgain, Vu, and Wood [29] who

proved that P(sn(X) = 0) ≤
(
1/

√
2 + o(1)

)n
.

25There exists suitable simulation algorithms using matchings of half edges.



Around the circular law 71

Roots of random polynomials

The random matrix X has i.i.d. entries and its eigenvalues are the roots of its
characteristic polynomial. The coefficients of this random polynomial are nei-
ther independent nor identically distributed. Beyond random matrices, let us
consider a random polynomial P (z) = a0+a1z+ · · ·+anzn where a0, . . . , an are
independent random variables. By analogy with random matrices, one may ask
about the behavior as n → ∞ of the roots λ1(P ), . . . , λn(P ) of P in C and in
particular the behavior of their empirical measure 1

n

∑n
i=1 δλi(P ). The literature

on this subject is quite rich and takes its roots in the works of Littlewood and
Offord, Rice, and Kac. We refer to Shub and Smale [135], Azäıs and Wschebor
[9], and Edelman and Kostlan [42, 43] for (partial) reviews. As for random ma-
trices, the case where the coefficients are real is more subtle due to the presence
of real roots. Regarding the complex case, the zeros of Gaussian analytic func-
tions is the subject of a recent monograph [83] in connection with determinantal
processes. Various cases are considered in the literature, including the following:

• Kac polynomials, for which (ai)0≤i≤n are i.i.d.
• Weyl polynomials, for which ai =

1√
i!
bi for all i and (bi)0≤i≤n are i.i.d.

Geometrically, the complex number z is a root of P if and only if the vectors
(1, z, . . . , zn) and (a0, a1, . . . , an) are orthogonal in Cn+1, and this connects the
problem to Littlewood-Offord type problems [101] and small balls probabilities.
Regarding Kac polynomials, Kac [92, 91] has shown in the real Gaussian case
that the asymptotic number of real roots is about 2

π log(n) as n → ∞. Kac
obtained the same result when the coefficients are uniformly distributed [93].
Hammersley [77] derived an explicit formula for the k-point correlation of the
roots of Kac polynomials. The real roots of Kac polynomials were extensively
studied by Maslova [108, 107], Ibragimov and Maslova [85, 87, 88, 86], Logan
and Shepp [103, 104], and by Shepp and Farahmand [131]. Shparo and Shur [134]
have shown that the empirical measure of the roots of Kac polynomials with
light tailed coefficients tends as n → ∞ to the uniform law one the unit circle
{z ∈ C : |z| = 1} (the arc law). Further results were obtained by Shepp and
Vanderbei [132], Zeitouni and Zelditch [156], Shiffman and Zelditch [133], and by
Bloom and Shiffman [21]. If the coefficients are heavy tailed then the limiting
law concentrates on the union of two centered circles, see [68] and references
therein. Regarding Weyl polynomials, various simulations and conjectures have
been made [52, 45]. For instance, if (bi)0≤i≤n are i.i.d. standard Gaussian, it was
conjectured that the asymptotic behavior of the roots of the Weyl polynomials
is analogous to the Ginibre Ensemble. Namely, the empirical distribution of the
roots tends as n → ∞ to the uniform law on the centered disc of the complex
plane (circular law), and moreover, in the real Gaussian case, there are about
2
π

√
n real roots as n → ∞ and their empirical distribution tends as n → ∞

to a uniform law on an interval, as for the real Ginibre Ensemble, see Remark
3.8. The complex Gaussian case was considered by Leboeuf [97] and by Peres
and Virág [117], while the real roots of the real Gaussian case were studied by
Schehr and Majumdar [130]. Beyond the Gaussian case, one may try to use the
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companion matrix26 of P and the logarithmic potential approach. Numerical
simulations reveal strange phenomena depending on the law of the coefficients
but we ignore it they are purely numerical. Note that if the coefficients are all
real positive then the roots cannot be real positive. The heavy tailed case is also
of interest and gives rise maybe to distributions on rings.

Appendix A: Invertibility of certain random matrices

This appendix is devoted to the proof of a general statement (lemma A.1 be-
low) on the smallest singular value of random matrix models with independent
entries. It follows form lemma A.1 below that if X = (Xij)1≤i,j≤n is a ran-

dom matrix with i.i.d. entries such as X11 is not constant and E(|X11|κ) < ∞
for some arbitrarily small real number κ > 0, then for any γ > 0 there exists
are real number β > 0 such that for any n ≫ 1 and any deterministic matrix
M ∈ Mn(C) with s1(M) ≤ nγ ,

lim
n→∞

P(sn(X +M) ≤ n−β) = 0.

Both the assumptions and the conclusion are strictly weaker than the result of
Tao and Vu. It is enough for the proof of the circular law in probability and its
heavy tailed analogue.

Lemma A.1 (Smallest singular value of random matrices with independent
entries). If (Xij)1≤i,j≤n is a random matrix with independent and non-constant
entries in C and if a > 0 is a positive real number such that

b := min
1≤i,j≤n

P(|Xij | ≤ a) > 0 and σ2 := min
1≤i,j≤n

Var
(
Xij1{|Xij |≤a}

)
> 0,

then there exists c = c(a, b, σ) > 1 such that for any M ∈ Mn(C), n ≥ c, s ≥ 1,
0 < t ≤ 1,

P

(
sn(X +M) ≤ t√

n
; s1(X +M) ≤ s

)
≤ c
√
log(cs)

(
ts2 +

1√
n

)
.

The proof of lemma A.1 follows mainly from [102, 127]. These works have
already been used in the proof of the circular law, notably in [66]. As we shall
see, the term 1/

√
n comes from the rate in the Berry-Esseen Theorem. Following

[102], it could probably be improved by using finer results on the Littlewood-
Offord problem [147]. Note however, that lemma A.1 is sufficient for proving
convergence in probability of spectral measures.

We emphasize that there is not any moments assumption on the entries in
lemma A.1. However, (weak) moments assumptions may be used in order to
obtain an upper bound on the quantity P(s1(X +M) ≥ s). Also, the variance
(of the truncated variables) σ may depend on n: this allows to deal with sparse
matrix models (not considered here).

26The companion matrix M of Q(z) := c0 + c1z+ · · ·+ cn−1zn−1 + zn is the n×n matrix
with null entries except Mi,i+1 = 1 and Mn,i = ci−1 for every i. We have det(M−zI) = Q(z).
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For the proof of the circular law and its heavy tailed analogue, lemma A.1 can
be used typically with t = 1/(s2

√
n) and s = nr large enough such that with high

probability s1(X +M) ≤ s. In contrast with the Tao and Vu result, lemma A.1
cannot provide a summable bound usable with the first Borel-Cantelli lemma
due to the presence of 1/

√
n.

Let us give the idea behind the proof of lemma A.1. A geometric intuition
says that the smallest singular value of a random matrix can be controlled by
the minimum of the distances of each row to the span of the remaining rows. The
distance of a vector to a subspace can be controlled with the scalar product of
the vector with a unit norm vector belonging to the orthocomplement of the sub-
space. Also, when the entries of the matrix are independent, this boils down by
conditioning to the control of a small ball probability involving a linear combi-
nation of independent random variables. The coefficients in this combination are
the components of the orthogonal vector. The asymptotic behavior of this small
ball probability depends in turn on the structure of these coefficients. When the
coefficients are well spread, we expect an asymptotic Gaussian behavior thanks
to the central limit theorem, more precisely its quantitative weighted version
called the Berry-Esseen theorem. We will follow this scheme while keeping the
geometric picture in mind.

The proof of lemma A.1 is divided into two parts which correspond to a sub-
division of the unit sphere Sn−1 of Cn. Namely, for some real positive parameters
δ, ρ > 0 that will be fixed later, we define the set of sparse vectors

Sparse := {x ∈ C
n : card(supp(x)) ≤ δn}

and we split the unit sphere Sn−1 into a set of compressible vectors and the
complementary set of incompressible vectors as follows:

Comp := {x ∈ S
n−1 : dist(x, Sparse) ≤ ρ} and Incomp := S

n−1 \ Comp.

We will use the variational formula, for A ∈ Mn(C),

sn(A) = min
x∈Sn−1

‖Ax‖2 = min

(
min

x∈Comp
‖Ax‖2, min

x∈Incomp
‖Ax‖2

)
. (A.1)

Compressible vectors

Our treatment of compressible vectors differs significantly from [102, 127] (it
gives however a weaker statement). We start with a variation of lemma 4.13.

Lemma A.2 (Distance of a random vector to a small subspace). There exist
ε, c, δ0 > 0 such that for all n ≫ 1, all 1 ≤ i ≤ n, any deterministic vector
v ∈ Cn and any subspace H of Cn with 1 ≤ dim(H) ≤ δ0n, we have, denoting
C := (X1i, . . . , Xni) + v,

P
(
dist(C,H) ≤ εσ

√
n
)
≤ c exp(−cσ2n).
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Proof. First, from Hoeffding’s deviation inequality,

P

(
n∑

k=1

1{|Xki|≤a} ≤ nb

2

)
≤ exp

(
−nb

2

2

)
.

It is thus sufficient to prove the result by conditioning on

Em := {|X1i| ≤ a, . . . , |Xmi| ≤ a} with m := ⌈nb/2⌉.
Let Em[ · ] := E[ · |Em;Fm] denote the conditional expectation given Em and the
filtration Fm generated by Xm+1,i, . . . , Xn,i. Let W be the subspace spanned
by H , v, and the vectors u := (0, . . . , 0, Xm+1,i, . . . , Xn,i) and

w :=
(
E
[
X1i

∣∣ |X1i| ≤ a
]
, . . . ,E

[
Xmi

∣∣ |Xmi| ≤ a
]
, 0, . . . , 0

)
.

By construction dim(W ) ≤ dim(H)+ 3 and W is Fm-measurable. We note also
that

dist(C,H) ≥ dist(C,W ) = dist(Y,W ),

where

Y :=
(
X1i − E

[
X1i

∣∣ |X1i| ≤ a
]
, . . . , Xmi − E

[
Xmi

∣∣ |Xmi| ≤ a
]
, 0, . . . , 0

)

= C − u− v − w.

By assumption, for 1 ≤ k ≤ m,

EmYk = 0 and Em|Yk|2 ≥ σ2.

Let D = {z : |z| ≤ a}. We define the function f : Dm → R+ by

f(x) = dist((x1, . . . , xm, 0, . . . , 0),W ).

This function is convex and 1-Lipschitz, and by Talagrand’s inequality,

Pm(|dist(Y,W )−Mm| ≥ t) ≤ 4 exp

(
− t2

16a2

)
,

where Mm is the median of f under Pm. In particular,

Mm ≥
√
Emdist2(Y,W )− ca.

Also, if P denotes the orthogonal projection on the orthogonal of W , we find

Emdist2(Y,W ) =

m∑

k=1

Em|Yk|2Pkk

≥ σ2

(
n∑

k=1

Pkk −
n∑

k=m+1

Pkk

)

≥ σ2(n− dim(H)− 3− (n−m))

≥ σ2

(
nb

2
− dim(H)− 3

)
.

The latter, for n large enough, is lower bounded by cσ2n if δ0 = b/4.
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Let 0 < ε < 1 and s ≥ 1 be as in lemma A.2. We set from now on

ρ =
1

4
min(1,

εσ

s
√
δ
),

(in particular, ρ ≤ 1/4). The parameter 0 < δ < 1 is still to be specified: at this
stage, we simply assume that δ < δ0. We note that if A ∈ Mn(C) and y ∈ Cn

is such that supp(y) ⊂ π ⊂ {1, . . . , n}, then we have

‖Ay‖2 ≥ ‖y‖2sn(A|π),

where A|π ∈ Mn,|π| is formed by the columns of A selected by π. We deduce

min
x∈Comp

‖Ax‖2 ≥ 3

4
min

π⊂{1,...,n}:|π|=⌊δn⌋
sn(A|π)− ρs1(A). (A.2)

However, by Pythagoras theorem, for any x ∈ C|π|,

∥∥A|πx
∥∥2
2
=

∥∥∥∥∥
∑

i∈π

xiCi

∥∥∥∥∥

2

2

≥ max
i∈π

|xi|2dist2(Ci, Hi) ≥ min
i∈π

dist2(Ci, Hi)
1

|π|
∑

i∈π

|xi|2

where Ci is the i-th column of A and

Hi := span{Cj : j ∈ π, j 6= i}.
In particular,

sn(A|π) ≥ min
i∈π

dist(Ci, Hi)/
√
|π|.

Now, we apply this bound to A = X +M . Since Hi has dimension at most nδ
and is independent of Ci, by lemma A.2, the event that,

min
i∈π

dist(Ci, Hi) ≥ εσ
√
n,

has probability at least 1− cnδ exp(−cσ2n) for n≫ 1. Hence

P

(
sn((X +M)|π) ≤

εσ√
δ

)
≤ cnδ exp(−cσ2n).

Therefore, using the union bound and our choice of ρ, we deduce from (A.2)

P

(
min

x∈Comp
‖(X +M)x‖2 ≤ εσ

2
√
δ
; s1(X +M) ≤ s

)
≤ c

(
n

⌊δn⌋

)
nδe−cσ2n

= cnδen(H(δ)(1+o(1))−cσ2),

with H(δ) := −δ log δ− (1− δ) log(1− δ). Therefore, if δ is chosen small enough
so that H(δ) < cσ2/2, we have proved that for some c1 > 0,

P

(
min

x∈Comp
‖(X +M)x‖2 ≤ εσ

2
√
δ
; s1(X +M) ≤ s

)
≤ exp(−c1n), (A.3)

(note that the constant c1 depends on σ). From now on, we fix

δ =
c2σ

2

| log σ| ,

with c2 small enough so that δ < δ0 and H(δ) < cσ2/2.
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Incompressible vectors: invertibility via distance

Our treatment starts with two key observations from [127].

Lemma A.3 (Incompressible vectors are spread). Let x ∈ Incomp. There exists
a subset π ⊂ {1, . . . , n} such that |π| ≥ δn/2 and for all i ∈ π,

ρ√
n
≤ |xi| ≤

√
2

δn
.

Proof. For π ⊂ {1, . . . , n}, we denote by Pπ the orthogonal projection on
span{ei; i ∈ π}. Let π1 = {k : |xk| ≤

√
2/(δn)} and π2 = {k : |xk| ≥ ρ/

√
n}.

Since ‖x‖22 = 1, we have

|πc
1| ≤

δn

2
.

Note also that
‖x− Pπ2x‖2 =

∥∥Pπc
2
x
∥∥
2
≤ ρ.

Hence, the definition of incompressible vectors implies that |π2| ≥ δn. We put
π = π1 ∩ π2. From what precedes,

|π| ≥ n− |πc
1| − |πc

2| ≥ n− δn

2
− (n− δn) =

δn

2
.

Lemma A.4 (Invertibility via mean distance). Let A be a random matrix in
Mn(C), with columns C1, . . . , Cn, and for some arbitrary 1 ≤ k ≤ n, let Hk be
the span of all these columns except Ck. Then, for any t ≥ 0,

P

(
min

x∈Incomp
‖Ax‖2 ≤ tρ√

n

)
≤ 2

δn

n∑

k=1

P(dist(Ck, Hk) ≤ t).

Proof. Let x ∈ Sn−1, from Ax =
∑

k Ckxk, we get

‖Ax‖2 ≥ max
1≤k≤n

dist(Ax,Hk) = max
1≤k≤n

|xk|dist(Ck, Hk).

Now if x ∈ Incomp and π is as in lemma A.3, we get

‖Ax‖2 ≥ ρ√
n
max
k∈π

dist(Ck, Hk).

To conclude, we note that for any reals y1, . . . , yn and 1 ≤ m ≤ n,

1{max1≤k≤m yk≤t} ≤ 1

m

m∑

k=1

1{yk≤t} ≤ 1

m

n∑

k=1

1{yk≤t}.

The strength of lemma A.4 lies in the control of ‖Ax‖2 over all incompressible
vectors done by an average of the distance between the columns of A.
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Incompressible vectors: small ball probability

Now, we come back to our matrix X +M : let C be the k-th column of X +M
and H be the span of all columns but C. Our goal in this section is to establish
the bound, for all t ≥ 0,

P(dist(C,H) ≤ ρt ; s1(X +M) ≤ s) ≤ c

σ

√
| log ρ|
δ

(
t+

1√
n

)
. (A.4)

To this end, we also consider a random vector ζ taking its values in Sn−1 ∩H⊥,
which is independent of C. Such a random vector ζ is not unique, we just pick
one and we call it the orthogonal vector (to the subspace H). We have

dist(C,H) ≥ |〈ζ, C〉|. (A.5)

Lemma A.5 (The random orthogonal vector is Incompressible). For our choice
of ρ, δ and c1 as in (A.3), we have

P(ζ ∈ Comp ; s1(X +M) ≤ s) ≤ exp(−c1σ2n).

Proof. Let A ∈ Mn−1,n(C) be the matrix obtained from (X+M)∗ by removing
the k-th row. Then, by construction: Aζ = 0, s1((X +M)∗) = s1(X +M), and

min
x∈Comp

‖Ax‖2 ≥ min
x∈Comp

‖(X +M)∗x‖2.

The left hand side (and thus the right hand side) is zero if ζ ∈ Comp. In
particular,

P(ζ ∈ Comp ; s1(X +M) ≤ s) ≤ P

(

min
x∈Comp

‖(X +M)∗x‖
2
= 0 ; s1((X +M)∗) ≤ s

)

.

It remains to note that (A.3) holds with (X+M) replaced by (X+M)∗. Indeed
the statistical assumptions are the same on X +M and (X +M)∗.

We have reached now the final preparation step before the use of the Berry-
Esseen theorem. This step consists in the reduction to a case where for a fixed
set of coordinates, both the components of ζ and the random variablesXik+Mik

are well controlled. Namely, if ζ ∈ Incomp, let π ⊂ {1, . . . , n} be as in lemma
A.3 associated to vector ζ. Then conditioned on {ζ ∈ Incomp}, from Hoeffding’s
deviation inequality, the event that

∑

i∈π

1{|Xik|≤a} ≥ |π|b
2

≥ δbn

4
,

has conditional probability at least (recall that ζ hence π are independent of C)

1− exp(−|π|b2/2) ≥ 1− exp(−cδn).
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In summary, using our choice of δ, ρ, by lemma A.5 and (A.5), in order to prove
(A.4), it is sufficient to prove that for all t ≥ 0,

Pm(|〈ζ, C〉| ≤ ρt) ≤ c

σ

√
| log ρ|
δ

(
t+

1√
n

)
.

where Pm(·) = P(·|Em,Fm) is the conditional probability given Fm the σ-
algebra generated by all variables but (X1k, . . . , Xmk), m = ⌊δbn/4⌋, and

Em :=

{
ρ√
n
≤ |ζi| ≤

√
2

δn
; 1 ≤ i ≤ m

}
⋃

{|Xik| ≤ a; 1 ≤ i ≤ m}.

We may write

〈ζ, C〉 =
n∑

i=1

ζ̄i〈C, ei〉 =
m∑

i=1

ζ̄iXik + u,

where u ∈ Fm is independent of (X1k, . . . , Xmk). It follows that

Pm(|〈ζ, C〉| ≤ ρt) ≤ sup
z∈C

π⊂{1,...,m}

Pm

(∣∣∣∣∣
∑

i∈π

ζ̄i(Xik − EmXik)− z

∣∣∣∣∣ ≤ ρt

)
. (A.6)

The idea, originated from [102], is now to use the rate of convergence given by
the Berry-Esseen theorem to upper bound this last expression.

Lemma A.6 (Small ball probability via Berry-Esseen theorem). There exists a
constant c > 0 such that if Z1, . . . , Zn are independent centered complex random
variables, then for all t ≥ 0,

sup
z∈C

P

(∣∣∣∣∣

n∑

i=1

Zi − z

∣∣∣∣∣ ≤ t

)
≤ ct√∑n

i=1 E(|Zi|2)
+

c
∑n

i=1 E(|Zi|3)
(
∑n

i=1 E(|Zi|2))3/2
.

Proof. Let τ2 =
∑n

i=1 E|Zi|2, then either
∑n

i=1 E(ReZi)
2 or

∑n
i=1 E(ImZi)

2 is
larger or equal to τ2/2. Also

P

(∣∣∣∣∣

n∑

i=1

Zi − z

∣∣∣∣∣ ≤ t

)
≤ P

(∣∣∣∣∣

n∑

i=1

Re(Zi)−Re(z)

∣∣∣∣∣ ≤ t

)

and similarly with Im. Hence, up to loosing a factor 2, we can assume with loss
of generality that the Zi’s are real random variables. Then, if G is a real centered
Gaussian random variable with variance τ2, Berry-Esseen theorem asserts that

sup
t∈R

∣∣∣∣∣P
(

n∑

i=1

Zi ≤ t

)
− P(G ≤ t)

∣∣∣∣∣ ≤ c0τ
−3/2

n∑

i=1

E(|Zi|3).

In particular, for all t ≥ 0 and x ∈ R,

P

(∣∣∣∣∣

n∑

i=1

Zi − x

∣∣∣∣∣ ≤ t

)
≤ P(|G− x| ≤ t) + 2c0τ

−3/2
n∑

i=1

E(|Zi|3).

To conclude, we note that G has a density upper bounded by 1/
√
2πτ2.
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Define L = 1
2 log2

2
δρ2 . For our choice of ρ, δ, for some constant c = c(a, b),

L ≤ c|log ρ|.

For 1 ≤ j ≤ L, we define

πj =

{
1 ≤ i ≤ m :

2j−1ρ√
n

≤ |ζi| ≤
2jρ√
n

}
.

From the pigeonhole principle, there exists j such that |πj | ≥ m/L. We have

σ2
j =

∑

i∈πj

|ζi|2Em(|Xik − Em(Xik)|2) ≥
22j−2ρ2σ2|πj |

n
,

and,
∑

i∈πj

|ζi|3Em(|Xik − Em(Xik)|3) ≤
2jaρ√
n
σ2
j .

From (A.6) and lemma A.6 (by changing the value of c), we get, for all t ≥ 0,

Pm(|〈ζ, C〉| ≤ ρt) ≤ cρt

σj
+
c2jaρ

σj
√
n

≤ ct
√
n

σ
√

|πj |
+

c

σ
√
|πj |

≤ c

σ

√
|log ρ|
δ

(
t+

1√
n

)
.

The proof of (A.4) is complete.

Proof of lemma A.1. All ingredient have now been gathered. By lemma A.4 and
(A.4) we find, for all t ≥ 0,

P

(
min

x∈Incomp
‖(X +m)x‖2 ≤ ρ2t√

n
; s1(X +M) ≤ s

√
n

)
≤ c

σ

√
|log ρ|
δ3

(
t+

1√
n

)
.

Using our choice of ρ, δ, we obtain for some new constant c = c(a, b, σ) > 0,

P

(
min

x∈Incomp
‖(X +m)x‖2 ≤ t√

n
; s1(X +M) ≤ s

)
≤ c
√
log(cs)

(
ts2 +

1√
n

)
.

The desired result follows then by using (A.1) and (A.3).
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[79] Hörmander, L. (1983). The analysis of linear partial differential opera-
tors. I. Fundamental Principles of Mathematical Sciences 256. Springer-
Verlag Distribution theory and Fourier analysis. MR717035 (85g:35002a)

http://www.ams.org/mathscinet-getitem?mr=2191234
http://www.ams.org/mathscinet-getitem?mr=2663633
http://arxiv.org/abs/1012.2710
http://arxiv.org/abs/1104.5360
http://arxiv.org/abs/0909.2214
http://arxiv.org/abs/1110.2471
http://arxiv.org/abs/1012.2624
http://www.ams.org/mathscinet-getitem?mr=2535081
http://www.ams.org/mathscinet-getitem?mr=2339369
http://www.ams.org/mathscinet-getitem?mr=0084888
http://www.ams.org/mathscinet-getitem?mr=MR1986425
http://www.ams.org/mathscinet-getitem?mr=717035


Around the circular law 85

[80] Horn, A. (1954). On the eigenvalues of a matrix with prescribed singular
values. Proc. Amer. Math. Soc. 5 4–7. MR0061573 (15,847d)

[81] Horn, R. A. and Johnson, C. R. (1990). Matrix analysis. Cambridge
University Press, Cambridge. Corrected reprint of the 1985 original.

[82] Horn, R. A. and Johnson, C. R. (1994). Topics in matrix analysis.
Cambridge University Press, Cambridge. Corrected reprint of the 1991
original.

[83] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B.

(2009). Zeros of Gaussian analytic functions and determinantal
point processes. University Lecture Series 51. AMS, Providence, RI.
MR2552864 (2011f:60090)

[84] Hwang, C. R. (1986). A brief survey on the spectral radius and the
spectral distribution of large random matrices with i.i.d. entries. In Ran-
dom matrices and their applications (Brunswick, Maine, 1984). Contemp.
Math. 50 145–152. Amer. Math. Soc., Providence, RI.

[85] Ibragimov, I. A. and Maslova, N. B. (1968). The average number
of zeros of random polynomials. Vestnik Leningrad. Univ. 23 171–172.
MR0238376 (38 ##6652)

[86] Ibragimov, I. A. and Maslova, N. B. (1971). The average number of
real roots of random polynomials. Dokl. Akad. Nauk SSSR 199 13–16.
MR0292134 (45 ##1221)

[87] Ibragimov, I. A. and Maslova, N. B. (1971). The mean number of
real zeros of random polynomials. I. Coefficients with zero mean. Teor.
Verojatnost. i Primenen. 16 229–248. MR0286157 (44 ##3371)

[88] Ibragimov, I. A. and Maslova, N. B. (1971). The mean number of real
zeros of random polynomials. II. Coefficients with a nonzero mean. Teor.
Verojatnost. i Primenen. 16 495–503. MR0288824 (44 ##6019)

[89] Jiang, T. (2009). Approximation of Haar distributed matrices and lim-
iting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Re-
lated Fields 144 221–246. MR2480790 (2010a:15080)

[90] Johansson, K. (2007). From Gumbel to Tracy-Widom. Probab. Theory
Related Fields 138 75–112. MR2288065 (2008h:60203)

[91] Kac, M. (1943). A correction to “On the average number of real
roots of a random algebraic equation.”. Bull. Amer. Math. Soc. 49 938.
MR0009655 (5,179g)

[92] Kac, M. (1943). On the average number of real roots of a random alge-
braic equation. Bull. Amer. Math. Soc. 49 314–320. MR0007812 (4,196d)

[93] Kac, M. (1949). On the average number of real roots of a ran-
dom algebraic equation. II. Proc. London Math. Soc. (2) 50 390–408.
MR0030713 (11,40e)

[94] Kesten, H. (1959). Symmetric random walks on groups. Trans. Amer.
Math. Soc. 92 336–354.

[95] Khorunzhy, A., Khoruzhenko, B., Pastur, L. and Shcherbina, M.

(1992). The large-n limit in statistical mechanics and the spectral theory
of disordered systems. In: Phase transition and critical phenomena 15
74–239.

http://www.ams.org/mathscinet-getitem?mr=MR0061573
http://www.ams.org/mathscinet-getitem?mr=2552864
http://www.ams.org/mathscinet-getitem?mr=0238376
http://www.ams.org/mathscinet-getitem?mr=0292134
http://www.ams.org/mathscinet-getitem?mr=0286157
http://www.ams.org/mathscinet-getitem?mr=0288824
http://www.ams.org/mathscinet-getitem?mr=2480790
http://www.ams.org/mathscinet-getitem?mr=MR2288065
http://www.ams.org/mathscinet-getitem?mr=0009655
http://www.ams.org/mathscinet-getitem?mr=0007812
http://www.ams.org/mathscinet-getitem?mr=0030713


86 C. Bordenave and D. Chafäı
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