
Dimension Reduction and Variable Selection for 
High-dimensional Multivariate Linear Regression

Prof. N. Balakrishnan

McMaster University, Hamilton, Canada
bala@mcmaster.ca

Prof. N. Balakrishnan September 2020 1 / 45



In Collaboration with

Wenxing Guo (McMaster University, Hamilton, Canada)
Mengjie Bian (McMaster University, Hamilton, Canada)
Mu He (McMaster University, Hamilton, Canada)

Prof. N. Balakrishnan September 2020 2 / 45



Outline

1 Reduced rank regression with matrix projections for high-dimensional
multivariate linear regression model

Introduction
Main results
Simulations
Real data

2 Envelope-based sparse reduced rank regression for high-dimensional
multivariate linear model

Introduction
Main Results
Simulations
Real data

3 References

Prof. N. Balakrishnan September 2020 3 / 45



Outline

1 Reduced rank regression with matrix projections for high-dimensional
multivariate linear regression model

Introduction
Main results
Simulations
Real data

2 Envelope-based sparse reduced rank regression for high-dimensional
multivariate linear model

Introduction
Main Results
Simulations
Real data

3 References

Prof. N. Balakrishnan September 2020 4 / 45



Introduction

In this part, consider a multivariate linear regression has n observations
with r responses and p predictors, and can be expressed as

Y = XB + ε, (1)

where Y ∈ Rn×r denotes a multivariate response matrix,
X ∈ Rn×p represents a matrix of predictors,
B ∈ Rp×r is the regression coefficient matrix,
ε ∈ Rn×r is an error matrix with its entries εij ’s being independent of each
other with mean zero and variance σ2

ij .
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Introduction

If we assume a low rank structure on the coefficient matrix B such that
rank(B) = d < min(p, r), then the coefficient matrix B can be
decomposed as B = AC , where A is a p × d matrix and C is an d × r
matrix.
The model in (1) is called the reduced rank regression model.
By assuming this low-rank structure of the coefficient matrix, we effectively
reduce the number of parameters to be estimated from pr to (p + r)d .
This is a quite reasonable assumption in many multivariate regression
problems, which can be interpreted as follows: the r responses are related
to the p predictors only through d effective linear factors.
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Introduction

If some column vectors of a predictor matrix X are nearly linearly
dependent, the situation known as multicollinearity, the performance of the
reduced rank estimator would not be satisfactory when the predictor
variables are highly correlated or the ratio of signal to noise is small.
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Main results

To overcome this problem, in this work, we propose three reduced rank
estimators with a nuclear norm penalty in multivariate linear regression
model in terms of single random projection, averaged random projection
and principal component analysis, respectively.
In our model, the number of parameters p and r can be either less than
the observed value n or greater than n.
Moreover, the entry εij in error matrix can have different variance σ2

ij .
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Main results

In this work, we develop a two-step method.
First, a low-rank matrix is utilized to approximate the data matrix, and we
next perform reduced rank regression in terms of nuclear norm penalty.
For the first low rank matrix approximation method, we use a low-rank
matrix approximation of X to be

X̃ = QQ
T
X , (2)

where XS = QR, S ∈ Rp×k is a random matrix, Q ∈ Rn×k is a matrix
with k orthonormal columns, and R ∈ Rk×k is an upper triangular matrix
with positive diagonal elements.
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Main results

For a data matrix X , let ΓΛPT be the SVD of X . Then, the top k
principal components Xk can be extracted from X , by setting X1 = XP1,
where P1 ∈ Rp×k denotes the top k right singular vectors of X .
For the second low rank matrix approximation method, we obtain an
estimator of X by using the top k right singular vectors of X , as

X̂ = XP1P
T
1 . (3)
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Main results

A reduced rank estimator with nuclear norm penalty, based on random
projection, can then be derived by minimizing the penalized least squares
criterion

1

2
‖ Y − X̃B ‖2

F +µ||X̃B||∗, (4)

where µ a tuning parameter.
Proposition 1.1. Let X̃ equal QQTX and PX̃Y have a singular value

decomposition as ŨD̃Ṽ T . Then, a minimizer of (4) is

B̃ = X
+
QQ

T
Y Ṽ D̃

+
D̃µṼ

T , (5)

where D̃µ = diag [{λi (PX̃Y )− µ}+, i = 1, · · · , n ∧ r ].
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Main results

Proposition 1.2. Let X̂ = XP1P
T
1 and PX̂Y have a singular value

decomposition to be ÛD̂V̂ T . Then,

B̂ = P1P
T
1 X

+
Y V̂ D̂

+
D̂µV̂

T , (6)

where D̂µ = diag [{λi (PX̂Y )− µ}+, i = 1, · · · , n ∧ r ].
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Main results

The rank of the coefficient matrix B, denoted by r0, can be regarded as
the number of effective linear combinations of predictor variables relating
to response variables. In practice, we need to estimate the rank of B.
Here, we develop a method of rank estimation of B that is expressed as

r̃ = max
{
i : λi (PX̃Y ) >

kµ

ηrX

}
, (7)

where k, rX and η represent the number of columns of random projection
matrix S , rank of predictor matrix X and a tuning parameter, respectively.
In practice, we can get the values of k , η and µ by cross-validation.
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Main results

Theorem 1.3. Suppose the entries of ε ∈ Rn×r are independent of each
other and εij ∼ N(0, σ2

ij).

Also, for any θ > 0, let µ = ηrX(1 + θ)
√

2V (PX̃ε)log(n + r)/(kδ) and

λr0(X̃B) >
2kµ

ηrX
.

Then, we have

P(r̃ 6= r0) −→ 0 as n + r −→∞.
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Main results

Theorem 1.4.

E [‖ XB − X̃ B̃ ‖F ] ≤
(

1− k

n

)1/2[ q∑
i=1

λ2
i (X )

]1/2
‖ B ‖F

+2
√

2r0

{[k
n

n∑
i=1

r∑
j=1

σ2
ij

]1/2
+ µ

}
,

where k represents the number of columns of the random projection
matrix S .
Corollary 1.5.

E [‖ XB − X̂ B̂ ‖F ] ≤ 2
√

2r0

{[ n∑
i=1

( r∑
j=1

σ2
ij

)( k∑
h=1

γ2
ih

)]1/2
+ µ

}

+
[ q∑
i=k+1

λ2
i (X )

]1/2
‖ B ‖F ,

where k represents the number of principal components used.
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Simulations

Existing reduced rank estimators:
ANR, RRR and RAN denote adaptive nuclear norm penalized estimator,
rank penalized estimator and robustified adaptive nuclear norm penalized
estimator, respectively.

Proposed reduced rank estimators:
PNR, SNR and MSN represent nuclear norm penalized estimator with
principal component analysis, single random projection and averaged
random projection, respectively.
MRE represents the median rank estimate and correct rank recovery
percentage.
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Simulations

Table 1.1 Comparisons of different methods based on 100 simulation runs with n=30, p=40,
r=40, r0 = 10. The median rank estimate and correct rank recovery percentage.

ANR RRR RAN PNR SNR MSN

S1

ρ = 0.1 9, 22% 6, 2% 9, 22% 10, 60% 10, 57% 10, 62%
ρ = 0.5 8, 17% 6, 2% 8, 20% 10, 57% 10, 65% 10, 69%
ρ = 0.9 6, 2% 4, 0% 6, 3% 11, 33% 10, 59% 10, 63%

S2

ρ = 0.1 2, 0% 1, 0% 2, 0% 10, 51% 10, 53% 10, 58%
ρ = 0.5 2, 0% 2, 0% 1, 0% 11, 5% 12, 2% 11, 6%
ρ = 0.9 1, 0% 1, 0% 2, 0% 4, 0% 5, 0% 5, 0%

S3

ρ = 0.1 1, 0% 1, 0% 1, 0% 10, 100% 10, 100% 10, 100%
ρ = 0.5 2, 0% 1, 0% 2, 0% 8, 0% 12, 3% 11, 5%
ρ = 0.9 1, 0% 1, 0% 1, 0% 3, 0% 4, 0% 4, 0%

S1, S2 and S3 denote Scenario 1, Scenario 2 and Scenario 3, respectively.
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Simulations

Table 1.2 Comparisons of MSE (B) and PM (XB) with n=30, p=40, r=40.

ANR RRR RAN PNR SNR MSN

S1

ρ = 0.1 MSE (B) 0.413 0.415 0.413 0.397 0.397 0.395
PM (XB) 0.152 0.196 0.152 0.153 0.153 0.151

ρ = 0.5 MSE (B) 0.159 0.161 0.159 0.143 0.143 0.141
PM (XB) 0.149 0.192 0.149 0.147 0.147 0.145

ρ = 0.9 MSE (B) 0.052 0.059 0.051 0.043 0.040 0.036
PM (XB) 0.114 0.146 0.114 0.120 0.130 0.120

S2

ρ = 0.1 MSE (B) 0.017 0.032 0.013 0.012 0.012 0.011
PM (XB) 0.346 0.589 0.345 0.390 0.427 0.397

ρ = 0.5 MSE (B) 0.024 0.046 0.014 0.007 0.008 0.006
PM (XB) 0.366 0.472 0.364 0.420 0.523 0.480

ρ = 0.9 MSE (B) 0.101 0.126 0.016 0.002 0.003 0.002
PM (XB) 0.397 0.480 0.395 0.347 0.569 0.470

S3

ρ = 0.1 MSE (B) 0.024 0.148 0.017 0.015 0.016 0.014
PM (XB) 0.773 2.671 0.723 0.676 0.685 0.641

ρ = 0.5 MSE (B) 0.043 0.140 0.016 0.011 0.013 0.010
PM (XB) 1.037 1.903 1.020 0.917 1.076 1.007

ρ = 0.9 MSE (B) 0.298 0.336 0.016 0.003 0.005 0.003
PM (XB) 1.212 1.285 1.210 1.010 1.368 1.184

S1, S2 and S3 denote Scenario 1, Scenario 2 and Scenario 3, respectively. The numbers in
parentheses are the

corresponding standard deviations.
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Real data

A breast cancer dataset contains 89 samples comprising gene expression
measurements and comparative genomic hybridization measurements, and
these data are available in the R package PMA.
Previous studies have demonstrated that certain types of cancer are
characterized by abnormal DNA copy-number changes.
It will, therefore, be of interest to identify the relationship between DNA
copy numbers and RNA expression levels.
In this case, we consider chromosome 18, where p = 294, r = 51 and n =
89. We centered and scaled both predictor matrix X and response matrix
Y .
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Real data

For comparison of prediction accuracy, a prediction mean squared error
(PMSE) is defined as

PMSE =‖ Yt − XtB̂ ‖2
F /(ntr), (8)

where (Yt ,Xt) represents the test dataset and B̂ represents the estimator
of B corresponding to each method.
In addition, we randomly split the data into a training set of size 70 and a
test set of size 19.
The training dataset is used to achieve the estimation in the model, and
then the test dataset is used to evaluate the prediction performance of
estimators. All the tuning parameters were selected by ten-fold
cross-validation.
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Real data

Table 1.3 Prediction comparisons based on data split at random 100 times.

ANR RRR RAN PNR SNR MSN

Rank 21 14 21 26 26 25
(6.7) (22.1) (5.8) (0.0) (0.0) (0.0)

PMSE 0.782 0.798 0.693 0.602 0.620 0.582
(0.013) (0.012) (0.012) (0.014) (0.015) (0.008)

Rank and PMSE represent the estimated rank and the prediction mean squared error,
respectively. The numbers in parentheses are the corresponding standard deviations.
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Real data
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Figure 1.1: The distribution of PMSE based on data split at random 100 times.

Prof. N. Balakrishnan September 2020 25 / 45



Outline

1 Reduced rank regression with matrix projections for high-dimensional
multivariate linear regression model

Introduction
Main results
Simulations
Real data

2 Envelope-based sparse reduced rank regression for high-dimensional
multivariate linear model

Introduction
Main Results
Simulations
Real data

3 References

Prof. N. Balakrishnan September 2020 26 / 45



Introduction

In this part, consider a multivariate linear regression model:

Y = βX + ε, (9)

where β ∈ Rr×p is the regression coefficient matrix. X ∈ Rp is a predictor
vector, Y ∈ Rr is a response vector, and ε ∈ Rr is an error vector with
cov(ε)=Σ.
Envelope method is developed for the multivariate linear model to reduce
the dimensions of response variables or predictor variables.
The key point of the envelope method is to seek the smallest reducing
subspace ξ of Σ that contain span(β) such that

QξY |X ∼ QξY , cov(QξY ,PξY |X ) = 0. (10)
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Introduction

In the following, we consider the matrix form of the multivariate linear
regression model:

Y = βX + ε, (11)

where β ∈ Rr×p is the regression coefficient matrix. X ∈ Rp×n,
Y ∈ Rr×n, and ε ∈ Rr×n.
The envelope-based reduced rank regression in the multivariate linear
model can be expressed as

ΓT
Y = ηBX + ΓTε,

where β = AB = Γγ = ΓηB.
Using singular value decomposition, we have ηB = UDV T , where
U ∈ Ru×d and V ∈ Rp×d are rank-d matrices with orthogonal columns,
respectively.
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Main Results

Let F = DV T . Suppose Γ and U are given, we then minimize the
following objective function:

Q(F ) =
1

2n
‖UTΓT

Y − FX‖2
F + λn

p∑
j=1

ωj(‖Fj‖2)

=
1

2n
tr((UTΓT

Y − FX )T (UTΓT
Y − FX )) + λn

p∑
j=1

ωj(‖Fj‖2)

(12)

where, Fj denotes the jth column of F , β = ΓUF , and ‖ · ‖2 denotes the
standard Euclidean norm on Rn. λn

∑p
j=1 ωj(‖Fj‖2) is adaptive group

LASSO penalty function.
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Main Results

We prove the proposed estimator has the oracle property when the sample
size n increases, when r and p remain fixed. The following regularity
conditions are assumed:
(A1) There exists a positive definite matrix M such that XXT/n→M , as
n→∞;
(A2) There exists a positive constant C1 such that ωj ≤ C1, for all j ∈ A.
Theorem 2.1. Under regularity conditions (A1) and (A2), assume Γ̂ and
Û are

√
n-consistent estimators of Γ and U , respectively. If

√
nλn → 0 as

n→∞, then there exists a local minimizer F̂ of Q(F ) such that β̂ is a√
n-consistent estimator of β, and that this β̂ must satisfy

(a) Sparsity: P(β̂Ac = 0)→ 1,

(b) Asymptotic normality:
√
n(vec(β̂A)− vec(βA))

D−→ N(0,ΣβA),
where ΣβA is the upper-left pq × pq block of ΣRE .
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Main Results

We prove the consistency of the model selection when p and r are allowed
to increase with the sample size n increases.
Theorem 2.2. Under some regularity conditions, provided
λn = o(n−(1−c2+c1)/2) and rn = o(nc2/2), the model selection of (12) is
consistent; that is, P({j : ‖β̂j‖2 6= 0} = A)→ 1.
where A = {j : ‖βj‖2 6= 0, j = 1, . . . , p}
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Simulations

The prediction mean squared error (PMSE) defined as

PMSE = E ||β̂X − Y ||2/nr .

We compare prediction accuracy of all the methods in terms of the PMSE.
We also compare accuracy of variable selection of these methods in terms
of the average correct ratio (ACR) between the number of correct
selection and the total number of relevant variables, which measures the
ability of selecting relevant variables.
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Simulations

OLS, ENV and ENRRR denote the ordinary least-squares estimator,
standard envelope estimator and envelope-based reduced rank regression
estimator, respectively.
Further, SPLS denotes the sparse partial least-squares estimator, SRRR
and aSRRR denote sparse reduced rank regression estimator with group
LASSO penalty and adaptive group LASSO penalty, respectively.
ENSRRR and aENSRRR denote envelope-based sparse reduced rank
regression estimator with group LASSO penalty and adaptive group
LASSO penalty, respectively.
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Simulations

Table 2.1 Prediction comparisons based on 50 simulation runs
with p and r being smaller than n

PMSE
n=200, u = 10, s = 20, d = 5

p=30, r=20 p=50, r=30 p=100, r=50 p=50, r=100

OLS 1.661 2.331 4.142 3.074

ENV 1.474 1.843 2.331 2.365

ENRRR 1.440 1.780 2.163 2.341

SPLS 1.841 2.148 2.245 2.476

SRRR 1.465 1.821 2.238 2.402

aSRRR 1.459 1.798 2.129 2.367

ENSRRR 1.438 1.775 2.168 2.347

aENSRRR 1.436 1.771 2.127 2.335
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Simulations

Table 2.2 Variable selection comparisons based on 50 simulation runs
with p and r being smaller than n

ACR
n=200, u = 10, s = 20, d = 5

p=30, r=20 p=50, r=30 p=100, r=50 p=50, r=100

SPLS 0.79 0.65 0.94 0.82

SRRR 0.67 0.60 0.20 0.40

aSRRR 1.00 0.99 0.96 0.98

ENSRRR 0.69 0.65 0.30 0.55

aENSRRR 1.00 0.99 0.97 0.99
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Simulations

Table 2.3 Prediction comparisons based on 50 simulation runs
with p and r being greater than n

PMSE
n = 60, p = 70, r = 70, d = 5 n = 100, p = 150, r = 150, d = 5

u = 10, s = 20 u = 20, s = 40 u = 10, s = 20 u = 20, s = 40

SPLS 3.324 5.435 2.472 3.090
SRRR 2.687 4.915 2.525 3.173

aSRRR 2.658 4.055 2.506 3.044
ENSRRR 2.524 4.764 2.392 2.950

aENSRRR 2.446 3.882 2.381 2.930
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Simulations

Table 2.4 Variable selection comparisons based on 50 simulation runs
with p and r being greater than n

ACR
n = 60, p = 70, r = 70 n = 100, p = 150, r = 150

u = 10, s = 20 u = 20, s = 40 u = 10, s = 20 u = 20, s = 40

SPLS 0.83 0.68 0.96 0.76
SRRR 0.77 0.76 0.93 0.68

aSRRR 0.97 0.97 0.97 0.86
ENSRRR 0.82 0.80 0.95 0.70

aENSRRR 0.98 0.98 0.97 0.88
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Real data

A yeast cell cycle data set can be obtained from the R package spls.
The response matrix Y consists of 542 cell-cycle-regulated genes.
The cell cycle was measured by taking RNA levels on genes at 18 time
points using the α-factor arrest method.
The 542×106 predictor matrix X contains the binding information of the
target genes for a total of 106 transition factors (TFs).
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Real data

In this case, we have n = 360, r = 18 and p = 106 in the training dataset.
We centered and scaled both predictor matrix X and response matrix Y .
By using five-fold cross-validation, we selected the number of factors
d = 4 for SRRR, aSRRR, ENSRRR and aENSRRR.
Similarly, the dimension of the envelope, u, was selected to be 6 by
five-fold CV.
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Real data

Table 2.5 Prediction comparisons based on data split at random 100 times.

OLS ENV ENRRR SPLS SRRR aSRRR ENSRRR aENSRRR

PMSE 0.534 0.512 0.490 0.416 0.466 0.415 0.401 0.399

Table 2.6 Variable selection comparisons based on data split at random 100 times.

SPLS SRRR aSRRR ENSRRR aENSRRR

MNSP 30 77 64 76 64
RNSP [19, 53] [45, 89] [46, 80] [47, 88] [48, 81]

MNSP and RNSP denote median and range of the numbers of selected predictors in the 100
splits, respectively.
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Thanks for your attention!
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