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Hilbert C�-modules are generalizations of Hilbert spaces by allowing the inner product
to take values in a C�-algebra rather than in the �eld of complex numbers. They are
useful tools in theory of operator algebras, operator K-theory, Morita equivalence of C�-
algebras, group representation theory, the C�-algebraic theory of quantum groups. The
theory of Hilbert C�-modules is very interesting on its own right.
Hilbert C�-modules can be also regarded as generalizations of C�-algebras. A Hilbert

C�-module X over a C�-algebra A can be embedded in its linking algebra L(X) (that
is, the C�-algebra of all �compact operators�on the Hilbert C�-module A � X). Many
concepts as the notion of representation of a C�-algebra on a Hilbert space or the notion
of C�-crossed product were extended in the context of Hilbert C�-modules.
A morphism of Hilbert C�-modules is a map � : X ! Y from a Hilbert A-module X

to a Hilbert B-module Y with the property that there is a C�-morphism ' : A! B such
that

h� (x) ;� (y)i = ' (hx; yi) for all x; y 2 X:

If H and K are Hilbert spaces, then L(H;K), the vector space of all bounded linear
operators from H to K, is a Hilbert L(H)-module with:

L(H;K)� L(H) 3 (T; S)! TS 2 L(H;K)

and
L(H;K)� L(H;K) 3 (T1; T2)! hT1; T2i = T �1 T2 2 L(H):

A representation of X on the Hilbert spaces H and K is a morphism of Hilbert C�-
modules, �X : X ! L(H;K).
Let G be a locally compact group, X a full Hilbert A-module and

Aut(X) = f� : X ! X; � is an isomorphism of HilbertC�-modulesg:

An action of G on X is a group morphism g ! �g from G to Aut(X) such that the map
g ! �g(x) from G to X is continuous for each x 2 X. An action � of G on X induces an
action �� of G on A given by

��g (hx; yi) =


�g (x) ; �g (y)

�
for all g 2 G, for all x; y 2 X:

The vector space Cc(G;X) of all continuous functions from G to X with compact support
has a structure of pre-Hilbert C�-module over G��� A, with:

(bxf) (s) = R
G

bx (t)��t �f(t�1s)� dt; for all bx 2 Cc(G;X) and f 2 Cc(G;A)
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and
hbx; byi (s) = R

G

h�t�1 (bx (t)) ; �t�1 (by (ts))i dt; for all bx; by 2 Cc(G;X):
The Hilbert C�-module obtained by the completion of Cc(G;X) with respect to the
topology induced by the inner product is called the crossed product of X by � and it is
denoted by G�� X.
Crossed product of Hilbert C�-modules appears as imprimitivity bimodule. Suppose

that (G;�;A) and (G; �;B) are two C�-dynamical systems such that the C�-algebras A
and B are Morita equivalent (this is, there is a full Hilbert A-module X such that the
C�-algebras K(X) and B are isomorphic). If there is an (�; �)-compatible action � of G
on X, then the C�-crossed products G�� A and G�� B are Morita equivalent, and the
Hilbert C�-module which gives a Morita equivalence between G�� A and G�� B is the
crossed product of X by �.
In this talk, after a review of some properties of Hilbert C�-modules, we will discuss

about representations of crossed product of Hilbert C�-modules.
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