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1" Avddreén

Tpit 29/05, opa 13:00-14:00 p.p., AiBovoa I'32
Tithog: Hyperbolic p.d.e. and Lorentzian geometry.

IHepidnyn: In this lecture I shall first present continuum mechanics, both fluid
mechanics as well as the mechanics of crystalline solids, as examples of Lagrangian
theories of mappings of one manifold into another. I shall then define the notions of
ellipticity and of hyperbolicity associated to a system of Euler Lagarange equations. I
shall finally discuss the causal structure of the domain manifold defined by a solution
of a hyperbolic system of equations, showing how generalized Lorentzian geometry
comes into play.

2"-3" Awdheln
1° MEPOX
Tetdptn 30/5, dpa 13:00-14:00 p.p., AiBovca ['42
2° MEPOX
[Téumn 31/5, dopa 13:00-14:00 p.p., AiBovoa 32

Tithog: The analysis of shock formation in 3-dimensional fluids (in two parts).

Hepidiqyn: In 2007 I published a monograph which treated the relativistic Euler
equations in three space dimensions for a perfect fluid with an arbitrary equation of
state. In this monograph I considered initial data which outside a sphere coincide with
the data corresponding to a constant state. Under a suitable restriction on the size of
the initial departure from the constant state, I established theorems which gave a
complete description of the maximal classical development. In particular, I showed
that the boundary of the domain of the maximal classical development has a singular
part where the inverse density of the wave fronts vanishes, signalling shock
formation. In fact, the theorems which I established gave a complete picture of shock
formation in three-dimensional fluids. I shall give a simplified presentation of these
results, assuming from the outset that the initial conditions are irrotational. The basic
geometric concept on which the analysis is based is that of the acoustical spacetime
manifold. The analysis features the interplay of the original system of equations with
another system, the acoustical structure equations, which governs the causal structure



of the acoustical manifold. The acoustical geometry degenerates as shocks form,
nevertheless things remain smooth relative to a different differential structure, which
is what permits a complete analysis of the singular boundary. The presentation will be
in two parts. The first lecture shall introduce the topic and discuss the results, while
the second lecture shall give an outline of the proof of the main theorem.

4" AvddreEn

[Mopackevn 1 Iovviov, ®pa 13:00-14:00 p.p., AiBovoa '42

Tithog: The short pulse method and the formation of trapped surfaces in general
relativity.

Iepiinyn: In 1965 Penrose introduced the fundamental concept of a trapped surface,
on the basis of which he proved a theorem which asserts that a spacetime containing
such a surface must be incomplete. The presence of a trapped surface implies,
moreover, that there is a region of spacetime, the black hole, which is inaccessible to
observation from infinity. A major challenge since that time had been to find out how
trapped surfaces actually form, by analyzing the dynamics of gravitational collapse. In
a monograph published in 2009 I achieved this aim by establishing the formation of
trapped surfaces in pure general relativity through the focusing of incoming
gravitational waves. The theorems proved therein constitute the first foray into the
long-time dynamics of general relativity in the large, that is, when the initial data are
no longer confined to a suitable neighborhood of trivial data. The main new method
which this work introduces, the short pulse method, applies to general systems of
Euler—Lagrange equations of hyperbolic type, and provides means to tackle problems
which have hitherto been inaccessible. The method capitalizes on the assumption that
the initial data, although smooth, change abruptly as we cross a certain surface, so
there is a small parameter which corresponds to the distance within which the change
is effected. A calculus is built in which this small parameter everywhere enters. This
calculus is used to demonstrate that when the parameter in question is suitably small
we have long time existence independently of the size of the initial data. And in the
case of the Einstein equations, when this size is suitably large then trapped surfaces
eventually form.



