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Abstract For the plain Pólya urn with two colors, black and white, we prove
a functional central limit theorem for the number of white balls assuming that
the initial number of black balls is large. Depending on the initial number of
white balls, the limit is either a pure birth process or a diffusion.
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1 Introduction and results

The model. The Pólya urn is the model where in an urn that has initially
A0 white and B0 black balls we draw, successively, and uniformly at random, a
ball from it and then we return the ball back together with k balls of the same
color as the one drawn. The number k ∈ N+ is fixed. Call An and Bn the num-
ber of white and black balls respectively after n drawings. The most notable
result regarding the asymptotic behavior of the urn is that the proportion of
white balls in the urn after n drawings, An/(An+Bn), converges almost surely
as n→∞ to a random variable with distribution Beta(A0/k,B0/k).

Our aim in this work is to examine whether the entire path (An)n∈N, after
appropriate natural transformations, converges in distribution to a nontrivial
stochastic process.

Standard references for the theory and the applications of the Pólya urn
and related models are [9] and [10].
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The setting. We consider an urn whose initial composition depends on

m ∈ N+. It is A
(m)
0 and B

(m)
0 white and black balls respectively. After n

drawings, the composition is A
(m)
n , B

(m)
n .

To see a new process arising out of the path (A
(m)
n )n∈N, we start with an

initial number of balls that tends to infinity as m→∞. More specifically, we

assume then that B
(m)
0 grows linearly with m. Regarding A

(m)
0 , we study three

regimes:

a) A
(m)
0 stays fixed with m.

b) A
(m)
0 grows to infinity but sublinearly with m.

c) A
(m)
0 grows linearly with m.

The regime where A
(m)
0 grows superlinearly with m follows from regime b) by

changing the roles of the two colors. We remark on this after Theorem 2.
In the regimes a) and b), the scarcity of white balls has as a result that the

time between two consecutive drawings of a white ball is of order m/A
(m)
0 (the

probability of picking a white ball in the first few drawings is approximately

A
(m)
0 /m, which is small). We expect then that speeding up time by this factor

we will see a birth process. And indeed this is the case as our first two theorems
show.

In this work, all processes appearing with index set [0,∞) and values in
some Euclidean space Rd are elements of DRd [0,∞), the space of functions
f : [0,∞)→ Rd that are right continuous and have limits from the left at each
point of [0,∞). This space is endowed with the Skorokhod topology (defined
in §5 of Chapter 3 of [5]), and convergence in distribution of processes with
values on that space is defined through that topology.

We remind the reader that the negative binomial distribution with param-
eters ν ∈ (0,∞) and p ∈ (0, 1) is the distribution with support in N and
probability mass function

f(x) =

(
x+ ν − 1

x

)
pν(1− p)x (1)

for all x ∈ N. When ν ∈ N+, this is the distribution of the number of failures
until we obtain the ν-th success in a sequence of independent trials, each having
probability of success p. For a random variable X with this distribution, we
write X ∼ NB(ν, p).

Since in each drawing we add k balls in the urn, the quantity k−1{A(m)
n −

A
(m)
0 }, appearing in our first two theorems, counts the number of times in the

first n drawings that we selected a white ball.

Theorem 1 Fix a0 ∈ N+ and b > 0. If A
(m)
0 = a0 for all m ∈ N+ and

limm→∞B
(m)
0 /m = b, then the process (k−1{A(m)

[mt] − A
(m)
0 })t≥0 converges in

distribution, as m→∞, to an inhomogeneous in time pure birth process Z =
{Z(t)}t≥0 with Z(0) = 0 and such that for all 0 ≤ t1 < t2, j ∈ N,

Z(t2)− Z(t1)|Z(t1) = j has distribution NB
(a0
k

+ j,
t1 + (b/k)

t2 + (b/k)

)
.
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In particular, Z has rates λt,j = (kj + a0)/(kt+ b) for all (t, j) ∈ [0,∞)× N.

Theorem 2 If A
(m)
0 =: gm with gm →∞, gm = o(m) and limm→∞B

(m)
0 /m =

b with b > 0 constant, then the process (k−1{A(m)
[tm/gm]−A

(m)
0 })t≥0, as m→∞,

converges in distribution to the Poisson process on [0,∞) with rate 1/b.

We return to the discussion at the beginning of the subsection. The regime

where limm→∞B
(m)
0 (0)/m = b > 0 and A

(m)
0 /m → ∞ is covered by the

previous theorem. We need to change the roles of the colors and remark that

the role of m as a scaling parameter is played now by A
(m)
0 . The result that

we obtain is that the process

1

k

(
B

(m)

[tA
(m)
0 /(bm)]

−B(m)
0

)
t≥0

converges in distribution, as m → ∞, to the Poisson process on [0,∞) with
rate 1.

Next, we look at regime c), i.e., in the case that at time 0 both black and
white balls are of order m. In this case, the normalized process of the number
of white balls has a non-random limit, which we determine, and then we study
the fluctuations of the process around this limit.

Theorem 3 Assume that A
(m)
0 , B

(m)
0 are such that

lim
m→∞

A
(m)
0

m
= a, lim

m→∞

B
(m)
0

m
= b,

where a, b ∈ [0,∞) are not both zero. Then the process (A
(m)
[mt]/m)t≥0, as m→

∞, converges in distribution to the deterministic process Xt = a
a+b (a + b +

kt), t ≥ 0.

The limit X is the same as in an urn in which we add at each step k white
or black balls with corresponding probabilities a/(a + b), b/(a + b), that is,
irrespective of the composition of the urn at that time.

To determine the fluctuations of the process (A
(m)
[mt]/m)t≥0 around its m→

∞ limit, X, we let

C
(m)
t =

√
m

(
A

(m)
[mt]

m
−Xt

)
(2)

for all m ∈ N+ and t ≥ 0.

Theorem 4 Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that

A
(m)
0 := [am + θ1

√
m], B

(m)
0 = [bm + θ2

√
m] for all large m ∈ N. Then the

process (C
(m)
t )t≥0 converges in distribution, as m → ∞, to the unique strong

solution of the stochastic differential equation

Y0 = θ1, (3)

dYt =
k

a+ b+ kt

{
Yt −

a

a+ b
(θ1 + θ2)

}
dt+ k

√
ab

a+ b
dWt, (4)



4 Dimitris Cheliotis*, Dimitra Kouloumpou

which is

Yt = θ1 +
bθ1 − aθ2
(a+ b)2

kt+ k

√
ab

a+ b
(a+ b+ kt)

∫ t

0

1

a+ b+ ks
dWs. (5)

W is a standard Brownian motion

In the previous theorem, it is possible to allow other kinds of deviations

away from linearity (and not only of order
√
m) for the values of A

(m)
0 , B

(m)
0 .

And then we get a diffusion limit if instead of (2) we look at the process

D
(m)
t =

√
m

(
A

(m)
[mt]

m
− A

(m)
0

m
− kt A

(m)
0

A
(m)
0 +B

(m)
0

)
(6)

for all m ∈ N+ and t ≥ 0. More specifically, we have the following.

Theorem 5 Assume that limm→∞
A

(m)
0

m = a,
B

(m)
0

m = b where a, b ∈ [0,∞)

are not both zero. Then the process (D
(m)
t )t≥0 converges in distribution, as

m→∞, to the unique strong solution of the stochastic differential equation

V0 = 0, (7)

dVt =
kVt

a+ b+ kt
dt+ k

√
ab

a+ b
dWt, (8)

which is

Vt = k

√
ab

a+ b
(a+ b+ kt)

∫ t

0

1

a+ b+ ks
dWs. (9)

W is a standard Brownian motion

Remark. Functional central limit theorems for Pólya type urns have been
proven with increasing generality in the works [6], [2], [8]. The major difference

with our results is that in theirs the initial number of balls, A
(m)
0 , B

(m)
0 , is fixed

(see however the last point in the list, concerning the recent work [3]). More
specifically:

1) Gouet ([6]) studies urns with two colors (black and white) in the setting
of Bagchi and Pal ([1]). According to that, when a white ball is drawn, we
return it in the urn together with a white and b black balls, while if a black
ball is drawn, we return it together with c white and d black. The numbers
a, b, c, d are fixed integers (possibly negative), the number of balls added to
the urn is fixed (that is a+ b = c+d), and balls are drawn uniformly form the
urn. The plain Pólya urn is not studied in that work because, according to the
author, it has been studied by Heyde in [7]. However, for the Pólya urn, [7]
discusses the central limit theorem and the law of the iterated logarithm. In any
case, following the techniques of Heyde and Gouet one can prove the following.
Assume for simplicity that k = 1 and let L =: limn→∞

An

n . The limit exists
with probability one because of the martingale convergence theorem. Then{√

n

(
t
A[n/t]

n
− L

)}
t≥0

d→ {WL′(1−L′)t}t≥0
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as n → ∞. W is a standard Brownian motion and L′ is a random variable
independent of W and having the same distribution as L. On the other hand,
de-Finetti’s theorem gives easily the more or less equivalent statement that,
as n→∞, {√

n

(
A[nt]

nt
− L

)}
t≥0

d→ {WL′(1−L′)/t}t≥0

with W,L′ as before.
2) Bai, Hu, and Zhang ([2]) work again in the setting of Bagchi and Pal,

but now the numbers a, b, c, d depend on the order of the drawing and are
random. The requirement that each time we add the same number of balls is
relaxed.

3) Janson ([8]) considers urns with many colors, labeled 1, 2, . . . , l, where
after each drawing, if we pick a ball of color i, we place in the urn balls of every
color according to a random vector (ξi,1, . . . , ξi,l) whose distribution depends
on i (ξi,j is the number of balls of color j that we add in the urn). Also, each
ball is assigned a certain nonrandom activity that depends only on its color,
and then the probability to pick a certain color at a drawing equals the ratio of
the total of the activities of all balls of that color to the total of the activities
of all balls present in the urn at that time. A restriction in that work is that
there is a color i0 so that starting the urn with just one ball and this ball has
this color, there is positive probability to see in the future every other color.
This excludes the classical Pólya urn that we study.

4) In [3], K. Borovkov studies a Pólya urn with d+ 1 colors, 1, 2, . . . , d+ 1,
and proves convergence after appropriate scaling for the path {M([nt])}t∈[0,1],
as n→∞, where

M(j) := (ξ1(j), ξ1(j) + ξ2(j), . . . ,

d∑
i=1

ξi(j)) ∈ Nd

and ξi(j) is the number of balls of color i present in the urn at time j. The
initial total number of balls in the urn is N and the author considers limits
as N,n → ∞ with n/N → c under the regimes c = 0, c ∈ (0,∞), c = ∞. It
assumes that at each drawing we add one ball, i.e., k = 1 in our notation.

Its relation to the present work is the following. We study only the case

d = 1, and then M(j) = ξ1(j) = A
(m)
j .

a) Theorems 1 and 2 are not covered by [3] because in Corollary 1 of [3]

the changes A
(m)
[mt] − A

(m)
0 , A

(m)
[tm/gm] − A

(m)
0 are divided by

√
m and

√
m/gm

respectively (and then m is sent to infinity), while in Theorem 1 of [3], these
changes are related to certain processes but with an error term of the order
of log2m. That is, in the scenarios of Theorems 1 and 2, the results of [3] are
too rough to capture the birth process that we identify.

b) Theorems 4, 5 follow from Corollary 1(ii) in [3]. For example, under the
assumptions of Theorem 4, the Corollary gives that

C
(m)
t − θ1 −

bθ1 − aθ2
(a+ b)2

t = Ht + oP(1)
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for all t ∈ [0, 1], where the supremum of the error term, oP(1), over t ∈ [0, 1]
goes to zero in probability as m → ∞, while the process H is Gaussian with
continous paths, mean function zero, and covariance function

Cov(Hs, Ht) =
ab

(a+ b)3
s(a+ b+ t)

for all 0 ≤ s ≤ t. The term involving the stochastic integral in (5) also defines
a Gaussian process with continuous paths and the same mean and covariance
function as H. The justification for Theorem 5 is similar.

A preprint of the present work appeared in the arxiv on May 30, 2019, a
few months before the preprint of [3].

2 Jump process limits. Proof of Theorems 1, 2

In the case of Theorem 1 we let gm := 1 for all m ∈ N+, and for both theorems
we let v := vm := m/gm (we suppress the dependence of v on m). Our interest
is in the sequence of the processes (Z(m))m∈N+ with

Z(m)(t) =
1

k
(A

(m)
[vt] −A

(m)
0 ) (10)

for all t ≥ 0.

To show convergence in distribution, according to Theorem 7.8 of Chapter
3 of [5], it is enough to show that the sequence (Z(m))m≥1 is tight and its finite
dimensional distributions converge. The description of the limiting process is
determined on the way.

An easy argument shows that tightness follows from the convergence of
the finite dimensional distributions becauce each Z(m) has non decreasing
paths. It thus remains to establish the convergence of the finite dimensional
distributions.

Notation: (i) For sequences (an)n∈N, (bn)n∈N with values in R, we will say
that they are asymptotically equivalent, and will write an ∼ bn as n → ∞, if
limn→∞ an/bn = 1. We use the same expressions for functions f, g defined in
a neighborhood of ∞ and satisfy limx→∞ f(x)/g(x) = 1.

(ii) For a ∈ C and k ∈ N+, let

(a)k := a(a− 1) · · · (a− k + 1), (11)

a(k) := a(a+ 1) · · · (a+ k − 1), (12)

the falling and rising factorial respectively. Also let (a)0 := a(0) := 1.
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2.1 Convergence of finite dimensional distributions

By definition, Z(m)(0) = 0 = Z(0) for all m ∈ N+.
Since, for each m ∈ N+, the process Z(m) is Markov taking values in N and

non decreasing in time, our objective will have been accomplished if we show
that the conditional probability

P(Z(m)(t2) = k2|Z(m)(t1) = k1) (13)

converges as m→∞ for each 0 ≤ t1 < t2 and nonnegative integers k1 ≤ k2.
Define

n := [vt2]− [vt1], (14)

x := k2 − k1, (15)

σ :=
A

(m)
0 + kk1

k
, (16)

τ :=
k[vt1]− kk1 +B

(m)
0

k
. (17)

Then, the above probability equals

P(A
(m)
[vt2]

= kk2 + a0|A(m)
[vt1]

= kk1 + a0)

=

(
n

x

)
kσ(kσ + k) · · · (kσ + (x− 1)k)kτ(kτ + k) · · · (kτ + (n− x− 1)k)

(kσ + kτ)(kσ + kτ + k) · · · (kσ + kτ + (n− 1)k)
(18)

=
(n)x
x!

σ(x)τ (n−x)

(σ + τ)(n)
=

(n)x
x!

σ(x)Γ (τ + n− x)

Γ (τ)

Γ (σ + τ)

Γ (σ + τ + n)
. (19)

To compute the limit as m→∞ of (19), we will use Stirling’s approximation
for the Gamma function,

Γ (y) ∼
(y
e

)y√2π

y
(20)

as y →∞, and its consequence

Γ (y + a) ∼ Γ (y)ya (21)

as y →∞ for all a ∈ R.

Proof (The computation for Theorem 1) Recall that v = m in this theo-
rem. Using (21) twice, with the role of a played by −x and σ, we see that the
last quantity in (19), for m→∞, is asymptotically equivalent to

(m(t2 − t1))x

x!
σ(x)τσ

(τ + n)
−x

(τ + n)
σ ∼

(m(t2 − t1))x

x!
σ(x) {m(t1 + (b/k))}σ

{m(t2 + (b/k))}σ+x

=
(t2 − t1)x

x!
σ(x) {t1 + (b/k)}σ

{t2 + (b/k)}σ+x

=

(
σ + x− 1

x

)(
t2 − t1

t2 + (b/k)

)x(
1− t2 − t1

t2 + (b/k)

)σ
. (22)
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[For reader’s convenience, we remark that the asymptotics, as m→∞, of the
relevant quantities are as follows: x, σ are constants while n ∼ (t2 − t1)m, τ ∼
(t1 + (b/k))m.]
Thus, as m → ∞, the distribution of {Z(m)(t2) − Z(m)(t1)}|Z(m)(t1) = k1
converges to the negative binomial distribution with parameters σ, t1+(b/k)

t2+(b/k)

[recall (1)].

Proof (The computation for Theorem 2) Using (20), we see that the last
quantity in (19), for m→∞, is asymptotically equivalent to

(m(t2 − t1))x

x!gxm

gxm
kx
ex

(τ + n− x)τ+n−x

τ τ
(σ + τ)σ+τ

(σ + τ + n)σ+τ+n

∼ mx(t2 − t1)x

x!kx
ex(τ + n− x)−x

(
τ + n− x
σ + τ + n

)n
×
(

σ + τ

σ + τ + n

)σ (
(τ + n− x)(σ + τ)

τ(σ + τ + n)

)τ
∼ mx(t2 − t1)x

x!kx
exτ−xe−(t2−t1)/be−(t2−t1)/be−x+(t2−t1)/b

∼ 1

x!

(
t2 − t1
b

)x
e−(t2−t1)/b.

[Here, the asymptotics, as m→∞, of the relevant quantities are as follows: x
is constant while n ∼ (t2 − t1)m/gm, τ ∼ (b/k)m,σ ∼ gm/k.]
Thus, as m→∞, the distribution of

{Z(m)(t2)− Z(m)(t1)}|Z(m)(t1) = k1

converges to the Poisson distribution with parameter (t2 − t1)/b.

2.2 Conclusion

It is clear from the form of the finite dimensional distributions that in both
Theorems 1, 2 the limiting process Z is a pure birth process that does not
explode in finite time. Its rate at the point (t, j) ∈ [0,∞)× N is

λt,j = lim
h→0+

1

h
P(Z(t+ h) = j + 1|Z(t) = j)

and is found as stated in the statement of each theorem.

3 Deterministic and diffusion limits. Proof of Theorems 3, 4, 5.

Theorems 3, 4, 5 are proved with the use of Theorem 7.1 in Chapter 8 of [4],
which is concerned with convergence of time-homogeneous Markov chains to
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diffusions. The chains whose convergence is of interest to us are time inhomo-
geneous, but we reduce their study to the time-homogenous setting by consid-
ering for each such chain {Zn}n∈N the time homogeneous chain {(Zn, n)}n∈N.
The following consequence of the aforementioned theorem suffices for our pur-
poses.

Corollary 1 Assume that for each m ∈ N+, (Z
(m)
n )n∈N is a Markov chain in

R. For each m ∈ N+ and n ∈ N, let ∆Z
(m)
n := Z

(m)
n+1 − Z

(m)
n and

µ(m)(x, n) := mE(∆Z(m)
n 1|∆Z(m)

n |≤1|Z
(m)
n = x), (23)

a(m)(x, n) := mE{(∆Z(m)
n )21|∆Z(m)

n |≤1|Z
(m)
n = x} (24)

for all x ∈ R with P(Z
(m)
n = x) > 0. Also, for R > 0 and for the same m,n

as above, let A(m,n,R) := {(x, n) : |x| ≤ R,n/m ≤ R,P(Z
(m)
n = x) > 0}.

Assume that there are continuous functions µ : R × [0,∞) → R, a : R ×
[0,∞)→ [0,∞), and x0 ∈ R so that:
For every R, ε > 0, it holds

(i) sup(x,n)∈A(m,n,R) |µ(m)(x, n)− µ(x, n/m)| → 0 as m→∞,

(ii) sup(x,n)∈A(m,n,R) |a(m)(x, n)− a(x, n/m)| → 0 as m→∞,

(iii) sup(x,n)∈A(m,n,R)mP(|∆Z(m)
n | ≥ ε|Z(m)

n = x)→ 0 as m→∞,

and also

(iv) Z
(m)
0 → x0 as m→∞ with probability 1,

(v) for each x ∈ R, the stochastic differential equation

dZt = µ(Zt, t) dt+
√
a(Zt, t) dBt,

Z0 = x,
(25)

where B is a one dimensional Brownian motion, has a weak solution which
is unique in distribution.

Then, the process (Z
(m)
[mt])t≥0 converges in distribution to the weak solution of

(25) with x = x0.

Proof For each m ∈ N+, we consider the process Y
(m)
n := (Z

(m)
n , n/m), n ∈

N, which is a time-homogeneous Markov chain with values in R2, and we
apply Theorem 7.1 in Chapter 8 of [4] Conditions (i), (ii), (iii) of that theorem
follow from our conditions (ii), (i), (iii) respectively, while condition (A) there
translates to the requirement that the martingale problem for the functions µ
and
√
a is well posed, and this follows from condition (v).

The tool we will use in checking that condition (v) of the corollary is sat-
isfied is the well known existence and uniqueness theorem for strong solutions
of SDEs which requires that for all T > 0, the coefficients µ(x, t),

√
a(x, t) are

Lipschitz in x uniformly for t ∈ [0, T ] and supt∈[0,T ]{|µ(0, t)| + a(0, t)} < ∞
(e.g., Theorem 2.9 of Chapter 5 or [4]). The same conditions imply uniqueness
in distribution.
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3.1 Proof of Theorem 3

We will apply Corollary 1. For each m ∈ N+, consider the Markov chain

Z
(m)
n =

A(m)
n

m , n ∈ N. From any given state x of Z
(m)
n , the chain moves to either

of x+km−1, x with corresponding probabilities p(x, n,m), 1−p(x, n,m), where

p(x, n,m) :=
mx

A
(m)
0 +B

(m)
0 + kn

. (26)

In particular, for any ε > 0, is holds |∆Z(m)
n | < 1∧ε for m large enough. Thus,

condition (iii) of the corollary is satisfied trivially. Also, for large m, with the
notation of the corollary, we have

µ(m)(x, n) = kp(x, n,m), (27)

a(m)(x, n) =
k

m
p(x, n,m). (28)

And it is easy to see that conditions (i), (ii) are satisfied by the functions a, µ
with a(x, t) = 0 and µ(x, t) = kp(x, t) where

p(x, t) :=
x

a+ b+ kt
. (29)

Now for each x ∈ R, the equation

dZt = kp(Zt, t) dt,

Z0 = x,
(30)

has a unique solution. Thus, Corollary 1 applies. In fact, (30) is a separable
ordinary differential equation and its unique solution is the one given in the
statement of the theorem.

3.2 Proof of Theorem 4

Call λ := a/(a+ b). For each m ∈ N+, consider the Markov chain

Z(m)
n =

√
m
(A(m)

n

m
−X n

m

)
, n ∈ N.

From any given state x of Z
(m)
n , the chain moves to either of x−km−1/2λ, x+

km−1/2(1− λ) with corresponding probabilities

B
(m)
n

A
(m)
n +B

(m)
n

,
A

(m)
n

A
(m)
n +B

(m)
n

,

where

A(m)
n = ma+ λkn+ x

√
m, (31)

B(m)
n = A

(m)
0 +B

(m)
0 + kn−A(m)

n . (32)
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Note that

A
(m)
0 +B

(m)
0 = (a+ b)m+ (θ1 + θ2)

√
m+ δm, (33)

with δm ∈ [0, 2), and consequently

A(m)
n = λ(A(m)

n +B(m)
n ) +

√
m(x− λ(θ1 + θ2))− λδm. (34)

Again, condition (iii) of Corollary 1 holds trivially, while limm→∞ Z
(m)
0 = θ1

(condition (iv)). Then, for large m we have

µ(m)(x, n) = k
√
m

(1− λ)A
(m)
n − λB(m)

n

A
(m)
n +B

(m)
n

= k
x− λ(θ1 + θ2)− λ δm√

m

A
(m)
0 +B

(m)
0

m + k nm

, (35)

a(m)(x, n) = k2

(
λ2

B
(m)
n

A
(m)
n +B

(m)
n

+ (1− λ)2
A

(m)
n

A
(m)
n +B

(m)
n

)
(36)

= k2λ(1− λ) + k2(1− 2λ)

√
m(x− λ(θ1 + θ2))− λδm

A
(m)
n +B

(m)
n

. (37)

It follows that conditions (i), (ii) are satisfied by the functions µ, a with

µ(x, t) =
k{x− (θ1 + θ2)λ}

a+ b+ kt
, (38)

a(x, t) =
k2ab

(a+ b)2
. (39)

For each x ∈ R, the stochastic differential equation

dYt =
k{Yt − (θ1 + θ2)λ}

a+ b+ kt
dt+ k

√
ab

a+ b
dWt, (40)

Y0 = x, (41)

where W is a standard Brownian motion, has a unique strong solution as the
drift and diffusion coefficients are Lipschitz in Yt and grow at most linearly in
Yt at infinity (both conditions uniformly in t). Thus, Corollary 1 applies and

gives that the process (Z
(m)
[mt])t≥0 converges in distribution, as m→∞, to the

solution of (40), (41) with x = θ1. The same is true for (C
(m)
t )t≥0 because

supt≥0 |C
(m)
t −Z(m)

[mt]| = supt≥0
√
mλk(t− [mt]/m) = λk/

√
m→ 0 as m→∞.

To solve the stochastic differential equation (40), (41), we set Ut := {Yt −
(θ1 + θ2)λ}/(a+ b+ kt). Itô’s lemma gives that

dUt = k

√
ab

(a+ b)

1

a+ b+ kt
dWt,

and since U0 = (bθ1 − aθ2)/(a+ b)2, we get

Ut =
bθ1 − aθ2
(a+ b)2

+ k

√
ab

a+ b

∫ t

0

1

a+ b+ ks
dWs.

This gives (5).
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3.3 Proof of Theorem 5

The proof is analogous to that of Theorem 4. Call λm := A
(m)
0 /(A

(m)
0 +B

(m)
0 ).

For each m ∈ N+, consider the Markov chain

Z(m)
n =

√
m
(A(m)

n

m
− A

(m)
0

m
− λmk

n

m

)
, n ∈ N.

From any given state x of Z
(m)
n , the chain moves to either of x−km−1/2λm, x+

km−1/2(1− λm) with corresponding probabilities

B
(m)
n

A
(m)
n +B

(m)
n

,
A

(m)
n

A
(m)
n +B

(m)
n

,

where

A(m)
n = A

(m)
0 + λmkn+ x

√
m, (42)

B(m)
n = A

(m)
0 +B

(m)
0 + kn−A(m)

n . (43)

Again, condition (iii) of Corollary 1 holds trivially, while limm→∞ Z
(m)
0 = 0

(condition (iv)). Then, for large m we have

µ(m)(x, n) = k
√
m

(1− λm)A
(m)
n − λmB(m)

n

A
(m)
n +B

(m)
n

=
kx

A
(m)
0 +B

(m)
0

m + k nm

, (44)

a(m)(x, n) = k2

(
λ2m

B
(m)
n

A
(m)
n +B

(m)
n

+ (1− λm)2
A

(m)
n

A
(m)
n +B

(m)
n

)
(45)

= k2λm(1− λm) + k2(1− 2λm)
x
√
m

A
(m)
n +B

(m)
n

. (46)

Note now that limm→∞ λm = a/(a+b) and limm→∞(A
(m)
n +B

(m)
n )/m = a+b.

It follows that conditions (i), (ii) are satisfied by the functions µ, a with

µ(x, t) =
kx

a+ b+ kt
, (47)

a(x, t) =
k2ab

(a+ b)2
. (48)

For each x ∈ R, the stochastic differential equation

dVt =
kYt

a+ b+ kt
dt+ k

√
ab

a+ b
dWt, (49)

V0 = x, (50)

where W is a standard Brownian motion, has a unique strong solution as the
drift and diffusion coefficients are Lipschitz in Vt and grow at most linearly
in Vt at infinity (both conditions uniformly in t). Thus, Corollary 1 applies
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and gives that the process (Z
(m)
[mt])t≥0 converges in distribution, as m→∞, to

the solution of (49), (50) with x = 0. The same is true for (D
(m)
t )t≥0 because

supt≥0 |D
(m)
t − Z(m)

[mt]| ≤ k/
√
m→ 0 as m→∞.

Easily one finds that the solution of the stochastic differential equation
(49), (50) with x = 0 is (9)
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