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1. Introduction

Consider a sequence (X;);>1 of independent identically distributed (i.i.d.) ran-
dom variables, each having exponential distribution with mean 1. For each i €
N+ define the sample mean of the first i variables as X; := (X1 +Xo+-- -+ X;)/i.
The supremum of this sequence

Zoo :=sup{X; :i € N}

is finite because the sequence converges to 1 with probability 1.

In this note we compute the distribution function, F.., of Z... In fact, what
has nice form is the inverse of this distribution function. Our main result is the
following.

Theorem 1. (a) Z has distribution function
0 Lk—1

k!
k=1

Fo(z)=1-— h=le—he

for x > 0, and density which is continuous on R\{1}, positive on (1,00), and
zero on (—oo, 1).
(b) The restriction of Fs on (1,00) is one to one and onto (0,1) with inverse

Fﬁl(u) _ _log(l — U‘)

oo

" for alluw € (0,1). (1)
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Remark 1. (a) For F, we have the alternative expression
1 —x
Foo(z) =14+ —Wy(—2e™™)
x

where Wy is the principal branch of the Lambert W function, that is, the inverse
function of x — ze®,x > 1; see [2]. Indeed, the power series > >~ ; %yk has
interval of convergence [—1/e,1/e] and equals —Wy(—y).

(b) Clearly, the results of the theorem extend immediately to the case that
the X;’s are i.i.d. and X; = aY +bwitha > 0,b € Rand Y ~ Exp(1). However,
we were not able to find an explicit formula for the distribution of Z., for any
other distribution of the X;’s.

(c) Although it is intuitively clear that Fi,(z) > 0 for = > 1, it is not entirely
obvious how to verify it by direct calculations. However, this fact is evident from
Theorem 1.

(d) Formula (1) enables the explicit calculation of the percentiles of Fi.
Therefore, the result is useful for the following kind of problems: Suppose that
a quality control machine calculates subsequent averages, and alarms if some
average X,, is greater than ¢, where ¢ is a predetermined constant such that the
probability of false alarm is small, say «. For a € (0, 1), the upper percentage
point of Fi (that is, the point cq with Fao(cq) = 1—a) is given by cq = =198
and thus the proper value of ¢ is ¢ = ¢,.

If in the definition of Z. we discard the first n — 1 values of X;, we obtain
the random variable -
M, :=sup{X;:i>n}

for which, however, (for n > 2) the distribution function is quite complicated
even for the exponential case. For instance, the distribution of My is given by
(we omit the details)

FOO(QT)

Fa, () = Foo () + e_zmm»

x > 0.

What we can compute is the asymptotic distribution of /n(M,, —1) as n — oc.
This distribution is the same for a large class of distributions of the X;’s, as the
following theorem shows.

Theorem 2. Assume that the (X;);>1 are i.i.d. with mean 0, variance 1, and
there is p > 2 with E|X1|P < co. Let M,, := sup{X; : i > n} for alln € N*.
Then,

VnM, = |Z|

where Z ~ N(0,1) is a standard normal random variable.
It is easy to see that under the assumptions of Theorem 2, by the law of the

iterated logarithm, it holds

lim sup vn

—M,, = 1.
n—oo V2loglogn
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2. Proofs

Proof of Theorem 1. (a) For each n € NT consider the random variable
Zn = max {Xl,XQ, . ,Xn}

and call F), its distribution function. The sequence (Z,),>1 is increasing and
Zoo = limy 00 Zn, Foo(x) = limy,_, oo Fp(z). We will compute F,, recursively.
For n € Nt and = > 0 we have

Fn+1($) PI‘X1 <$ X1+X2<2$,...,X1 +X2+-|—Xn+1 S(Tl-f—l)ib]

2z—y1 (n+1)z—(y1+y2+-+yn)
/ / / 6*(y1+yz+-~+yn+1)dyn+1

2z—y1 ne—(y1+y2+-+yn—_1)
/ / . / {e—(y1+y2+~-~+yn) _ 6_(n+1)z}dyn

Fu(a) — e~ "D Vol(Ky (2))
where dyy = dyy - - - dy2dy; and
Ko(z) = {(y1,¥2,-- - yn) ERT: 0<y1 + - +y; <iw, i=1,2,...,n}.

Note that Fy(z) =1 — e * and introduce the convention Vol(Ky(z)) = 1. It
follows that F,(z) = 1 —>"}'_, Vol(Kj_1(z))e * and from Lemma 1, below,
we get the explicit form

1
Fu(z)=1-Y “—a" e forall >0, neNT.
k=1

This implies the first formula for F,,. By the law of large numbers, we get that
Fo(z) =0 for all € (—o0, 1), and thus, the derivative of F, in R\{1} is

k’fl E—=1\ 31 —iw
foo = m>1z < - >$k lek.

(b) First we rewrite Fo, in a more convenient form. The fact that Fo(x) =0
for € [0,1) implies the remarkable identity (see Fig. 1)

x k.k—l
Txk_le_kx =1 forallzel0,1). (2)
k=1 ’
Our aim is to compute the value of the series in the left hand side also for > 1.
The series converges uniformly for = € [0, c0) because

kEt k— 1)1 1
sup N pkl—ke _ ( ) e~ (k=1)

K TR 13/2/an
which is summable in k. Thus, by continuity, (2) holds also for z = 1. Now we
rewrite (2) in the form

o

F =z forall z € [0,1]. (3)
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F1G 1. The series (2) in the interval 0 < x < 4.

The power series h(y) := > o, %yk is strictly increasing in [0,e~!] and thus
(3) says that h is the inverse function of the restriction, g,, on [0,1] of the
function g : [0,00) — [0,e!] with g(z) = xe~*. The function g is continuous,
strictly increasing in [0, 1], and strictly decreasing in [1, c0) with g(0) = 0, ¢(1) =
e~1,g(00) = 0. Thus, for each x € [1,00), there exists a unique t = t(z) € (0, 1]
such that g,(t) = ze™%, i.e., te~! = xe™%; hence, we define

t(z) := g, Y(we ™) = h(xze™"), = >0. (4)
Since t(x) = x for = € [0, 1], we have

0, if =<1,

Fm(m)z{l—“ﬂf) if x> 1. (5)

)

Now for any fixed u € (0, 1), the relation Fy(z) = u gives x — t(z) = au so
that t(x) = (1 — w)z. Consequently,

ou €MD x 1
¢ T e T tx) 1—u
Thus, = —log(1 — u)/u and the proof is complete. O

Remark 2. From the well-known relation EZS = o [~ 271 (1 — F,(2))dx for
a > 0, we obtain a simple expression for the moments:

N “T(a+k—1)
BZi =0 =
=1

In particular,

EZn:ZZ:lk%’ EZr%:QZZ:u%w EZ2:322:1F12+3ZZ:11%3'
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Since Z,, ' Z. with probability one, the above relations combined with the

monotone convergence theorem give the moments of Z., and in particular that
7‘_2 2

2
i y sl i El G W
it has mean % and variance %&-(2 — 7).

The next lemma is a special case of Theorem 1 in [5] (see relation (7) in that
paper), however, to keep the exposition self-contained, we provide a proof.

Lemma 1. Forx >0, x +t >0, and n € NT, define
Ky (z,t) ={(y1,92, .- -yn) €ERL tyn+---+y; <dx+t foralli=1,2,...,n}.
Then,

Vi (2,1) = Vol (K (2, 1)) = %(m—l—t)((n—l—l)x—i—t)"_l, n=12.., (6

and, in particular, setting t =0, Vol(K,(z)) = L (n+1)" "1z
Proof. Clearly Vi(z,t) =z +t and for n > 1

ztt  p2r+t—y (n+l)z+t—(y1+y2+-+yn)
Vn+l(x7 t) = / / e / dyn+1
0 0 0

z+t  prt+(z+t—y1) ne+(z+t—y1)—(y2++yn)

= / / / dyn41 (7)
0 0 0
T+t

:/ Vi(z,x +t —y1)dy;.
0

The claim follows by induction on n. O

It is consistent with the recursion (7) for V;, and (6) to define Vp(z,t) := 1 so
that (6) holds for all n € NTU{0}. This agrees with the convention Vol(Ky(z)) =
1 we made in the proof of Theorem 1(a).

Proof of Theorem 2. By Theorem 2.2.4 in [3] we may assume that we can place
(X;)i>1 in the same probability space with a standard Brownian motion (Wy)s>o,
so that, with probability 1, we have [nX,, — W,|/n'/?(logn)'/? — 0 as n — occ.
This implies that

n—00 keNk>n K

Wi
lim \/ﬁ<Mn— sup k)zO

with probability 1. On the other hand, with probability one, we have for all
large n the bound sup,c(, 1] |Ws — Wa| < 2v/logn, thus

W, Wy
lim \/ﬁ< sup  —~ — sup ‘>:0.

n—o0 keNk>n Kk s>n S

Finally, by scaling and time inversion, we conclude that

W, W,
Vasup — L gup — L sup Wsi|W1|7
s>n S s>1 S s€[0,1]

and the proof is complete. O
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3. An application to ruin probability

Following the same steps as in the proof of Theorem 1(b), one can evaluate the
distribution function, F},y, of the random variable

7~ max X1 X1+ X X1+ Xo+--+ X,
AT T+A 241 77 n+ A
for all A > —1 and n € NT. Indeed, using (6) and induction on n it is easily

verified that for all z > 0 we have

n

Fan(@) =1—(1+N)e ™)
k=1

k(k +k')\)k72 LFlg—ke

Thus, the distribution function of Z, » := lim, o0 Zp;x equals

R R A e
Foor(z) =1 —(1+Ne Z %xk le—ke (8)
k=1 ’
t
—1_ (x) At@)—2) (9)

X

where the function ¢ is defined by (4). To justify the equality (9), we use the
same arguments that lead from (2) to (5). Similarly as in Theorem 1(b), we find
that Feo.y is zero in (—o0, 1], strictly increasing in [1, co) with range [0,1), and
its distribution inverse is given by

_ —log(1 —u) 1
FZ L (u) = X , O0<u<l. 10
Remark 3. By the law of large numbers, the series in the right hand side of
(8) equals to one for all € [0,1]. Therefore, setting z = «, 1 + A = 6 and
k — k + 1, the function

_ po—ato+i) (B +0)

p(k;a,0) o

defines a probability mass function supported on Nt U {0}, known (after a
suitable re-parametrization) as generalized Poisson distribution with parameter
(a,0) € [0,1] x (0,00); see [1] and references therein.

Consider now the following risk model. Assume that the aggregate claim at
time n is described by S, := X; + -+ + X,,, where the (X;);>1 are i.i.d. with
EX; = 1, the premium rate (per time unit) is ¢ = 1+ 6 > 0 (6 is the safety
loading of the insurance), and the initial capital is u > —(1+6), where negative
initial capital is allowed for technical reasons. The risk process is defined by

U,=u+cn—S8,, necNT.
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Clearly, the ruin probability
Y(u) := Pr(U, < 0 for some n € NT) (11)

is of fundamental importance. Our explicit formulae are useful in computing
the minimum initial capital needed to ensure that () is small. The particular
problem (for general claims) has been studied in [4], under the name discrete-
time surplus-process model. It is well-known that ¢(u) = 1 when ¢ < 1, no
matter how large u is, because EEX; = 1. Hence, the problem is meaningful
only for ¢ > 1, i.e., 8 > 0.

Theorem 3. Assume that the i.i.d. individual claims (X;);>1 are exponential
random variables with mean 1, fix o € (0,1) and 0 > 0, and set c = 1+6. Then,
(a) the ruin probability (11) is given by

w(u):{t(f)exp(—u<1—t(cc))), ifu> —c, (12)

1 ifu < —c,

where the function t is given by (4);
(b) the minimum initial capital u = u(c,0) needed to ensure that ¥(u) < « is
given by the unique root of the equation

(1+60+u) (1_ai1i'$iu) = —loga, u>—(1+0). (13)
Proof. (a) For u > —c, we can use (9) to get

t(c) u/c c)—cC
d)(u) =1- Foo;u/c(c) = ?6( /)t )7

_ te)e 9

ce ¢

which is (12). Then, the definition of ¢ shows that lim,_,_ .+ 1 (u)
1, and the monotonicity of ¢ implies that ¥(u) = 1 for u < —c.

(b) By the formula of part (a), the function ¢ is strictly decreasing in the
interval (—c¢,00) and maps that interval to (0, 1). Therefore, there is a unique
u = u(w, 0) > —c such that ¢¥(u) = . Let A := u/c, which is greater than —1.
Then, using (10), we see that

—log o

u)=as Fyealc)=1—« c:FC;,1 1—a)= — -
w( ) A ,A( ) A ,)\( ) (1+)\)<1—am>

We substitute ¢ =1+ 6, A = u/(1+ 0), and the above equivalences show that u
is the unique solution of

U 140 —loga
1 (1— 1+eu): .
< +1+9) ar 110

O

The exact values of u in (13) are in perfect agreement with the numerical
approximations given in the last line of Table 1 in [4]. Notice that the initial
capital u can be negative sometimes, e.g., u(.5,.5) ~ —.3107.
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