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Abstract

Two simple Markov processes are examined, one in discrete and one in continuous
time, arising from idealized versions of a transmission protocol for mobile, delay-tolerant
networks. We consider two independent walkers moving with constant speed on either the
discrete or continuous circle, and changing directions at independent geometric (respec-
tively, exponential) times. One of the walkers carries a message that wishes to travel as
far and as fast as possible in the clockwise direction. The message stays with its current
carrier unless the two walkers meet, the carrier is moving counter-clockwise, and the other
walker is moving clockwise. In that case, the message jumps to the other walker. The
long-term average clockwise speed of the message is computed. An explicit expression is
derived via the solution of an associated boundary value problem in terms of the gener-
ator of the underlying Markov process. The average transmission cost is also similarly
computed, measured as the long-term number of jumps the message makes per unit time.
The tradeoff between speed and cost is examined, as a function of the underlying problem
parameters.
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1 Introduction

Consider a network that consists of many mobile nodes moving around randomly in some
large area. Suppose that each node moves with constant speed, changing its direction of travel
at random times, and that one of the nodes carries a message that she wants to transmit to
a far away destination in some specific, fixed direction. The message stays with its current
carrier until the first time she comes within a certain distance from some other node moving
in a better direction, i.e., in a direction closer to that of the intended recipient. In that case,
she transmits her message to the other node, and the new carrier then proceeds in the same
fashion. What is the long-term average speed with which the message travels towards its
destination, as a function of, say, the nodes’ individual speeds and their density? How often,
on the average, does the message get transmitted form one node to another?

Networks of this type, where messages propagate via a combination of physical transport
(moving with their carrier) and wireless transmissions (being sent from one node to another)
belong to the wide class of delay-tolerant networks (DTNs) [29]. Examples of DTNs arising
in applications include space [2], vehicular [4], sensor [26], and pocket-switched networks [17].
In earlier work by some of the authors [8, 7, 19], the questions of the previous paragraph were
considered under very general assumptions on the movement of the nodes and on the protocol
under which the message gets transmitted between nodes. In that line of work, as in much of
the related earlier work in this area, e.g., [16, 12, 18, 27], the complexity of the models involved
prohibits the derivation of exact, explicit answers. For that reason, typical results are in the
form of asymptotics, approximations, performance bounds, or estimates based on simulation
experiments.

In this work we examine two variants of a simple, idealized model, where it is possible
to derive explicit, closed-form expressions for the performance metrics of interest. We first
consider a collection of m ≥ 2 nodes moving independently on a discrete circle consisting of
N ≥ 3 locations, in discrete time. Each node maintains their current direction of travel for
a geometrically distributed amount of time with parameter ε ∈ (0, 1), and one of the nodes
carries a message intended to travel as far as possible in the clockwise direction. The message
stays with its current carrier unless, while moving counter-clockwise, it finds itself in the same
location as a different node moving clockwise. In that case the message gets transmitted to
the other node, and the same process is repeated.

For the case of m = 2 nodes, in Section 3.1, Theorem 3.1, we show that the long-term
average clockwise speed s = s(N, ε) of the message is s = 1−ε

2(1+ε(N−2)) . The proof, given

in Section 4, involves the construction of a martingale that solves an associated (discrete)
boundary value problem. Similar techniques allow us to compute the average transmission
cost c = c(N, ε), measured as the long-term average number of message transmissions per unit
time. In Theorem 3.3 we show that c(N, ε) = ε × s(N, ε), for all N and ε. Therefore, the
message travels a clockwise distance of 1/ε units between successive jumps (on the average),
regardless of N . The tradeoff between speed and cost for different values of the parameters N
and ε is also discussed in Section 3.1.

Section 3.2 contains continuous-time analogs of Theorems 3.1 and 3.3. Here we consider
m ≥ 2 nodes moving with constant speed v > 0 on a continuous circle of circumference N > 0,
changing directions at independent exponential times with rate r > 0. The corresponding
expressions for the long-term average speed s(N, v, r) and cost c(N, v, r) are established in
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Theorems 3.4 and 3.6, respectively. Again, it turns out that the speed and cost satisfy a
simple scale-free relationship: c(N, v, r) = (r/v) × s(N, v, r). In other words, the message
travels a (clockwise) distance of v/r units between successive jumps, on the average.

The proofs of Theorems 3.4 and 3.6, given in Section 4, involve shorter and somewhat
cleaner arguments than their discrete-time counterparts. In the continuous-time case, it is more
straightforward to construct appropriate solutions to the relevant boundary value problems,
which are stated in terms of the infinitesimal generator of the underlying Markov process.
What is somewhat cumbersome, is the proof that this Markov process is exponentially ergodic,
uniformly in its initial state. The relevant ergodic properties are stated in Proposition 2.1 and
Theorem 2.2, both proved in the Appendix.

Although perhaps the most restrictive of our assumptions is that nodes are assumed to
move along the circumference of a circle, we note that there has been much recent interest
in one-dimensional models of DTNs, particularly in connection with the important class of
vehicular networks (VANETS); see [4, 5, 30] and the references therein. Finally, a somewhat
less closely related but quite extensively studied problem, in terms of a Markov chain describing
the movement of a finite collection of nodes on a circle, is the k-server problem introduced in
[21]; see, e.g., [11] or [6] for more recent developments.

2 Models and Problem Statement

2.1 Random walk on the discrete circle

Let S := {0, 1, . . . , N − 1} = Z/NZ denote the discrete N -circle, for a fixed odd N ≥ 3. We
place m ≥ 2 independent random walkers on S, located at Xt = (Xt(1), Xt(2), . . . , Xt(m))
at time t = 0, 1, 2, . . ., and with each walker j we associate a random direction Dt(j) at time
t, where Dt(j) is either = +1 (clockwise motion) or Dt(j) = −1 (counter-clockwise motion).
The initial positions X0 and directions D0 are arbitrary. The Markov chain {(Xt, Dt) ; t ≥ 0}
evolves on the state space Sm × {−1,+1}m as follows.

Let {Zt = (Zt(1), Z2(2), . . . , Zt(m))} be a sequence of independent Bernoulli random vari-
ables with parameter ε ∈ (0, 1). Given the current state (Xt, Dt), each walker j takes a step
in the direction given by Dt(j),

Xt+1(j) = Xt(j) +Dt(j) (mod N), t ≥ 0, j = 1, 2, . . . ,m,

and then decides to either continue moving in the same direction with probability (1− ε), or
to switch to the opposite direction, with probability ε:

Dt+1(j) = (1− Zt(j))Dt(j)− Zt(j)Dt(j), t ≥ 0, j = 1, 2, . . . ,m.

We also define an index process {It} evolving on {1, 2, . . . ,m}, with I0 chosen arbitrarily
and It trying to track walkers that move clockwise: Given (Xt, Dt, It = i), let (Xt+1, Dt+1) be
defined as above. If Dt+1(i) = −1 and there is at least one more walker, j, say, at the same
location, Xt+1(i) = Xt+1(j), but its direction Dt+1(j) = +1, then It+1 = j (or a uniformly
chosen such j if there are multiple candidates). In all other cases, It+1 = It = i.

It is easy to see from the above construction that Φ = {Φt = (Xt, Dt, It) ; t ≥ 0} is an
irreducible and aperiodic chain on the state space Σ consisting of all configurations of the
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form,

(x(1), x(2), . . . , x(m), d(1), d(2), . . . , d(m), i) ∈ Sm × {+1,−1}m × {1, 2, . . . ,m},

except those where d(i) = −1 and there is a j 6= i such that x(j) = x(i) and d(j) = +1. More-
over, under the unique invariant distribution π of Φ, the distribution of (Xt, Dt) is uniform:
The positions Xt(i) are independent of each other and uniformly distributed on S, and the
directions Dt(i) are independent of the positions Xt and each D0(i) = ±1 with probability
1/2, independently of the others.

We are primarily interested in the following three quantities, as functions of N,m and ε:
(i) Direction: What is the limiting distribution of the direction Dt(It) of the message at time t?
(ii) Speed: What is the long-term average speed of the message? (iii) Cost: What is the long-
term average number of jumps per unit time? We are also interested in the relationship
between the speed and cost: Do higher speeds always imply an increase in cost? Or is there a
range of parameter values that improve the speed and cost simultaneously?

2.2 Continuous motion on the circle

Let S := R/NZ denote the one-dimensional circle of circumference N > 0, where N is not nec-
essarily an integer. We place m ≥ 2 independent random walkers Xt = (Xt(1), . . . , Xt(m)) on
S, and with each walker j we associate a random direction Dt(j) at time t, where Dt(j) is either
= +1 (clockwise motion) or Dt(j) = −1 (counter-clockwise motion). The initial positions X0

and directions D0 are arbitrary. The continuous-time Markov process W = {(Xt, Dt) ; t ≥ 0}
evolves on the state space Sm × {−1,+1}m as follows. The jth walker continues moving
at constant speed v in its present direction, Dt(j) = d, say, for an exponentially distributed
amount of time with mean 1/r, for some r > 0; during that time its direction remains constant,
and afterwards it switches to −d. The process continues in the same fashion, by choosing a
new, independent exponential time for the jth walker, and with the different walkers moving
independently of one another.

We assume that the transitions between directions are such that the sample paths of the
process W = {(Xt, Dt) ; t ≥ 0} are right continuous, and observe that W is strong Markov
and, therefore, a Borel right process [28, 13]. And since Sm × {−1,+1}m is compact, W is
also non-explosive [24]. The following simple proposition is proved in the Appendix.

Proposition 2.1. (i) The Markov process W = {(Xt, Dt) ; t ≥ 0} is ψ-irreducible and
aperiodic on Sm × {−1,+1}m, with respect to ψ := Lm × κm, where L denotes the
Lebesgue measure on S and κ the counting measure on {+1,−1}.

(ii) The process W is positive Harris recurrent.

(iii) The uniform distribution is the unique invariant probability measure of W.

We also define an index process {It} evolving on {1, 2, . . . ,m}, with I0 chosen arbitrarily
and It trying to track walkers that move clockwise. Specifically, It stays constant most of the
time, and its value only changes when Xt(It) = Xt(j) for some j 6= It, and the direction Dt(j)
of the jth walker at the time is +1 while Dt(It) = −1. In that case, the value of It switches
to j (or to a uniformly chosen such j if there are multiple candidates) and remains there at
least until the first time walker j encounters a different walker.
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Next we show that the Markov process Φ = {Φt = (Xt, Dt, It) ; t ≥ 0} is uniformly ergodic
on the state space Σ, which consists of all elements φ ∈ Sm × {−1,+1}m × {1, 2, . . . ,m},

φ = (x(1), x(2), . . . , x(m), d(1), d(2), . . . , d(m), i),

where we identify pairs of states s = (x, d, i) and s′ = (x′, d′, i′) of the following form: The
message is with a different walker in each state, i.e., i 6= i′, all positions and directions are
identical, x = x′ and d = d′, the ith and i′th walkers are in the same position x(i) = x(i′), and
the two walkers move in opposite directions, i.e., d(i) = −d(i′).

As with W, we assume that the transitions between directions and between successive
values of the process {It} are such that the sample paths of Φ are right-continuous, so that
Φ is a non-explosive, Borel right process [28, 13]. Its ergodicity properties are summarized
in Theorem 2.2, proved in the Appendix. Here, and throughout the paper, for an arbitrary
measure µ and function g we write µ(g) for

∫
gdµ, whenever the integral exists.

Theorem 2.2. (i) Φ = {Φt = (Xt, Dt, It) ; t ≥ 0} is ψ-irreducible and aperiodic with
respect to ψ := Lm × κm × κm, where, as before, L and κ denote the Lebesgue and
counting measures on S and {+1,−1}, respectively, and κm denotes the counting measure
on {1, 2, . . . ,m}.

(ii) Φ is uniformly ergodic, with a unique invariant probability measure π.

(iii) Φ converges to equilibrium uniformly exponentially fast: There are constants C <∞, ρ >
0 such that,

|Pφ(Φt ∈ A)− π(A)| = |Pr(Φt ∈ A|Φ0 = φ)− π(A)| ≤ Ce−ρt,

for all φ ∈ Σ, all measurable A ⊂ Σ, and all t > 0.

(iv) The following ergodic theorem holds for Φ: For any bounded (measurable) function f :
Σ→ R and any initial state Φ0 = φ ∈ Σ,

lim
t→∞

1

t

∫ t

0
f(Φs)ds = π(f), a.s.

Finally we note that the dynamics of Φ can be described by its infinitesimal generator L.
Let AL denote the collection of all functions continuous functions f : Σ → R, such that f is
continuously differentiable in x(j) for each 1 ≤ j ≤ m. This is a dense subset of C(Σ), and
the infinitesimal generator L of Φ acts on each f ∈ AL as,

Lf(x, d, i) =

m∑
j=1

{
vd(j)

∂f

∂x(j)
(x, d, i) + r

[
f(x, σjd, i)− f(x, d, i)

]}
, (1)

where, for any m-tuple of directions d ∈ {−1,+1}m, σjd is the same as d but with its jth
coordinate having the opposite sign from that of d, 1 ≤ j ≤ m. The first term in the sum on the
right-hand side above corresponds to the motion of the jth walker at constant velocity vd(j),
while the second one corresponds to its change of direction at rate r. It is easy to see that L
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defined on AL is a closed operator and there is λ > 0 small enough so that (I−λL)(AL) = C(S),
cf. [14, Proposition 1.3.5], so that AL is the domain of L.

Once again, we are interested in the following three quantities, as functions of m,N, v
and r: (i) The limiting distribution of the direction Dt(It) of the message at time t; (ii) The
long-term average speed of the message; (iii) The long-term average number of jumps per unit
time. Also, we wish to examine the nature of the tradeoff between the speed and cost.

3 Results: Speed and Cost with m=2 walkers

Here we state and discuss our main results for both the discrete and the continuous case. The
proofs are given in Section 4. We adopt the following standard notation: For the probabilities
of events depending on an underlying Markov process {Φt} we write Pφ for the measure
describing the distribution of the process conditional on {Φ0 = φ}, and Pµ when Φ0 ∼ µ
for some probability measure µ. Similarly, Eφ and Eµ denote the corresponding expectation
operators.

3.1 The discrete circle

Consider the problem of m = 2 walkers on the N -circle, changing directions with rate ε, as
described in Section 2.1.

Theorem 3.1 (Message speed). In the case of m = 2 walkers, for any initial state, the
long-term average speed of the message is:

s := π(D1(I1)) = lim
n→∞

1

n

n−1∑
t=0

Dt(It) =
1− ε

2(1 + ε(N − 2))
, a.s.

Note that the speed s = s(N, ε) is always less than or equal to 1/2, and it is decreasing in
both N and ε; see Figure 1.

In the boundary case ε = 0, the speed s(N, ε) is either -1 or 1, depending on the initial
directions of the two walkers. Therefore, s(N, ε) is discontinuous at ε = 0, since s(N, ε) ↑ 1/2
as ε ↓ 0, for any N . Figure 2 shows the results of two simulation experiments, illustrating
the convergence of the speed of the message to the corresponding value s(N, ε) computed in
Theorem 3.1.

Theorem 3.1 answers question (ii) of Section 2.1. The answer to question (i) is a simple
consequence of the theorem, given in Corollary 3.2 below.

Corollary 3.2 (Message direction). In the case of m = 2 walkers, for any initial state
Φ0 = φ ∈ Σ, the steady state probability that the message moves in the clockwise direction is:

Pπ(D1(I1) = +1) = lim
t→∞

Pφ(Dt(It) = +1) =
s+ 1

2
=

3 + ε(2N − 5)

4(1 + ε(N − 2))
.

Next we examine the asymptotic cost of message transmissions. Theorem 3.3 describes the
long-term average number of jumps of the message, c = c(N, ε) per unit time.
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Figure 1: Plots of the asymptotic speed s = s(N, ε) of the message (left) and of the asymptotic
cost c = c(N, ε) (right), as functions of ε, for different values of N .
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Figure 2: Simulation results for the speed of the message during T = 105 steps, in two inde-
pendent realizations of the chain with different parameter values. In each case, the horizontal
line is the limiting value of the speed s predicted by Theorem 3.1.

Theorem 3.3 (Transmission cost). In the case of m = 2 walkers, for any initial state, the
long-term average cost of message transmissions is:

c := Pπ(I2 6= I1) = lim
n→∞

1

n

n−1∑
t=0

I{It+1 6=It} =
ε(1− ε)

2[1 + ε(N − 2)]
, a.s.

We observe that the cost c = c(N, ε) is decreasing in N , and for each fixed N it is a
concave function of ε; see Figure 1. Also, unlike the speed s = s(N, ε), the cost c = c(N, ε) is
continuous and equal to zero at ε = 0.
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Speed vs. cost. It is interesting to observe the following simple, scale-free relationship
between the asymptotic speed and cost: c(N, ε) = ε × s(N, ε), for all N and ε. Therefore, on
the average, the message travels a (clockwise) distance of 1/ε units between successive jumps,
regardless of the value of N .

In terms of the speed/cost tradeoff, note that for each N there is an ε∗ below which the
speed increases and the cost decreases as ε ↓ 0. This suggests that, if such a protocol were to
be implemented in practice, it is the relatively smaller values of ε that would be most effective
in the long run.

3.2 The continuous circle

Now we turn to the problem of m = 2 walkers on the continuous circle of circumference N ,
moving with constant speed v and changing directions at rate r. Theorem 3.4 gives the natural
continuous analog of the discrete-time result in Theorem 3.1.

Theorem 3.4 (Message speed). In the case of m = 2 walkers, for any initial state, the
long-term average speed of the message is:

s := vπ(D1(I1)) = lim
t→∞

1

t

∫ t

0
vDs(Is)ds =

v2

2v + rN
, a.s.

Note that the speed s = s(N, v, r) is always no greater than v/2, as in the discrete case. Also
observe that, as would be expected, s = s(N, v, r) is decreasing in the circumference length N
and increasing in the walker speed v. Moreover, s is also decreasing in the reversal rate r.

Theorem 3.4 answers question (ii) of Section 2.2. The answer to question (i), given below,
is an immediate consequence of Theorem 3.4.

Corollary 3.5 (Message direction). In the case of m = 2 walkers, for any initial state
Φ0 = φ ∈ Σ, the steady state probability that the message moves in the clockwise direction is:

Pπ(D1(I1) = +1) = lim
t→∞

Pφ(Dt(It) = +1) =
s+ v

2v
=

3v + rN

2(2v + rN)
.

In our final result we determine the long-term average number of jumps c = c(N, v, r) per unit
time.

Theorem 3.6 (Transmission cost). In the case of m = 2 walkers, for each time t > 0 let
Mt denote the (random) number of times the message jumps from one walker to the other up
to time t. Then, for any initial state, the long-term average cost of message transmissions is:

c := lim
t→∞

Mt

t
=

rv

2v + rN
, a.s.

Observe that the cost c = c(N, v, r) is naturally increasing in v and decreasing in N . But,
unlike in the discrete case, c = c(N, v, r) is monotonically increasing in r. Again we also
observe that there is a simple, scale-free relationship between the asymptotic speed and cost,
c(N, v, r) = (r/v) × s(N, v, r): In the long-run, the message travels a (clockwise) distance of
v/r units between successive jumps.
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A comparison of the results of Theorems 3.4 and 3.6 with their discrete-time analogs is
perhaps informative. Consider a large discrete circle of size N � 1 and a small rate of direction
updates ε ≈ 0. Then, noting that the circumference Nc of the continuous circle corresponds
to 2N in the discrete case (since, because N is odd, that is the number of steps required for
two walkers starting in the same location and moving in opposite directions to meet again),
we have the following scaling limit. Taking the speed v = 1 in the continuous case, and the
rate ε in the discrete case to be such that 2Nε = Ncr, passing to the continuous limit N →∞
we obtain,

s(N, ε)→ 1

2 + rNc
= s(Nc, v, r) and

r

ε
c(N, ε)→ r

2 + rNc
= c(Nc, v, r).

Finally we note that the parameters of the problem define the dimensionless quantity α =
rN/v > 0, and dimensional analysis alone (meaning, speeding up time by a constant factor, or
dilating space by a constant factor) shows that s = vf(α) and c = rg(α), for suitable functions
f, g. In this light, our results can be interpreted as showing that f(α) = g(α) = 1/(2 +α), for
all α > 0.

4 Proofs

4.1 The discrete circle

Proof of Theorem 3.1. First, consider the reduced chain,

Ψ = {Ψt = (Yt = Xt(1)−Xt(2), Dt(1), Dt(2), It) ; t ≥ 0},

where the differences Yt = Xt(1) − Xt(2) are taken modulo N . Clearly Ψ is irreducible and
aperiodic on the corresponding reduced state space Σψ consisting of all configurations, of the
form,

(y, d, d′, i) ∈ S × {+1,−1}2 × {1, 2},

except (0,+1,−1, 2) and (0,−1,+1, 1). Let πψ denote the unique invariant measure of Ψ. The
limit in the theorem exists a.s. by ergodicity; in order to compute its actual value, we define
the following regeneration time,

T = inf{t ≥ 1 ; Yt = 0 and Dt(1) 6= Dt(2)}, (2)

and we consider two special states of Ψ: ψ1 = (0,+1,−1, 1) and ψ2 = (0,−1,+1, 2). Let ν
denote the probability measure on Σψ given by,

ν =
1

2
δψ1 +

1

2
δψ2 . (3)

Then T is indeed a regeneration time for ν in the sense that, with Ψ0 ∼ ν, we also have
ΨT ∼ ν. We will use the following general version of Kac’s formula; cf. [1, Corollary 2.24].

Lemma 4.1. For any function f : Σψ → R and any regeneration time T for ν:

Eν

[
T−1∑
t=0

f(Ψt)

]
= Eν(T )πψ(f).
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To apply Lemma 4.1, we first compute Eν(T ):

Lemma 4.2. Eν(T ) = 2N.

Proof. Consider the (further restricted) chain Υ = {Υt = (Yt, Dt(1), Dt(2)) ; t ≥ 0} on the
state space S × {+1,−1}2, and note that its unique invariant measure ρ is uniform. Write,
D = {(0,+1,−1), (0,−1,+1)}, let ρD denote the measure ρ conditioned on D, and let,

T+
D = inf{t ≥ 1 ; Υt ∈ D},

so that, in fact, T+
D = T . Then, by Kac’s formula [1], we have,

Eν(T ) = EρD(T+
D ) =

1

ρ(D)
=

4N

|D|
= 2N,

as claimed. �

The central step in the proof of the theorem is an application of Lemma 4.1 with f(Ψt) =
Dt(It), which, combined with Lemma 4.2 gives us that s = π(D1(I1)) = πψ(D1(I1)) can be
expressed as,

s =
1

2N
Eν

[
T−1∑
t=0

Dt(It)

]
=

1

4N
Eψ1

[
T−1∑
t=0

Dt(1)

]
+

1

4N
Eψ2

[
T−1∑
t=0

Dt(2)

]
=

1

2N
Eψ1

[
T−1∑
t=0

Dt(1)

]
,

where the sums above (and in what follows) correspond to addition over Z (as opposed to
modulo N addition over S), and where the second equality follows from the fact that, by the
definition of T , the message is with walker 1 up to time T − 1. Therefore, writing X∗t+1(j) =
X∗t (j) +Dt(j), for j = 1, 2, t ≥ 1, we have,

s =
1

2N
Eψ1(X∗T (1))

=
1

2N
Eψ1

(
X∗T (1)−X∗T (2)

2

)
+

1

2N
Eψ1

(
X∗T (1) +X∗T (2)

2

)
=

1

2N
Eψ1

(
X∗T (1)−X∗T (2)

2

)
,

where we noted that Eψ1(X∗T (1) +X∗T (2)) is zero by symmetry, since the two walkers start off
in opposite directions.

Now write, A = {(0,+1,+1), (0,+1,−1), (0,−1,+1), (0,−1,−1)}, and let T+
A denote the

first time when the two walkers meet,

T+
A = inf{t ≥ 1 ; Υt ∈ A} = inf{t ≥ 1 ; Yt = 0},

so that T+
A can be expressed in terms of either Ψ or Υ. We observe that, at time T+

A , either
the two walkers decide to go in opposite directions, in which case T+

A = T , or they continue
moving together until they choose opposite directions, in which case the difference of their
locations X∗t (i) stays constant; therefore,

s =
1

2N
Eψ1

(
X∗
T+
A

(1)−X∗
T+
A

(2)

2

)
.
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Since the last expectation above is conditioned on the two walkers starting from the same
position, in opposite directions, and with the first one moving in the positive (clockwise)
direction, there are exactly two possible scenarios for their first meeting time T+

A : In the first
scenario, at time t = T+

A −1 walker 1 is two steps “ahead” in the clockwise direction of walker 2
(as they are, e.g., at time t = 1). In this case, we will necessarily have X∗

T+
A

(1)−X∗
T+
A

(2) = 0.

We call this event C. In the second scenario, the relative positions of the two walkers at time
t = T+

A − 1 will be reversed, which necessarily means that the first walker travelled a whole
circle “around” the second one before they met, so that (since N is odd) on Cc, we must have
X∗
T+
A

(1)−X∗
T+
A

(2) = 2N . Therefore,

s =
1

2N

[
0

2
· Pψ1(C) +

2N

2
· Pψ1(Cc)

]
=

1

2
Pψ1(Cc). (4)

Finally we compute the probability of the event C:

Lemma 4.3. Pψ1(Cc) = 1−ε
1+ε(N−2) .

Proof. Here we consider the chain Υ∗ = {Υ∗t = (Y ∗t , Dt(1), Dt(2)) ; t ≥ 0} on Σ∗ =
Z × {+1,−1}2, where Y ∗t = X∗t (1) − X∗t (2). Note that, for the state u1 := (0,+1,−1), the
initial condition Υ∗0 = u1 corresponds to Ψ0 = ψ1.

We will only need to examine the evolution of Υ∗ until time t = T+
A , which, since N is

odd, can equivalently be expressed as,

T+
A = min{t ≥ 1 ; Y ∗t = 0 (mod 2N)},

and the same argument as in the last paragraph before the statement of the lemma shows
that, given Υ∗0 = u1, the only two possible values of Y ∗

T+
A

are 0 and 2N , on C and on Cc,

respectively. Therefore, letting,

TR = min{t ≥ 1 ; Y ∗t = 0},
and TL = min{t ≥ 1 ; Y ∗t = 2N},

we have that T+
A = min{TL, TR} and Pψ1(Cc) = Pψ1(TL < TR); cf. Figure 3.

In fact, for this computation it will suffice to consider the trace of Υ∗ on the set,

Σt := {0, 2, 4, . . . , 2N} × {(+1,−1), (−1,+1)} ⊂ Σ∗;

cf. [25, Example 1.4.4.]. The evolution of this Markov chain is fairly simple and its transition
probabilities are easy to compute; e.g., the probability of the transition from (0,+1,−1) to
(2,+1,−1) is equal to,

(1− ε)2 + ε(1− ε)1

2
+ ε(1− ε)1

2
= 1− ε.

The first term above corresponds to the case when the two walkers both maintain their orig-
inal directions after their first step; the second term corresponds to the case when only the
first walker changes direction, after which they keep moving at a distance two apart, until
one of them changes direction again and they either reach the state (2,+1,−1) or the state

10



L

R

Figure 3: Evolution of the trace of the chain Υ∗ on {0, 2, 4, . . . , 2N} × {(+1,−1), (−1,+1)}.

(2,−1,+1), each having probability 1/2 by symmetry; and the third term corresponds to the
case when only the second walker changes direction after their first step, and its value is the
same as the second term again by symmetry. The remaining transition probabilities can be
similarly computed; see Figure 3.

Finally, for every state u ∈ {0, 2, 4, . . . , 2N} × {(+1,−1), (−1,+1)} we define h(u) =
Pu(TL < TR), so that h(u1) = Pψ1(Cc). Writing L and R for the states (2N − 2,+1,−1)
and (2,−1,+1), respectively, we have h(L) = 1, h(R) = 0, and in fact it is easy to see that the
one-step conditional expectation of h given any state u 6= (2N,+1,−1) or (0,−1,+1), is equal
to h(u). This relationship can be expressed as a simple recursion: Letting f(k) = h(2k,+1,−1)
and g(k) = h(2k + 2,−1,+1), we have,

f(k) = (1− ε)f(k + 1) + εg(k), for 0 ≤ k ≤ N − 1,

g(k + 1) = (1− ε)g(k) + εf(k + 1), for − 1 ≤ k ≤ N − 2,

g(0) = 0 and f(N − 1) = 1.

Adding the first two equations above shows that f(k)− g(k) is a constant, say A, independent
of k, and substituting this in the recursion for g gives g(k) = Aεk/(1 − ε). Similarly solving
for f we obtain, f(k) = A+Aεk/(1− ε), and from the boundary values we can solve for A to
get, A = (1− ε)/(1 + ε(N − 2)). Therefore,

Pψ1(Cc) = h(u1) = f(0) = A = (1− ε)/(1 + ε(N − 2)),

as claimed. �

Combining (4) with the result of Lemma 4.3 completes the proof of the theorem. �

Proof of Theorem 3.3. Recall the ergodic chain Ψ defined in the beginning of the proof
of Theorem 3.1. Write Σψ for its state space, πψ for its unique invariant measure, and let P
denote its transition kernel, P (ψ,ψ′) = Pr(Ψt+1 = ψ′|Ψt = ψ), ψ,ψ′ ∈ Σψ. Now consider the
bivariate chain Ψ̃ = {Ψ̃t = (Ψt,Ψt+1) ; t ≥ 0}. Then Ψ̃ is also ergodic, with unique invariant
measure,

π̃(ψ,ψ′) = πψ(ψ)P (ψ,ψ′),

for every state (ψ,ψ′) of Ψ̃. Therefore, the limit in the statement indeed exists a.s., and it
equals,

c := Pπ(I2 6= I1) = π̃
(

I{I2 6=I1}
)

= π̃(B),

11



where B consists of the following 8 states,

B =
{(

(0,+1,+1, 1), (0,−1,+1, 2)
)
,

(
(0,−1,−1, 1), (0,−1,+1, 2)

)
,(

(0,+1,+1, 2), (0,+1,−1, 1)
)
,

(
(0,−1,−1, 2), (0,+1,−1, 1)

)
,(

(2,−1,+1, 1), (0,−1,+1, 2)
)
,

(
(2,−1,+1, 2), (0,+1,−1, 1)

)
,(

(−2,+1,−1, 1), (0,−1,+1, 2)
)
,
(

(−2,+1,−1, 2), (0,+1,−1, 1)
)}
,

and where, with a slight abuse of notation, the negative values of the Yt variables above are
again interpreted modulo N .

In order to compute the actual value of c = π̃(B), we first observe that,

π̃(B) =
(
πψ(0,+1,+1, 1) + πψ(0,−1,−1, 1) + πψ(0,+1,+1, 2) + πψ(0,−1,−1, 2)

)
ε(1− ε)

+
(
πψ(2,−1,+1, 2) + πψ(−2,+1,−1, 1)

)
ε2

+
(
πψ(2,−1,+1, 1) + πψ(−2,+1,−1, 2)

)
(1− ε)2

=
1

2N
ε(1− ε) +

(
πψ(−2,+1,−1, 1)− πψ(2,−1,+1, 1) +

1

4N

)
ε2

+
(
πψ(2,−1,+1, 1)− πψ(−2,+1,−1, 1) +

1

4N

)
(1− ε)2,

where we used the fact that the invariant distribution of (Xt(1), Xt(2), Dt(1), Dt(2)) is uniform,
which implies that πψ(y, d, d′, 1)+πψ(y, d, d′, 2) = 1/(4N), for any y ∈ S and d, d′ ∈ {+1,−1}.
Simplifying,

π̃(B) =
1

4N
+ (1− 2ε)[πψ(2,−1,+1, 1)− πψ(−2,+1,−1, 1)]. (5)

To compute the difference of the two probabilities in (5), recall the definition of the regen-
eration time T and the measure ν in (2) and (3), respectively. By Lemma 4.1, for any state
ψ ∈ Σψ of the form ψ = (y, d, d′, 1), we have,

Eν(T )πψ(ψ) = Eν

[
T−1∑
t=0

I{Ψt=ψ}

]
=

1

2
Eψ1

[
T−1∑
t=0

I{Ψt=ψ}

]
=

1

2
Eu1

[
T−1∑
t=0

I{Υ∗t=(y,d,d′)}

]
,

where the chain Υ∗ was defined in the proof of Lemma 4.3 and u1 = (0,+1,−1) as before.
Therefore, substituting this twice in (5) and recalling the discussion of the evolution of Υ∗

until time T from the proof of Lemma 4.3, we have,

c = π̃(B) =
1

4N
+

(1− 2ε)

4N
Eu1

[
T−1∑
t=0

(
I{Υ∗t=(2,−1,+1)} − I{Υ∗t=(2N−2,+1,−1)}

)]
, (6)

where we also used the result of Lemma 4.2. By the definition of T , the value of the sum
inside the last expectation above is either 0− 1 or 1− 0, and the corresponding probabilities
can be found by looking at the trace of the chain Υ∗ on the set Σt, as defined in the proof
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of Lemma 4.3. Indeed, referring to Figure 3, and in the notation of the proof of Lemma 4.3,
the case 1 − 0 has probability 1 − Pu1(TL < TR), whereas the case 0 − 1 has probability
Pu1(TL < TR). So (6) becomes,

c = π̃(B) =
1

4N
+

(1− 2ε)

4N
[1− 2Pu1(TL < TR)],

and now substituting the result of Lemma 4.3, Pu1(TL < TR) = 1−ε
1+ε(N−2) , and simplifying,

yields precisely the claimed result. �

4.2 The continuous circle

Proof of Theorem 3.4. We begin with some simple notation. Let,

D = {(z, z) : z ∈ S} ⊂ S2

F = {(z1, z2, d1, d2, i) ∈ Σ : z1 = z2, d1d2 = −1} ⊂ Σ,

and note that, by the definition of Σ, for any (z1, z2, d1, d2, i) ∈ F we can always take, without
loss of generality, di = +1.

The limit in the statement of the theorem exists a.s. by Theorem 2.2; in order to compute
its value we first define the stopping time,

T = inf
{
t > 0 : Φt ∈ F

}
. (7)

Let ν denote the uniform probability measure on F . Then, T is a regeneration time for ν, in
the sense that, if Φ0 ∼ ν, then ΦT ∼ ν, as well. We go on to compute π(D1(I1)) using the
following natural continuous-time generalization of Kac’s formula, proved in the Appendix.

Lemma 4.4. If T is a regeneration stopping time for ν with Eν(T ) <∞, then for any bounded
measurable function f : Σ→ R we have,

Eν

(∫ T

0
f(Φs)ds

)
= Eν(T )π(f).

First, we compute the expectation of the regeneration time T , conditional on the initial state
Φ0 = φ being in F .

Lemma 4.5. For any initial state φ ∈ F , we have: Eφ(T ) = N
v .

Proof. For any state φ = (x, d, i) = (x1, x2, d1, d2, i) ∈ Σ, write,

δ(x) := x1 − x2 (modN) ∈ [0, N).

We can compute Eφ(T ) using simple tools from the potential theory of Markov processes. To
that end, we will construct a function H : Σ → R that formally satisfies LH(φ) = −1, for all
φ ∈ Σ \ F . Note that such a function would not be in the domain of the generator, as can be
easily seen by integrating both sides with respect to the invariant measure. Nevertheless, if we
start the process from Φ0 = φ /∈ F , then it can be checked that {H(Φt) + t} is a martingale
up to time T .

13



It is not hard to find an explicit solution to LH(φ) = −1 for all φ /∈ F . Indeed, let, for
φ /∈ F ,

H(φ) :=

(
N − 2δ(x)

4v

)(
d1 − d2

)
+

1 + d1d2

4r
+
r δ(x)

(
N − δ(x)

)
2v2

,

and for φ ∈ F as,

H(φ) := −N
2v
.

Recalling the form of the generator L from (1), it is straightforward to verify that H satisfies,
LH(φ) = −1, for all φ /∈ F , and that H is discontinuous across F , in that,

lim
δ(x)↓0

H(x, d, i)− lim
δ(x)↑N

H(x, d, i) =
N

2v

(
d1 − d2

)
.

For φ 6∈ F , an application of the optional stopping theorem for the martingale {H(Φt) + t}
gives,

Eφ(T ) = H(φ) +
N

2v
. (8)

On the other hand, for φ ∈ F , the Markov property gives,

Eφ(T ) = Eφ
[
T ; T ≤ t

]
+ Eφ

[
EΦt(T ); T > t

]
,

for all t > 0. Since, as t → 0, we have Pφ(T ≤ t) → 0 and H(Φt) → N/(2v), Pφ-a.s., for all
φ ∈ F , letting t→ 0 in the preceding equation and recalling (8) completes the proof. �

Now let d∗ := (+1,−1), φ∗ := (0, 0, d∗, 1) ∈ F , and note that, for all x ∈ D,

E(x,d∗,1)

[∫ T

0
Dt(It) dt

]
= E(x,−d∗,2)

[∫ T

0
Dt(It) dt

]
= Eφ∗

[∫ T

0
Dt(1) dt

]
.

Combining this, with an application of Lemma 4.4 with f(Φt) = Dt(It), and with Lemma 4.5,
gives,

s =
v2

N
Eν

[∫ T

0
Dt(It) dt

]
=
v2

N
Eφ∗

[∫ T

0
Dt(1) dt

]
.

Therefore, writing X∗t (i) for the total clockwise displacement distance travelled by walker
i = 1, 2, up to time t ≥ 0, so that X∗t (i) = v

∫ t
0 Dt(i) dt, we have,

s =
v

N
Eφ∗

[
X∗T (1)

]
=

v

2N
Eφ∗

[
X∗T (1) +X∗T (2)

]
+

v

2N
Eφ∗

[
X∗T (1)−X∗T (2)

]
=

v

2N
Eφ∗

[
X∗T (1)−X∗T (2)

]
,

where we used the fact that, since the two walkers start in opposite directions, we have
Eφ∗ [X

∗
T (1) +X∗T (2)] = 0 by symmetry.

There are exactly two scenarios for the first meeting of the two walkers starting from F
with D0(I0) = 1: In the first one, they meet with directions that are opposite to the ones they
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started with. In this case, we necessarily have X∗T (I0) − X∗T (I ′0) = 0, where I ′0 denotes the
complementary index to I0, i.e., I ′0 = 3 − I0. We call this event C. In the second scenario,
corresponding to event Cc, the directions of the walkers are the same as the ones they started
with, which necessarily means that X∗T (I0)−X∗T (I ′0) = N . Therefore, the speed s is:

s =
v

2
Pφ∗(C

c).

The proof of the theorem is completed by an application of Lemma 4.6 below. �

Lemma 4.6. For any initial state φ ∈ F of the form φ = (x, 1,−1, 1), we have:

Pφ(Cc) =
2v

2v + rN
.

Proof. Consider the function V : Σ \F → R, defined, for any state φ = (x, d1, d2, i) /∈ F as,

V (φ) :=
rδ(x) + v[1 +

(
d1 − d2

)
/2]

rN + 2v
,

where δ(x) := x1 − x2 (modN), as before. It is straightforward to verify that LV (φ) = 0,
for every φ /∈ F . An application of the optional stopping theorem for the martingale {V (Φt)}
gives,

Pφ(Cc) = V (φ),

for all φ = (x, 1,−1, 1) with x /∈ D. The proof is concluded by repeating the same argument
as in the end of the proof of Lemma 4.5, with the random variable ICc in place of T , and using
the Markov property at time t > 0 and letting t→ 0. �

Proof of Theorem 3.6. Using the same notation as in the proof of Theorem 3.4, we
define, for each n ≥ 0, the time Tn as the time of the nth return of Φ to F , i.e., T0 := 0 and
inductively, for all n ≥ 1,

Tn+1 := inf{t > Tn : Φt ∈ F}.
The number of excursions around F up to time t ≥ 0 is then,

Nt = max{n ≥ 0 : Tn ≤ t}.

We also define the independent Bernoulli random variables {Jn;n ≥ 1}, that take the value 1
exactly when the event C occurs during the nth excursion around F . Lemma 4.6 then implies
that, for all n ≥ 2,

Pφ(Jn = 1) =
rN

2v + rN
.

In this notation, the total transmission cost Mt up to time t ≥ 0 is given by,

Mt =

Nt∑
n=1

Jn.

Since, by Lemma 4.5, Nt/t→ v/N , a.s., as t→∞, we have,

c := lim
t→∞

Mt

t
=

v

N
× rN

2v + rN
=

rv

2v + rN
, a.s.,

as claimed. �
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A Appendix

A.1 Proof of Proposition 2.1

Parts (i) and (ii) are immediate consequences of the more general result in Theorem 2.2,
established below. For (iii) it is easiest to work with the infinitesimal generator L0 of W.
Let AL0 denote the collection of all continuous functions f : Sm × {−1,+1}m → R, such that
f is continuously differentiable in each x(j), 1 ≤ j ≤ m. Also, for any m-tuple of directions
d ∈ {−1,+1}m, let σjd be the same as d but with its jth coordinate having the opposite sign
from that of d, 1 ≤ j ≤ m. Then the action of L0 on any f ∈ AL0 is,

L0f(x, d) =
m∑
j=1

{
vd(j)

∂f

∂x(j)
(x, d) + r

[
f(x, σjd)− f(x, d)

]}
.

Arguing as for the operator L at the end of Section 2.2 we get that the domain of L0 is
AL0 . It is now a simple computation to show that, if π0 denotes the uniform distribution on
Sm × {−1,+1}m, then

∫
L0fdπ0 = 0, for any f ∈ AL0 , so that π0 is indeed invariant [20,

Theorem 3.37]. The uniqueness of π0 follows from Harris recurrence [15]. �

A.2 Proof of Theorem 2.2

For the sake of simplicity, we assume that all three parameters, N , v and r, are equal to 1. A
cursory examination of the proof below should immediately reveal that the general case only
involves notational modifications.

Given ε ∈ (0, 1/(3m)) arbitrary, let Sε ⊂ Sm denote the set,

Sε := Sm \ {x : d(x(j), x(k)) < 3ε, for some j 6= k},

where d(·, ·) denotes the usual distance on S, so that d(x(j), x(k)) is equal to the length of the
shortest arc connecting points x(j) and x(k). Note that, since ε < 1/(3m), Sε has nonempty
interior. We also define the set Σε := Sε×{−1, 1}m×{1, 2, . . . ,m}, and the measures Lε such
that dLε/dLm = ISε on Sm, and µ := Lε × κm × κm on Σ. Note that Lε and µ are supported
on Sε and Σε, respectively.

The main step in the proof is the following Doeblin-like domination condition:

Proposition A.1. Let ε ∈ (0, 1/(3m)) arbitrary. Then, for every t ≥ t0 := 2 + 6ε, every
measurable A ⊂ Σ, and every initial state φ ∈ Σ, we have,

Pφ(Φt ∈ A) ≥ cµ(A), (9)

with c = (ε2e−1−(3/2)t0/4)m.

Before giving the proof we make two simple observations. First, we will actually prove
that, under the assumptions of the proposition,

Pφ(Φt ∈ A) ≥ c′e−(3/2)tmµ(A), (10)
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with c′ = (ε2e−1/4)m. Then (9) follows for each t ≥ t0 by the Markov property:

Pφ(Φt ∈ A) = Eφ
[
PΦt−t0

Φt0 ∈ A
]
≥ cµ(A).

Second, it suffices to establish (10) for events A of the form,

A =
m∏
j=1

Bj ×
m∏
j=1

{d(j)} × {1}, (11)

with each d(j) ∈ {−1, 1}, and each Bj ⊂ S. The proof is based on the following construction.
For any two points x, x′ ∈ S, we say that a walker travels ‘clockwise’ from x to x′ in time t,

when the walker takes the following steps. Let x′′ = min{y ∈ (x,∞) : y = x′ (mod 1)}. Then
the walker, starting at x, travels counter-clockwise for time z = (t+ x− x′′)/2, then switches
directions and travels clockwise for time t− z, ending up at point x′′. Similarly, we say that a
walker travels ‘counter-clockwise’ from x to x′ in time t, when the reverse of the above process
occurs, so that, now, x′′ = max{y ∈ (−∞, x) : y = x′ (mod 1)}.

Let A be as in (11). A simple strategy for the motion of the m walkers that guarantees
Φt ∈ A is the following: Walker 1 travels clockwise from point x(1) to some point in B1 in
time t, while all other walkers travel counter-clockwise from their initial positions x(k) to some
point in the corresponding Bk in time t. During the final segment of her travel, walker 1 will
encounter each of the other walkers at least once, and she will be moving clockwise while all
of the other walkers will be moving counter-clockwise. Therefore, the message will certainly
be with walker 1 at time t.

Proof of Proposition A.1. Let ε ∈ (0, 1/(3m)) and φ = (x0, d0, i0) ∈ Σ arbitrary, and
without loss of generality take A ⊂ Σ to be of the form (11).

For any position x ∈ S, any pair of directions d, d′ ∈ {−1,+1}, any time t > 0, and any
measurable C ⊂ S, we will define the event M+(x, d, C, d′, t, ε) that, roughly speaking, will
describe a scenario in which a walker starts at x with direction d, and ends up in C with
direction d′ after time t. To make this precise, let e0, e1, e2 and e3 be independent exponential
random variables with mean equal to 1, and imagine a walker starting at time zero in position x
with direction d, taking the following steps:

• +e0,−e1,+e2, if d = d′ = 1 (i.e., the walker first moves clockwise for time e0, then
counter-clockwise for time e1, and then clockwise again for time e2);

• +e0,−e1,+e2,−e3, if d = 1, d′ = −1;

• −e1,+e2, if d = −1, d′ = 1;

• −e1,+e2,−e3, if d = d′ = −1.

Now we can compute the location of the walker at time t. Write E0 = e0I{d=1} and consider
two cases:

If d′ = 1, and assuming that,

t− 1

2
< e1 <

t

2
, e2 > t, and E0 ≤ ε, (12)
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then at time 2e1 the walker has covered the distances E0, −e1, and e1 − E0, and therefore is
at point x and is moving clockwise. Moreover, since e2 > t > 2e1, after the remaining t− 2e1

time units, the walker ends up in position x+ t− 2e1.
If d′ = −1, and assuming that,

E0 + e1 + e2 < t < E0 + e1 + e2 + e3, (13)

then at time E0 +e1 +e2 the walker is located at x+E0−e1 +e2 and moving counter-clockwise.
Therefore, at time t, i.e., after travelling counter-clockwise for an additional t−(E0 +e1 +e2) <
e3 time units, the walker’s final position is x+E0−e1+e2−(t−E0−e1−e2) = x−t+2(E0+e2).

To summarize, under assumptions (12) and (13), the position (in R, not necessarily in S),
of the walker at time t is,

U :=

{
x+ t− 2e1, if d′ = 1,

x− t+ 2(E0 + e2), if d′ = −1.
(14)

The last ingredient we need for the formal definition of M+ is the following. Given x and C,
we write,

Cx := (C ∩ (x, 1]) ∪ (C ∩ [0, x] + 1) ⊂ (x, x+ 1],

so that Cx is the same as C, but the points before x have been pushed one unit later. Now
we can formally define:

M+(x, d, C, d′, t, ε) :=

{
{E0 ≤ ε, e2 > t, U ∈ Cx}, if d′ = 1,

{E0 ≤ ε, e3 > ε,E0 + e1 + e2 ∈ (t− ε, t), U ∈ Cx}, if d′ = −1.

Note that both conditions (12) and (13) above are satisfied on M+(x, d, C, d′, t, ε). We also
define the “symmetric” event M−(x, d, C, d′, t, ε) as the event in which the reflection of the
walker follows the path described by M+(−x,−d,−C,−d′, t, ε). Finally, let,

G :=

{
The path of walker 1 up to time t is in M+(x0(1), d(1), B1, d

′(1), t, ε),
and the path of each walker j 6= 1 up to t is in M−(x0(j), d(j), Bk, d

′(j), t, ε)

}
.

Now we claim that, for all t > t0 := 2 + 6ε:

G ⊂ {Φt ∈ A}. (15)

To see that (15) holds, again we consider two cases. If d′ = 1, then time t is reached during step
e2, because E0 < ε, e1 = (t+x−U)/2 < t/2 and e2 > t, so that E0+e1 < t < E0+e1+e2. And if
d′ = −1, then time t is reached during step e3. Therefore, a walker following M+(x, d, C, d′, t, ε)
travels clockwise at least in the time interval [t − (1 + 2ε), t − ε], which has length 1 + ε. To
see this, note that, if d′ = 1, then we have e1 = (t− (U − x))/2 > ε ≥ E0, and the last part of
the trajectory (i.e., the part of step e2 until time t) takes time,

e1 − E0 + U − x = (t+ U − x)/2− E0 ≥ t/2− ε ≥ 1 + 2ε,

while if d′ = −1, then,

e2 = (U − x+ t)/2− E0 ≥ t/2− ε ≥ 1 + 2ε,
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and also E0 +e1 +e2 ∈ (t− ε, t). Consequently, in the time interval [t− (1+2ε), t− ε], walker 1
meets every other walker and thus gets the message. In the remaining time interval, [t− ε, t],
the walkers do not meet again because each is at distance at most ε from their final positions,
and the distance between any two of these final positions is at least 3ε.

Now, (15) implies that,

Pφ(Φt ∈ A) ≥ Pφ(G)

= Pφ
(
M+(x0(1), d(1), B1, d

′(1), t, ε)
) m∏
j=2

Pφ
(
M−(x0(j), d(j), Bk, d

′(j), t, ε)
)
,

and the bound in (10) and hence the result of the proposition follow from the bound in the
lemma immediately below. �

Lemma A.2. In the notation and under the assumptions of the above proof, for any position
x ∈ S, and pair of directions d, d′ ∈ {+1,−1}, any measurable C ⊂ S, and any initial state
φ ∈ Σ, we have,

Pφ
(
M+(x, d, C, d′, t, ε)

)
≥ cεLε(C),

with cε = 1
4e
−1ε2e−3t/2. By symmetry, the same bound holds for M− in place of M+.

Proof of Lemma A.2. When d′ = 1, the random variable U defined in (14) has density
fU (s) = (1/2)e−(x+t)/2es/2I{s<x+t}, so that,

Pφ(M+(x, d, C, d′, t, ε)) = (1− e−εI{d=1})e
−t 1

2
e−(x+t)/2

∫
Cx

es/2 ds ≥ 1

4
εe−1/2e−3t/2Lε(C),

where we used the elementary inequality, 1− e−ε ≥ ε/(1 + ε) ≥ ε/2, ε ∈ [0, 1].
When d′ = −1, we consider two cases. If d = −1, then the joint density of (U, V ) :=

(x− t+ 2e2, e1 + e2) is,

fU,V (u, v) =
1

2
e−vI{u>x−t}I{2v−u>t−x},

and thus,

Pφ(M+(x, d, C, d′, t, ε)) = Pr(U ∈ Cx, V ∈ (t− ε, t))

=
1

2

∫
Cx

∫ t

t−ε
e−v dv du

≥ 1

2
εe−1e−tLε(C).

Finally, when d = 1, the joint density of (U, V,W ) := (x− t+ 2(e0 + e2), e0 + e1 + e2, e0) is,

fU,V,W (u, v, w) =
1

2
e−vI{2v−u>t−x}I{0<w<(u+t−x)/2},

and thus,

Pφ(M+(x, d, C, d′, t, ε)) =
1

2

∫ ε

0

∫
Cx

∫ t

t−ε
e−v dv du dw ≥ 1

2
ε2e−tLε(C).

Combining the three bounds derived gives the required result. �
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We are now in a position to establish the four claims of Theorem 2.2. If ψ(A) > 0 for some
A ⊂ Σ, then µ(A) = ψ(A∩Σε) > 0 for all ε > 0 small enough, so Proposition A.1 implies that
Φ is ψ-irreducible [23]. Moreover, it implies that the state space Σ itself is small [23], hence it
is petite, so that Φ is aperiodic [13, Eq. (10)]. This establishes (i).

Since Σ is small, the drift condition (DT ) of [13] holds with Lyapunov function V ≡ 1,
and [13, Theorem 5.2] implies that Φ is uniformly (exponentially) ergodic. This implies (iii)
by the definition of V -uniform ergodicity [13, Eq. (11)]. In particular, Φ is positive Harris
recurrent, hence it has a unique invariant probability measure [15], giving (ii). Finally, the
ergodic theorem of part (iv) is a standard consequence of positive recurrence of strong Markov
processes, see, e.g., [22, Theorem 5.1] or [3, Proposition 3.7]. �

A.3 Proof of Lemma 4.4

If Pν(T = 0) = 1, the claim is trivial. Suppose now 0 < Eν(T ) <∞, and consider the following
occupation measure ζ on Σ: For any measurable A,

ζ(A) = Eν

(∫ T

0
IA(Φs)ds

)
.

Observe that ζ integrates measurable functions on Σ as,∫
f dζ = Eζ

(∫ T

0
f(Φs)ds

)
.

Let now g ∈ D(L). By an application of the optional stopping theorem for the martingale
{g(Φt)−

∫ t
0 Lg(Φs)ds} at the stopping time T , we get,

Eν
[
g(ΦT )

]
− Eν

(∫ T

0
Lg(Φs)ds

)
= Eν

[
g(Φ0)

]
.

As T is a regeneration time for ν, we have that, Eν
[
g(ΦT )

]
= Eν

[
g(Φ0)

]
, and hence,∫

Lg dζ = Eν

(∫ T

0
Lg(Φs)ds

)
= 0.

Since this holds for all g ∈ D(L), the normalized occupation measure ζ̄ := ζ/ζ(Σ) = ζ/Eν(T )
is an invariant probability measure under the dynamics of Φ, therefore, by uniqueness, ζ̄ = π,
as required. �
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