

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ

Θεωρητική μελέτη της ηλεκτρονικής δομής επίπεδων οργανικών μορίων (πουρίνες, πυριμιδίνες και παρόμοια μόρια) με γραμμικό συνδυασμό τροχιακών

> **Χριστίνα Ζαχαράκη** Μεταπτυχιακή Διπλωματική Εργασία

Επιβλέπων: Κωνσταντίνος Σιμσερίδης

A Θ HNA 2017

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS DEPARTMENT OF PHYSICS SECTION OF SOLID STATE PHYSICS

Theoretical study of the electronic structure of planar organic molecules (purines, pyrimidines and similar molecules) with the linear combination of orbitals method

> Christina Zacharaki Master Thesis

Supervisor: Constantinos Simserides

ATHENS 2017

Περιεχόμενα

1	Γρα	μμικός Συνδυασμός Ατομικών Τροχιακών	1		
	1.1	Γενικά για την LCAO	1		
	1.2	Η LCAO στο μοριαχό ιόν του υδρογόνου	3		
	1.3	Ετεροπολικός Δεσμός: NaCl	7		
	1.4	Βενζόλιο: sp^2 υβριδισμός του άνθραχα	11		
	1.5	Ανάλυση των sp^2 υβριδικών τροχιακών στο			
		βενζόλιο σε $2s, 2p_x$ και $2p_y$ ατομικά τροχιακά	11		
	1.6	Τύποι ομοιοπολικών δεσμών μεταξύ ατομικών τροχιακών	17		
	1.7	LCAO στο βενζόλιο με p_z τροχιαχά	20		
	1.8	Μέθοδος Hückel σε συζευγμένα συστήματα	23		
	1.9	Διπολική ροπή μετάβασης	24		
2	Αναλυτικός υπολογισμός 2				
	2.1	A ιθένιο ή A ιθυλένιο (C_2H_4)	26		
	2.2	1,3-Βουταδιένιο (C_4H_6)	29		
	2.3	Κυχλοβουταδιένιο (C_4H_4)	33		
	2.4	$Bενζόλιο (C_6H_6) \dots \dots$	37		
	2.5	1,3,5-Τριαζίνη $(C_3H_4N_3)$	40		
3	Πουρίνες 4				
	3.1	Αδενίνη $(C_5H_5N_5)$	44		
	3.2	2-Αμινοπουρίνη $(C_5H_5N_5)$ - ισομερές της αδενίνης	51		
	3.3	1H-Pyrazolo[3,4-d]pyrimidin-4-amine $(C_5H_5N_5)$ - ισομερές της αδενίνης	55		
	3.4	Pyrimido[5,4-e]-as-triazine,1,2-dihydro $(C_5H_5N_5)$ - ισομερές της αδενίνης	59		
	3.5	Γουανίνη $(C_5H_5N_5O)$	63		
	3.6	7-Amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one $(C_5H_5N_5O)$ - ισομερές			
		της γουανίνης	67		
	3.7	Pyrimido $[5,4-e]$ as-triazin-5 $[6h]$ -one,1,2-dihydro- $(C_5H_5N_5O)$ - $\iota\sigma\circ\mu\epsilon$ -			
		ρές της γουανίνης	71		
	3.8	7H-Imidazo[4,5-d]-v-triazin-4-one,6-methyl- $(C_5H_5N_5O)$ - ισομερές της			
		γουανίνης	75		
	3.9	Kageting $(C_8H_{10}N_4O_2)$	79		
	3.10	Θεοβρωμίνη $(C_7H_8N_4O_2)$	83		

	3.11 Ξανθίνη $(C_5H_4N_4O_2)$	87
	3.12 Υποξανθίνη (C ₅ H ₄ N ₄ O)	91
	3.13 Ισογουανίνη $(C_5H_5N_5O)$	95
	3.14 Ουρικό οξύ $(C_5H_4N_4O_3)$	99
	3.15 9Η-Πουρίνη $(C_5H_4N_4)$	103
	3.16 1H-1,2,3-Triazolo[4,5-b]pyridine (C ₅ H ₄ N ₄) - ισομερές της 9H-πουρίνης	107
	$3.17 \ [1,2,4]$ Triazolo $[1,5-a]$ pyrazine (C ₅ H ₄ N ₄) - ισομερές της 9H-πουρίνης	111
	$3.18 \ [1,2,3]$ Triazolo $[1,5-a]$ pyrazine (C ₅ H ₄ N ₄) - ισομερές της 9H-πουρίνης	115
	3.19 7Η-Πουρίνη 7Η-Purine $(C_5H_4N_4)$ - ταυτομερές της 9Η-πουρίνης	119
	3.20 Συγκεντρωτικά αποτελέσματα πουρινών	123
4	Διαζίνες -Πυριμιδίνες	127
	4.1 Πυραζίνη $(C_4 H_4 N_2)$	127
	4.2 Πυριδαζίνη $(C_4H_4N_2)$	131
	4.3 Πυριμιδίνη $(C_4 H_4 N_2)$	135
	4.4 Kutoo($v_{\rm d}$ ($C_{\rm d}$ H ₅ N ₂ O)	139
	4.5 Θ_{Uullyn} (C ₅ H ₆ N ₂ O ₂)	143
	4.6 Oupaxily $(C_4H_4N_2O_2)$	147
	4.7 Pyrazine, 1,4-dioxide $(C_4H_4N_2O_2)$	151
	4.8 4(1H)-Pyrimidinone, 6-hydroxy- $(C_4H_4N_2O_2)$	155
	4.9 Maleic hydrazide $(C_4H_4N_2O_2)$	159
	4.10 Συγκεντρωτικά αποτελέσματα διαζινών- πυριμιδινών	163
5	Παρόμοια μόρια	167
_	$5.1 1 \text{H-BevCiulδαζόλιο} \ (C_7 \text{H}_6 \text{N}_2)$ -ισομερές 1	167
	5.2 1H-Ινδαζόλη ($C_7H_6N_2$)-ισομερές 2	171
	5.3 2H-Iνδαζόλη (C7H6N2)-ισομερές 2'	175
	5.4 1H-Pvrrolo[2.3-b]pvridine ($C_7H_6N_2$)-ισομερές 3	179
	5.5 1H-Ιμιδαζόλιο (C ₃ H ₄ N ₂)-ισομερές 1	183
	5.6 1H-Πυραζόλιο $(C_3H_4N_2)$ -ισομερές 2	186
	5.7 Καρβαζόλιο ($C_{12}H_0N$)	189
	5.8 Συγκεντρωτικά αποτελέσματα παρόμοιων μορίων	193
6	Μόρια μετρημένα πειραματικά	196
	6.1 Βενζόλιο (C ₆ H ₆)	198
	6.2 Τολουένιο (C_7H_8)	201
	6.3 Κουμένιο (C_9H_{12})	204
	6.4 π-Ξυλόλιο (C_8H_{10})	207
	6.5 Αχετοφαινόνη (C ₈ H ₈ O)	210
	6.6 Διμεθυλανιλίνη $(C_8H_{11}N)$	214
	6.7 Ινδόλη (C ₈ H ₇ N)	217
	6.8 Λουμινόλη $(C_8H_7N_3O_2)$	221
	6.9 Φαινανθρολίνη ($C_{12}H_8N_2$)	226

ii

6.10 Συγκεντρωτικά αποτελέσματα πειραματικά μετρημένων μορίων	231
ΒΙΒΛΙΟΓΡΑΦΙΑ	236

iii

Στην παρούσα εργασία μελετάμε την ηλεκτρονική δομή, συμπεριλαμβανομένης της ενέργειας ιονισμού, της ενέργειας διέγερσης και της ηλεκτρικής διπολικής ροπής μετάβασης σε σημαντικά βιολογικά ετεροκυκλικά επίπεδα μόρια και παρόμοια μόρια.

Χρησιμοποιούμε τη μέθοδο του Γραμμικού Συνδυασμού των Ατομικών Τροχιακών (Linear Combination of Atomic Orbitals), λαμβάνοντας υπόψη μόνο τα p_z ατομικά τροχιακά. Με άλλα λόγια, χρησιμοποιούμε το μοντέλο του Hückel [1, 2] αλλά με νεότερες παραμετροποίησεις [3] και [4].

Αυτές οι παραμετροποιήσεις μπορούν να εφαρμοστούν σε μόρια που περιέχουν άτομα άνθραχα, αζώτου ή οξυγόνου με sp^2 υβριδισμό. Για τα διαγώνια στοιχεία πίναχα χρησιμοποιούμε εμπειριχές παραμέτρους που αντιστοιχούν στον άνθραχα, στο άζωτο με ένα ή δύο p_z ηλεχτρόνια χαι στο οξυγόνο. Για τα μη διαγώνια στοιχεία πίναχα μεταξύ γειτονιχών ατόμων χρησιμοποιούμε [3] τον τύπο του Harrison που εξαρτάται από το μήχος του δεσμού [5] (ή παραλλαγή του [4]).

Αρχικά, μελετάμε αναλυτικά κάποια μικρά μόρια και συγκρίνουμε τα αναλυτικά με τα αριθμητικά αποτελέσματα των δύο παραμετροποιήσεων προκειμένου να επαληθεύσουμε την εγκυρότητα της μεθόδου. Στα επόμενα κεφάλαια εφαρμόζουμε την μέθοδο σε πουρίνες, πυριμιδίνες, παρόμοια μόρια και σε μόρια για τα οποία μετρήσαμε πειραματικά το ενεργειακό χάσμα με φάσματα απορροφήσεως.

Τέλος, συγκρίνουμε (α΄) τα αποτελέσματά μας με πειραματικές τιμές των ενεργειών ιονισμού, των ενεργειακών χασμάτων HOMO-LUMO και των διπολικών ροπών μετάβασης και (β΄) τις δύο παραμετροποιήσεις μεταξύ τους.

Στην εργασία χρησιμοποιούμε για την απεικόνιση των ατόμων τον εξής χρωματικό κώδικα:

v

In the present master thesis we study the electronic structure, including the ionisation energy, the excitation energy, and the transition electric dipole moment of biologically important heterocyclic planar molecules and similar molecules.

We use the Linear Combination of Atomic Orbitals (LCAO) method, taking only p_z atomic orbitals into account. In other words, we use a type of Hückel model [1,2] but with newer parametrizations [3] and [4].

These parametrizations can be employed to molecules containing carbon, nitrogen, or oxygen atoms with sp^2 hybridization. For the diagonal matrix elements, we use empirical parameters, corresponding to carbon, nitrogen with one or two p_z electrons and oxygen atoms. For the non-diagonal matrix elements between neighbouring atoms we use [3] the bond-length dependent formula of Harrison [5] (or a variant [4]).

First, we study analytically some small molecules and we compare the analytical results to the numerical ones of these two parametrizations in order to verify the validity of the method. In the next chapters we apply this method numerically to purines, pyrimidines, similar molecules and molecules whose energy gap we have measured experimentally by taking absorption spectra.

Finally, we compare (a) our results to experimental ionisation energies, HOMO-LUMO gaps and transition dipole moments and (b) the two parametrizations to each other.

In the present study we use the following colour code to depict the molecules:

vii

$\mathsf{E}\Upsilon\mathsf{X}\mathsf{A}\mathsf{P}\mathsf{I}\Sigma\mathsf{T}\mathsf{I}\mathsf{E}\Sigma$

Θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή μου, κ. Κωνσταντίνο Σιμσερίδη για την καθοδήγηση και την υπομονή καθ΄ όλη τη διάρκεια της εκπόνησης της διπλωματικής εργασίας καθώς και τον υποψήφιο διδάκτορα του Τμήματος Φυσικής ΕΚΠΑ κ. Ανδρέα Μόρφη για την πολύτιμη βοήθειά του.

Ακόμη, θα ήθελα να ευχαριστήσω τον Επίκουρο Καθηγητή κ. Γεώργιο Βουγιουκαλάκη και τον μεταπτυχιακό φοιτητή κ. Αλέξανδρο Σκλαβούνο του Τμήματος Χημείας του ΕΚΠΑ για τη λήψη των φασμάτων απορρόφησης του τελευταίου κεφαλαίου της εργασίας.

viii

Κεφάλαιο 1

Γραμμικός Συνδυασμός Ατομικών Τροχιακών

Εδώ θα αναλύσουμε τη μέθοδο του Γραμμικού Συνδυασμού Ατομικών Τροχιακών (Linear Combination of Atomic Orbitals, LCAO) [6].

1.1 Γενικά για την LCAO

Η μέθοδος του γραμμιχού συνδυασμού των ατομιχών τροχιαχών προέχυψε από την προσπάθεια των φυσιχών χαι χημιχών να εξηγήσουν τη φύση του χημιχού δεσμού. Αυτό το μοντέλο εχτός του ότι μας εξηγεί το χημιχό δεσμό, μας δίνει ποσοτιχές χαι ποιοτιχές πληροφορίες για τη στερεοχημεία, τις διαστάσεις χαι για αρχετές φασματοσχοπιχές ποσότητες των διαφόρων μορίων. Η χύρια ιδέα της μεθόδου είναι να εχφράσουμε την μοριαχή χυματοσυνάρτηση $\psi(\vec{r})$ μέσω γραμμιχού συνδυασμού των ατομιχών χυματοσυναρτήσεων. Γύρω από τον πυρήνα χάθε ατόμου που συμμετέχει σε ένα δεσμό η λύση της εξίσωσης Schrödinger προσεγγίζει την ατομιχή χυματοσυνάρτηση. Έτσι σε ένα χημιχό δεσμό η αντίστοιχη μοριαχή χυματοσυνάρτηση στη μέθοδο LCAO θεωρείται ως μια υπέρθεση - γραμμιχός συνδυασμός - των αντίστοιχων ατομιχών τροχιαχών. Γενιχά, το μοριαχό τροχιαχό $\psi(\vec{r})$ γράφεται ως γραμμιχός συνδυασμός ατομιχών τροχιαχών τροχιαχών φ_{iν}(\vec{r}) δηλαδή

$$\psi(\vec{r}) = \sum_{\nu=1}^{N} \sum_{i=1}^{I} c_{i\nu} \phi_{i\nu}(\vec{r}), \qquad (1.1)$$

όπου ο δείχτης ν αναφέρεται στο ν άτομο του μορίου χαι ο δείχτης i στο τροχιαχό i. Υπάρχουν, ας υποθέσουμε, N άτομα χαι I τροχιαχά. Στην περίπτωση που στο χημικό δεσμό συνεισφέρει ένα μόνο τροχιαχό από χάθε άτομο, τότε δεν υπάρχει το δεύτερο άθροισμα. Εφαρμόζουμε την Εξ. (1.1) στην χρονοανεξάρτητη εξίσωση Schrödinger

$$\hat{H}\psi(\vec{r}) = E\psi(\vec{r}),\tag{1.2}$$

όπου H είναι ο τελεστής της χαμιλτονιανής και E οι ιδιοτιμές της ενέργειας. Πολλαπλασιάζουμε με $\phi_{j\mu}(\vec{r})^*$ και ολοκληρώνουμε στο χώρο

$$\sum_{\nu} \sum_{i} c_{i\nu} \int d^3 r \phi_{j\mu}(\vec{r})^* \hat{H} \phi_{i\nu}(\vec{r}) = E \sum_{\nu} \sum_{i} c_{i\nu} \int d^3 r \phi_{j\mu}(\vec{r})^* \phi_{i\nu}(\vec{r}).$$
(1.3)

Δηλαδή καταλήγουμε στο ομογενές γραμμικό σύστημα

$$\sum_{\nu} \sum_{i} c_{i\nu} H_{j\mu i\nu} = E \sum_{\nu} \sum_{i} c_{i\nu} S_{j\mu i\nu}.$$
(1.4)

Εδώ τα στοιχεία πίνακα της χαμιλτονιανής (δηλαδή τα στοιχεία πίνακα της επικαλύψεως των κυματοσυναρτήσεων μέσω της χαμιλτονιανής)

$$H_{j\mu i\nu} = \langle \phi_{j\mu} | \hat{H} | \phi_{i\nu} \rangle = \int d^3 r \phi_{j\mu} (\vec{r})^* \hat{H} \phi_{i\nu} (\vec{r}).$$
(1.5)

και τα στοιχεία πίνακα της επικαλύψεως των κυματοσυναρτήσεων

$$S_{j\mu i\nu} = \langle \phi_{j\mu} | \phi_{i\nu} \rangle = \int d^3 r \phi_{j\mu}(\vec{r})^* \phi_{i\nu}(\vec{r}), \qquad (1.6)$$

Στη διπλωματική αυτή εργασία, αφού συζητήσουμε μερικές χαρακτηριστικές περιπτώσεις εφαρμογής της LCAO, θα την εφαρμόσουμε στην περίπτωση επιπέδων οργανικών μορίων όπως οι βάσεις του DNA, χρησιμοποιώντας μόνο τα p_z ατομικά τροχιακά τα οποία είναι κάθετα στο επίπεδο του οργανικού μορίου. Οπότε, η Εξ. (1.1) γίνεται

$$\psi(\vec{r}) = \sum_{\nu=1}^{N} c_{\nu} p_{z_{\nu}}(\vec{r}), \qquad (1.7)$$

όπου ο δείκτης ν αναφέρεται στο ν άτομο, από τα συνολικά N άτομα του μορίου. Οπότε, χρησιμοποιώντας την Εξ. (1.7), πολλαπλασιάζοντας με $p_{z\mu}(\vec{r})^*$ και ολοκληρώνοντας στο χώρο, η Εξ. (1.2) γίνεται

$$\sum_{\nu} c_{\nu} \int d^3 r p_{z\mu}(\vec{r})^* \hat{H} p_{z\nu}(\vec{r}) = E \sum_{\nu} c_{\nu} \int d^3 r p_{z\mu}(\vec{r})^* p_{z\nu}(\vec{r}).$$
(1.8)

Δηλαδή καταλήγουμε στο ομογενές γραμμικό σύστημα

$$\sum_{\nu} c_{\nu} H_{\mu\nu} = E \sum_{\nu} c_{\nu} S_{\mu\nu}.$$
 (1.9)

Εδώ

$$H_{\mu\nu} = \langle p_{z\mu} | \hat{H} | p_{z\nu} \rangle = \int d^3 r p_{z\mu} (\vec{r})^* \hat{H} p_{z\nu} (\vec{r}).$$
(1.10)

και

$$S_{\mu\nu} = \langle p_{z\mu} | p_{z\nu} \rangle = \int d^3 r p_{z\mu}(\vec{r})^* p_{z\nu}(\vec{r}).$$
(1.11)

Θεωρώντας τώρα ότι τα στοιχεία πίνακα της επικαλύψεως της Εξ. (1.11) είναι ίσα με $\delta_{\mu\nu}$ (δ του Kronecker) δηλαδή ότι τα p_z ατομικά τροχιακά είναι ορθοκανονικά, η Εξ. (1.9) γίνεται

$$\sum_{\nu=1}^{N} \left(H_{\mu\nu} - E\delta_{\mu\nu} \right) c_{\nu} = 0.$$
 (1.12)

Δηλαδή πρέπει να διαγωνοποιήσουμε τη χαμιλτονιανή. Τότε θα προχύψουν $l = 1, \ldots, N$ ιδιοτιμές (E_l) και ιδιοανύσματα με συνιστώσες $c_{l\nu}$. Υποθέσαμε ορθοκανονικότητα των τροχιακών p_z που εντοπίζονται σε διαφορετικά άτομα (πράγμα που μπορεί να επιτευχθεί με κατάλληλη εκλογή ατομικοειδών τροχιακών).

Γενικότερα, εκτός από τα μόρια, η LCAO χρησιμοποιείται ευρέως και στη φυσική στερεάς κατάστασης εξηγώντας διάφορες ιδιότητες των στερεών. Συγκεκριμένα, μπορεί να εξηγήσει την κατάταξη των στερεών σε μέταλλα, ημιμέταλλα, ημιαγωγούς και μονωτές. Όμως, παρά τις δυνατότητες που προσφέρει, η εφαρμογή της μεθόδου γίνεται πολυπλοκότερη όσο αυξάνεται ο αριθμός των παραμέτρων. Μειονέκτημα της μεθόδου θεωρείται η ύπαρξη παραμέτρων οι οποίες είτε θεωρούνται δεδομένες μέσω συγκρίσεως με άλλους υπολογισμούς και το πείραμα, είτε εκφράζονται συναρτήσει ατομικών μεγεθών όπως το μήκος των δεσμών μεταξύ γειτονικών ατόμων. Ο καλύτερος τρόπος κατανόησης της μεθόδου είναι η εφαρμογή σε ένα απλό σύστημα, όπως π.χ. εις το μοριακό ιόν του υδρογόνου (δείτε §1.2), το χλωριούχο νάτριο (δείτε §1.3) και το βενζόλιο (δείτε § 1.4, 1.5, 1.7). Η εφαρμογή της LCAO στο μόριο του βενζολίου πραγματοποιείται για εξοικείωση με ένα σχετικά πολυπλοκότερο σύστημα, του οποίου η δομή ομοιάζει με αυτή των αζωτούχων βάσεων του γενετικού υλικού, εξαιτίας της ύπαρξης αρωματικών επίπεδων κυκλικών δακτυλίων. Κατόπιν, θα μελετήσουμε τέτοια επίπεδα οργανικά μόρια αποτελούμενα από ατομα C, N, O, H.

1.2 Η LCAO στο μοριακό ιόν του υδρογόνου

Στο μοριαχό ιόν του υδρογόνου το μοναδιχό ηλεχτρόνιο μοιράζεται την ταυτόχρονη έλξη των δύο πυρήνων A χαι B. Η μοριαχή χυματοσυνάρτηση που περιγράφει την χίνηση του ηλεχτρονίου θεωρείται γραμμιχός συνδυασμός των ατομιχών τροχιαχών 1s που περιγράφουν την χίνηση του ηλεχτρονίου γύρω από χάθε πυρήνα ξεχωριστά αν αυτός ήταν μοναδιχός του συστήματος. Θεωρούμε ότι γνωρίζουμε τις ατομιχές ιδιοενέργειες $\tilde{\epsilon}_i$ χαι ιδιοσυναρτήσεις $\phi_i(\vec{r})$ που αναφέρονται στις γνωστές ιδιοκαταστάσεις του ατόμου του υδρογόνου [7]. Η μοριαχή χαμιλτονιανή είναι

$$\hat{H} = \frac{\hat{p}^2}{2m} + U(\vec{r} - \vec{R}_A) + U(\vec{r} - \vec{R}_B).$$
(1.13)

Ο πρώτος και ο δεύτερος όρος συναποτελούν την ατομική ("atomic") χαμιλτονιανή του ατόμου A, ενώ ο πρώτος και ο τρίτος όρος συναποτελούν την ατομική χαμιλτονιανή του ατόμου B. Έτσι όταν το ηλεκτρόνιο βρίσκεται στην περιοχή του πυρήνα A [δηλαδή όταν $|\vec{r} - \vec{R_A}| \approx \leq \alpha_{\rm Bohr}$ και $|\vec{r} - \vec{R_B}| \gg \alpha_{\rm Bohr}$, όπου $\alpha_{\rm Bohr}$ είναι η ακτίνα Bohr του ατόμου του υδρογόνου, $\vec{R}_A(\vec{R}_B)$ είναι το διάνυσμα θέσεως του πυρήνα A(B) και \vec{r} το διάνυσμα θέσεως του ηλεκτρονίου], η δυναμική ενέργεια που αντιλαμβάνεται το ηλεκτρόνιο είναι παρόμοια με αυτή του απομονωμένου ατόμου και η κυματοσυνάρτηση είναι παρόμοια με την ατομική δηλαδή $\psi(\vec{r}) \approx \phi_{1s}(\vec{r} - \vec{R}_A)$. Αντίστοιχα κοντά στην περιοχή του πυρήνα B έχουμε $\psi(\vec{r}) \approx \phi_{1s}(\vec{r} - \vec{R}_B)$.

Οπότε η μοριακή κυματοσυνάρτηση θεωρείται ο γραμμικός συνδυασμός των δύο ατομικών

$$\psi(\vec{r}) = c_A \phi_{1s}(\vec{r} - \vec{R}_A) + c_B \phi_{1s}(\vec{r} - \vec{R}_B)$$
(1.14)

όπου c_A , c_B μιγαδικοί αριθμοί που εκφράζουν τον βαθμό συμμετοχής των επιμέρους ατομικών τροχιακών. Τα μέτρα στο τετράγωνο των δύο αυτών συντελεστών εκφράζουν την πιθανότητα να βρεθεί το ηλεκτρόνιο στην περιοχή γύρω από τον αντίστοιχο πυρήνα. Περαιτέρω, για απλότητα θα γράφουμε $\phi_A = \phi_{1s}(\vec{r} - \vec{R}_A)$ και $\phi_B = \phi_{1s}(\vec{r} - \vec{R}_B)$. Η Εξ. (1.2) γίνεται

$$\hat{H}(c_A\phi_A + c_B\phi_B) = E(c_A\phi_A + c_B\phi_B) \tag{1.15}$$

Πολλαπλασιάζουμε με το συζυγές του ϕ_A και ολοκληρώνουμε στο χώρο. Εναλλα-
κτικά γράφουμε $dV=d^3r$.

$$c_A \int dV \phi_A^* \hat{H} \phi_A + c_B \int dV \phi_A^* \hat{H} \phi_B = Ec_A \int dV \phi_A^* \phi_A + Ec_B \int dV \phi_A^* \phi_B. \quad (1.16)$$

Ορίζουμε

$$\epsilon_A \equiv H_{AA} = \int dV \phi_A^* \hat{H} \phi_A, \qquad (1.17)$$

$$V_2 \equiv H_{AB} = \int dV \phi_A^* \hat{H} \phi_B, \qquad (1.18)$$

$$S \equiv S_{AB} = \int dV \phi_A^* \phi_B, \qquad (1.19)$$

ενώ

$$\int dV \phi_A^* \phi_A = 1. \tag{1.20}$$

Άρα

$$c_A \epsilon_A + c_B V_2 = E c_A + E c_B S. \tag{1.21}$$

Είναι γνωστές οι ιδιοσυναρτήσεις του ατόμου του υδρογόνου [7], η ϕ_A είναι η 1s δηλαδή η ϕ_{100} που μπορεί να θεωρηθεί πραγματική και θετική. Πράγματι [7], σε σφαιρικές συντεταγμένες r, θ, φ ,

$$\phi_{100}(r,\theta,\varphi) = (\pi a_0^3)^{-1/2} e^{-\frac{r}{a_0}}, \qquad (1.22)$$

όπου a_0 είναι η ακτίνα Bohr. Άρα S > 0. Επίσης $V_2 < 0$ διότι κλασικά είναι ένας όρος που οδηγεί στην έλξη των ατόμων δηλαδή χαμηλώνει την ενέργεια. Επίσης, να σημειωθεί ότι

$$\epsilon_A \equiv H_{AA} = \int dV \phi_A^* \hat{H} \phi_A \neq \int dV \phi_A^* \hat{H}^{atomic} \phi_A = H_{AA}^{atomic} \equiv \tilde{\epsilon}_A.$$
(1.23)

$$(\epsilon_A - E)c_A + (V_2 - ES)c_B = 0.$$
(1.24)

Πολλαπλασιάζουμε τώρα με το συζυγές του ϕ_B και ολοκληρώνουμε στο χώρο.

$$c_A \int dV \phi_B^* \hat{H} \phi_A + c_B \int dV \phi_B^* \hat{H} \phi_B = E c_A \int dV \phi_B^* \phi_A + E c_B \int dV \phi_B^* \phi_B. \quad (1.25)$$

Αλλά

$$\epsilon_B \equiv H_{BB} = \int dV \phi_B^* \hat{H} \phi_B, \qquad (1.26)$$

κι ακόμα

Τελικά η Εξ. 1.21 γράφεται

$$V_2^* \equiv H_{BA} = \int dV \phi_B^* \hat{H} \phi_A, \qquad (1.27)$$

$$S_{BA} = \int dV \phi_B^* \phi_A = S^*. \tag{1.28}$$

Ακόμα

$$\int dV \phi_B^* \phi_B = 1, \tag{1.29}$$

λόγω ορθοκανονικότητας. Εν τέλει βγάζουμε την εξίσωση

$$c_A V_2^* + c_B \epsilon_B = E c_A S^* + E c_B. \tag{1.30}$$

Επειδή στο άτομο του υδρογόνου ο
ι ϕ_A και ϕ_B είναι πραγματικές $V_2^*=V_2$ κα
ι $S^*=S$ οπότε $c_AV_2+c_B\epsilon_B=Ec_AS+Ec_B.$ Τελικά η Εξ. 1.30 γράφεται

$$(V_2 - ES)c_A + (\epsilon_B - E)c_B = 0.$$
(1.31)

Επίσης ισχύει

$$\epsilon_A = \langle \phi_A | \hat{H} | \phi_A \rangle = \langle \phi_B | \hat{H} | \phi_B \rangle = \epsilon_B \equiv \epsilon \tag{1.32}$$

Άρα από τις Εξ.(1.24, 1.31, 1.32) έχουμε σε μορφή πινάχων:

$$\begin{pmatrix} \epsilon - E & V_2 - ES \\ V_2 - ES & \epsilon - E \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
 (1.33)

Για να έχει μη τετριμένη λύση το παραπάνω σύστημα της Εξ. (1.33) θα πρέπει η ορίζουσα να μηδενίζεται. det = $0 \Rightarrow (\epsilon - E)^2 - (V_2 - ES)^2 = 0 \Rightarrow$

$$(\epsilon - E)^2 = (V_2 - ES)^2. \tag{1.34}$$

Λύνοντας ως προς Eπαίρνουμε δύο ιδιοτιμές της ενέργειας

$$E_a = \frac{\epsilon - V_2}{1 - S} \tag{1.35}$$

6

και

$$E_b = \frac{\epsilon + V_2}{1+S} \tag{1.36}$$

Η ιδιοενέργεια E_a αντιστοιχεί στη λεγόμενη aντιδεσμική (antibonding) κατάσταση, ενώ η ιδιοενέργεια E_b αντιστοιχεί στη λεγόμενη δεσμική (bonding) κατάσταση. Οι ονομασίες αυτές θα εξηγηθούν παρακάτω.

Αντικαθιστούμε πρώτα την E_a που δίνεται από την Εξ. (1.35) στην (1.33) για να βρούμε τους συντελεστές c_A και c_B . Κάνοντας τις πράξεις βγάζουμε ότι $c_A = -c_B$. Αυτό σημαίνει ότι δεδομένης της μορφής των ϕ_A και ϕ_B που δεν είναι παρά οι 1s ιδιοσυναρτήσεις του ατόμου του υδρογόνου που δεν μηδενίζονται πουθενά στο χώρο δηλαδή δεν έχουν κόμβο (δεσμό, node), οι αντίθετοι συντελεστές συνεπάγονται ότι θα υπάρχει στην μοριακή ιδιοσυνάρτηση $\psi(\vec{r})$ που δίνεται από την Εξ. 1.14 ένα σημείο μηδενισμού, δηλαδή ένας κόμβος. Αυτό σημαίνει ότι πρόκειται για την 1η διεγερμένη κατάσταση του κβαντικού φρέατος του μοριακού ιόντος του υδρογόνου. Άρα αυτός ο συνδυασμός δεν αντιστοιχεί στην θεμελιώδη κατάσταση του κβαντικού φρέατος εξ ου και το όνομα αντιδεσμική. Κανονικοποιούμε την αντιδεσμική ιδιοσυνάρτηση και έχουμε:

$$\int \psi^* \psi dV = 1 \Rightarrow \int (c_A^* \phi_A^* - c_A^* \phi_B^*) (c_A \phi_A - c_A \phi_B) dV = 1.$$
(1.37)

Άρα

$$|c_A|^2 = \frac{1}{2(1-S)}.$$
(1.38)

 Δ ηλαδή συνολικά

$$c_A = -c_B = \frac{1}{\sqrt{2(1-S)}} e^{i\theta}.$$
 (1.39)

όπου θ αυθαίρετη φάση.

Αντικαθιστούμε τώρα την E_b που δίνεται από την Εξ. (1.36) στην (1.33) για να βρούμε τους συντελεστές c_A και c_B . Κάνοντας τις πράξεις έχουμε $c_A = c_B$. Αυτό σημαίνει ότι δεδομένης της μορφής των ϕ_A και ϕ_B που δεν είναι παρά οι 1s ιδιοσυναρτήσεις του ατόμου του υδρογόνου που δεν μηδενίζονται πουθενά στο χώρο δηλαδή δεν έχουν κόμβο (δεσμό, node), οι ίσοι συντελεστές συνεπάγονται ότι ΔΕΝ θα υπάρχει στην μοριακή ιδιοσυνάρτηση $\psi(\vec{r})$ που δίνεται από την Εξ. 1.14 σημείο μηδενισμού, δηλαδή ΔΕΝ θα υπάρχει κόμβος. Αυτό σημαίνει ότι πρόκειται για τη θεμελιώδη κατάσταση του κβαντικού φρέατος του μοριακού ιόντος του υδρογόνου εξ ου και το όνομα δεσμική. Από την κανονικοποίηση της δεσμικής έχουμε

$$|c_A|^2 = \frac{1}{2(1+S)}.$$
(1.40)

 Δ ηλαδή συνολικά

$$c_A = c_B = \frac{1}{\sqrt{2(1+S)}} e^{i\varphi}.$$
 (1.41)

όπου φ αυθαίρετη φάση.

Σημειωτέον ότι αφού συμφώνως με τα παραπάνω, η 'δεσμική' E_b αντιστοιχεί στη θεμελιώδη κατάσταση και η 'αντιδεσμική' E_a αντιστοιχεί στην 1η διεγερμένη κατάσταση θα πρέπει $E_a > E_b$. Δεδομένου ότι 1 > S > 0, και λόγω των Εξ. (1.35-1.36) θα πρέπει $V_2 < \epsilon S$. Εξάλλου, η επικάλυψη S είναι αρκετά μικρότερη από 1. Από τις Εξ. (1.35-1.36) προκύπτει

$$E_a - \epsilon = \frac{\epsilon S - V_2}{1 - S} \Rightarrow \lim_{S \to 0} E_a - \epsilon = -V_2 > 0 \tag{1.42}$$

και

$$\epsilon - E_b = \frac{\epsilon S - V_2}{1 + S} \Rightarrow \lim_{S \to 0} \epsilon - E_b = -V_2 > 0.$$
(1.43)

Δηλαδή για αρχετά μικρό $S, E_a > \epsilon > E_b.$ Η περίπτωση S=0 παρουσιάζεται στην παραχάτω Εικόνα 1.1.

Σχήμα 1.1: Μοριαχό ιόν H_2^+ . Παρουσιάζεται η περίπτωση S = 0.

1.3 Ετεροπολικός Δεσμός: NaCl

Η μέθοδος του γραμμικού συνδιασμού ατομικών τροχιακών (LCAO) εφαρμόζεται παρομοίως στα διατομικά ιοντικά μόρια. Ένα τέτοιο μόριο είναι το NaCl. Τα μοριακά τροχιακά θα γραφούν και πάλι ως γραμμικός συνδυασμός ατομικών τροχιακών. Η δομή των απομονωμένων ατόμων είναι: για το νάτριο (Na): [Ne] $3s^1 = [1s^22s^22p^6]3s^1$ και για το χλώριο (Cl): [Ne] $3s^23p^5$. Θα χρησιμοποιήσουμε την $\phi_s(\vec{r} - \vec{R_A})$ για το Na και την $\phi_p(\vec{r} - \vec{R_B})$ για το Cl. Η μοριακή κυματοσυνάρτηση θα είναι ο γραμμικός συνδυασμός των δύο ατομικών

$$\psi(\vec{r}) = c_A \phi_s(\vec{r} - \vec{R_A}) + c_B \phi_p(\vec{r} - \vec{R_B}).$$
(1.44)

Από τη χρονοανεξάρτητη εξίσωση Schrödinger και αντικαθιστώντας την $\psi(\vec{r})$ έχουμε

$$\hat{H}(c_A\phi_{sA} + c_B\phi_{pB}) = E(c_A\phi_{sA} + c_B\phi_{pB}).$$
 (1.45)

Για απλότητα γράψαμε παραπάνω και θα γράφουμε από εδώ και πέρα $\phi_{sA} = \phi_s(\vec{r} - \vec{R_A})$ και $\phi_{pB} = \phi_p(\vec{r} - \vec{R_B})$. Πολλαπλασιάζουμε και τα δύο μέλη της παραπάνω εξίσωσης με την ϕ_{sA}^* και ολοκληρώνουμε σε όλο τον χώρο. Οπότε:

$$\int \phi_{sA}^* \hat{H} c_A \phi_{sA} dV + \int \phi_{sA}^* \hat{H} c_B \phi_{pB} dV = \int \phi_{sA}^* E c_A \phi_{sA} dV + \int \phi_{sA}^* E c_B \phi_{pB} dV \quad (1.46)$$

Ορίζουμε

$$\epsilon_A = \int \phi_{sA}^* \hat{H} \phi_{sA} dV \tag{1.47}$$

$$V_2 = \int \phi_{sA}^* \hat{H} \phi_{pB} dV \tag{1.48}$$

$$S = \int \phi_{sA}^* \phi_{pB} dV \tag{1.49}$$

και λόγω ορθοκανονικότητας ισχύει

$$\int \phi_{sA}^* \phi_{sA} dV = 1. \tag{1.50}$$

Τα αντικαθιστούμε στην Εξ. (1.46) και παίρνουμε

$$c_A \epsilon_A + c_B V_2 = E c_A + E c_B S \Rightarrow \tag{1.51}$$

$$(\epsilon_A - E)c_A + (V_2 - ES)c_B = 0. \tag{1.52}$$

Στη συνέχεια πολλαπλασιάζουμε την Εξ. (1.45) με ϕ_{pB}^* και ολοκληρώνουμε σε όλο τον χώρο, άρα έχουμε

$$\int \phi_{pB}^* \hat{H} c_A \phi_{sA} dV + \int \phi_{pB}^* \hat{H} c_B \phi_{pB} dV = \int \phi_{pB}^* E c_A \phi_{sA} dV + \int \phi_{pB}^* E c_B \phi_{pB} dV$$
(1.53)

Ορίζουμε όπως πριν

$$\epsilon_B = \int \phi_{pB}^* \hat{H} \phi_{pB} dV, \qquad (1.54)$$

ενώ

$$V_2^* = \int \phi_{pB}^* \hat{H} \phi_{sA} dV \tag{1.55}$$

και

$$S^* = \int \phi^*_{pB} \phi_{sA} dV. \tag{1.56}$$

Ακόμα, λόγω ορθοκανονικότητας

$$\int \phi_{pB}^* \phi_{pB} dV = 1. \tag{1.57}$$

Άρα έχουμε την παρακάτω εξίσωση

$$c_A V_2^* + c_B \epsilon_B = E c_A S^* + E c_B \Rightarrow \tag{1.58}$$

$$(V_2^* - ES^*)c_A + (\epsilon_B - E)c_B = 0.$$
(1.59)

Όμως ισχύει $V_2^* = V_2$ και $S^* = S$, διότι οι ϕ_{sA} και ϕ_{pB} είναι πραγματικές, οπότε έχουμε το παρακάτω σύστημα δύο εξισώσεων σε μορφή πινάκων

$$\begin{pmatrix} \epsilon_A - E & V_2 - ES \\ V_2 - ES & \epsilon_B - E \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
 (1.60)

Μη τετριμμένη λύση έχουμε όταν η ορίζουσα είναι μηδενική, δηλαδή

$$(\epsilon_A - E)(\epsilon_B - E) - (V_2 - ES)(V_2 - ES) = 0$$
(1.61)

Λύνοντας την εξίσωση καταλήγουμε στο τριώνυμο

$$(1 - S^2)E^2 + (2SV_2 - \epsilon_A - \epsilon_B)E + \epsilon_A\epsilon_B - V_2^2 = 0.$$
(1.62)

Επιπλέον ορίζουμε

$$V_3 = \frac{\epsilon_A - \epsilon_B}{2} \tag{1.63}$$

και

$$\epsilon = \frac{\epsilon_A + \epsilon_B}{2}.\tag{1.64}$$

όπου το V₃ είναι θετικό. Αυτό προκύπτει από τις ενέργειες ιονισμού του νατρίου και του χλωρίου. Κατ΄ αρχήν υποθέτουμε ότι

$$\epsilon_A \equiv H_{AA} = \int \phi_{sA}^* \hat{H} \phi_{sA} dV \neq \alpha \lambda \lambda \dot{\alpha} \approx \int \phi_{sA}^* \hat{H}^{atomic} \phi_{sA} dV = H_{AA}^{atomic} \equiv \tilde{\epsilon}_A, \quad (1.65)$$

δηλαδή ότι κοντά στο Νάτριο η μοριακή Χαμιλτονιανή μπορεί να προσεγγιστεί χονδροειδώς από την ατομική Χαμιλτονιανή. Γνωρίζουμε ότι η ενέργεια ιονισμού του Νατρίου $I(\text{Na}) = 5.14 \text{ eV} = -\tilde{\epsilon}_A$ και του Χλωρίου $I(\text{Cl}) = 12.97 \text{ eV} = -\tilde{\epsilon}_B$, οπότε $\epsilon_A > \epsilon_B$ και άρα $V_3 > 0$. Ακόμα,

$$\epsilon_A = \epsilon + V_3, \tag{1.66}$$

$$\epsilon_B = \epsilon - V_3. \tag{1.67}$$

Οπότε, μετά από αντικατάσταση των Εξ. (1.63)-(1.64), το τριώνυμο της Εξ. (1.62) γίνεται

$$(1 - S2)E2 + (2SV2 - 2\epsilon)E + \epsilon2 - V32 - V22 = 0$$
(1.68)

με διαχρίνουσα

$$\Delta = \beta^2 - 4\alpha\gamma = 4(V_2 - \epsilon S)^2 + 4V_3^2(1 - S^2)$$
(1.69)

η οποία έχει λύσεις

$$E_b = \frac{\epsilon - SV_2 - \sqrt{(V_2 - \epsilon S)^2 + V_3^2(1 - S^2)}}{1 - S^2}$$
(1.70)

και

$$E_a = \frac{\epsilon - SV_2 + \sqrt{(V_2 - \epsilon S)^2 + V_3^2(1 - S^2)}}{1 - S^2}.$$
(1.71)

Εάν για απλότητα θεωρήσουμεS=0, έχουμε:

$$E_b = \epsilon - \sqrt{V_2^2 + V_3^2}$$
 (1.72)

και

$$E_a = \epsilon + \sqrt{V_2^2 + V_3^2}.$$
 (1.73)

Στο Σχήμα (1.2) παρουσιάζεται το διάγραμμα των ενεργειαχών σταθμών του NaCl για την περίπτωση S=0.

Σχήμα 1.2: Διάγραμμα ενεργειαχών σταθμών του NaCl γι
αS=0.

1.4 Βενζόλιο: sp^2 υβριδισμός του άνθραχα

Θα συζητήσουμε τώρα το λεγόμενο sp^2 υβριδισμό που περιγράφεται στο Σχήμα 1.3. Ας υποθέσουμε ότι αναμιγνύουμε, δηλαδή υβριδίζουμε ένα s και δύο p ατομικά τροχιακά του ιδίου φλοιού ενώ αφήνουμε ανεπηρέαστο το τρίτο p ατομικό τροχιακό. Τότε σχηματίζονται τρία λεγόμενα sp^2 υβριδικά τροχιακά. Επί παραδείγματι, ανακατεύουμε τα s, p_x , p_y , ενώ αφήνουμε ανεπηρέαστο το p_z . Επειδή τα s, p_x , p_y είναι συμμετρικά ως προς το επίπεδο xy, το ίδιο θα ισχύει για τα τρία sp^2 υβριδικά τροχιακά. Μάλιστα, αφού οι υβριδισμοί γίνονται ώστε τα τρία sp^2 να είναι ισοδύναμα, θα πρέπει να σχηματίζουν μεταξύ τους γωνία 120°. Τα υβριδισμένα τροχιακά έχουν ίσες ενεργειακές στάθμες, μεταξύ αυτών της μίας s και των δύο p που υβριδίζονται, ενώ η στάθμη p που δεν συμμετέχει παραμένει ανεπηρέαστη. Αυτά γίνονται στην περίπτωση που το άτομο χρειάζεται τρεις περίπου ισοδύναμους δεσμούς στο ίδιο επίπεδο. Τέτοια παραδείγματα είναι το αιθένιο και το βενζόλιο το οποίο θα μελετήσουμε αναλυτικά παρακάτω.

Στο βενζόλιο λοιπόν οι άνθραχες έχουν sp^2 υβριδισμό (υβριδίζονται το 2s και π.χ. τα $2p_x$, $2p_y$ ατομικά τροχιαχά), οπότε προχύπτει η δομή που παρουσιάζεται στο Σχήμα 1.3. Κάθε άνθραχας χρησιμοποιεί δύο sp^2 τροχιαχά για να δεθεί με τους δύο γειτονικούς του άνθραχες. Οπότε κάθε άνθραχας σχηματίζει δύο $sp^2 sp^2 \sigma$ δεσμούς. Κάθε άνθραχας χρησιμοποιεί το τρίτο sp^2 τροχιαχό του για να δεθεί με το γειτονικό του άτομο υδρογόνου με $sp^2 s \sigma$ δεσμό. Επιπλέον οι άνθραχες δένονται με $pp\pi$ δεσμό μέσω των $2p_z$ ατομικών τροχιαχών τους. Έτσι, ο δεσμός μεταξύ των ανθράχων είναι τύπου σ αλλά χαι τύπου π.

Συνοπτικά, λοιπόν: Ο υβριδισμός sp^2 συμβαίνει όταν το άτομο (π.χ. ο άνθρακας) προσδένεται σε 3 άτομα ή ομάδες ατόμων και έχει κατά 1/3 χαρακτήρα s και κατά 2/3 χαρακτήρα p. Τα τρία sp^2 υβρίδια δείχνουν προς τις κορυφές ισοπλεύρου τριγώνου το κέντρο του οποίου καταλαμβάνει το άτομο με τον sp^2 υβρίδισμό και τις κορυφές τα άτομα ή οι ομάδες των ατόμων με τις οποίες αυτό συνδέεται. Οπότε τα τρία sp^2 υβρίδια σχηματίζουν μεταξύ τους γωνία 120°.

Συνοπτικά, στο βενζόλιο κάθε άνθρακας συνδέεται με $sp^2 sp^2 \sigma$ δεσμούς με τους γειτονικούς του άνθρακες και με $sp^2 s \sigma$ δεσμό με ένα άτομο υδρογόνου. Υπάρχει ακόμα τύπου $pp\pi$ αλληλεπίδραση μεταξύ όλων των p_z ατομικών τροχιακών των ανθράκων (μάλιστα η απλοϊκή εικόνα απλός, διπλός, απλός, διπλός, απλός, διπλός δεσμός δεν ισχύει: όλοι οι δεσμοί είναι κατά τη φυσική δικαιοσύνη ισοδύναμοι όπως υπονοεί ο κύκλος στη μικρή δεξιά εικόνα).

1.5 Ανάλυση των sp^2 υβριδικών τροχιακών στο βενζόλιο σε $2s, 2p_x$ και $2p_y$ ατομικά τροχιακά

Στο βενζόλιο, θα αναλύσουμε τα sp^2 υβριδικά τροχιακά γύρω από κάθε άτομο άνθρακα στα 2s, $2p_x$ και $2p_y$ ατομικά τροχιακά του άνθρακα. Στο Σχήμα 1.4 φαίνονται τα

Σχήμα 1.3: Ο sp^2 υβριδισμός στο βενζόλιο.

 sp^2 γύρω από κάθε άτομο άνθρακα αλλά και τα 1s ατομικά τροχιακά των ατόμων υδρογόνου. Επιλέγουμε και κάποια αυθαίρετη αρίθμηση των ατόμων άνθρακα, π.χ. όπως φαίνεται στο Σχήμα 1.4.

Σχήμα 1.4: Τα sp^2 υβριδικά τροχιακά γύρω από κάθε άτομο άνθρακα αλλά και τα 1s ατομικά τροχιακά των ατόμων υδρογόνου.

Κοιτώντας τώρα το μόριο του βενζολίου π.χ. από πάνω, για κάθε άτομο άνθρακα, ονομάζουμε δ το sp^2 τροχιακό που το συνδέει με το γειτονικό του άτομο άνθρακα δεξιά, α το sp^2 τροχιακό που το συνδέει με το γειτονικό του άτομο άνθρακα αριστερά και ε το sp^2 τροχιακό που το συνδέει με το άτομο υδρογόνου προς τα έξω. Στην παρακάτω ανάλυση λαμβάνουμε υπ' όψη τρεις παράγοντες ήτοι την κανονικοποίηση, τα σχετικά βάρη των s και p ατομικών τροχιακών στο sp^2 μοριακό τροχιακό και τη γεωμετρία δηλαδή το Σχήμα 1.4. Επίσης, για απλότητα, για τα 2s, $2p_x$, $2p_y$ ατομικά τροχιακά του άνθρακα γράφουμε s, p_x , p_y .

Για το πρώτο άτομο άνθρακα: Το δ
 αναλύεται συναρτήσει των s και p_x ως

$$\delta = c_1 s + c_2 p_x \tag{1.74}$$

αφού κείται πάνω στον άξονα x. Με κανονικοποίηση παίρνουμε

$$\int |\delta|^2 d^3 r = 1 \Rightarrow \int (c_1^* s^* + c_2^* p_x^*) (c_1 s + c_2 p_x) d^3 r = 1.$$
(1.75)

Κάνοντας τις πράξεις καταλήγουμε στην εξίσωση

$$\int |c_1|^2 |s|^2 d^3r + \int |c_2|^2 |p_x|^2 d^3r + \int c_1^* c_2 s^* p_x d^3r + \int c_2^* c_1 p_x^* s d^3r = 1, \quad (1.76)$$

η οποία λόγω ορθοκανονικότητας γίνεται

$$|c_1|^2 + |c_2|^2 = 1. (1.77)$$

Επειδή κάθε sp^2 τροχιακό έχει κατ
ά $1/3\ s$ χαρακτήρα και κατά $2/3\ p$ χαρακτήρα

$$|c_2|^2 = 2|c_1|^2. (1.78)$$

Λύνοντας το σύστημα των Εξ. (1.77)-(1.78), βρίσκουμε

$$3|c_1|^2 = 1. (1.79)$$

Έτσι π.χ. έχουμε για πραγματικές λύσεις τις τιμές των c_1,c_2

$$c_1 = \pm \sqrt{\frac{1}{3}}, c_2 = \pm \sqrt{\frac{2}{3}}.$$
 (1.80)

Επιλέγω το + για το
 c_1 και το + για το $c_2,$ αφού θέλω να ικανοποιείται το Σ
 Σχήμα 1.4. Άρα,

$$\delta = \frac{1}{\sqrt{3}}(s + \sqrt{2}p_x). \tag{1.81}$$

Το α αναλύεται συναρτήσει των s, p_x και p_y ως

$$\alpha = c_1 s + c_2 p_x + c_3 p_y. \tag{1.82}$$

και με κανονικοποίηση παίρνουμε

$$\int |\alpha|^2 d^3 r = 1 \Rightarrow \int (c_1^* s^* + c_2^* p_x^* + c_3^* p_y^*) (c_1 s + c_2 p_x + c_3 p_y) d^3 r = 1.$$
(1.83)

Λαμβάνοντας πάλι υπ΄ όψιν την ορθοκανονικότητα των ατομικών τροχιακών,

$$|c_1|^2 + |c_2|^2 + |c_3|^2 = 1. (1.84)$$

Επειδή κάθε sp^2 τροχιακό έχει κατ
ά $1/3\ s$ χαρακτήρα και κατά $2/3\ p$ χαρακτήρα

$$|c_2|^2 + |c_3|^2 = 2|c_1|^2.$$
(1.85)

Λύνοντας το σύστημα των Εξ. (1.84)-(1.85), βρίσκουμε

$$\frac{3|c_1|^2 = 1}{|c_2|^2 + |c_3|^2 = \frac{2}{3}}$$
 (1.86)

Επιπλέον, από τη γεωμετρία έχουμε

$$\frac{|c_3|^2}{|c_2|^2} = \frac{\cos^2(30^o)}{\cos^2(60^o)} = \frac{(\frac{\sqrt{3}}{2})^2}{(\frac{1}{2})^2} = 3 \Rightarrow |c_3|^2 = 3|c_2|^2.$$
(1.87)

Λύνοντας το σύστημα των Εξ. (1.86)-(1.87), θεωρώντας π.χ. πραγματικές λύσεις για τις τιμές των $c_1,c_2,c_3,$ βρίσκουμε

$$c_1 = \pm \sqrt{\frac{1}{3}}, c_2 = \pm \sqrt{\frac{1}{6}}, c_3 = \pm \sqrt{\frac{1}{2}}.$$
 (1.88)

Οπότε, π.χ. $c_1 = +\sqrt{\frac{1}{3}}$ και σύμφωνα με το σχήμα διαλέγουμε τα c_2 και c_3 έτσι ώστε $c_2 = -\sqrt{\frac{1}{6}}$ και $c_3 = -\sqrt{\frac{1}{2}}$. Τελικά, βρίσκουμε

$$\alpha = \frac{1}{\sqrt{3}} \left(s - \frac{1}{\sqrt{2}} p_x - \sqrt{\frac{3}{2}} p_y \right). \tag{1.89}$$

Το ε αναλύεται συναρτήσει τω
ν $s,\,p_x$ και p_y ως

$$\varepsilon = c_1 s + c_2 p_x + c_3 p_y. \tag{1.90}$$

Η κανονικοποίηση του ε, λαμβάνοντας υπ΄ όψιν την ορθοκανονικότητα των ατομικών τροχιακών, καταλήγει στην

$$|c_1|^2 + |c_2|^2 + |c_3|^2 = 1. (1.91)$$

Επειδή κάθε sp^2 τροχια
κό έχει κατά $1/3\ s$ χαρακτήρα και κατ
ά $2/3\ p$ χαρακτήρα,

$$|c_2|^2 + |c_3|^2 = 2|c_1|^2. (1.92)$$

Λύνοντας το σύστημα των Εξ. (1.91)-(1.92), βρίσκουμε

$$3|c_1|^2 = 1, |c_2|^2 + |c_3|^2 = \frac{2}{3}.$$
(1.93)

Επιπλέον, από τη γεωμετρία έχουμε

$$\frac{|c_3|^2}{|c_2|^2} = \frac{\cos^2(30^o)}{\cos^2(60^o)} = \frac{(\frac{\sqrt{3}}{2})^2}{(\frac{1}{2})^2} = 3 \Rightarrow |c_3|^2 = 3|c_2|^2.$$
(1.94)

Λύνοντας το σύστημα των Εξ. (1.93)-(1.94), θεωρώντας π.χ. πραγματικές λύσεις για τις τιμές των $c_1,c_2,c_3,$ βρίσκουμε

$$c_1 = \pm \sqrt{\frac{1}{3}}, c_2 = \pm \sqrt{\frac{1}{6}}, c_3 = \pm \sqrt{\frac{1}{2}}.$$
 (1.95)

Οπότε π.χ. $c_1 = \sqrt{\frac{1}{3}}$ και σύμφωνα με το σχήμα διαλέγουμε τα c_2 και c_3 έτσι ώστε $c_2 = -\sqrt{\frac{1}{6}}$ και $c_3 = +\sqrt{\frac{1}{2}}$. Τελικά,

$$\varepsilon = \frac{1}{\sqrt{3}} \left(s - \frac{1}{\sqrt{2}} p_x + \sqrt{\frac{3}{2}} p_y \right).$$
(1.96)

Για το δεύτερο άτομο άνθρακα: Στη συνέχεια, έτσι όπως εργαστήκαμε για το πρώτο άτομο του άνθρακα, θα εργαστούμε και για το δεύτερο. Οι εξισώσεις που θα βρούμε θα πρέπει και αυτές να ικανοποιούν το σχήμα που παραθέσαμε προηγουμένως, έτσι ώστε να σχηματισθεί τελικώς ο δακτύλιος του βενζολίου, τον οποίο θέλουμε να διαμορφώσουμε. Το α θα είναι συναρτήσει του s και του p_x , άρα της μορφής

$$\alpha = c_1 s + c_2 p_x \tag{1.97}$$

και ακολουθώντας την ίδια διαδικασία που ακολουθήσαμε αναλύοντας την κατάσταση για το πρώτο άτομο άνθρακα, λαμβάνοντας δηλαδή υπ΄ όψη την κανονικοποίηση, το σχετικό βάρος των s και p ατομικών τροχιακών και το σχήμα, καταλήγουμε στην έκφραση

$$\alpha = \sqrt{\frac{1}{3}}(s - \sqrt{2}p_x) \tag{1.98}$$

δηλαδή

$$c_1 = +\sqrt{\frac{1}{3}}, \quad c_2 = -\sqrt{\frac{2}{3}}.$$
 (1.99)

Το δ θα είναι συναρτήσει των $s, p_x, p_y,$ δηλαδή της μορφής

$$\delta = c_1 s + c_2 p_x + c_3 p_y. \tag{1.100}$$

Αχολουθώντας την ίδια διαδιχασία χαταλήγουμε στην έχφραση

$$\delta = \frac{1}{\sqrt{3}} \left(s + \frac{1}{\sqrt{2}} p_x - \sqrt{\frac{3}{2}} p_y \right) \tag{1.101}$$

δηλαδή

$$c_1 = +\sqrt{\frac{1}{3}}, \quad c_2 = +\sqrt{\frac{1}{6}}, \quad c_3 = -\sqrt{\frac{1}{2}}.$$
 (1.102)

Το ε θα είναι συναρτήσει τω
ν $s,\,p_x,\,p_y,$ δηλαδή της μορφής

$$\varepsilon = c_1 s + c_2 p_x + c_3 p_y. \tag{1.103}$$

Ακολουθώντας την ίδια διαδικασία καταλήγουμε στην έκφραση

$$\varepsilon = \frac{1}{\sqrt{3}} \left(s + \frac{1}{\sqrt{2}} p_x + \sqrt{\frac{3}{2}} p_y \right)$$
(1.104)

δηλαδή

$$c_1 = +\sqrt{\frac{1}{3}}, \quad c_2 = +\sqrt{\frac{1}{6}}, \quad c_3 = +\sqrt{\frac{1}{2}}.$$
 (1.105)

Επαναλαμβάνουμε την ίδια διαδικασία και για τα υπόλοιπα άτομα του άνθρακα μέχρι να φτάσουμε στο έκτο άτομο το οποίο συνδέεται με το πρώτο, όπως φαίνεται και στο Σχήμα 1.4.

Για το έκτο άτομο άνθρακα: Το ε θα είναι συναρτήσει του s και του p_x , άρα της μορφής

$$\varepsilon = c_1 s + c_2 p_x. \tag{1.106}$$

Ακολουθώντας την ίδια διαδικασία που χρησιμοποιήσαμε και για τα προηγούμενα άτομα καταλήγουμε στην έκφραση

$$\varepsilon = \sqrt{\frac{1}{3}}(s - \sqrt{2}p_x) \tag{1.107}$$

δηλαδή

$$c_1 = +\sqrt{\frac{1}{3}}, \quad c_2 = -\sqrt{\frac{2}{3}}.$$
 (1.108)

Το δ θα είναι συναρτήσει των s, p_x, p_y δηλαδή της μορφής

$$\delta = c_1 s + c_2 p_x + c_3 p_y. \tag{1.109}$$

Ακολουθώντας την ίδια διαδικασία καταλήγουμε στην έκφραση

$$\delta = \frac{1}{\sqrt{3}} \left(s + \frac{1}{\sqrt{2}} p_x + \sqrt{\frac{3}{2}} p_y \right) \tag{1.110}$$

δηλαδή

$$c_1 = +\sqrt{\frac{1}{3}}, \quad c_2 = +\sqrt{\frac{1}{6}}, \quad c_3 = +\sqrt{\frac{1}{2}}.$$
 (1.111)

Το α , θα είναι συναρτήσει των s, p_x, p_y δηλαδή της μορφής

$$\alpha = c_1 s + c_2 p_x + c_3 p_y. \tag{1.112}$$

Ακολουθώντας την ίδια διαδικασία καταλήγουμε στην έκφραση

$$\alpha = \frac{1}{\sqrt{3}} \left(s + \frac{1}{\sqrt{2}} p_x - \sqrt{\frac{3}{2}} p_y \right) \tag{1.113}$$

δηλαδή

$$c_1 = +\sqrt{\frac{1}{3}}, \quad c_2 = +\sqrt{\frac{1}{6}}, \quad c_3 = -\sqrt{\frac{1}{2}}.$$
 (1.114)

Τύποι ομοιοπολικών δεσμών μεταξύ ατομι κών τροχιακών.

Ας αφιερώσουμε λίγο χώρο στους τύπους των ομοιοπολικών δεσμών μεταξύ ατομικών τροχιακών που απεικονίζονται στο Σχήμα 1.5. Για το χαρακτηρισμό ενός δεσμού ως σ ή π σκεφτόμαστε που τοποθετείται η επικάλυψη των τροχιακών που συμμετέχουν στο δεσμό σε σχέση με τους πυρήνες των αντιστοίχων ατόμων. Η επικάλυψη $S = \int dV \psi_A^* \psi_B$, όπου ψ_A και ψ_B είναι οι κυματοσυναρτήσεις των τροχιακών που συμμετέχουν στο δεσμό τις οποίες μπορούμε να θεωρήσουμε εδώ πραγματικές. Εάν το μέγιστο της επικαλύψεως βρίσκεται πάνω στο ευθύγραμμο τμήμα που συνδέει τους δύο πυρήνες, ο δεσμός χαρακτηρίζεται ως σ. Εάν η επικάλυψη είναι μέγιστη άνωθεν και χάτωθεν του ευθυγράμμου τμήματος που συνδέει τους δύο πυρήνες, ο δεσμός χαραχτηρίζεται ως π. Ο δεσμός π είναι ασθενέστερος του δεσμού σ. Οι χαραχτηρισμοί σ και π χρησιμοποιούνται ακόμα και όταν ενώνονται υβριδικά τροχιακά. Συνήθως ισχύει το εξής: ο απλός δεσμός είναι (σ), ο διπλός δεσμός (σ , π) και ο τριπλός δεσμός (σ , π , π). Έτσι, ο διπλός δεσμός (σ , π) είναι μεν ισχυρότερος του απλού (σ), αλλά όχι δύο φορές ισχυρότερος, ενώ ο τριπλός δεσμός (σ, π, π) είναι ισχυρότερος του διπλού (σ, π). Στο Σχήμα 1.5 απεικονίζονται μόνο οι περιπτώσεις όπου η επικάλυψη των ατομικών τροχιαχών είναι θετιχή (S > 0) και άρα αυξάνεται η πυχνότητα πιθανότητας στο χώρο μεταξύ των πυρήνων, δηλαδή απεικονίζονται μόνο τα δεσμικά μοριακά τροχιακά. Για τα αντιδεσμικά μοριακά τροχιακά η επικάλυψη των ατομικών τροχιακών είναι αρνητική (S < 0) και άρα μειώνεται η πυχνότητα πιθανότητας στο χώρο μεταξύ των πυρήνων, οπότε εμφανίζεται μια επιπλέον χομβιχή επιφάνεια. Η δε συνθήχη S = 0 χαραχτηρίζεται ως μη δεσμική και αντιστοιχεί στην περίπτωση κατά την οποία δεν υπάρχει αλληλεπίδραση μεταξύ των ατομικών τροχιακών. Μπορεί ακόμη να γίνει η γενίκευση ότι η ισχύς ενός δεσμού είναι περίπου ανάλογη προς την έκταση της επικαλύψεως των ατομικών τροχιακών, δηλαδή οι δεσμοί σχηματίζονται κατά τέτοιο τρόπο ώστε να μεγιστοποιείται η επικάλυψη. Στην περίπτωση S > 0 η ηλεκτρονιακή πυκνότητα στο χώρο μεταξύ των πυρήνων αυξάνεται, οπότε οι πυρήνες θωραχίζονται μεταξύ τους και η έτσι η άπωσή τους μειώνεται. Αυτό σημαίνει ελάττωση της ενέργειας του μορίου και επομένως δεσμική κατάσταση. Στην περίπτωση S < 0 ο χώρος μεταξύ των πυρήνων απογυμνώνεται από ηλεκτρονιακό νέφος το οποίο συγκεντρώνεται περισσότερο στην εξωτεριχό χώρο με αποτέλεσμα την ενίσχυση των απωθητιχών δυνάμεων μεταξύ των πυρήνων, αυτή είναι δηλαδή μια αντιδεσμική κατάσταση. Στη αντιδεσμική κατάσταση υπάργει μια επιπλέον χομβιχή επιφάνεια μεταξύ των πυρήνων (όπου η πυχνότητα πιθανότητας μηδενίζεται). Η ισχύς των δεσμών μεταξύ s ή p ατομιχών τροχιαχών μπορεί να αποδοθεί με εμπειρικές εκφράσεις της μορφής W.A. Harrison [5]

$$V_{sp\sigma} = -1.42 \frac{\hbar^2}{md^2}$$
(1.115)

$$V_{pp\pi} = -0.63 \frac{\hbar^2}{md^2} \tag{1.116}$$

$$V_{pp\sigma} = -2.22 \frac{\hbar^2}{md^2} \tag{1.117}$$

$$V_{ss\sigma} = -1.32 \frac{\hbar^2}{md^2} \tag{1.118}$$

όπου m είναι η μάζα του ηλεκτρονίου (
 $\approx 9.109 \times 10^{-31}$ kg) και d η απόσταση των πυρήνων των ατόμων. Όταν ο προσανατολισμός των ατομικών τροχιακών είναι αντίθετος από αυτόν που δείχνει το Σχήμα 1.5, αλλάζει το πρόσημο από – σε +. Όταν στο δεσμό ή γενικότερα στην αλληλεπίδραση συμμετέχει ένα άτομο υδρογόνου η $V_{sp\sigma}$ πολλαπλασιάζεται με μια παράμετρο b, ενώ όταν συμμετέχουν δύο άτομα υδρογόνου η $V_{ss\sigma}$ πολλαπλασιάζεται με μια παράμετρο c. Οι παράμετρο b και c που εμφανίζονται, είναι εμπειρικές και χρησιμοποιούνται διότι οι εκφράσεις που έχουν δοθεί προηγουμένως στις Εξ. 1.115 και 1.118 δεν ισχύουν για τα ατομικά τροχιακά s του υδρογόνου λόγω

μετατοπίσεως του ηλεκτρονικού νέφους των ηλεκτρονίων των υδρογόνων. Θεωρούμε $c=b^2 \ [8].$

Σχήμα 1.5: Δεσμοί μεταξύ s ή p ατομικών τροχιακών. Η ισχύς τους δίνεται από τους τύπους (1.115), (1.116), (1.117), (1.118). Όταν ο προσανατολισμός των ατομικών τροχιακών είναι αντίθετος από αυτόν που δείχνει το σχήμα, αλλάζει το πρόσημο από - σε +.

1.7 LCAO στο βενζόλιο με p_z τροχιακά

Ας θεωρήσουμε λοιπόν ότι μας ενδιαφέρουν μόνο τα μοριακά τροχιακά της μορφής

$$\psi = \sum_{\nu=1}^{6} c_{\nu} p_{z\nu}.$$
(1.119)

Αν το $\nu = 1$ συμμετέχει στο παραπάνω άθροισμα (1.119) με $ce^{i\phi}p_{z1}$, το $\nu = 2$ συμμετέχει με $ce^{i2\phi}p_{z2}$, το $\nu = 3$ συμμετέχει με $ce^{i3\phi}p_{z3}$, ..., το $\nu = 6$ συμμετέχει με $ce^{i6\phi}p_{z6}$, δηλαδή από άτομο σε άτομο αλλάζει η φάση κατά $e^{i\phi}$ έτσι ώστε

$$c_{\nu} = c e^{i\nu\phi}, \nu = 1, 2, 3, ..., 6.$$
 (1.120)

Επειδή το 'έβδομο' άτομο ταυτίζεται με το πρώτο, $e^{i6\phi} = e^0 \Rightarrow 6\phi = 2\pi n \Rightarrow \phi = \frac{\pi}{3}n$, όπου *n* αχέραιος. Όμως, από το εχθετιχό, μόνο 6 ανεξάρτητες λύσεις έχουμε, οπότε μπορούμε να τις εχλέξουμε ούτως ώστε το n = 0 που αντιστοιχεί στη θεμελιώδη κατάσταση (Εξ. 1.128) να είναι στο χέντρο της ζώνης, δηλαδή να παρουσιάζουμε τα πάντα εντός της 1ης ζώνης Brillouin. Οπότε διαλέγουμε τελιχά n = -2, -1, 0, 1, 2, 3.

Θεωρούμε τα ολοκληρώματα

$$\epsilon = \int dV p_{z\nu}^* H p_{z\nu} \tag{1.121}$$

και

$$V_2 = \int dV p_{z\nu}^* H p_{z\,\nu+1} < 0. \tag{1.122}$$

Θεωρούμε τη χρονοανεξάρτητη εξίσωση του Schrödinger

$$H\psi = E\psi, \tag{1.123}$$

αντικαθιστούμε σε αυτή την πιο πάνω έκφραση (1.119) του ψ , πολλαπλασιάζουμε με p_{z1}^* και ολοκληρώνουμε στο χώρο, οπότε έχουμε:

$$\int p_{z1}^* H(ce^{i\phi}p_{z1} + ce^{i2\phi}p_{z2} + \dots + ce^{i6\phi}p_{z6})dV = \int p_{z1}^* E(ce^{i\phi}p_{z1} + ce^{i2\phi}p_{z2} + \dots + ce^{i6\phi}p_{z6})dV \Rightarrow ce^{i\phi}\epsilon + ce^{i2\phi}V_2 + 0 + 0 + 0 + ce^{i6\phi}V_2^* = Ece^{i\phi} + 0 + 0 + 0 + 0 + 0 \Rightarrow c_1\epsilon + (c_2 + c_6)V_2 = Ec_1.$$
(1.124)

και ομοίως κυκλικά. Δηλαδή γενικά θα ισχύει ο τύπος

$$c_{\nu}\epsilon + V_2(c_{\nu-1} + c_{\nu+1}) = Ec_{\nu}, \quad \nu = 1, 2, \cdots, 6$$
(1.125)

όπου $c_0 = c_6$ και $c_7 = c_1$. Από τις Εξ. (1.120) και (1.125) συνεπάγεται $ce^{i\nu\phi}\epsilon + V_2(ce^{i(\nu-1)\phi} + ce^{i(\nu+1)\phi}) = Ece^{i\nu\phi} \Rightarrow \epsilon + V_2(e^{-i\phi} + e^{i\phi}) = E$. Όμως, $e^{i\phi} = \cos \phi + i \sin \phi$ και $e^{-i\phi} = \cos \phi - i \sin \phi$, άρα $e^{i\phi} + e^{-i\phi} = 2\cos \phi$ και επομένως

$$E = \epsilon + 2V_2 \cos\phi. \tag{1.126}$$

Αν θεωρήσουμε $\phi = \frac{\pi}{3}n$, με n = -2, -1, 0, 1, 2, 3 έχουμε

$$\begin{pmatrix} E_{-2} = \epsilon + 2V_2 \cos \frac{-2\pi}{3} = \epsilon - V_2 \\ E_{-1} = \epsilon + 2V_2 \cos \frac{-\pi}{3} = \epsilon + V_2 \\ E_0 = \epsilon + 2V_2 \cos 0 = \epsilon + 2V_2 \\ E_1 = \epsilon + 2V_2 \cos \frac{\pi}{3} = \epsilon + V_2 \\ E_2 = \epsilon + 2V_2 \cos \frac{2\pi}{3} = \epsilon - V_2 \\ E_3 = \epsilon + 2V_2 \cos \pi = \epsilon - 2V_2 \end{pmatrix} \Rightarrow$$
(1.127)

κατά φθίνουσα ενέργεια (δείτε Εξ. 1.122) έχουμε

$$E_{3} = \epsilon - 2V_{2}$$

$$E_{-2} = E_{2} = \epsilon - V_{2} \quad (LUMO)$$

$$E_{-1} = E_{1} = \epsilon + V_{2} \quad (HOMO)$$

$$E_{0} = \epsilon + 2V_{2}$$
(1.128)

Τα 6 ηλεκτρόνια που βρισκόντουσαν στα 6 ατομικά τροχιακά p_z , θα καταλάβουν τις 3 χαμηλότερες στάθμες. Να σημειωθεί ότι το στοιχείο πίνακα V_2 , αφού είναι τύπου $pp\pi$, σύμφωνα με τη συνταγή του Harrison θα δίνεται από την Εξ. 1.116. Η πειραματική τιμή της αποστάσεως μεταξύ γειτονικών ατόμων άνθρακα στο βενζόλιο είναι $d_{\exp} = 1.397$ Å [9]. $\Rightarrow V_2 \approx -2.45 \text{ eV}$. Προφανώς, η πρώτη ηλεκτρονιακά διεγερμένη κατάσταση θα εμφανιστεί όταν ένα ηλεκτρόνιο μετακινηθεί από τη στάθμη E_1 ή E_{-1} (HOMO) στη E_2 ή E_{-2} (LUMO). Σύμφωνα με την Εξ. 1.128, η απαιτούμενη ενέργεια για τη διέγερση αυτή θα είναι $2|V_2| = 4.90 \text{ eV}$, ενώ η πειραματική τιμή είναι περίπου 4.8 eV [10].

Ας εξετάσουμε όμως ποιοτικά την ανάμιξη των ατομικών τροχιακών στο βενζόλιο. Ο άνθραχας έχει ηλεχτρονιαχή διαμόρ φ ωση $1s^2$ $2s^2$ $2p^2$ και το υδρογόνο $1s^1$. Δηλαδή συνολικά έχουμε $7 \times 6 = 42$ ηλεκτρόνια στο βενζόλιο, από τα οποία $(4+1) \times 6 = 30$ είναι ηλεκτρόνια σθένους δηλαδή συμβάλουν στη δημιουργία των δεσμών που φτιάχνουν το μόριο, ενώ 2 × 6 = 12 είναι εσωτερικά ηλεκτρόνια των ανθράκων. Ας προσέξουμε τα εξής τρία σημεία: (1) Τα $\alpha, \delta, \varepsilon$ αναλύονται σε τύπου s, p_x, p_y ατομικά τροχιακά και το s_H είναι τύπου s, άρα η αλληλεπίδραση μεταξύ τους περιέχει και αλληλεπιδράσεις τύπων $sp\sigma$, $ss\sigma$, $pp\sigma$. Αντιθέτως, τα p_z ατομικά τροχιακά αλληλεπιδρούν μεταξύ τους με τύπου ppπ αλληλεπιδράσεις που είναι ασθενέστερες των αλληλεπιδράσεων τύπων $sp\sigma, ss\sigma, pp\sigma$ (Εξ. 1.115, 1.116, 1.117, 1.118). (2) Επειδή τα p_z είναι κάθετα στο επίπεδο του μορίου ενώ τα $\alpha, \delta, \varepsilon, s_H$ χείνται σε αυτό, η αλληλεπίδραση μεταξύ τους μηδενίζεται. (3) Όπως φαίνεται στο Σχήμα 1.3, τα ατομικά τροχιακά p_z βρίσκονται ενεργειαχά χατά τι υψηλότερα των υβριδιχών τροχιαχών α, δ, ε. Συμπέρασμα: Οι παρατηρήσεις (1), (2), (3) εξηγούν γιατί τα μοριακά τροχιακά (τα λεγόμενα π) που οφείλονται στην ανάμιξη των ατομικών τροχιακών p_z βρίσκονται στο μέσο περίπου του ενεργειαχού διαγράμματος του μορίου του βενζολίου [8]. Κι επειδή κάθε άνθρακας συμμετέχει με τρία sp^2 και ένα p_z που το χαθένα έχει ένα ηλεχτρόνιο, θα μπορούσαμε να λάβουμε υπ΄ όψιν μόνο π μοριαχά τροχιαχά για την εύρεση της ηλεκτρονιαχής δομής χοντά στο HOMO και LUMO πράγμα που γίνεται στη μέθοδο Hückel. Αυτό παρουσιάζεται στο Σχήμα 1.6.

Σχήμα 1.6: Συγκρίνεται ποιοτικά η ισχύς των σ δεσμών και των π δεσμών και δικαιολογείται ποιοτικά γιατί θα μπορούσαμε να λάβουμε υπ΄ όψιν μόνο π μοριακά τροχιακά για την εύρεση της ηλεκτρονιακής δομής κοντά στο HOMO και LUMO πράγμα που γίνεται στη μέθοδο Hückel.

Από τα 6 p_z ατομικά τροχιακά προκύπτουν 6 μοριακά τροχιακά τύπου π, ενώ από τα $\alpha, \delta, \varepsilon, s_H$ προκύπτουν $6 \times 4 = 24$ μοριακά τροχιακά εκ των οποίων (σύμφωνα με το παραπάνω Συμπέρασμα) 12 θα βρίσκονται άνωθεν των μοριακών τροχιακών π και 12 κάτωθεν. Αυτά τα 12 κατώτερα γεμίζουν με 24 ηλεκτρόνια, οπότε μένουν 6 ηλεκτρόνια για τα π μοριακά τροχιακά, επομένως το HOMO (LUMO) θα είναι το τρίτο (τέταρτο) - αυξανομένης της ενέργειας - από τα π τροχιακά. Έτσι, μια απλοποιημένη προσέγγιση είναι να μελετηθεί η μοριακή ηλεκτρονιακή δομή περιορίζοντας τη βάση μας μόνο στα

 p_z τροχια
אά, πράγμα που γίνεται σε αυτή την εργασία.

1.8 Μέθοδος Hückel σε συζευγμένα συστήματα

Με τον όρο συζευγμένο (conjugated) χαρακτηρίζουμε ένα σύστημα στο οποίο υπάρχει μια περιοχή συζευγμένων δηλαδή συνδεδεμένων ατομικών τροχιακών p με δεσμούς τύπου π όπου τα αντίστοιχα ηλεκτρόνια απεντοπίζονται γεφυρώνοντας κι ενισχύοντας έτσι προσκείμενους απλούς δεσμούς π.χ. τύπου σ. Μάλιστα, τα π ηλεκτρόνια δεν ανήκουν σε ένα δεσμό ή άτομο, αλλά στο σύστημα των συζευγμένων ατόμων. Η ένωση μπορεί να περιέχει ακόμα ασύζευκτα ζεύγη ηλεκτρονίων (lone pairs), ρίζες (radicals) ή ιόντα καρβενίου (carbenium ions). Η ένωση μπορεί να είναι κυκλική (cyclic), άκυκλη (acyclic), γραμμική (linear) ή συνδυασμός τους. Τα μεγαλύτερα συζευγμένα συστήματα απαντώνται στο γραφένιο, στο γραφίτη, σε αγώγιμα πολυμερή όπως το DNA και σε νανοσωλήνες άνθρακα. Εμείς θα μελετήσουμε συζευγμένα επίπεδα οργανικά μόρια όπως οι βάσεις των νουκλεϊκών οξέων, ισομερή τους και παρόμοια μόρια που εκτός από άνθρακα και υδρογόνα μπορεί να περιέχουν ακόμα άζωτο και οξυγόνο.

Η μέθοδος προτάθηκε από τον Erich Hückel σε μια σειρά άρθρων στις αρχές της δεκαετίας του 1930 [1]. Τα μοριακά τροχιακά φτιάχνονται με γραμμικό συνδυασμό των ατομικών τροχιακών σε συζευγμένα συστήματα υδρογονανθράκων, όπως το βενζόλιο, το αιθένιο, το βουταδιένιο [1]. Η μέθοδος επεκτάθηκε αργότερα [2] σε συζευγμένα συστήματα όπως η πυριδίνη, το πυρόλιο και το φουράνιο τα οποία περιέχουν και άλλων ειδών άτομα εκτός από τον άνθρακα και το υδρογόνο όπως το άζωτο και το οξυγόνο, οπότε με αυτή την έννοια καλούνται ετεροάτομα (heteroatoms).

Σύμφωνα με τα συμπέρασματα του υποχεφαλαίου 1.7 και την ποιοτική εξήγηση του Σχήματος 1.6, θα μπορούσαμε να λάβουμε υπ΄ όψιν μόνο π μοριακά τροχιακά για την εύρεση της ηλεκτρονιακής δομής κοντά στο HOMO και LUMO πράγμα που γίνεται στη μέθοδο Hückel. Αυτό λέγεται διαχωρησιμότητα σ – π (sigma-pi separability). Για τον παραπάνω λόγο η μέθοδος Hückel περιορίζεται σε επίπεδα μόρια.

Εφαρμόζουμε, λοιπόν, τη μέθοδο LCAO σε επίπεδα οργανικά μόρια. Θα χρειαστεί να διαγωνοποιήσουμε πίνακες Χαμιλτονιανής $H_{\mu\nu}$ κατά την Εξ. (1.12). Σύμφωνα με το άρθρο [3],

$$H_{\mu\nu} = \begin{cases} E_{\rm X} & \text{an } \mu = \nu \\ 0 & \text{an } \mu \neq \nu \text{ for ta atoma den sundéontai me } sp^2 \text{ despis} \\ V_{pp\pi} & \text{an } \mu \neq \nu \text{ for ta atoma sundéontai me } sp^2 \text{ despis} \end{cases}$$
(1.129)

Σχετικά με τα διαγώνια στοιχεία πίνακα $H_{\mu\mu} = E_{\rm X}$ γνωστά και ως επιτόπιες ενέργειες (on-site energies) χρησιμοποιούμε εμπειρικές τιμές που προέκυψαν μετά από προσομοιώσεις της ηλεκτρονικής δομής πάνω από εξήντα επιπέδων οργανικών μορίων. Χρησιμοποιούμε και συγκρίνουμε δύο παραμετροποιήσεις: την HKS [3] και την MMTS [4]. Για την HKS είναι: $E_{\rm C} = -6.7 \text{ eV}$ για τον άνθρακα, $E_{\rm N2} = -7.9 \text{ eV}$ για το άζωτο με ένα ηλεκτρόνιο στο p_z τροχιακό δηλαδή με αριθμό συντάξεως 2, $E_{\rm N3} = -10.9 \text{ eV}$ για το άζωτο με δύο ηλεκτρόνια στο p_z τροχιακό δηλαδή με αριθμό συντάξεως 3 και $E_{\rm O} = -11.8 \text{ eV}$ για το οξυγόνο που βρίσκεται πάντοτε εκτός του δακτυλίου για όλα τα επίπεδα οργανικά μόρια που μελετήθηκαν στην εργασία [3]. Και για την MMTS: $E_{\rm C} = -6.56 \text{ eV}$ για τον άνθρακα, $E_{\rm N2} = -9.62 \text{ eV}$ για το άζωτο με αριθμό συντάξεως 2, $E_{\rm N3} = -11.48 \text{ eV}$ για το άζωτο με αριθμό συντάξεως 3 και $E_{\rm O} = -10.35 \text{ eV}$ για το οξυγόνο εκτός του δακτυλίου.

Σχετικά με τα γειτονικά μη διαγώνια στοιχεία πίνακα χρησιμοποιούμε την έκφραση του Harrison [5]

$$V_{pp\pi} = \chi \frac{\hbar^2}{m d_{\mu\nu}^2},\tag{1.130}$$

όπου $d_{\mu\nu}$ είναι το μήκος του ομοιοπολικού δεσμού μεταξύ των ατόμων μ και ν και m είναι η μάζα του ηλεκτρονίου. Για την HKS είναι $\chi = -0.63$ και για την MMTS $\chi = -0.77$.

1.9 Διπολική ροπή μετάβασης

Η διπολική ροπή μετάβασης είναι η ηλεκτρική διπολική ροπή που σχετίζεται με τη μετάβαση των δύο καταστάσεων. Πρόκειται για μιγαδικό διανυσματικό μέγεθος, η διεύθυνση του οποίου δίνει την πόλωση της μετάβασης, η οποία καθορίζει πώς θα αλληλεπιδράσει το σύστημα με ένα ηλεκτρομαγνητικό κύμα συγκεκριμένης πόλωσης. Το τετράγωνο του μέτρου της εκφράζει το πόσο ισχυρή θα είναι η αλληλεπίδραση που οφείλεται στην κατανομή του φορτίου εντός του συστήματος.

Για μετάβαση ενός ηλεκτρονίου από από τη HOMO στη LUMO η διπολική ροπή μετάβασης είναι:

$$\vec{d} = \langle \psi_L | (-e)\vec{r} | \psi_H \rangle$$

= $(-e) \int dV \psi_L^*(\vec{r}) \vec{r} \psi_H(\vec{r})$
= $(-e) \int dV \left(\sum_{i=1}^N c_{iL} p_{zi} \right)^* \vec{r} \left(\sum_{j=1}^N c_{jH} p_{zj} \right)$
= $(-e) \sum_{i=1}^N \sum_{j=1}^N c_{iL}^* c_{jH} \int dV p_{zi}^*(\vec{r}) \vec{r} p_{zj}(\vec{r})$

Επειδή η μορφή των p_z τροχιαχών δεν είναι γνωστή, το τελευταίο ολοχλήρωμα δεν μπορεί να υπολογιστεί. Προχειμένου να βρούμε μία πρώτη εχτίμηση της τάξης του \vec{d} , θεωρούμε την χονδροειδή προσέγγιση:

$$\vec{d} \simeq (-e) \sum_{i=1}^{N} c_{iL}^* \vec{r_i} c_{iH}$$
 (1.131)

Αντικαθιστούμε το ολοκλήρωμα σε όλο το χώρο με άθροισμα στις θέσεις των ατόμων θεωρώντας προσεγγιστικά ότι οι κυματοσυναρτήσεις συνεισφέρουν κυρίως σε αυτά τα σημεία, δηλαδή:

 $\sum_{i=1}^{N} \sum_{j=1}^{n} c_{iL}^{*} c_{jH} \int dV p_{zi}^{*}(\vec{r}) \vec{r} p_{zj}(\vec{r}) \simeq$
$\sum_{i=1}^{N} \sum_{j=1}^{N} c_{iL}^{*} c_{jH} \int dV \delta(\vec{r} - \vec{r_{i}}) \vec{r} \delta(\vec{r} - \vec{r_{j}}) = \sum_{i=1}^{N} c_{iL}^{*} c_{iH} \int dV \delta(\vec{r} - \vec{r_{i}}) \vec{r} = \sum_{i=1}^{N} c_{iL}^{*} \vec{r_{i}} c_{iH}.$

Κεφάλαιο 2

Αναλυτικός υπολογισμός

Σε αυτό το κεφάλαιο υπολογίζουμε αναλυτικά τις ιδιοενέργειες και τα ιδιοανύσματα (όπου είναι δυνατό) για κάποια μικρά μόρια και τα συγκρίνουμε με τα υπολογιστικά αποτελέσματα των δύο παραμετροποιήσεων προκειμένου να ελέγξουμε την εγκυρότητα της μεθόδου.

Όπου υπεισέρχονται τα ε και t, δηλαδή οι επιτόπιες ενέργειες των ατόμων και οι ενέργειες δεσμών μεταξύ γειτονικών ατόμων, χρησιμοποιούμε τις παραμέτρους των HKS [3] και MMTS [4] για να μπορέσουμε να εκτιμήσουμε τα αποτελέσματα. Έτσι, γίνεται και ένας άμεσος έλεγχος της ορθότητας των προγραμμάτων.

2.1 Αιθένιο ή Αιθυλένιο $(\mathbf{C}_2\mathbf{H}_4)$

Παίρνουμε τα δεδομένα της γεωμετρίας του αιθενίου από το NIST και σχεδιάζουμε το μόριό του (Σχήμα 2.1). Γεωμετρία από το NIST [11].

Σχήμα 2.1: Το μόριο του αιθενίου

Γράφουμε τον πίναχα χαμιλτονιανής και λύνουμε το πρόβλημα ιδιοτιμών. $\begin{bmatrix} \varepsilon & t \\ t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = E \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \varepsilon - E & t \\ t & \varepsilon - E \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Πρέπει η ορίζουσα του πίναχα να ισούται με μηδέν, δηλαδή: $(\varepsilon - E)^2 - t^2 = 0 \Rightarrow$ $E = \begin{cases} \varepsilon - t \\ \varepsilon + t \end{cases}$ οι ιδιοτιμές ενέργειας. Υπολογίζουμε το ιδιοάνυσμα που αντιστοιχεί σε χάθε τιμή.

•
$$E_1 = \varepsilon + t$$

Anó thy existing idiotium yia thy time E_1 :

$$\begin{bmatrix} \varepsilon & t \\ t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = (\varepsilon + t) \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\Rightarrow \begin{cases} \varepsilon c_1 + tc_2 = (\varepsilon + t)c_1 \\ tc_1 + \varepsilon c_2 = (\varepsilon + t)c_2 \\ \Rightarrow c_2 = c_1 \equiv c \end{cases}$$
To idioavuojua, loinán, nou antistotictí stan idiotium $E_1 = \varepsilon + t$ va exist: $\vec{v_1} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c \\ c \end{bmatrix}$
xai $\vec{v_1} \cdot \vec{v_1} = 1 \Rightarrow 2|c|^2 = 1 \rightarrow c = \frac{1}{\sqrt{2}} \Delta \eta \lambda a \delta \eta, \ \vec{v_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
• $E_2 = \varepsilon - t$
Ouncies,
$$\begin{bmatrix} \varepsilon & t \\ t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = (\varepsilon - t) \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\Rightarrow \begin{cases} \varepsilon c_1 + tc_2 = (\varepsilon - t)c_1 \\ tc_1 + \varepsilon c_2 = (\varepsilon - t)c_2 \\ \Rightarrow c_2 = -c_1 \equiv -c \end{cases}$$
To idioanusqua nou antistotictí stan idiotium $E_2 = \varepsilon - t : \vec{v_2} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c \\ -c \end{bmatrix}$
xai $\vec{v_2} \cdot \vec{v_2} = 1 \Rightarrow 2|c|^2 = 1 \rightarrow c = \frac{1}{\sqrt{2}} \Delta \eta \lambda a \delta \eta, \ \vec{v_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Τα ιδιοανύσματα αυτά ταυτίζονται με τα αντίστοιχα αποτελέσματα από τους υπολογισμούς. Για να ελέγξουμε τις ιδιοτιμές, χρησιμοποιούμε τις παραμέτρους ε και t από τις δύο παραμετροποιήσεις:

Για την HKS με t = -2.71 eV και ε= -6.7 eV, οι ιδιοτιμές ενέργειας θα είναι: $E_1 = \varepsilon + t = -9.41 eV$ και $E_2 = \varepsilon - t = -3.99 eV$.

Kai για την MMTS με t = -3.312eV και $\varepsilon = -6.560eV$: $E_1 = \varepsilon + t = -9.872eV$ και $E_2 = \varepsilon - t = -3.248eV$.

Οι τιμές αυτές συμφωνούν απόλυτα με αυτές των αντίστοιχων προγραμμάτων και παρουσιάζονται σχηματικά στο διάγραμμα του Σχήματος 2.2. Παίρνουμε τις πειραματικές τιμές των HOMO, LUMO, E_g από [11].

Σχήμα 2.2: Ιδιοενέργειες του αιθενίου.

28

2.2 1,3-Βουταδιένιο (C_4H_6)

Παίρνουμε τα δεδομένα της γεωμετρίας του 1,3-βουταδιενίου από το NIST και σχεδιάζουμε το μόριό του (Σχήμα 2.3). Γεωμετρία από το NIST [11].

Σχήμα 2.3: Το μόριο του 1,3-βουταδιενίου

Γράφουμε τον πίναχα χαμιλτονιανής και λύνουμε το πρόβλημα ιδιοτιμών:

$$\begin{bmatrix} \varepsilon & t' & 0 & 0 \\ t' & \varepsilon & t & 0 \\ 0 & t & \varepsilon & t' \\ 0 & 0 & t' & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = E \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \varepsilon - E & t' & 0 & 0 \\ t' & \varepsilon - E & t & 0 \\ 0 & t & \varepsilon - E & t' \\ 0 & 0 & t' & \varepsilon - E \end{bmatrix} = 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 + 4t^2 + t'^2 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 + 4t^2 + t'^2 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^2 (t^2 + 2t'^2) + t'^4 + 4t^2 + t'^2 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^4 + 4t^2 + t'^4 + 4t^2 + t'^4 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^4 + 4t^4 + 4t^2 + t'^2 = 0$$

$$= 0 \Rightarrow (\varepsilon - E)^4 - (\varepsilon - E)^4 + 4t^4 + 4t^2 + t'^4 + 4t^2 + t'^4 + 4t^4 + 4t^4 + t^4 + 4t^4 + 4t^4 + 4t^4 + t^4 + 4t^4 +$$

Με τις παραμέτρους της HKS, δηλαδή t' = -2.671 eV, t = -2.260 eV, $\varepsilon = -6.7 eV$ οι ιδιοτιμές ενέργειας είναι: $E_1 = -10.7302 eV$, $E_2 = -8.4702 eV$, $E_3 = -4.9298 eV$, $E_4 = -2.6698 eV$.

Με τις παραμέτρους της MMTS: t' = -3.265 eV, t = -2.762 eV, $\varepsilon = -6.56 eV$ οι ιδιοτιμές ενέργειας είναι: $E_1 = -11.4861 eV$, $E_2 = -8.72405 eV$, $E_3 = -4.39595 eV$, $E_4 = -1.63395 eV$.

Σχήμα 2.4: Ιδιοενέργειες του 1,3-βουταδιένιου.

Και πάλι τα αναλυτικά αποτελέσματα ταυτίζονται με τα αριθμητικά. (Σχηματικά στο 2.4). Παίρνουμε τις πειραματικές τιμές των ΗΟΜΟ, LUMO, E_g από [11]. Στη συνέχεια, υπολογίζουμε τα ιδιοανύσματα κάθε ιδιοτιμής.

$$\begin{split} \bullet E_{1} &= \varepsilon - m_{+} \\ \begin{bmatrix} \varepsilon & t' & 0 & 0 \\ t' & \varepsilon & t & 0 \\ 0 & t & \varepsilon & t' \\ 0 & 0 & t' & \varepsilon \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} &= (\varepsilon - m_{+}) \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} \Rightarrow \\ \varepsilon c_{1} + t'c_{2} &= \varepsilon c_{1} - m_{+}c_{1} \Rightarrow c_{2} &= -\frac{m_{+}}{t'}c_{1} \\ t'c_{1} + \varepsilon c_{2} + tc_{3} &= \varepsilon c_{2} - m_{+}c_{2} \Rightarrow c_{3} &= \frac{m_{+}^{2} - t'^{2}}{tt'}c_{1} \\ tc_{2} + \varepsilon c_{3} + t'c_{4} &= \varepsilon c_{3} - m_{+}c_{3} \\ t'c_{3} + \varepsilon c_{4} &= \varepsilon c_{4} - m_{+}c_{4} \Rightarrow c_{4} &= -\frac{m_{+}^{2} - t'^{2}}{tm_{+}}c_{1} \\ \end{split}$$
To idioanugua pou antistocicié stru idiotium $E_{1} = \varepsilon - m_{+} : \vec{v_{1}} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} =$

$$c \begin{bmatrix} 1\\ -\frac{m_{+}}{t'}\\ \frac{m_{+}^{2}-t'^{2}}{\frac{tt'}{m_{+}}-t'^{2}}\\ -\frac{m_{+}^{2}-t'^{2}}{tm_{+}} \end{bmatrix}$$

Μετά από πράξεις βρίσκουμε ότι: $\frac{m_+^2 - t'^2}{tm_+} = -1$, $\frac{m_+^2 - t'^2}{tt'} = -\frac{m_+}{t'}$ και $\frac{m_-^2 - t'^2}{tm_-} = 1$, $\frac{m_-^2 - t'^2}{tt'} = \frac{m_-}{t'}$.

$$\begin{split} {}^{\prime}\!\mathrm{A} \varphi \alpha, \, \vec{v_{1}} &= c \begin{bmatrix} \frac{1}{m_{+}} \\ -\frac{m_{+}}{m_{+}} \\ -\frac{m_{+}}{m_{+}} \end{bmatrix} \\ \mathrm{Frachers} &= c \begin{bmatrix} 1 \\ 1.508872 \\ 1.508872 \\ 1 \end{bmatrix} \\ \mathrm{A} \alpha \, \vec{v_{1}} \cdot \vec{v_{1}} &= 1 \Rightarrow |c|^{2} = 0.152593 \rightarrow c = 0.390631 \, \Delta \eta \lambda \alpha \delta \dot{\eta}, \, \vec{v_{1}} &= \begin{bmatrix} 0.390631 \\ 0.589413 \\ 0.589413 \\ 0.589413 \\ 0.589413 \\ 0.390631 \\ 0.390631 \end{bmatrix} \\ \bullet E_{2} &= \varepsilon - m_{-} \\ O\muolos, \, \vec{v_{2}} &= c \begin{bmatrix} \frac{1}{m_{-}} \\ -\frac{m_{-}}{U'} \\ -\frac{m_{-}}{U'} \\ -\frac{m_{-}}{U'} \\ -\frac{m_{-}}{U'} \end{bmatrix} = c \begin{bmatrix} -\frac{1}{m_{-}} \\ -\frac{m_{-}}{U'} \\ -\frac{m_{-}}{U'} \\ -\frac{m_{-}}{U'} \end{bmatrix} \\ \mathsf{F} \alpha \, \mathrm{HKS} \colon \vec{v_{2}} &= \begin{bmatrix} 0.589413 \\ 0.390631 \\ -0.390631 \\ -0.390654 \\ -0.589317 \\ 0.390654 \\ -0.589397 \end{bmatrix} \\ \bullet E_{3} &= \varepsilon + m_{-} \\ \begin{bmatrix} \varepsilon & t' & 0 & 0 \\ 0 & t & \varepsilon & t' \\ 0 & 0 & t' & \varepsilon \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} = (\varepsilon + m_{-}) \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} \Rightarrow \\ \varepsilon c_{1} + t'c_{2} &= \varepsilon c_{1} + m_{-}c_{1} \Rightarrow c_{2} = \frac{m_{-}}{U'}c_{1} \\ t'c_{1} + \varepsilon c_{2} + tc_{3} &= \varepsilon c_{2} + m_{-}c_{3} \\ t'c_{3} + \varepsilon c_{4} &= \varepsilon c_{4} + m_{-}c_{4} \Rightarrow c_{4} = \frac{m_{-}^{2} - t'^{2}}{tm_{-}}c_{1} \\ \end{array}$$

Το ιδιοάνυσμα που αντιστοιχεί στην ιδιοτιμή $E_3 = \varepsilon + m_-$: $\vec{v_3} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} =$

31

$$c \begin{bmatrix} 1\\ \frac{m_{-}}{t'}\\ \frac{m_{-}^{2}-t'^{2}}{tm_{-}} \end{bmatrix} = c \begin{bmatrix} 1\\ \frac{m_{-}}{t'}\\ \frac{m_{-}}{t'}\\ 1 \end{bmatrix}$$

$$\Gamma \alpha \text{ HKS: } \vec{v_{3}} = \begin{bmatrix} 0.589413\\ -0.390631\\ -0.390631\\ 0.589413 \end{bmatrix}$$

$$K\alpha \gamma \alpha \text{ MMTS: } \vec{v_{3}} = \begin{bmatrix} 0.589397\\ -0.390654\\ -0.390654\\ 0.589397 \end{bmatrix}$$

$$\bullet E_{4} = \varepsilon + m_{+}$$

$$O\mu o (\omega \varsigma, \vec{v_{4}} = c \begin{bmatrix} 1\\ \frac{m_{+}}{m_{+}^{2}-t'^{2}}\\ \frac{m_{+}^{2}-t'^{2}}{tm_{+}} \end{bmatrix} = c \begin{bmatrix} 1\\ \frac{m_{+}}{t'}\\ -\frac{m_{+}}{t'}\\ -1 \end{bmatrix}$$

$$\Gamma \alpha \text{ HKS: } \vec{v_{4}} = \begin{bmatrix} 0.390631\\ -0.589413\\ 0.589413\\ -0.390631 \end{bmatrix}$$

$$K\alpha \gamma \alpha \text{ MMTS: } \vec{v_{4}} = \begin{bmatrix} 0.390654\\ -0.589397\\ 0.589397\\ 0.589397\\ -0.390654 \end{bmatrix}$$

Τα ιδιοανύσματα αυτά συμφωνούν απόλυτα με τα αριθμητικά αποτελέσματα.

2.3 Κυχλοβουταδιένιο (C_4H_4)

Παίρνουμε τα δεδομένα της γεωμετρίας του χυχλοβουταδιενίου από το NIST και σχεδιάζουμε το μόριό του (Σχήμα 2.5). Γεωμετρία από το NIST [11].

Σχήμα 2.5: Το μόριο του χυχλοβουταδιενίου

Γράφουμε τον πίνακα χαμιλτονιανής και λύνουμε το πρόβλημα ιδιοτιμών: $\begin{bmatrix} \varepsilon & t & 0 & t' \end{bmatrix} \begin{bmatrix} c_1 \end{bmatrix} \begin{bmatrix} c_1 \end{bmatrix}$

$$\begin{bmatrix} \varepsilon & t & 0 & t \\ t & \varepsilon & t' & 0 \\ 0 & t' & \varepsilon & t \\ t' & 0 & t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = E \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \varepsilon - E & t & 0 & t' \\ t & \varepsilon - E & t' & 0 \\ 0 & t' & \varepsilon - E & t \\ t' & 0 & t & \varepsilon - E \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\text{Ipéret } \eta \text{ opf(zousa va sival up)sév:}$$

$$det \begin{bmatrix} \varepsilon - E & t & 0 & t' \\ t & \varepsilon - E & t' & 0 \\ 0 & t' & \varepsilon - E & t \\ t' & 0 & t & \varepsilon - E \end{bmatrix} = 0 \Rightarrow (\varepsilon - E)^4 - 2(\varepsilon - E)^2(t^2 + t'^2) + (t^2 - t'^2) = 0$$

$$\Rightarrow (t^2) = 0$$

$$\Rightarrow$$

Με τις παραμέτρους της MMTS, δηλαδή t = -2.354 eV, t' = -3.295 eV και $\varepsilon = -6.56 eV$, οι ιδιοτιμές ενέργειας θα είναι: $E_1 = -12.209 eV$, $E_2 = -7.501 eV$, $E_3 = -5.619 eV$ και $E_4 = -0.911 eV$.

Οι τιμές αυτές συμφωνούν απόλυτα με αυτές των αντίστοιχων προγραμμάτων και παρουσιάζονται σχηματικά στο διάγραμμα του Σχήματος 2.6. Πειραματική τιμή για το ενεργειακό χάσμα δεν βρήκαμε στη βιβλιογραφία (άρα δεν έχουμε και πειραματική τιμή για το το LUMO). Αυτό οφείλεται πιθανόν στη μικρή τιμή του ($E_g = 2(t - t')$, όπου η διαφορά των t, t' είναι μικρή), της τάξης του 1.5eV, η οποία βρίσκεται κάτω από το ορατό φάσμα επομένως δεν μπορεί να μετρηθεί από UV-VIS φασματοφωτομετρία. Παίρνουμε την πειραματική τιμή του HOMO από [11].

Σχήμα 2.6: Ιδιοενέργειες του χυχλοβουταδιένιου.

Για χάθε ιδιοτιμή υπολογίζουμε το αντίστοιχο ιδιοάνυσμα: • $E_1 = \varepsilon + t + t'$ $\begin{bmatrix} \varepsilon & t & 0 & t' \end{bmatrix}$

 $\begin{bmatrix} \varepsilon & t & 0 & t' \\ t & \varepsilon & t' & 0 \\ 0 & t' & \varepsilon & t \\ t' & 0 & t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = (\varepsilon + t + t') \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \Rightarrow$ $\varepsilon c_1 + tc_2 + t'c_4 = \varepsilon c_1 + tc_1 + t'c_1(1)$ $tc_1 + \varepsilon c_2 + t'c_3 = \varepsilon c_2 + tc_2 + t'c_2(2)$ $t'c_2 + \varepsilon c_3 + tc_4 = \varepsilon c_3 + tc_3 + t'c_3(3)$ $t'c_1 + tc_3 + \varepsilon c_4 = \varepsilon c_4 + tc_4 + t'c_4(4)$ $(1) + (4) \Rightarrow c_2 + c_3 = c_1 + c_4(1')$ $(1) + (2) \Rightarrow c_3 + c_4 = c_1 + c_2(2')$ $(1') - (2') \Rightarrow c_2 = c_4$ $(1') + (2') \Rightarrow c_1 = c_3$ $(1) \rightarrow c_1 = c_2$ $\Rightarrow c_1 = c_2 = c_3 = c_4 \equiv c$

$$\begin{split} & \operatorname{Apa} \text{ to ibioávioup a } \vec{v_1} = c \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \vec{v_1} \cdot \vec{v_1} = 1 \Rightarrow 4|c|^2 = 1 \Rightarrow \vec{v_1} = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \\ \\ & \mathbf{1} \end{bmatrix} \\ \bullet E_2 &= \varepsilon - t + t' \\ & \begin{bmatrix} \varepsilon & t & 0 & t' \\ t & \varepsilon & t' & 0 \\ 0 & t' & \varepsilon & t \\ t' & 0 & t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = (\varepsilon - t + t') \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \Rightarrow \\ & \overline{\varepsilon}c_1 + tc_2 + t'c_4 = \varepsilon c_1 - tc_1 + t'c_1(1) \\ & tc_1 + \varepsilon c_2 + t'c_3 = \varepsilon c_2 - tc_2 + t'c_2(2) \\ & t'c_2 + \varepsilon c_3 + tc_4 = \varepsilon c_3 - tc_3 + t'c_3(3) \\ & t'c_1 + tc_3 + \varepsilon c_4 = \varepsilon c_3 - tc_3 + t'c_3(3) \\ & t'c_1 + tc_3 + \varepsilon c_4 = \varepsilon c_4 - tc_4 + t'c_4(4) \\ & \operatorname{Ard} \operatorname{fuc}(1)(-(4) \operatorname{flop} \operatorname{cviftet:} c_2 = c_3 = -c_4 = -c_1 \equiv -c \\ & \overline{v_2} = c \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \vec{v_2} \cdot \vec{v_2} = 1 \Rightarrow c = \frac{1}{2} \Rightarrow \vec{v_2} = \frac{1}{2} \begin{bmatrix} 1\\-1\\-1\\-1\\1 \end{bmatrix} \\ \bullet E_3 = \varepsilon + t - t' \\ & \begin{bmatrix} \varepsilon & t & 0 & t' \\ t & \varepsilon & t' & 0 \\ 0 & t' & \varepsilon & t \\ t' & 0 & t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = (\varepsilon + t - t') \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \Rightarrow \\ & \overline{\varepsilon}c_1 + tc_2 + t'c_4 = \varepsilon c_1 + tc_1 - t'c_1(1) \\ & tc_1 + \varepsilon c_2 + t'c_3 = \varepsilon c_2 + tc_2 - t'c_2(2) \\ & t'c_2 + \varepsilon c_3 + tc_4 = \varepsilon c_3 + tc_3 - t'c_3(3) \\ & t'c_1 + tc_3 + \varepsilon c_4 = \varepsilon c_4 + tc_4 - t'c_4(4) \\ & \operatorname{Ard} \operatorname{fuc}(1)(-(4) \operatorname{flop} \operatorname{cviftet:} c_4 = c_3 = -c_2 = -c_1 \equiv -c \\ & \vec{v_3} = c \begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix} \vec{v_3} \cdot \vec{v_3} = 1 \Rightarrow c = \frac{1}{2} \Rightarrow \vec{v_3} = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix} \\ & \bullet E_4 = \varepsilon - t - t' \\ & \begin{bmatrix} \varepsilon & t & 0 & t' \\ t & \varepsilon & t' & 0 \\ 0 & t' & \varepsilon & t \\ t' & 0 & t & \varepsilon \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = (\varepsilon - t - t') \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \Rightarrow \\ & \varepsilon c_1 + tc_2 + t'c_3 = \varepsilon c_1 - tc_1 - t'c_1(1) \\ & tc_1 + \varepsilon c_2 + t'c_3 = \varepsilon c_1 - tc_1 - t'c_1(1) \\ & tc_1 + \varepsilon c_2 + t'c_3 = \varepsilon c_1 - tc_2 - t'c_2(2) \\ & t'c_2 + \varepsilon c_3 + tc_4 = \varepsilon c_3 - tc_2 - t'c_2(2) \\ & t'c_2 + \varepsilon c_3 + tc_4 = \varepsilon c_3 - tc_3 - t'c_3(3) \\ & t'c_1 + tc_3 + \varepsilon c_4 = \varepsilon c_3 - tc_3 - t'c_3(3) \\ & t'c_1 + tc_3 + \varepsilon c_4 = \varepsilon c_4 - tc_4 - t'c_4(4) \\ & \operatorname{Ard} \operatorname{fuc}(1)(-(4) \operatorname{fuc}(4) \operatorname{fuc}(4) + \varepsilon c_3 - c_4 - t'c_4(4) \\ & \operatorname{Ard} \operatorname{fuc}(1)(-(4) \operatorname{fuc}(4) \operatorname{fuc}(5) + tc_4) = \varepsilon c_3 - tc_3 = -c_1 \equiv -c \end{bmatrix}$$

$$\vec{v_4} = c \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix} \vec{v_4} \cdot \vec{v_4} = 1 \Rightarrow c = \frac{1}{2} \Rightarrow \vec{v_4} = \frac{1}{2} \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}$$

Και πάλι τα ιδιοανύσματα ταυτίζονται με τα αριθμητικά αποτελέσματα.

Bενζόλιο (C_6H_6) 2.4

Παίρνουμε τα δεδομένα της γεωμετρίας του βενζολίου από το NIST και σχεδιάζουμε το μόριό του (Σχήμα 2.7). Γεωμετρία από το NIST [11].

Σχήμα 2.7: Το μόριο του βενζολίου

Ο πίναχας χαμιλτονιανής θα είναι:

 ε t 0 0 0 t $\hat{H} = \begin{bmatrix} \varepsilon & t & 0 & 0 & 0 & t \\ t & \varepsilon & t & 0 & 0 & 0 \\ 0 & t & \varepsilon & t & 0 & 0 \\ 0 & 0 & t & \varepsilon & t & 0 \\ 0 & 0 & 0 & t & \varepsilon & t \\ t & 0 & 0 & 0 & t & \varepsilon \end{bmatrix}$

Η μοριαχή χυματοσυνάρτηση: $\psi = \sum_{\nu=1}^{6} c_{\nu} p_{z\nu}$, με $c_{\nu} = c e^{(\nu-1)i\phi}$ Επειδή το έβδομο άτομο ταυτίζεται με το πρώτο, $c_7 = c_1 \Rightarrow e^{6i\phi} = 1 = e^{2\pi m i} \Rightarrow$ $\phi = \frac{\pi}{3}m$, με *m* αχέραιο.

Εφαρμόζουμε τη χρονοανεξάρτητη εξίσωση Shrödinger και δρούμε με $\int dV p_{z\mu}^*$:

 $\hat{H}\psi = E\psi \Rightarrow \hat{H}\sum_{\nu=1}^{6} c_{\nu}p_{z\nu} = E\sum_{\nu=1}^{6} c_{\nu}p_{z\nu}$ $\sum_{\nu=1}^{6} c_{\nu}\int dV p_{z\mu}^{*}\hat{H}p_{z\nu} = E\sum_{\nu=1}^{6} c_{\nu}\int dV p_{z\mu}^{*}p_{z\nu} \Rightarrow \sum_{\nu=1}^{6} c_{\nu}H_{\mu\nu} = E\sum_{\nu=1}^{6} c_{\nu}\delta_{\mu\nu}$ $\Gamma\iota\alpha \ \mu = 1: \sum_{\nu=1}^{6} c_{\nu}H_{1\nu} = E\sum_{\nu=1}^{6} c_{\nu}\delta_{1\nu} = Ec_{1} \Rightarrow$ $c\varepsilon + ce^{i\phi}t + ce^{5i\phi}t = Ec \Rightarrow \varepsilon + e^{i\phi}t + e^{5i\phi}t = E$ Επειδή $e^{6i\phi} = 1 \Rightarrow e^{5i\phi} = e^{-i\phi}$, θα είναι $\varepsilon + (e^{i\phi} + e^{-i\phi})t = E \Rightarrow E = \varepsilon + 2tcos\phi$ Επομένως, οι ιδιοτιμές ενέργειας: για $m = 0 \Rightarrow \phi = 0 \Rightarrow E = \varepsilon + 2t = E_1$ για $m = 1 \Rightarrow \phi = \frac{\pi}{3} \Rightarrow E = \varepsilon + t = E_2$ για $m = 2 \Rightarrow \phi = \frac{2\pi}{3} \Rightarrow E = \varepsilon - t = E_4$ yia $m = 3 \Rightarrow \phi = \pi \Rightarrow E = \varepsilon - 2t = E_6$ $\begin{aligned} &\gamma \iota \alpha \ m = 4 \Rightarrow \phi = \frac{4\pi}{3} \Rightarrow E = \varepsilon - t = E_5 \\ &\gamma \iota \alpha \ m = 5 \Rightarrow \phi = \frac{5\pi}{3} \Rightarrow E = \varepsilon + t = E_3 \end{aligned}$ Για την HKS παραμετροποίηση με t = -2.481 eV και $\varepsilon = -6.7 eV$, οι ιδιοενέργειες

θα είναι: $E_1 = -11.662 eV$, $E_2 = -9.181 eV$, $E_3 = -9.181 eV$, $E_4 = -4.219 eV$, $E_5 = -4.219 eV$ xai $E_6 = -1.738 eV$.

Για την MMTS με t = -3.032 eV και $\varepsilon = -6.56 eV$, οι ιδιοενέργειες θα είναι: $E_1 = -12.624 eV$, $E_2 = -9.592 eV$, $E_3 = -9.592 eV$, $E_4 = -3.528 eV$, $E_5 = -3.528 eV$ και $E_6 = -0.496 eV$.

Οι τιμές αυτές ταυτίζονται με τα αριθμητικά αποτελέσματα και παρουσιάζονται σχηματικά στο διάγραμμα του Σχήματος 2.8. Πειραματικές τιμές για τα HOMO, LUMO, E_g βρίσκουμε στα [10].

Σχήμα 2.8: Ιδιοενέργειες του βενζολίου.

Έπειτα, υπολογίζουμε τα αντίστοιχα ιδιοανύσματα, τα οποία θα έχουν τη γενική μορφή

 $\vec{v} = c \begin{bmatrix} 1\\ e^{i\phi}\\ e^{2i\phi}\\ e^{3i\phi}\\ e^{4i\phi}\\ e^{5i\phi} \end{bmatrix}, \vec{v} \cdot \vec{v} = 1 \Rightarrow 6c^2 = 1 \rightarrow c = \frac{1}{\sqrt{6}}$ • $\Gamma_{\text{LC}} \tau \eta \nu E_1 = \varepsilon + 2t(\phi = 0)$: $\vec{v_1} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$ • $\Gamma_{\text{LC}} \tau \eta \nu E_2 = \varepsilon + t(\phi = \frac{\pi}{3})$:

$$\begin{split} \vec{v}_{2} &= \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ e^{i\pi/3}\\ e^{2i\pi/3}\\ e^{3i\pi/3}\\ e^{3i\pi/3}\\ e^{4i\pi/3}\\ e^{5i\pi/3} \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ \frac{1}{2} + i\frac{\sqrt{3}}{2}\\ -\frac{1}{2} + i\frac{\sqrt{3}}{2}\\ \frac{1}{2} - i\frac{\sqrt{3}}{2}\\ \frac{1}{2} + i\frac{\sqrt{3}}{2}\\ \frac{1}{2} + i\frac{\sqrt{3}}{2}\\ \frac{1}{2} + i\frac{\sqrt{3}}{2}\\ \frac{1}{2} + i\frac{\sqrt{3}}{2}\\ \frac{1}{2} - i\frac{\sqrt{3}}{2}\\ \frac{1}{2} + i\frac{\sqrt{3}}{2}\\ \frac{1}{2} - i\frac{\sqrt{3}}{2$$

Το τετράγωνο του μέτρου των c_{ν} $(|c_{\nu}|^2)$ των ιδιοανυσμάτων εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για τη συγκεκριμένη ιδιοενέργεια. Λόγω της συμμετρίας του βενζολίου, τα έξι άτομα άνθρακα είναι ισοδύναμα και όπως αναμέναμε οι πιθανότητές τους είναι ίσες μεταξύ τους (=1/6) για όλες τις ιδιοενέργειες. Τα αποτελέσματα συμφωνούν με εκείνα των δύο παραμετροποιήσεων.

2.5 1,3,5-Τριαζίνη ($C_{3}H_{4}N_{3}$)

Παίρνουμε τα δεδομένα της γεωμετρίας της 1,3,5-τριαζίνης από το NIST και σχεδιάζουμε το μόριό του (Σχήμα 2.9). Γεωμετρία από το NIST [11].

Σχήμα 2.9: Το μόριο της 1,3,5-τριαζίνης

Ο πίναχας χαμιλτονιανής θα είναι:

	ε_{N2}	t	0	0	0	t
îı	t	ε_C	t	0	0	0
	0	t	ε_{N2}	t	0	0
$\Pi =$	0	0	t	ε_C	t	0
	0	0	0	t	ε_{N2}	t
	t	0	0	0	t	ε_C
**	,				,	

Η μοριαχή χυματοσυνάρτηση: $\psi = \sum_{\nu=1}^{6} c_{\nu} p_{z\nu}$, με $c_1 = ce^{i\phi}, c_3 = ce^{2i\phi}, c_5 = ce^{3i\phi}$ χαι $c_2 = de^{i\theta}, c_4 = de^{2i\theta}, c_6 = de^{3i\theta}$.

Επειδή το έβδομο άτομο ταυτίζεται με το πρώτο, $c_7 = c_1 \Rightarrow e^{4i\phi} = e^{i\phi} \Rightarrow e^{3i\phi} = 1 \Rightarrow 3i\phi = i2\pi n \Rightarrow \phi = \frac{2\pi}{3}n$, όπου n αχέραιος. Ομοίως, το όγδοο άτομο ταυτίζεται με το δεύτερο, άρα $c_8 = c_2 \Rightarrow e^{4i\theta} = e^{i\theta} \Rightarrow e^{3i\theta} = 1 \Rightarrow 3i\theta = i2\pi n \Rightarrow \theta = \frac{2\pi}{3}n$, όπου n αχέραιος.

$$\begin{split} & \mathsf{E}\varphi \mathsf{a}\varphi \mathsf{\mu} \mathsf{b} \zeta \mathsf{o} \mathsf{u} \mathsf{\mu} \varepsilon \ \mathsf{t} \mathsf{\eta} \ \mathsf{\chi} \mathsf{p} \mathsf{o} \mathsf{v} \mathsf{o} \mathsf{a} \mathsf{v} \varepsilon \xi \mathsf{d} \mathsf{p} \mathsf{t} \mathsf{\eta} \mathsf{\eta} \varepsilon \xi \mathsf{d} \mathsf{o} \mathsf{d} \mathsf{m} \mathsf{g} \mathsf{s} \mathsf{n} \mathsf{s} \mathsf{h} \mathsf{r} \mathsf{d} \mathsf{i} \mathsf{g} \mathsf{e} \mathsf{r} \mathsf{a} \mathsf{a} \ \delta \mathsf{p} \mathsf{o} \mathsf{u} \mathsf{\mu} \mathfrak{u} \varepsilon \mathsf{\mu} \varepsilon \int dV p_{z\mu}^* \hat{H} p_{z\nu} = E \sum_{\nu=1}^6 c_\nu p_{z\nu} \\ & \sum_{\nu=1}^6 c_\nu \int dV p_{z\mu}^* \hat{H} p_{z\nu} = E \sum_{\nu=1}^6 c_\nu \int dV p_{z\mu}^* p_{z\nu} \Rightarrow \sum_{\nu=1}^6 c_\nu H_{\mu\nu} = E \sum_{\nu=1}^6 c_\nu \delta_{\mu\nu} \\ & \Rightarrow \left\{ \begin{array}{l} \mu = 1 : \sum_{\nu=1}^6 c_\nu H_{1\nu} = E \sum_{\nu=1}^6 c_\nu \delta_{1\nu} = E c_1 \\ \mu = 2 : \sum_{\nu=1}^6 c_\nu H_{2\nu} = E \sum_{\nu=1}^6 c_\nu \delta_{2\nu} = E c_2 \\ & \varphi \in e^{i\phi} \varepsilon_{N2} + de^{i\phi} t + de^{3i\phi} t = E c e^{i\phi} \\ & c e^{i\phi} t + de^{i\phi} \varepsilon_C + c e^{2i\phi} t = E d e^{i\phi} \\ & \varepsilon \varepsilon_{N2} + dt + de^{-i\phi} t = E d \\ & \varphi \in \varepsilon_{N2} + dt + de^{-i\phi} t = E d \\ & \varphi \in \varepsilon_{N2} + dt + de^{-i\phi} t = E d \\ & \varphi \in \varepsilon_{N2} + dt + de^{-i\phi} t = E d \\ & \left[\begin{array}{c} \varepsilon_{N2} & t(1 + e^{-i\phi}) \\ t(1 + e^{i\phi}) & \varepsilon_C \end{array} \right] \left[\begin{array}{c} c \\ d \end{array} \right] = E \left[\begin{array}{c} c \\ d \end{array} \right] \end{split}$$

$$\Rightarrow \begin{bmatrix} \varepsilon_{N2} - E & t(1 + e^{-i\phi}) \\ t(1 + e^{i\phi}) & \varepsilon_C - E \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Pi \rho \epsilon \pi \varepsilon_{N2} - E & t(1 + e^{-i\phi}) \\ t(1 + e^{i\phi}) & \varepsilon_C - E \end{bmatrix} = 0$$

$$\Rightarrow E^2 - E(\varepsilon_{N2} + \varepsilon_C) + \varepsilon_{N2}\varepsilon_C - 2t^2(\cos\phi + 1) = 0$$

$$H \text{ derivation of a funct: } \delta = (\varepsilon_{M2} + \varepsilon_C)^2 - 4\varepsilon_M \varepsilon_R + 8t^2(\cos\phi + 1) = (\varepsilon_{M2} - \varepsilon_R)^2$$

Η διαχρίνουσα είναι: $\delta = (\varepsilon_{N2} + \varepsilon_C)^2 - 4\varepsilon_{N2}\varepsilon_C + 8t^2(\cos\phi + 1) = (\varepsilon_{N2} - \varepsilon_C)^2 + 8t^2(\cos\phi + 1)$

Eπομένως,
$$E = \frac{\varepsilon_{N2}+\varepsilon_C}{2} \pm \sqrt{\left(\frac{\varepsilon_C-\varepsilon_{N2}}{2}\right)^2 + 2t^2(\cos\phi+1)}$$
.
Ορίζω $\Sigma \equiv \frac{\varepsilon_{N2}+\varepsilon_C}{2}$ και $\Delta \equiv \frac{\varepsilon_C-\varepsilon_{N2}}{2}$
 $E = \Sigma \pm \sqrt{\Delta^2 + 2t^2(\cos\phi+1)}, \phi = \frac{2\pi}{3}n$
Άρα, οι ιδιοτιμές ενέργειας είναι:

$$\Gamma \iota \alpha \ n = 0 \Rightarrow \phi = 0 \Rightarrow E_{\pm} = \Sigma \pm \sqrt{\Delta^2 + 4t^2} \Rightarrow \begin{cases} E_1 = \Sigma - \sqrt{\Delta^2 + 4t^2} \\ E_6 = \Sigma + \sqrt{\Delta^2 + 4t^2} \end{cases}$$
$$\Gamma \iota \alpha \ n = 1 \Rightarrow \phi = \frac{2\pi}{3} \Rightarrow E_{\pm} = \Sigma \pm \sqrt{\Delta^2 + t^2} \Rightarrow \begin{cases} E_2 = \Sigma - \sqrt{\Delta^2 + t^2} \\ E_4 = \Sigma + \sqrt{\Delta^2 + t^2} \end{cases}$$
$$\Gamma \iota \alpha \ n = -1 \Rightarrow \phi = -\frac{2\pi}{3} \Rightarrow E_{\pm} = \Sigma \pm \sqrt{\Delta^2 + t^2} \Rightarrow \begin{cases} E_3 = \Sigma - \sqrt{\Delta^2 + t^2} \\ E_5 = \Sigma + \sqrt{\Delta^2 + t^2} = E_4 \end{cases}$$

Για HKS με t = -2.685 eV, $ε_C = -6.7 eV$ και $ε_{N2} = -7.9 eV$ οι ιδιοτιμές ενέργειας είναι: $E_1 = -12.70342 eV$, $E_2 = -10.05122 eV$, $E_3 = -10.05122 eV$, $E_4 = -4.54878 eV$, $E_5 = -4.54878 eV$, $E_6 = -1.89658 eV$.

Για MMTS με t = -3.2815 eV, $\varepsilon_C = -6.56 eV$ και $\varepsilon_{N2} = -9.62 eV$ οι ιδιοτιμές ενέργειας είναι: $E_1 = -14.82898 eV$, $E_2 = -11.71065 eV$, $E_3 = -11.71065 eV$, $E_4 = -4.46935 eV$, $E_5 = -4.46935 eV$, $E_6 = -1.35102 eV$.

Οι τιμές αυτές συμφωνούν απόλυτα με αυτές των αντίστοιχων προγραμμάτων και παρουσιάζονται σχηματικά στο διάγραμμα του Σχήματος 2.10. Παίρνουμε τις πειραματικές τιμές των HOMO, LUMO, E_g από [11] και [12].

Η γενική μορφή των ιδιοανυσμάτων:

$$\vec{v} = \begin{bmatrix} ce^{i\phi} \\ de^{i\phi} \\ ce^{2i\phi} \\ de^{2i\phi} \\ ce^{3i\phi} \\ de^{3i\phi} \end{bmatrix}, \vec{v} \cdot \vec{v} = 1 \Rightarrow 3c^2 + 3d^2 = 1$$

$$\Rightarrow c^2 + d^2 = \frac{1}{3} \tag{2.1}$$

• Για την $E_1 = \Sigma - \sqrt{\Delta^2 + 4t^2}(\phi = 0)$

$$\begin{bmatrix} \varepsilon_N 2 & t & 0 & 0 & 0 & t \\ t & \varepsilon_C & t & 0 & 0 & 0 \\ 0 & t & \varepsilon_N 2 & t & 0 & 0 \\ 0 & 0 & t & \varepsilon_C & t & 0 \\ 0 & 0 & 0 & t & \varepsilon_N 2 & t \\ t & 0 & 0 & 0 & t & \varepsilon_C \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix} = (\Sigma - \sqrt{\Delta^2 + 4t^2}) \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix}$$

 $\Rightarrow \varepsilon_{N2}c_1 + tc_2 + tc_6 = (\Sigma - \sqrt{\Delta^2 + 4t^2})c_1 \text{ Επειδή } \varphi = 0 \Rightarrow \varepsilon_{N2}c_1 + td_2 + td_2 = (\Sigma - \sqrt{\Delta^2 + 4t^2})c_1$

$$\Rightarrow \frac{c}{d} = \frac{2t}{\Delta - \sqrt{\Delta^2 + 4t^2}} \equiv \kappa \tag{2.2}$$

Aπό (2.1), (2.2)
$$\Rightarrow c = \frac{1}{\sqrt{3(1+\kappa^{-2})}}$$
 και $d = \frac{1}{\kappa\sqrt{3(1+\kappa^{-2})}}$
Για HKS: $\vec{v_1} = \begin{bmatrix} c \\ d \\ c \\ d \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0.430318 \\ 0.384915 \\ 0.430318 \\ 0.384915 \end{bmatrix}$
Για MMTS: $\vec{v_1} = \begin{bmatrix} c \\ d \\ c \\ d \\ c \\ d \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0.452224 \\ 0.358925 \\ 0.452224 \\ 0.358925 \\ 0.452224 \\ 0.358925 \end{bmatrix}$
• Για την $E_6 = \Sigma + \sqrt{\Delta^2 + 4t^2}(\phi = 0)$

$$\begin{bmatrix} \varepsilon_N 2 & t & 0 & 0 & 0 & t \\ t & \varepsilon_C & t & 0 & 0 & 0 \\ 0 & t & \varepsilon_N 2 & t & 0 & 0 \\ 0 & 0 & t & \varepsilon_C & t & 0 \\ 0 & 0 & 0 & t & \varepsilon_N 2 & t \\ t & 0 & 0 & 0 & t & \varepsilon_C \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix} = (\Sigma + \sqrt{\Delta^2 + 4t^2}) \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix}$$

$$\Rightarrow \varepsilon_{N2}c_1 + tc_2 + tc_6 = (\Sigma + \sqrt{\Delta^2 + 4t^2})c_1$$
Exclor $\phi = 0 \Rightarrow \varepsilon_{N2}c + td + td = (\Sigma + \sqrt{\Delta^2 + 4t^2})c$

$$(L + \sqrt{\Delta^2 + 4t^2})c_1 = (\Sigma + \sqrt{\Delta^2 + 4t^2})c_1$$

$$\Rightarrow \frac{c}{d} = \frac{2t}{\Delta + \sqrt{\Delta^2 + 4t^2}} \equiv \lambda \tag{2.3}$$

$$\begin{aligned} \operatorname{A\pi \acute{o}} (2.1), (2.3) \Rightarrow c &= \frac{1}{\sqrt{3(1+\lambda^{-}2)}} \text{ xon } d = \frac{1}{\lambda\sqrt{3(1+\lambda^{-}2)}} \\ \operatorname{Fia} \operatorname{HKS:} \vec{v_6} &= \begin{bmatrix} c \\ d \\ c \\ d \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0.384915 \\ -0.430318 \\ 0.384915 \\ -0.430318 \end{bmatrix} \\ \operatorname{Fia} \operatorname{MMTS:} \vec{v_6} &= \begin{bmatrix} c \\ d \\ c \\ d \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0.358925 \\ -0.452224 \\ 0.358925 \\ -0.452224 \\ 0.358925 \\ -0.452224 \end{bmatrix} \end{aligned}$$

L ^α J L ^{-0.432224} J Τα ιδιοανύσματα αυτά ταυτίζονται με τα αντίστοιχα αποτελέσματα από τους υπολογισμούς.

Κεφάλαιο 3

Πουρίνες

3.1 Αδενίνη $(C_5H_5N_5)$

Αρχικά θα μελετήσουμε το μόριο της αδενίνης. Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο και απαριθμούμε τα άτομά του (Σχήμα 3.1). Γεωμετρία από [13].

Σχήμα 3.1: Το μόριο της Αδενίνης

Οι συντεταγμένες των ατόμων που προσφέρου
ν p_z ηλεκτρόνια παρουσιάζονται στον Πίνακα 3.1. Συγκεκριμένα, οι πέντε άνθρακες και τα τρία άζωτα με αριθμό συντάξεως 2
 συνεισφέρουν από ένα p_z ηλεκτρόνιο, και τα δύο άζωτα με αριθμό συντάξεως 3 από δύο. Συνολικά δηλαδή, τα 10 αυτά άτομα συνεισφέρουν 12
 p_z ηλεκτρόνια.

Από τις αναφορές του άρθρου [3] ([14], [15]) βρίσκουμε πειραματικές τιμές για την ενέργεια ιονισμού. Υπολογίζουμε τη μέση τιμή τους, και ως HOMO_{exp} θεωρούμε το αντίθετο αυτής. Στις αναφορές του άρθρου [3] βρίσκουμε επίσης πειραματικές τιμές για την ενέργεια χάσματος ([16]- [22]) και υπολογίζουμε τη μέση τιμή. Από τις δύο αυτές πειραματικές τιμές βρίσκουμε και το LUMO_{exp} (LUMO = HOMO + E_g).

To fortran πρόγραμμα adenine.f διαβάζει τις συντεταγμένες και τις πειραματικές τιμές από το αρχείο adenine.input και διαγωνοποιεί τον πίνακα χαμιλτονιανής 3.1.

άτομο	x	y	z
С	1.358753	0.174881	0.000000
Ν	1.667201	-1.131378	0.000000
С	0.669555	-2.027914	0.000000
N	-0.646011	-1.806619	0.000000
С	-0.922747	-0.499883	0.000000
Ν	-2.151738	0.121656	0.000000
С	-1.910092	1.480357	0.000000
N	-0.636363	1.777594	0.000000
C	0.000000	0.548411	0.000000
N	2.359456	1.084961	0.0000000

Πίναχας 3.1: Οι συντεταγμένες των ατόμων της Αδενίνης με p_z ηλεχτρόνια σε Å.

E_C	V_2	0	0	0	0	0	0	V'_9	V_{10}	
V_2	E_{N2}	V_3	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	
0	0	V_4	E_{N2}	V_5	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	V'_5	0	(2.1)
0	0	0	0	V_6	E_{N3}	V_7	0	0	0	
0	0	0	0	0	V_7	E_C	V_8	0	0	
0	0	0	0	0	0	V_8	E_{N2}	V_9	0	
V'_9	0	0	0	V'_5	0	0	V_9	E_C	0	
V_{10}	0	0	0	0	0	0	0	0	E_{N3}	

Έτσι, υπολογίζονται τα ιδιοανύσματα και οι ιδιοτιμές της ενέργειας. Τα 12 ηλεκτρόνια καταλαμβάνουν τις 6 χαμηλότερες ενεργειακές στάθμες. Η ανώτερη κατειλημμένη στάθμη, δηλαδή η έκτη ιδιοτιμή, αντιστοιχεί στην ενέργεια HOMO, και η κατώτερη μη κατειλημμένη, δηλαδή η έβδομη, στην LUMO. Η διαφορά LUMO-HOMO ισούται με το ενεργειακό χάσμα E_g. Τα αποτελέσματα εμφανίζονται στα αρχεία adenine.outputHKS και adenine.outputMMTS για τις δύο παραμετροποιήσεις.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.544D και d(MMTS) = 4.493D.

Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 3.2 και σχηματικά στο Σχήμα 3.2.

Στον Πίνακα 3.4 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν σε όλες τις ιδιοενέργειες. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
1	1	0.2449	0.0000	0.060	-0.2627	0.0000	0.069

1	2	0.1771	0.0000	0.031	-0.2504	0.0000	0.063
1	3	0.1577	0.0000	0.025	-0.2048	0.0000	0.042
1	4	0.2494	0.0000	0.062	-0.3204	0.0000	0.103
1	5	0.4036	0.0000	0.163	-0.3876	0.0000	0.150
1	6	0.5889	0.0000	0.347	-0.4935	0.0000	0.244
1	7	0.3098	0.0000	0.096	-0.2875	0.0000	0.083
1	8	0.2726	0.0000	0.074	-0.3235	0.0000	0.105
1	9	0.3124	0.0000	0.098	-0.3207	0.0000	0.103
1	10	0.2099	0.0000	0.044	-0.1994	0.0000	0.040
2	1	0.4635	0.0000	0.215	0.4208	0.0000	0.177
2	2	0.3357	0.0000	0.113	0.4572	0.0000	0.209
2	3	0.1554	0.0000	0.024	0.2205	0.0000	0.049
2	4	0.0201	0.0000	0.000	0.0581	0.0000	0.003
2	5	-0.1191	0.0000	0.014	-0.1403	0.0000	0.020
2	6	-0.4184	0.0000	0.175	-0.4491	0.0000	0.202
2	7	-0.1981	0.0000	0.039	-0.2543	0.0000	0.065
2	8	-0.0558	0.0000	0.003	-0.1624	0.0000	0.026
2	9	0.1125	0.0000	0.013	0.0425	0.0000	0.002
2	10	0.6354	0.0000	0.404	0.4978	0.0000	0.248
3	1	0.0731	0.0000	0.005	-0.1992	0.0000	0.040
3	2	-0.3312	0.0000	0.110	0.1848	0.0000	0.034
3	3	-0.5027	0.0000	0.253	0.3899	0.0000	0.152
3	4	-0.5411	0.0000	0.293	0.5776	0.0000	0.334
3	5	-0.1923	0.0000	0.037	0.2009	0.0000	0.040
3	6	0.1672	0.0000	0.028	-0.0234	0.0000	0.001
3	7	0.2237	0.0000	0.050	-0.2132	0.0000	0.045
3	8	0.2214	0.0000	0.049	-0.3787	0.0000	0.143
3	9	0.0554	0.0000	0.003	-0.1779	0.0000	0.032
3	10	0.4152	0.0000	0.172	-0.4232	0.0000	0.179
4	1	-0.0770	0.0000	0.006	-0.0211	0.0000	0.000
4	2	-0.0916	0.0000	0.008	0.1923	0.0000	0.037
4	3	-0.0080	0.0000	0.000	0.1390	0.0000	0.019
4	4	0.0797	0.0000	0.006	0.0231	0.0000	0.001
4	5	0.0813	0.0000	0.007	-0.1253	0.0000	0.016
4	6	0.4521	0.0000	0.204	-0.4979	0.0000	0.248
4	7	-0.1763	0.0000	0.031	0.1031	0.0000	0.011
4	8	-0.6368	0.0000	0.406	0.5994	0.0000	0.359
4	9	-0.4307	0.0000	0.186	0.2760	0.0000	0.076
4	10	0.3823	0.0000	0.146	-0.4828	0.0000	0.233
5	1	0.1294	0.0000	0.017	0.0786	0.0000	0.006

5	2	0.5976	0.0000	0.357	0.6120	0.0000	0.375
5	3	0.1933	0.0000	0.037	0.1172	0.0000	0.014
5	4	-0.4019	0.0000	0.162	-0.4596	0.0000	0.211
5	5	-0.4089	0.0000	0.167	-0.2632	0.0000	0.069
5	6	0.2740	0.0000	0.075	0.3641	0.0000	0.133
5	7	0.2411	0.0000	0.058	0.1676	0.0000	0.028
5	8	-0.0193	0.0000	0.000	-0.1265	0.0000	0.016
5	9	-0.2811	0.0000	0.079	-0.2308	0.0000	0.053
5	10	-0.2177	0.0000	0.047	-0.3084	0.0000	0.095
6	1	-0.3370	0.0000	0.114	-0.2893	0.0000	0.084
6	2	-0.1552	0.0000	0.024	-0.0537	0.0000	0.003
6	3	0.3159	0.0000	0.100	0.3034	0.0000	0.092
6	4	0.3356	0.0000	0.113	0.2537	0.0000	0.064
6	5	-0.2726	0.0000	0.074	-0.3721	0.0000	0.138
6	6	-0.1272	0.0000	0.016	-0.0246	0.0000	0.001
6	7	0.4072	0.0000	0.166	0.3955	0.0000	0.156
6	8	0.3398	0.0000	0.115	0.2735	0.0000	0.075
6	9	-0.4081	0.0000	0.167	-0.5216	0.0000	0.272
6	10	0.3341	0.0000	0.112	0.3385	0.0000	0.115
7	1	0.4787	0.0000	0.229	0.5176	0.0000	0.268
7	2	-0.0083	0.0000	0.000	-0.0422	0.0000	0.002
7	3	-0.4674	0.0000	0.218	-0.4458	0.0000	0.199
7	4	0.3963	0.0000	0.157	0.3705	0.0000	0.137
7	5	-0.0379	0.0000	0.001	-0.1718	0.0000	0.030
7	6	-0.1712	0.0000	0.029	-0.1283	0.0000	0.016
7	7	0.4754	0.0000	0.226	0.4786	0.0000	0.229
7	8	-0.2256	0.0000	0.051	-0.2240	0.0000	0.050
7	9	-0.2227	0.0000	0.050	-0.1343	0.0000	0.018
7	10	-0.1951	0.0000	0.038	-0.2258	0.0000	0.051
8	1	-0.3697	0.0000	0.137	0.3118	0.0000	0.097
8	2	0.5042	0.0000	0.254	-0.4582	0.0000	0.210
8	3	-0.3847	0.0000	0.148	0.5416	0.0000	0.293
8	4	-0.1008	0.0000	0.010	-0.0416	0.0000	0.002
8	5	0.5352	0.0000	0.286	-0.4661	0.0000	0.217
8	6	-0.2108	0.0000	0.044	0.1830	0.0000	0.034
8	7	0.0472	0.0000	0.002	-0.0032	0.0000	0.000
8	8	0.1424	0.0000	0.020	-0.1616	0.0000	0.026
8	9	-0.2797	0.0000	0.078	0.3240	0.0000	0.105
8	10	0.1388	0.0000	0.019	-0.1261	0.0000	0.016
9	1	-0.1497	0.0000	0.022	0.2092	0.0000	0.044

9	2	-0.0940	0.0000	0.009	0.0211	0.0000	0.000
9	3	0.3165	0.0000	0.100	-0.2539	0.0000	0.064
9	4	-0.3222	0.0000	0.104	0.2784	0.0000	0.077
9	5	0.2503	0.0000	0.063	-0.3335	0.0000	0.111
9	6	-0.2679	0.0000	0.072	0.3328	0.0000	0.111
9	7	0.5710	0.0000	0.326	-0.6164	0.0000	0.380
9	8	-0.4796	0.0000	0.230	0.3995	0.0000	0.160
9	9	0.2677	0.0000	0.072	-0.2157	0.0000	0.047
9	10	0.0508	0.0000	0.003	-0.0762	0.0000	0.006
10	1	0.4420	0.0000	0.195	-0.4637	0.0000	0.215
10	2	-0.3058	0.0000	0.093	0.2601	0.0000	0.068
10	3	0.3073	0.0000	0.094	-0.2752	0.0000	0.076
10	4	-0.3051	0.0000	0.093	0.2601	0.0000	0.068
10	5	0.4327	0.0000	0.187	-0.4564	0.0000	0.208
10	6	-0.0954	0.0000	0.009	0.1118	0.0000	0.013
10	7	-0.0737	0.0000	0.005	0.0546	0.0000	0.003
10	8	0.2257	0.0000	0.051	-0.1992	0.0000	0.040
10	9	-0.5061	0.0000	0.256	0.5410	0.0000	0.293
10	10	-0.1216	0.0000	0.015	0.1338	0.0000	0.018

Πίνα
χας 3.4: Ιδιοανύσματα για την αδενίνη.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.960	-15.710
2	-12.810	-14.190
3	-11.360	-12.990
4	-10.370	-11.620
5	-9.340	-10.660
6	-8.254	-8.739
7	-4.460	-4.129
8	-3.910	-3.548
9	-3.161	-2.674
10	-1.366	-0.362

Πίνα
χας 3.2: Ιδιοτιμές ενέργειας για την αδενίνη σε ${\rm eV}.$

Σχήμα 3.2: Ιδιοτιμές ενέργειας της αδενίνης

Πίνα
κας 3.3: HOMO, LUMO και $E_{\rm g}$ της αδενίνης σε
 $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.45	-3.80	4.65
υπολογισμός HKS	-8.25	-4.46	3.79
σχετικό σφάλμα HKS	-0.023	0.174	-0.184
υπολογισμός MMTS	-8.74	-4.13	4.61
σχετικό σφάλμα MMTS	0.034	0.087	-0.008

Σχήμα 3.3: Οι συντεταγμένες των ατόμων της αδενίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

Σχήμα 3.4: Οι συντεταγμένες των ατόμων της αδενίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.2 2-Αμινοπουρίνη $(C_5H_5N_5)$ - ισομερές της αδενίνης

Κατά τον ίδιο τρόπο θα εξετάσουμε και το μόριο της 2-aminopurine, που είναι ισομερές της αδενίνης. Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο και απαριθμούμε τα άτομά του (Σχήμα 3.5). Γεωμετρία από [13].

Σχήμα 3.5: Το μόριο της 2-Αμινοπουρίνης

Οι συντεταγμένες των 10 ατόμων που συνεισφέρου
ν $12 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.5.

Πίνα
κας 3.5: Οι συντεταγμένες των ατόμων της 2-Aminopurine μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	1.465057	-0.897520	0.000000
Ν	1.281985	0.434977	0.000000
С	0.000000	0.770405	0.000000
Ν	-0.561047	2.023805	0.000000
С	-1.937520	1.839348	0.000000
Ν	-2.294019	0.586807	0.000000
С	-1.095294	-0.115194	0.000000
С	-0.767429	-1.468400	0.000000
N	0.504906	-1.855309	0.000000
Ν	2.750744	-1.345288	0.000000

To fortran πρόγραμμα 2aminopurine.f διαβάζει τις συντεταγμένες από το αρχείο 2aminopurine.input, διαγωνοποιεί τον πίνακα χαμιλτονιανής (3.2) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 3.6 και σχηματικά στο Σχήμα 3.6.

E_C	V_2	0	0	0	0	0	0	V'_9	V_{10}	
V_2	E_{N2}	V_3	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	V'_3	0	0	0	
0	0	V_4	E_{N3}	V_5	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	0	(2.9)
0	0	0	0	V_6	E_{N2}	V_7	0	0	0	(3.2)
0	0	V'_3	0	0	V_7	E_C	V_8	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	
V'_9	0	0	0	0	0	0	V_9	E_{N2}	0	
V_{10}	0	0	0	0	0	0	0	0	E_{N3}	

Πίναχας 3.6: Ιδιοτιμές ενέργειας για την 2-Αμινοπουρίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.950	-15.730
2	-12.900	-14.380
3	-11.120	-12.460
4	-10.360	-11.650
5	-9.495	-10.880
6	-8.245	-8.783
7	-4.641	-4.489
8	-3.805	-3.217
9	-3.070	-2.586
10	-1.402	-0.437

Τα 12 ηλεκτρόνια καταλαμβάνουν τις 6 χαμηλότερες ενεργειακές στάθμες. Η ανώτερη κατειλημμένη στάθμη, δηλαδή η έκτη ιδιοτιμή, αντιστοιχεί στην ενέργεια HOMO, και η κατώτερη μη κατειλημμένη, δηλαδή η έβδομη, στην LUMO. Η διαφορά LUMO-HOMO ισούται με το ενεργειακό χάσμα E_g . Τα αποτελέσματα εμφανίζονται στα αρχεία 2aminopurine.outputHKS και 2aminopurine.outputMMTS για τις δύο παραμετροποιήσεις.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.396D και d(MMTS) = 4.340D.

Πίνα
жας 3.7: HOMO, LUMO και $E_{\rm g}$ της 2-Αμινοπουρίνης σε
 $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.25	-4.64	3.60
υπολογισμός MMTS	-8.78	-4.49	4.29

Τα ιδιοανύσματα παρατίθενται στον Πίνακα 3.8. Για οικονομία χώρου κρατάμε μόνο εκείνα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=6, l=7 αντίστοιχα). Οι

Σχήμα 3.6: Ιδιοτιμές ενέργειας της 2-Αμινοπουρίνης

στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.7: Οι συντεταγμένες των ατόμων της 2-Αμινοπουρίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
6	1	-0.3395	0.0000	0.115	0.2745	0.0000	0.075
6	2	-0.3090	0.0000	0.095	0.2639	0.0000	0.070
6	3	0.2905	0.0000	0.084	-0.3326	0.0000	0.111
6	4	0.1062	0.0000	0.011	-0.0410	0.0000	0.002
6	5	-0.4104	0.0000	0.168	0.3766	0.0000	0.142
6	6	-0.3175	0.0000	0.101	0.2780	0.0000	0.077
6	7	0.4229	0.0000	0.179	-0.5050	0.0000	0.255
6	8	0.2990	0.0000	0.089	-0.3252	0.0000	0.106
6	9	-0.2155	0.0000	0.046	0.2428	0.0000	0.059
6	10	0.3312	0.0000	0.110	-0.3222	0.0000	0.104
7	1	-0.2470	0.0000	0.061	0.1704	0.0000	0.029
7	2	0.3899	0.0000	0.152	-0.3321	0.0000	0.110
7	3	-0.2251	0.0000	0.051	0.3446	0.0000	0.119
7	4	-0.0773	0.0000	0.006	0.0315	0.0000	0.000
7	5	0.4247	0.0000	0.180	-0.4247	0.0000	0.180
7	6	-0.2408	0.0000	0.058	0.2266	0.0000	0.051
7	7	-0.1677	0.0000	0.028	0.1007	0.0000	0.010
7	8	0.6013	0.0000	0.362	-0.6333	0.0000	0.401
7	9	-0.3031	0.0000	0.092	0.3035	0.0000	0.092
7	10	0.1022	0.0000	0.010	-0.0772	0.0000	0.006

Πίναχας 3.8: Ιδιοανύσματα της 2-Αμινοπουρίνης.

Σχήμα 3.8: Οι συντεταγμένες των ατόμων της 2-Αμινοπουρίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.3 1H-Pyrazolo[3,4-d]pyrimidin-4-amine ($C_5H_5N_5$) - ισομερές της αδενίνης

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο και απαριθμούμε τα άτομά του (Σχήμα 3.9). Γεωμετρία από [13].

Οι συντεταγμένες των 10 ατόμων που συνεισφέρου
ν $12~p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.9.

Πίνα
χας 3.9: Οι συντεταγμένες των ατόμων της 1H-pyrazolo
[3,4-d]pyrimidin-4-amine με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	1.36890	0.21219	0.000000
N	1.70989	-1.08166	0.000000
С	0.73018	-2.00232	0.000000
N	-0.58391	-1.81072	0.000000
С	-0.90152	-0.50838	0.000000
N	-2.14192	0.04374	0.000000
N	-2.10462	1.40406	0.000000
С	-0.82734	1.73412	0.000000
С	0.00000	0.57288	0.000000
N	2.33872	1.12232	0.000000

Το fortran πρόγραμμα 1H-Pyrazolo[3,4-d]pyrimidin-4-amine.f διαβάζει τις συντεταγμένες από το αρχείο 1H-Pyrazolo[3,4-d]pyrimidin-4-amine.input, διαγωνοποιεί τον πίνακα χαμιλτονιανής (3.3) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 3.10 και σχηματικά στο Σχήμα 3.10.

E_C	V_2	0	0	0	0	0	0	V'_9	V_{10}	
V_2	E_{N2}	V_3	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	
0	0	V_4	E_{N2}	V_5	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	V'_5	0	(2.2)
0	0	0	0	V_6	E_{N3}	V_7	0	0	0	
0	0	0	0	0	V_7	E_{N2}	V_8	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	
V'_9	0	0	0	V'_5	0	0	V_9	E_C	0	
V_{10}	0	0	0	0	0	0	0	0	E_{N3}	

Πίναχας 3.10: Ιδιοτιμές ενέργειας για την 1H-Pyrazolo[3,4-d]pyrimidin-4-amine σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.050	-15.860
2	-12.870	-14.410
3	-11.390	-12.930
4	-9.9010	-11.030
5	-9.378	-10.210
6	-8.371	-9.228
7	-4.604	-4.425
8	-3.891	-3.484
9	-3.187	-2.755
10	-1.361	-0.275

Τα 12 ηλεκτρόνια καταλαμβάνουν τις 6 χαμηλότερες ενεργειακές στάθμες. Η ανώτερη κατειλημμένη στάθμη, δηλαδή η έκτη ιδιοτιμή, αντιστοιχεί στην ενέργεια HOMO, και η κατώτερη μη κατειλημμένη, δηλαδή η έβδομη, στην LUMO. Η διαφορά LUMO-HOMO ισούται με το ενεργειακό χάσμα E_g . Τα αποτελέσματα εμφανίζονται στα αρχεία 1H-pyrazolo[3,4-d]pyrimidin-4-amine.outputHKS και 1H-pyrazolo[3,4-d]pyrimidin-4-amine.outputMMTS για τις δύο παραμετροποιήσεις.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.642D και d(MMTS) = 4.508D.

Πίνα
κας 3.11: HOMO, LUMO και $E_{\rm g}$ της 1 Η-pyrazolo
[3,4-d]pyrimidin-4-amine σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.37	-4.60	3.77
υπολογισμός MMTS	-9.23	-4.43	4.80

Σχήμα 3.10: Ιδιοτιμές ενέργειας του 1H-pyrazolo[3,4-d]pyrimidin-4-amine

Στον Πίνακα 3.12 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=6, l=7 αντίστοιχα). Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.11: Οι συντεταγμένες των ατόμων της 1H-pyrazolo[3,4-d]pyrimidin-4-amine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
6	1	-0.3133	0.0000	0.098	0.2384	0.0000	0.057
6	2	-0.2320	0.0000	0.054	0.1608	0.0000	0.026
6	3	0.2752	0.0000	0.076	-0.2601	0.0000	0.068
6	4	0.3952	0.0000	0.156	-0.3654	0.0000	0.134
6	5	-0.2108	0.0000	0.044	0.3089	0.0000	0.095
6	6	-0.2510	0.0000	0.063	0.2565	0.0000	0.066
6	7	0.4567	0.0000	0.209	-0.4926	0.0000	0.243
6	8	0.3138	0.0000	0.098	-0.1838	0.0000	0.034
6	9	-0.3115	0.0000	0.097	0.4056	0.0000	0.164
6	10	0.3235	0.0000	0.105	-0.3378	0.0000	0.114
7	1	0.4524	0.0000	0.205	-0.4536	0.0000	0.206
7	2	0.0258	0.0000	0.000	-0.0405	0.0000	0.002
7	3	-0.4887	0.0000	0.239	0.5227	0.0000	0.273
7	4	0.3512	0.0000	0.123	-0.2959	0.0000	0.088
7	5	0.0646	0.0000	0.004	-0.0618	0.0000	0.004
7	6	-0.2075	0.0000	0.043	0.2033	0.0000	0.041
7	7	0.4391	0.0000	0.193	-0.3906	0.0000	0.153
7	8	-0.3297	0.0000	0.109	0.4108	0.0000	0.169
7	9	-0.2202	0.0000	0.048	0.1524	0.0000	0.023
7	10	-0.1876	0.0000	0.035	0.2052	0.0000	0.042

Πίναχας 3.12: Ιδιοανύσματα της 1H-pyrazolo[3,4-d]pyrimidin-4-amine.

Σχήμα 3.12: Οι συντεταγμένες των ατόμων της 1H-pyrazolo[3,4-d]pyrimidin-4-amine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.4 Pyrimido[5,4-e]-as-triazine,1,2-dihydro ($C_5H_5N_5$) - ισομερές της αδενίνης

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο και απαριθμούμε τα άτομά του (Σχήμα 3.13). Γεωμετρία από [13].

Σχήμα 3.13: Το μόριο της pyrimido[5,4-e]-as-triazine,1,2-dihydro

Οι συντεταγμένες των 10 ατόμων που συνεισφέρου
ν $12 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.13.

Πίναχας 3.13: Οι συντεταγμένες των ατόμων της pyrimido[5,4-e]-as-triazine,1,2-dihydro με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
N	1.02200	1.51765	0.000000
С	2.24476	0.94458	0.000000
N	2.52119	-0.34465	0.000000
С	1.45252	-1.18073	0.000000
С	0.15142	-0.73131	0.000000
N	-0.96370	-1.60570	0.000000
С	-2.11703	-1.04490	0.000000
N	-2.36224	0.29579	0.000000
N	-1.27041	1.19248	0.000000
С	0.00000	0.67862	0.000000

Το fortran πρόγραμμα Pyrimido[5,4-e]-as-triazine,1,2-dihydro.f διαβάζει τις συντεταγμένες από το αρχείο Pyrimido[5,4-e]-as-triazine,1,2-dihydro.input, διαγωνοποιεί τον πίνακα χαμιλτονιανής (3.4) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 3.14 και σχηματικά στο Σχήμα 3.14.

E_{N2}	V_2	0	0	0	0	0	0	0	V'_{10}	
V_2	E_C	V_3	0	0	0	0	0	0	0	
0	V_3	E_{N2}	V_4	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	V'_5	(2, 1)
0	0	0	0	V_6	E_{N2}	V_7	0	0	0	(0.4)
0	0	0	0	0	V_7	E_C	V_8	0	0	
0	0	0	0	0	0	V_8	E_{N3}	V_9	0	
0	0	0	0	0	0	0	V_9	E_{N3}	V_{10}	
V'_{10}	0	0	0	V'_5	0	0	0	V_{10}	E_C	

Πίνακας 3.14: Ιδιοτιμές ενέργειας για την pyrimido[5,4-e]-as-triazine,1,2-dihydro σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.520	-16.110
2	-12.400	-14.170
3	-11.380	-12.980
4	-10.360	-11.710
5	-9.501	-10.540
6	-7.375	-7.712
7	-4.649	-4.202
8	-4.192	-3.919
9	-3.243	-2.882
10	-1.375	-0.385

Τα 12 ηλεκτρόνια καταλαμβάνουν τις 6 χαμηλότερες ενεργειακές στάθμες. Η ανώτερη κατειλημμένη στάθμη, δηλαδή η έκτη ιδιοτιμή, αντιστοιχεί στην ενέργεια H-OMO, και η κατώτερη μη κατειλημμένη, δηλαδή η έβδομη, στην LUMO. Η διαφορά LUMO-HOMO ισούται με το ενεργειακό χάσμα E_g . Τα αποτελέσματα εμφανίζονται στα αρχεία Pyrimido[5,4-e]as-triazine,1,2-dihydro.outputHKS και Pyrimido[5,4-e]astriazine,1,2-dihydro.outputMMTS για τις δύο παραμετροποιήσεις.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.361D και d(MMTS) = 2.718D.

Πίνα
אας 3.15: HOMO, LUMO και $E_{\rm g}$ της pyrimido
[5,4-e]-as-triazine,1,2-dihydro σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-7.38	-4.65	2.73
υπολογισμός MMTS	-7.71	-4.20	3.51

Σχήμα 3.14: Ιδιοτιμές ενέργειας της pyrimido[5,4-e]-as-triazine,1,2-dihydro

Στον Πίνακα 3.16 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=6, l=7 αντίστοιχα). Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.15: Οι συντεταγμένες των ατόμων της pyrimido[5,4-e]-as-triazine,1,2dihydro και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
6	1	-0.1829	0.0000	0.033	-0.1480	0.0000	0.022
6	2	0.2447	0.0000	0.060	0.2389	0.0000	0.057
6	3	0.2342	0.0000	0.055	0.2227	0.0000	0.050
6	4	-0.3063	0.0000	0.094	-0.3863	0.0000	0.149
6	5	-0.3226	0.0000	0.104	-0.3729	0.0000	0.139
6	6	0.4329	0.0000	0.187	0.4070	0.0000	0.166
6	7	0.1863	0.0000	0.035	0.0878	0.0000	0.008
6	8	-0.4403	0.0000	0.194	-0.4276	0.0000	0.183
6	9	0.4451	0.0000	0.198	0.4538	0.0000	0.206
6	10	-0.1996	0.0000	0.040	-0.1449	0.0000	0.021
7	1	0.1982	0.0000	0.039	0.1654	0.0000	0.027
7	2	-0.4812	0.0000	0.232	-0.5431	0.0000	0.295
7	3	0.1685	0.0000	0.028	0.2218	0.0000	0.049
7	4	0.2995	0.0000	0.090	0.1981	0.0000	0.039
7	5	-0.4159	0.0000	0.173	-0.3791	0.0000	0.144
7	6	-0.1870	0.0000	0.035	-0.1574	0.0000	0.025
7	7	0.5489	0.0000	0.301	$0.549\overline{6}$	0.0000	0.302
7	8	-0.2245	0.0000	0.050	-0.2324	0.0000	0.054
7	9	-0.0064	0.0000	0.000	-0.0151	0.0000	0.000
7	10	0.2267	0.0000	0.051	0.2538	0.0000	0.064

Πίναχας 3.16: Ιδιοανύσματα της pyrimido[5,4-e]-as-triazine,1,2-dihydro.

Σχήμα 3.16: Οι συντεταγμένες των ατόμων της pyrimido[5,4-e]-as-triazine,1,2dihydro και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.5 Γουανίνη ($\mathbf{C}_5\mathbf{H}_5\mathbf{N}_5\mathbf{O}$)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο και απαριθμούμε τα άτομά του (Σχήμα 3.17). Γεωμετρία από [13].

Σχήμα 3.17: Το μόριο της Γουανίνης

Οι συντεταγμένες των 11 ατόμων που προσφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.17.

άτομο	x	y	z
С	-0.36328	-1.73025	0.00000
N	-1.43157	-0.87089	0.00000
С	-1.37278	0.56809	0.00000
С	0.00000	0.99272	0.00000
N	0.54584	2.26127	0.00000
С	1.83548	2.06948	0.00000
N	2.17467	0.72604	0.00000
С	1.00041	0.02240	0.00000
N	0.88403	-1.32719	0.00000
N	-0.63264	-3.06587	0.00000
0	-2.40899	1.19999	0.00000

Πίνακας 3.17: Οι συντεταγμένες των ατόμων της Γουανίνης με p_z ηλεκτρόνια σε Å.

Από τις αναφορές του άρθρου [3]([14], [15]) βρίσκουμε πειραματικές τιμές της ενέργειας ιονισμού και από τις [16]- [19], [23] για την ενέργεια χάσματος.

To fortran πρόγραμμα guanine.f διαβάζει τις συντεταγμένες και τις πειραματικές τιμές από το αρχείο guanine.input και διαγωνοποιεί τον πίνακα χαμιλτονιανής (3.5).

	E_C	V_2	0	0	0	0	0	0	V'_9	V_{10}	0	
	V_2	E_{N3}	V_3	0	0	0	0	0	0	0	0	
	0	V_3	E_C	V_4	0	0	0	0	0	0	V_{11}	
	0	0	V_4	E_C	V_5	0	0	V'_4	0	0	0	
	0	0	0	V_5	E_{N2}	V_6	0	0	0	0	0	
	0	0	0	0	V_6	E_C	V_7	0	0	0	0	(3.5)
İ	0	0	0	0	0	V_7	E_{N3}	V_8	0	0	0	
	0	0	0	V'_4	0	0	V_8	E_C	V_9	0	0	
	V'_9	0	0	0	0	0	0	V_9	E_{N2}	0	0	
	V_{10}	0	0	0	0	0	0	0	0	E_{N3}	0	
	0	0	V_{11}	0	0	0	0	0	0	0	E_O	

Έτσι, υπολογίζονται τα ιδιοανύσματα (Πίνακες 3.20 και οι ιδιοτιμές της ενέργειας (Πίνακας 3.18 και Σχήμα 3.18). Τα 14 ηλεκτρόνια καταλαμβάνουν τις 7 χαμηλότερες ενεργειακές στάθμες. Η ανώτερη κατειλημμένη στάθμη, δηλαδή η έβδομη ιδιοτιμή, αντιστοιχεί στην ενέργεια HOMO, και η κατώτερη μη κατειλημμένη, δηλαδή η όγδοη, στην LUMO. Η διαφορά LUMO-HOMO ισούται με το ενεργειακό χάσμα E_g .

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.932D και d(MMTS) = 4.398D.

Τα αποτελέσματα εμφανίζονται στα αρχεία guanine.outputHKS και guanine.outputMMTS για τις δύο παραμετροποιήσεις.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.56	-16.01
2	-13.55	-14.75
3	-13.06	-13.65
4	-11.06	-11.81
5	-10.40	-11.18
6	-10.05	-11.13
7	-8.018	-8.281
8	-4.49	-3.780
9	-4.04	-3.352
10	-3.04	-2.479
11	-1.54	-0.40

Πίναχας 3.18: Ιδιοτιμές ενέργειας για την γουανίνη σε eV.

Σχήμα 3.18: Ιδιοτιμές ενέργειας της γουανίνης

Πίνακας 3.19: HOMO, LUMO και $E_{\rm g}$ της γουανίνης σε $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.25	-3.85	4.40
υπολογισμός HKS	-8.018	-4.490	3.528
σχετικό σφάλμα HKS	-0.028	0.166	-0.198
υπολογισμός MMTS	-8.281	-3.780	4.501
σχετικό σφάλμα MMTS	0.004	-0.018	0.023

Σχήμα 3.19: Οι συντεταγμένες των ατόμων της γουανίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Πίναχας 3.20: Ιδιοανύσματα της γουανίνης.

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	-0.2834	0.0000	0.080	-0.2103	0.0000	0.044
7	2	0.0306	0.0000	0.001	0.0467	0.0000	0.002
7	3	0.2747	0.0000	0.075	0.1792	0.0000	0.032
7	4	0.4571	0.0000	0.209	0.5459	0.0000	0.298
7	5	-0.2941	0.0000	0.086	-0.2208	0.0000	0.049
7	6	-0.4197	0.0000	0.176	-0.4009	0.0000	0.161
7	7	0.1110	0.0000	0.012	0.0235	0.0000	0.001
7	8	0.2848	0.0000	0.081	0.3673	0.0000	0.135
7	9	-0.3970	0.0000	0.158	-0.3410	0.0000	0.116
7	10	0.2543	0.0000	0.065	0.2078	0.0000	0.043
7	11	-0.2367	0.0000	0.056	-0.3451	0.0000	0.119
8	1	-0.1481	0.0000	0.022	0.0012	0.0000	0.000
8	2	0.2971	0.0000	0.088	0.2183	0.0000	0.048
8	3	-0.6593	0.0000	0.435	-0.5954	0.0000	0.355
8	4	-0.0811	0.0000	0.007	-0.1408	0.0000	0.020
8	5	0.2565	0.0000	0.066	0.3197	0.0000	0.102
8	6	-0.2374	0.0000	0.056	-0.4155	0.0000	0.173
8	7	-0.0799	0.0000	0.006	0.0169	0.0000	0.000
8	8	0.4315	0.0000	0.186	0.3641	0.0000	0.133
8	9	-0.2097	0.0000	0.044	-0.2000	0.0000	0.040
8	10	0.0597	0.0000	0.004	-0.0005	0.0000	0.000
8	11	0.2939	0.0000	0.086	0.3610	0.0000	0.130

Σχήμα 3.20: Οι συντεταγμένες των ατόμων της γουανίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.6 7-Amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one $(C_5H_5N_5O)$ - וססעב
פלג דחג אסטמעל
עקג

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.21) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.21: Το μόριο της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one

Οι συντεταγμένες των 11 ατόμων που συνεισφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.21.

Πίνακας 3.21: Οι συντεταγμένες των ατόμων της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	1.30129	0.34148	0.00000
C	1.46526	-1.01803	0.00000
N	0.34903	-1.93892	0.00000
С	-0.93214	-1.32096	0.00000
N	-1.10509	0.02230	0.00000
С	-2.20209	0.75501	0.00000
N	-1.70195	2.02615	0.00000
С	-0.38683	2.14022	0.00000
N	0.00000	0.82170	0.00000
0	2.25982	1.29347	0.00000
0	0.42277	-3.15591	0.00000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (3.6) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 3.22 και σχηματικά στο Σχήμα 3.22.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.767D και d(MMTS) = 3.981D.

ſ	E_C	V_2	0	0	0	0	0	0	V'_9	V_{10}	0	
	V_2	E_C	V_3	0	0	0	0	0	0	0	0	
ļ	0	V_3	E_C	V_4	0	0	0	0	0	0	V_{11}	
	0	0	V_4	E_{N3}	V_5	0	0	0	0	0	0	
	0	0	0	V_5	E_C	V_6	0	0	V'_5	0	0	
	0	0	0	0	V_6	E_{N2}	V_7	0	0	0	0	(3.6)
İ	0	0	0	0	0	V_7	E_C	V_8	0	0	0	
	0	0	0	0	0	0	V_8	E_{N2}	V_9	0	0	
	V'_9	0	0	0	V'_5	0	0	V_9	E_{N3}	0	0	
l	V_{10}	0	0	0	0	0	0	0	0	E_{N3}	0	
l	0	0	V_{11}	0	0	0	0	0	0	0	E_O	

Πίνακας 3.22: Ιδιοτιμές ενέργειας για την 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]- one σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.960	-16.720
2	-13.830	-14.490
3	-12.490	-13.610
4	-11.640	-12.030
5	-10.350	-11.470
6	-8.709	-9.652
7	-8.516	-8.600
8	-4.617	-3.955
9	-3.895	-3.232
10	-2.834	-2.359
11	-1.952	-0.717

Πίνακας 3.23: HOMO, LUMO και $E_{\rm g}$ της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]- one σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.516	-4.617	3.900
υπολογισμός MMTS	-8.600	-3.955	4.645

Στον Πίνακα 3.24 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.22: Ιδιοτιμές ενέργειας της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one

Σχήμα 3.23: Οι συντεταγμένες των ατόμων της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	0.2928	0.0000	0.086	-0.3023	0.0000	0.091
7	2	0.5624	0.0000	0.316	-0.7132	0.0000	0.509
7	3	0.1186	0.0000	0.014	-0.1818	0.0000	0.033
7	4	-0.2938	0.0000	0.086	0.0032	0.0000	0.000
7	5	0.1600	0.0000	0.026	0.1619	0.0000	0.026
7	6	0.4058	0.0000	0.165	-0.0676	0.0000	0.005
7	7	-0.0744	0.0000	0.006	-0.1517	0.0000	0.023
7	8	-0.4280	0.0000	0.183	-0.0288	0.0000	0.001
7	9	-0.0232	0.0000	0.001	0.1738	0.0000	0.030
7	10	-0.3231	0.0000	0.104	0.3375	0.0000	0.114
7	11	-0.1167	0.0000	0.014	0.4100	0.0000	0.168
8	1	-0.5900	0.0000	0.348	0.5055	0.0000	0.256
8	2	0.1521	0.0000	0.023	-0.2576	0.0000	0.066
8	3	0.5206	0.0000	0.271	-0.3251	0.0000	0.106
8	4	-0.2855	0.0000	0.082	0.2678	0.0000	0.072
8	5	0.2134	0.0000	0.046	-0.3352	0.0000	0.112
8	6	0.0385	0.0000	0.001	-0.0514	0.0000	0.003
8	7	-0.2779	0.0000	0.077	0.4519	0.0000	0.204
8	8	0.1742	0.0000	0.030	-0.3016	0.0000	0.091
8	9	0.0762	0.0000	0.006	0.0602	0.0000	0.004
8	10	0.2470	0.0000	0.061	-0.2160	0.0000	0.047
8	11	-0.2341	0.0000	0.055	0.2007	0.0000	0.040

Πίναχας 3.24: Ιδιοανύσματα της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one.

Σχήμα 3.24: Οι συντεταγμένες των ατόμων της 7-amino-S-triazolo[1,5-a]pyrimidin-5[4H]-one και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.7 Pyrimido[5,4-e]as-triazin-5[6h]-one,1,2-dihydro- $(C_5H_5N_5O)$ - וססעב
פלג דחג אסטמעל
עחג

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.25) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.25: Το μόριο της pyrimido[5,4-e]as-triazin-5[6h]-one,1,2-dihydro-

Οι συντεταγμένες των 11 ατόμων που συνεισφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.25.

Πίναχας 3.25: Οι συντεταγμένες των ατόμων της pyrimido[5,4-e]as-triazin-5[6h]-one,1,2-dihydro- με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
C	-1.37512	0.92639	0.00000
N	-2.26417	-0.20709	0.00000
C	-1.86203	-1.48896	0.00000
N	-0.61311	-1.85744	0.00000
С	0.29533	-0.83768	0.00000
N	1.60183	-1.23950	0.00000
N	2.61356	-0.24328	0.00000
С	2.22493	1.07394	0.00000
N	1.02473	1.50529	0.00000
С	0.00000	0.51630	0.00000
0	-1.85562	2.04642	0.00000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.7) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.26 και σχηματικά στο Σχήμα 3.26.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 2.298D και d(MMTS) = 2.317D.

$ E_C $	V_2	0	0	0	0	0	0	0	V'_{10}	V_{11}	
V_2	E_{N3}	V_3	0	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	0	
0	0	V_4	E_{N2}	V_5	0	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	V'_5	0	
0	0	0	0	V_6	E_{N3}	V_7	0	0	0	0	(3.7)
0	0	0	0	0	V_7	E_{N3}	V_8	0	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	0	
0	0	0	0	0	0	0	V_9	E_{N2}	V_{10}	0	
V'_{10}	0	0	0	V'_5	0	0	0	V_{10}	E_C	0	
V_{11}	0	0	0	0	0	0	0	0	0	E_O	

Πίνα
χας 3.26: Ιδιοτιμές ενέργειας για την pyrimido
[5,4-e]as-triazin-5[6h]-one,1,2-dihydro- σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.630	-16.160
2	-14.110	-15.050
3	-12.460	-13.270
4	-11.290	-12.360
5	-10.990	-11.940
6	-9.355	-9.986
7	-7.197	-7.173
8	-4.840	-4.306
9	-4.081	-3.280
10	-3.384	-2.971
11	-1.471	-0.333

Πίνα
жας 3.27: HOMO, LUMO και $E_{\rm g}$ της pyrimido
[5,4-e]as-triazin-5[6h]-one,1,2-dihydro- σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-7.197	-4.840	2.357
υπολογισμός MMTS	-7.173	-4.306	2.867

Στον Πίνακα 3.28 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν, το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν-ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.26: Ιδιοτιμές ενέργειας της pyrimido
[5,4-e]as-triazin-5[6h]-one,1,2-dihydro-

Σχήμα 3.27: Οι συντεταγμένες των ατόμων της pyrimido[5,4-e]as-triazin-5[6h]-one,1,2-dihydro- και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	0.3107	0.0000	0.097	0.2486	0.0000	0.062
7	2	-0.0643	0.0000	0.004	-0.0201	0.0000	0.000
7	3	-0.1808	0.0000	0.033	-0.1895	0.0000	0.036
7	4	0.0286	0.0000	0.001	-0.0147	0.0000	0.000
7	5	0.1910	0.0000	0.036	0.2199	0.0000	0.048
7	6	-0.4124	0.0000	0.170	-0.4307	0.0000	0.186
7	7	0.4353	0.0000	0.189	0.4001	0.0000	0.160
7	8	-0.2474	0.0000	0.061	-0.1510	0.0000	0.023
7	9	-0.4170	0.0000	0.174	-0.3707	0.0000	0.137
7	10	0.4324	0.0000	0.187	0.5019	0.0000	0.252
7	11	-0.2182	0.0000	0.048	-0.3091	0.0000	0.096
8	1	-0.1616	0.0000	0.026	-0.0826	0.0000	0.007
8	2	0.3035	0.0000	0.092	0.2845	0.0000	0.081
8	3	-0.5509	0.0000	0.304	-0.5561	0.0000	0.309
8	4	0.0769	0.0000	0.006	0.0949	0.0000	0.009
8	5	0.5146	0.0000	0.265	0.4514	0.0000	0.204
8	6	-0.1809	0.0000	0.033	-0.1351	0.0000	0.018
8	7	-0.0947	0.0000	0.009	-0.1540	0.0000	0.024
8	8	0.3949	0.0000	0.156	0.4816	0.0000	0.232
8	9	-0.1672	0.0000	0.028	-0.1681	0.0000	0.028
8	10	-0.2762	0.0000	0.076	-0.2918	0.0000	0.085
8	11	0.0750	0.0000	0.006	0.0539	0.0000	0.003

Πίναχας 3.28: Ιδιοανύσματα της pyrimido[5,4-e]as-triazin-5[6h]-one,1,2-dihydro-.

Σχήμα 3.28: Οι συντεταγμένες των ατόμων της pyrimido[5,4-e]as-triazin-5[6h]one,1,2-dihydro- και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.8 7H-Imidazo[4,5-d]-v-triazin-4-one,6-methyl- ($C_5H_5N_5$ - וססעבףלב דאב אסטמאלאאב

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.29) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.29: Το μόριο της 7H-imidazo[4,5-d]-v-triazin-4-one,6-methyl-

Οι συντεταγμένες των 10 ατόμων που συνεισφέρου
ν $12 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.29.

Πίναχας 3.29: Οι συντεταγμένες των ατόμων της 7H-imidazo[4,5-d]-v-triazin-4-one,6-methyl- με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	-2.01256	-0.20538	0.00000
N	-1.20262	-1.32279	0.00000
С	0.09363	-0.87515	0.00000
N	1.20680	-1.65375	0.00000
N	2.32398	-1.03072	0.00000
N	2.31479	0.31670	0.00000
С	1.23409	1.25726	0.00000
С	0.00000	0.51091	0.00000
N	-1.31037	0.90916	0.00000
0	1.45830	2.44737	0.00000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.8) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.30 και σχηματικά στο Σχήμα 3.30.

E_C	V_2	0	0	0	0	0	0	V'_9	0	
V_2 .	E_{N3}	V_3	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	V'_8	0	0	
0	0	V_4	E_{N2}	V_5	0	0	0	0	0	
0	0	0	V_5	E_{N2}	V_6	0	0	0	0	(2.8)
0	0	0	0	V_6	E_{N3}	V_7	0	0	0	(3.8)
0	0	0	0	0	V_7	E_C	V_8	0	V_{10}	
0	0	V'_8	0	0	0	V_8	E_C	V_9	0	
V'_9	0	0	0	0	0	0	V_9	E_{N2}	0	
0	0	0	0	0	0	V_{10}	0	0	E_O	

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.201D και d(MMTS) = 4.168D.

Πίνα
χας 3.30: Ιδιοτιμές ενέργειας για την 7H-imidazo
[4,5-d]-v-triazin-4-one,6-methyl-σε $\rm eV.$

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.560	-16.240
2	-13.550	-14.790
3	-12.660	-13.520
4	-10.510	-11.570
5	-10.180	-11.160
6	-8.424	-8.765
7	-4.915	-5.302
8	-4.442	-3.775
9	-3.237	-2.742
10	-1.623	-0.535

Πίνα
κας 3.31: HOMO, LUMO και $E_{\rm g}$ της 7 Η-imidazo
[4,5-d]-v-triazin-4-one,6-methyl- σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.424	-4.915	3.510
υπολογισμός MMTS	-8.765	-5.302	3.463

Στον Πίνακα 3.32 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (1=6, 1=7) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.30: Ιδιοτιμές ενέργειας της 7H-imidazo[4,5-d]-v-triazin-4-one,6-methyl-

Σχήμα 3.31: Οι συντεταγμένες των ατόμων της 7H-imidazo[4,5-d]-v-triazin-4-one,6methyl- και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
6	1	0.4525	0.0000	0.205	-0.3907	0.0000	0.153
6	2	-0.0608	0.0000	0.004	-0.0404	0.0000	0.002
6	3	-0.3879	0.0000	0.150	0.4209	0.0000	0.177
6	4	0.2042	0.0000	0.042	-0.1292	0.0000	0.017
6	5	0.3804	0.0000	0.145	-0.3424	0.0000	0.117
6	6	-0.1511	0.0000	0.023	0.2340	0.0000	0.055
6	7	-0.2701	0.0000	0.073	0.1648	0.0000	0.027
6	8	-0.4200	0.0000	0.176	0.4818	0.0000	0.232
6	9	0.3375	0.0000	0.114	-0.2180	0.0000	0.048
6	10	0.2619	0.0000	0.069	-0.4161	0.0000	0.173
7	1	-0.2353	0.0000	0.055	-0.2499	0.0000	0.062
7	2	0.2412	0.0000	0.058	0.1713	0.0000	0.029
7	3	-0.3332	0.0000	0.111	-0.0924	0.0000	0.009
7	4	-0.3269	0.0000	0.107	-0.4731	0.0000	0.224
7	5	0.6281	0.0000	0.395	0.6516	0.0000	0.425
7	6	-0.3464	0.0000	0.120	-0.3456	0.0000	0.119
7	7	$0.176\overline{5}$	0.0000	0.031	0.0103	0.0000	0.000
7	8	0.3335	0.0000	0.111	0.3572	0.0000	0.128
7	9	-0.0679	0.0000	0.005	-0.0631	0.0000	0.004
7	10	-0.0839	0.0000	0.007	-0.0082	0.0000	0.000

Πίναχας 3.32: Ιδιοανύσματα της 7H-imidazo[4,5-d]-v-triazin-4-one,6-methyl-.

Σχήμα 3.32: Οι συντεταγμένες των ατόμων της 7H-imidazo[4,5-d]-v-triazin-4-one,6methyl- και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.9 Καφεΐνη $(\mathbf{C}_8\mathbf{H}_{10}\mathbf{N}_4\mathbf{O}_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.33) και απαριθμούμε τα άτομά του. Τα δεδομένα της γεωμετρίας τα παίρνουμε από το NIST [11].

Σχήμα 3.33: Το μόριο της Καφεΐνης

Οι συντεταγμένες των 11 ατόμων που συνεισφέρου
ν $14~p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.33.

άτομο	x	y	z
С	-0.8846	-0.2231	0.1979
С	-0.0884	-1.4021	0.3658
N	1.2754	-1.0692	0.5695
С	1.8393	0.2211	0.6140
N	0.9669	1.2963	0.4377
С	-0.3717	1.0586	0.2340
N	-1.3378	1.9977	0.0489
С	-2.4462	1.2774	-0.1007
N	-2.2444	-0.0622	-0.0217
0	-0.4907	-2.5623	0.3437
0	3.0381	0.3744	0.7991

Πίναχας 3.33: Οι συντεταγμένες των ατόμων της Καφεΐνης με p_z ηλεκτρόνια σε Å.

Στις αναφορές [24] [25] [26] βρίσκουμε τις πειραματικές τιμές των ενεργειών ΗΟ-MO, LUMO και του ενεργειακού χάσματος.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.9) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.34 και σχηματικά στο Σχήμα 3.34.

$\begin{bmatrix} E_C \end{bmatrix}$	V_2	0	0	0	V'_6	0	0	V'_9	0	0	
V_2	E_C	V_3	0	0	0	0	0	0	V'_{10}	0	
0	V_3	E_{N3}	V_4	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	V'_4	
0	0	0	V_5	E_{N3}	V_6	0	0	0	0	0	
V_6'	0	0	0	V_6	E_C	V_7	0	0	0	0	(3.9)
0	0	0	0	0	V_7	E_{N2}	V_8	0	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	0	
V_9'	0	0	0	0	0	0	V_9	E_{N3}	0	0	
0	V'_{10}	0	0	0	0	0	0	0	E_O	0	
0	0	V'_4	0	0	0	0	0	0	0	E_O	

Πίναχας 3.34: Ιδιοτιμές ενέργειας για την Καφεΐνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.920	-16.180
2	-13.770	-14.760
3	-13.460	-13.910
4	-12.070	-12.270
5	-11.320	-11.120
6	-9.793	-10.770
7	-8.494	-8.441
8	-4.923	-4.120
9	-3.928	-2.872
10	-3.222	-2.594
11	-1.796	-0.529

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από ΗΟΜΟ σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.530D και d(MMTS) = 4.515D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.25	-3.71	4.54
υπολογισμός HKS	-8.494	-4.923	3.571
σχετικό σφάλμα HKS	0.030	0.327	-0.213
υπολογισμός MMTS	-8.441	-4.120	4.321
σχετικό σφάλμα MMTS	0.023	0.111	-0.048

Πίνα
κας 3.35: HOMO, LUMO και $E_{\rm g}$ της Καφεΐνης σε $\rm eV$.

Στον Πίνακα 3.36 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$

))

Σχήμα 3.34: Ιδιοτιμές ενέργειας της Καφεΐνης

το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο
 ν -ιοστό άτομο για την ιδιοενέργει
α $E_l.$

Σχήμα 3.35: Οι συντεταγμένες των ατόμων της Καφεΐνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	-0.6152	0.0000	0.378	-0.5950	0.0000	0.354
7	2	-0.2551	0.0000	0.065	-0.1593	0.0000	0.025
7	3	0.0837	0.0000	0.007	0.0474	0.0000	0.002
7	4	0.1683	0.0000	0.028	0.1084	0.0000	0.012
7	5	0.2534	0.0000	0.064	0.3118	0.0000	0.097
7	6	-0.4033	0.0000	0.163	-0.4104	0.0000	0.168
7	7	0.0698	0.0000	0.005	0.0285	0.0000	0.001
7	8	0.4012	0.0000	0.161	0.3826	0.0000	0.146
7	9	0.2036	0.0000	0.041	0.1963	0.0000	0.039
7	10	0.2456	0.0000	0.060	0.3247	0.0000	0.105
7	11	-0.1635	0.0000	0.027	-0.2230	0.0000	0.050
8	1	0.1303	0.0000	0.017	0.1911	0.0000	0.037
8	2	0.6086	0.0000	0.370	0.5480	0.0000	0.300
8	3	-0.2053	0.0000	0.042	-0.1894	0.0000	0.036
8	4	-0.0928	0.0000	0.009	-0.0689	0.0000	0.005
8	5	0.2120	0.0000	0.045	0.1852	0.0000	0.034
8	6	-0.4088	0.0000	0.167	-0.3721	0.0000	0.138
8	7	-0.0539	0.0000	0.003	-0.0804	0.0000	0.006
8	8	0.4504	0.0000	0.203	0.4894	0.0000	0.240
8	9	-0.2508	0.0000	0.063	-0.2911	0.0000	0.085
8	10	-0.2816	0.0000	0.079	-0.3422	0.0000	0.117
8	11	0.0434	0.0000	0.002	0.0434	0.0000	0.002

Πίναχας 3.36: Ιδιοανύσματα της Καφεΐνης.

Σχήμα 3.36: Οι συντεταγμένες των ατόμων της Καφεΐνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (MMTS).

3.10 Θεοβρωμίνη $(\mathbf{C}_7\mathbf{H}_8\mathbf{N}_4\mathbf{O}_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.37) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 3.37: Το μόριο της Θεοβρωμίνης

Οι συντεταγμένες των 11 ατόμων που συνεισφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιά-ζονται στον Πίνακ
α3.37.

άτομο	x	y	z
С	-0.8678	-0.2483	0.0811
С	-0.0482	-1.4254	0.0215
N	1.3098	-1.0578	0.1027
С	1.9009	0.2066	0.2288
N	1.0054	1.2749	0.2799
С	-0.3493	1.0292	0.2062
N	-1.3313	1.9687	0.2464
С	-2.4508	1.2574	0.1453
N	-2.2424	-0.0794	0.0439
0	-0.4010	-2.5939	-0.0824
0	3.1127	0.3378	0.2880

Πίνακας 3.37: Οι συντεταγμένες των ατόμων της Θεοβρωμίνης με p_z ηλεκτρόνια σε Å.

Στις αναφορές [27] [28] [29] [30] βρίσκουμε τις πειραματικές τιμές των ενεργειών HOMO, LUMO και του ενεργειακού χάσματος.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.10) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.38 και σχηματικά στο Σχήμα 3.38.

E_C	V_2	0	0	0	V'_6	0	0	V'_9	0	0	
V_2	E_C	V_3	0	0	0	0	0	0	V'_{10}	0	
0	V_3	E_{N3}	V_4	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	V'_4	
0	0	0	V_5	E_{N3}	V_6	0	0	0	0	0	
V_6'	0	0	0	V_6	E_C	V_7	0	0	0	0	(3.10)
0	0	0	0	0	V_7	E_{N2}	V_8	0	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	0	
V'_9	0	0	0	0	0	0	V_9	E_{N3}	0	0	
0	V'_{10}	0	0	0	0	0	0	0	E_O	0	
0	0	V'_4	0	0	0	0	0	0	0	E_O	

Πίναχας 3.38: Ιδιοτιμές ενέργειας για την Θεοβρωμίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.940	-16.190
2	-13.780	-14.780
3	-13.470	-13.930
4	-12.060	-12.270
5	-11.330	-11.120
6	-9.797	-10.770
7	-8.484	-8.432
8	-4.912	-4.107
9	-3.911	-2.852
10	-3.217	-2.591
11	-1.800	-0.530

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.534D και d(MMTS) = 4.523D.

Πίνακας 3.39: HOMO, LUMO και $E_{\rm g}$ της Θεοβρωμίνης σε $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.31	-3.79	4.52
υπολογισμός HKS	-8.484	-4.912	3.572
σχετικό σφάλμα HKS	0.021	0.296	-0.210
υπολογισμός MMTS	-8.432	-4.107	4.326
σχετικό σφάλμα MMTS	0.015	0.084	-0.043

Στον Πίνακα 3.40 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

Σχήμα 3.38: Ιδιοτιμές ενέργειας της Θεοβρωμίνης

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.39: Οι συντεταγμένες των ατόμων της Θεοβρωμίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Πίναχας	3.40: Ιδια	ανύσματ	τα της Θεα	οβρωμίνης.	
$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	-0.6155	0.0000	0.379	-0.5955	0.0000	0.355
7	2	-0.2530	0.0000	0.064	-0.1581	0.0000	0.025
7	3	0.0834	0.0000	0.007	0.0472	0.0000	0.002
7	4	0.1678	0.0000	0.028	0.1081	0.0000	0.012
7	5	0.2520	0.0000	0.063	0.3106	0.0000	0.096
7	6	-0.4051	0.0000	0.164	-0.4124	0.0000	0.170
7	7	0.0704	0.0000	0.005	0.0291	0.0000	0.001
7	8	0.4029	0.0000	0.162	0.3843	0.0000	0.148
7	9	0.2023	0.0000	0.041	0.1954	0.0000	0.038
7	10	0.2441	0.0000	0.060	0.3223	0.0000	0.104
7	11	-0.1632	0.0000	0.027	-0.2222	0.0000	0.049
8	1	0.1328	0.0000	0.018	0.1945	0.0000	0.038
8	2	0.6066	0.0000	0.368	0.5453	0.0000	0.297
8	3	-0.2038	0.0000	0.042	-0.1883	0.0000	0.035
8	4	-0.1006	0.0000	0.010	-0.0746	0.0000	0.006
8	5	0.2133	0.0000	0.046	0.1857	0.0000	0.034
8	6	-0.4076	0.0000	0.166	-0.3708	0.0000	0.137
8	7	-0.0549	0.0000	0.003	-0.0816	0.0000	0.007
8	8	0.4507	0.0000	0.203	0.4905	0.0000	0.241
8	9	-0.2518	0.0000	0.063	-0.2927	0.0000	0.086
8	10	-0.2817	0.0000	0.079	-0.3415	0.0000	0.117
8	11	0.0471	0.0000	0.002	0.0471	0.0000	0.002

Σχήμα 3.40: Οι συντεταγμένες των ατόμων της Θεοβρωμίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.11 Ξανθίνη $(C_5H_4N_4O_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.41) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 3.41: Το μόριο της Ξανθίνης

Οι συντεταγμένες των 11 ατόμων που συνεισφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.41.

άτομο	x	y	z
C	0.7253	-0.4947	-0.0002
С	-0.3471	-1.4413	0.0000
N	-1.5971	-0.7967	-0.0003
С	-1.8502	0.5965	-0.0002
N	-0.7173	1.4160	-0.0001
С	0.5448	0.8645	-0.0003
N	1.7283	1.5418	-0.0001
С	2.6388	0.5879	0.0003
N	2.0788	-0.6662	0.0003
0	-0.2090	-2.6604	0.0001
0	-2.9954	1.0526	0.0006

Πίναχας 3.41: Οι συντεταγμένες των ατόμων της Ξανθίνης με p_z ηλεχτρόνια σε Å.

Στις αναφορές [14] [24] [25] [30] [31] [32] [33] βρίσκουμε τις πειραματικές τιμές των ενεργειών HOMO, LUMO και του ενεργειακού χάσματος.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.11) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.42 και σχηματικά στο Σχήμα 3.42.

E_C	V_2	0	0	0	V'_6	0	0	V'_9	0	0]	
V_2	E_C	V_3	0	0	0	0	0	0	V'_{10}	0	
0	V_3	E_{N3}	V_4	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	V'_4	
0	0	0	V_5	E_{N3}	V_6	0	0	0	0	0	
V'_6	0	0	0	V_6	E_C	V_7	0	0	0	0	
0	0	0	0	0	V_7	E_{N2}	V_8	0	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	0	
V'_9	0	0	0	0	0	0	V_9	E_{N3}	0	0	
0	V'_{10}	0	0	0	0	0	0	0	E_O	0	
0	0	V'_4	0	0	0	0	0	0	0	E_O	

Πίναχας 3.42: Ιδιοτιμές ενέργειας για την Ξανθίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.920	-16.180
2	-13.760	-14.750
3	-13.470	-13.930
4	-12.060	-12.230
5	-11.330	-11.160
6	-9.837	-10.770
7	-8.487	-8.434
8	-4.914	-4.108
9	-3.960	-2.908
10	-3.207	-2.592
11	-1.761	-0.487

Πίνα
χας 3.43: HOMO, LUMO και $E_{\rm g}$ της Ξανθίνης σεeV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.862	-4.302	4.560
υπολογισμός HKS	-8.487	-4.914	3.572
σχετικό σφάλμα HKS	-0.042	0.142	-0.217
υπολογισμός MMTS	-8.434	-4.108	4.325
σχετικό σφάλμα MMTS	-0.048	-0.045	-0.052

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.508D και d(MMTS) = 4.499D. Στον Πίνακα ;; παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες H-OMO και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

(3.11)

Σχήμα 3.42: Ιδιοτιμές ενέργειας της Ξανθίνης

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.43: Οι συντεταγμένες των ατόμων της Ξανθίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

Πίνακας 3.44: Ιδιοανύσματα της Ξανθίνης.

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	-0.6025	0.0000	0.363	-0.5835	0.0000	0.340
7	2	-0.2508	0.0000	0.063	-0.1570	0.0000	0.025
7	3	0.0806	0.0000	0.006	0.0455	0.0000	0.002
7	4	0.1730	0.0000	0.030	0.1118	0.0000	0.012
7	5	0.2595	0.0000	0.067	0.3152	0.0000	0.099
7	6	-0.4154	0.0000	0.173	-0.4189	0.0000	0.175
7	7	0.0541	0.0000	0.003	0.0195	0.0000	0.000
7	8	0.4000	0.0000	0.160	0.3849	0.0000	0.148
7	9	0.2221	0.0000	0.049	0.2107	0.0000	0.044
7	10	0.2414	0.0000	0.058	0.3192	0.0000	0.102
7	11	-0.1650	0.0000	0.027	-0.2252	0.0000	0.051
8	1	0.1322	0.0000	0.017	-0.1926	0.0000	0.037
8	2	0.6113	0.0000	0.374	-0.5504	0.0000	0.303
8	3	-0.2055	0.0000	0.042	0.1895	0.0000	0.036
8	4	-0.1059	0.0000	0.011	0.0806	0.0000	0.006
8	5	0.2149	0.0000	0.046	-0.1864	0.0000	0.035
8	6	-0.4054	0.0000	0.164	0.3662	0.0000	0.134
8	7	-0.0609	0.0000	0.004	0.0887	0.0000	0.008
8	8	0.4451	0.0000	0.198	-0.4873	0.0000	0.237
8	9	-0.2462	0.0000	0.061	0.2879	0.0000	0.083
8	10	-0.2831	0.0000	0.080	0.3437	0.0000	0.118
8	11	0.0486	0.0000	0.002	-0.0499	0.0000	0.002

Σχήμα 3.44: Οι συντεταγμένες των ατόμων της Ξανθίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (MMTS).

3.12 Υποξανθίνη $(C_5H_4N_4O)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.45) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 3.45: Το μόριο της Υποξανθίνης

Οι συντεταγμένες των 10 ατόμων που συνεισφέρου
ν $12 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.45.

Πίναχας 3.45: Οι συντεταγμένες των ατόμων της Υποξανθίνης με p_z ηλεχτρόνια σε Å.

άτομο	x	y	z
C	0.7203	-0.7322	0.0002
N	-0.0658	-1.8236	0.0003
C	-1.4190	-1.5444	-0.0002
N	-2.0264	-0.3911	-0.0005
С	-1.2651	0.7783	0.0002
С	0.1533	0.5197	0.0002
N	1.2179	1.3753	-0.0001
С	2.3536	0.6023	-0.0004
N	2.0816	-0.6881	0.0001
0	-1.7504	1.9036	0.0002

Στις αναφορές [24] [25] [29] [31] [32] [33] βρίσκουμε τις πειραματικές τιμές των ενεργειών HOMO, LUMO και του ενεργειακού χάσματος.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.12) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.46 και σχηματικά στο Σχήμα 3.46.

E_C	V_2	0	0	0	V'_6	0	0	V'_9	0	
V_2	E_{N3}	V_3	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	
0	0	V_4	E_{N2}	V_5	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	V_{10}	(2.19)
V'_6	0	0	0	V_6	E_C	V_7	0	0	0	(3.12)
0	0	0	0	0	V_7	E_{N3}	V_8	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	
V'_9	0	0	0	0	0	0	V_9	E_{N2}	0	
0	0	0	0	V_{10}	0	0	0	0	E_O	

Πίναχας 3.46: Ιδιοτιμές ενέργειας για την Υποξανθίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.420	-15.940
2	-13.400	-14.180
3	-12.910	-13.710
4	-10.430	-11.480
5	-9.4970	-10.720
6	-8.591	-8.573
7	-4.981	-4.251
8	-3.970	-3.514
9	-3.105	-2.568
10	-1.590	-0.412

Πίνακας 3.47: HOMO, LUMO και $E_{\rm g}$ της Υποξανθίνης σεeV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.88	-3.96	4.92
υπολογισμός HKS	-8.591	-4.981	3.610
σχετικό σφάλμα HKS	-0.033	0.258	-0.266
υπολογισμός MMTS	-8.573	-4.251	4.322
σχετικό σφάλμα MMTS	-0.035	0.073	-0.122

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.478D και d(MMTS) = 4,5709D.

Στον Πίναχα 3.48 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=6, l=7) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.46: Ιδιοτιμές ενέργειας της Υποξανθίνης

Σχήμα 3.47: Οι συντεταγμένες των ατόμων της Υποξανθίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
6	1	-0.4098	0.0000	0.168	-0.4149	0.0000	0.172
6	2	0.2085	0.0000	0.043	0.2565	0.0000	0.066
6	3	0.2409	0.0000	0.058	0.1953	0.0000	0.038
6	4	-0.0243	0.0000	0.001	-0.1144	0.0000	0.013
6	5	-0.2829	0.0000	0.080	-0.1841	0.0000	0.034
6	6	-0.5957	0.0000	0.355	-0.5693	0.0000	0.324
6	7	0.2209	0.0000	0.049	0.2106	0.0000	0.044
6	8	0.4021	0.0000	0.162	0.3790	0.0000	0.144
6	9	0.0719	0.0000	0.005	0.0321	0.0000	0.001
6	10	0.2818	0.0000	0.079	0.4047	0.0000	0.164
7	1	0.3161	0.0000	0.100	-0.2448	0.0000	0.060
7	2	-0.3371	0.0000	0.114	0.3220	0.0000	0.104
7	3	0.4601	0.0000	0.212	-0.4991	0.0000	0.249
7	4	0.0201	0.0000	0.000	0.0472	0.0000	0.002
7	5	-0.5510	0.0000	0.304	0.4879	0.0000	0.238
7	6	0.0313	0.0000	0.001	-0.0169	0.0000	0.000
7	7	0.1614	0.0000	0.026	-0.1836	0.0000	0.034
7	8	-0.4073	0.0000	0.166	0.4440	0.0000	0.197
7	9	0.1050	0.0000	0.011	-0.1348	0.0000	0.018
7	10	0.2583	0.0000	0.067	-0.3125	0.0000	0.098

Πίνα
κας 3.48: Ιδιοανύσματα της Υποξανθίνης.

Σχήμα 3.48: Οι συντεταγμένες των ατόμων της Υποξανθίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.13 Ισογουανίνη $(C_5H_5N_5O)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.49) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 3.49: Το μόριο της Ισογουανίνης

Οι συντεταγμένες των 11 ατόμων που συνεισφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.49.

Πίνα
жας 3.49: Οι συντεταγμένες των ατόμων της Ισογουανίνης μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	0.4496	-0.8929	0.0001
N	-0.7119	-1.4457	0.0001
С	-1.8009	-0.5842	0.0001
N	-1.5627	0.7971	-0.0001
С	-0.3094	1.3874	0.0000
С	0.7416	0.5630	0.0002
N	2.0914	0.6372	0.0001
С	2.5738	-0.6322	-0.0002
N	1.6655	-1.5710	-0.0002
0	-2.9588	-1.0065	-0.0001
N	-0.1782	2.7476	-0.0001

Στο [32] βρίσκουμε την πειραματική τιμή για το HOMO.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.13) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.50 και σχηματικά στο Σχήμα 3.50.

E_C	V_2	0	0	0	V'_6	0	0	V'_9	0	0	
V_2	E_{N2}	V_3	0	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	V_{10}	0	
0	0	V_4	E_{N3}	V_5	0	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	0	V_{11}	
V'_6	0	0	0	V_6	E_C	V_7	0	0	0	0	(3.13)
0	0	0	0	0	V_7	E_{N3}	V_8	0	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	0	
V'_9	0	0	0	0	0	0	V_9	E_{N2}	0	0	
0	0	V_{10}	0	0	0	0	0	0	E_O	0	
0	0	0	0	V_{11}	0	0	0	0	0	E_{N3}	

Πίναχας 3.50: Ιδιοτιμές ενέργειας για την Ισογουανίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.590	-16.040
2	-13.670	-14.720
3	-12.750	-13.690
4	-11.230	-12.200
5	-11.000	-11.170
6	-9.414	-10.710
7	-8.031	-8.235
8	-4.834	-4.342
9	-3.772	-2.960
10	-2.991	-2.336
11	-1.525	-0.412

Πίνα
κας 3.51: HOMO, LUMO και $E_{\rm g}$ της Ισογουανίνης σε $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά			4.34
υπολογισμός HKS	-8.031	-4.834	3.197
σχετικό σφάλμα HKS			-0.263
υπολογισμός MMTS	-8.235	-4.342	3.892
σχετικό σφάλμα MMTS			-0.103

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.327D και d(MMTS) = 4.412D. Στον Πίνακα 3.52 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

 $\Sigma \chi$ ήμα 3.50:
ιδιοτιμές ενέργειας της Ισογουανίνης

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.51: Οι συντεταγμένες των ατόμων της Ισογουανίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	-0.2327	0.0000	0.054	-0.2875	0.0000	0.083
7	2	0.4211	0.0000	0.177	0.3622	0.0000	0.131
7	3	0.2933	0.0000	0.086	0.1701	0.0000	0.029
7	4	0.0488	0.0000	0.002	0.1280	0.0000	0.016
7	5	-0.3424	0.0000	0.117	-0.3021	0.0000	0.091
7	6	-0.5079	0.0000	0.258	-0.5523	0.0000	0.305
7	7	0.2863	0.0000	0.082	0.2596	0.0000	0.067
7	8	0.1969	0.0000	0.039	0.2925	0.0000	0.086
7	9	-0.1718	0.0000	0.030	-0.0978	0.0000	0.010
7	10	-0.2459	0.0000	0.060	-0.3106	0.0000	0.096
7	11	0.3068	0.0000	0.094	0.2925	0.0000	0.086
8	1	0.4362	0.0000	0.190	0.4327	0.0000	0.187
8	2	-0.2521	0.0000	0.064	-0.2566	0.0000	0.066
8	3	-0.1978	0.0000	0.039	-0.0591	0.0000	0.003
8	4	0.2919	0.0000	0.085	0.2562	0.0000	0.066
8	5	-0.5147	0.0000	0.265	-0.5405	0.0000	0.292
8	6	-0.1228	0.0000	0.015	-0.1010	0.0000	0.010
8	7	0.2529	0.0000	0.064	0.2647	0.0000	0.070
8	8	-0.4654	0.0000	0.217	-0.4920	0.0000	0.242
8	9	0.0747	0.0000	0.006	0.0724	0.0000	0.005
8	10	0.0897	0.0000	0.008	0.0380	0.0000	0.001
8	11	0.2181	$\overline{0.0000}$	0.048	0.2379	0.0000	0.057

Πίναχας 3.52: Ιδιοανύσματα της Ισογουανίνης.

Σχήμα 3.52: Οι συντεταγμένες των ατόμων της Ισογουανίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.14 Ουρικό οξύ $(C_5H_4N_4O_3)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.53) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 3.53: Το μόριο του ουρικού οξέος

Οι συντεταγμένες των 12 ατόμων που συνεισφέρου
ν $16 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.53.

Πίνα
 πας 3.53: Οι συντεταγμένες των ατόμων του ουρικού οξέος μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	0.3595	-0.5472	0.0003
С	-0.8164	-1.4164	0.0002
N	-2.0120	-0.6867	-0.0003
С	-2.1542	0.7189	-0.0002
N	-0.9486	1.4240	-0.0006
С	0.2471	0.7814	-0.0002
N	1.4967	1.3382	-0.0005
С	2.4620	0.2830	0.0002
N	1.6749	-0.9098	0.0007
0	-0.7342	-2.6384	-0.0006
0	-3.2538	1.2735	0.0009
Ο	3.6790	0.3794	0.0000

Στις αναφορές [25] [34] βρίσκουμε τις πειραματικές τιμές των ενεργειών HOMO, LUMO και του ενεργειακού χάσματος.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.14) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.54 και σχηματικά στο Σχήμα 3.54.

E_C	V_2	0	0	0	V_6'	0	0	V'_9	0	0	0 -]
V_2	E_C	V_3	0	0	0	0	0	0	V'_{10}	0	0	
0	V_3	E_{N3}	V_4	0	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	V'_{11}	0	
0	0	0	V_5	E_{N3}	V_6	0	0	0	0	0	0	
V'_6	0	0	0	V_6	E_C	V_7	0	0	0	0	0	(*
0	0	0	0	0	V_7	E_{N3}	V_8	0	0	0	0	(•
0	0	0	0	0	0	V_8	E_C	V_9	0	0	V'_{12}	
V'_9	0	0	0	0	0	0	V_9	E_{N3}	0	0	0	
0	V'_{10}	0	0	0	0	0	0	0	E_O	0	0	
0	0	0	V'_{11}	0	0	0	0	0	0	E_O	0	
0	0	0	0	0	0	0	V_{12}^{\prime}	0	0	0	E_O	

Πίνα
κας 3.54: Ιδιοτιμές ενέργειας για το ουρικό οξύ σεeV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-15.140	-16.440
2	-14.420	-15.210
3	-13.700	-14.000
4	-12.740	-12.650
5	-11.930	-12.300
6	-11.380	-11.080
7	-11.060	-10.790
8	-8.154	-7.871
9	-4.660	-3.708
10	-3.987	-2.906
11	-3.513	-2.338
12	-1.813	-0.474

Πίνα
κας 3.55: HOMO, LUMO και $E_{\rm g}$ του ουρικού οξέος σε
 ${\rm eV}$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.55	-4.30	4.25
υπολογισμός HKS	-8.154	-4.660	3.494
σχετικό σφάλμα HKS	-0.046	0.084	-0.178
υπολογισμός MMTS	-7.871	-3.708	4.163
σχετικό σφάλμα MMTS	-0.079	-0.138	-0.020

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.454D και d(MMTS) = 4.487D.

Σχήμα 3.54: Ιδιοτιμές ενέργειας του ουριχού οξέος

Στον Πίνακα 3.56 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=8, l=9) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.55: Οι συντεταγμένες των ατόμων του ουρικού οξέος και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
8	1	0.5865	0.0000	0.344	-0.5680	0.0000	0.323
8	2	0.2636	0.0000	0.069	-0.1864	0.0000	0.035
8	3	-0.0789	0.0000	0.006	0.0548	0.0000	0.003
8	4	-0.1781	0.0000	0.032	0.1223	0.0000	0.015
8	5	-0.2270	0.0000	0.052	0.2453	0.0000	0.060
8	6	0.4075	0.0000	0.166	-0.3935	0.0000	0.155
8	7	-0.1558	0.0000	0.024	0.1842	0.0000	0.034
8	8	-0.2631	0.0000	0.069	0.1983	0.0000	0.039
8	9	-0.3256	0.0000	0.106	0.3381	0.0000	0.114
8	10	-0.2314	0.0000	0.054	0.2941	0.0000	0.086
8	11	0.1546	0.0000	0.024	-0.1909	0.0000	0.036
8	12	0.2324	0.0000	0.054	-0.3149	0.0000	0.099
9	1	0.0509	0.0000	0.003	-0.1082	0.0000	0.012
9	2	0.6599	0.0000	0.435	-0.6274	0.0000	0.394
9	3	-0.2099	0.0000	0.044	0.2145	0.0000	0.046
9	4	-0.1269	0.0000	0.016	0.0713	0.0000	0.005
9	5	0.2379	0.0000	0.057	-0.2238	0.0000	0.050
9	6	-0.4500	0.0000	0.202	0.4789	0.0000	0.229
9	7	0.0625	0.0000	0.004	-0.0945	0.0000	0.009
9	8	0.3255	0.0000	0.106	-0.2673	0.0000	0.071
9	9	-0.1436	0.0000	0.021	0.1427	0.0000	0.020
9	10	-0.2958	0.0000	0.088	0.3695	0.0000	0.137
9	11	0.0563	0.0000	0.003	-0.0415	0.0000	0.002
9	12	-0.1468	0.0000	0.022	0.1584	0.0000	0.025

Πίνακας 3.56: Ιδιοανύσματα του ουρικού οξέος.

Σχήμα 3.56: Οι συντεταγμένες των ατόμων του ουρικού οξέος και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.15 9H-Πουρίνη $(C_5H_4N_4)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.57) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.57: Το μόριο της 9Η-πουρίνης

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10~p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.57.

Πίναχας 3.57: Ο	Οι συντεταγμένες τ	των ατόμων τ	ης 9Η-πουρίνης ι	με p_z ηλε	κτρόνια σε Α.
-----------------	--------------------	--------------	------------------	--------------	---------------

άτομο	x	y	z
С	-2.122214	0.069723	0.000000
Ν	-1.832566	-1.241926	0.000000
С	-0.547823	-1.607410	0.000000
С	0.449435	-0.636435	0.000000
Ν	1.834932	-0.684855	0.000000
С	2.202496	0.567609	0.000000
Ν	1.146766	1.459083	0.000000
С	0.000000	0.700357	0.000000
N	-1.265359	1.096428	0.000000

Στις αναφορές [14] [33] [35] βρίσκουμε τις πειραματικές τιμές των ενεργειών ΗΟ-ΜΟ, LUMO και του ενεργειακού χάσματος.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.15) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.58 και σχηματικά στο Σχήμα 3.58.

E_C	V_2	0	0	0	0	0	0	V_9'	
V_2	E_{N2}	V_3	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	V'_8	0	
0	0	0	V_5	E_{N2}	V_6	0	0	0	(3.15)
0	0	0	0	V_6	E_C	V_7	0	0	
0	0	0	0	0	V_7	E_{N3}	V_8	0	
0	0	0	V'_8	0	0	V_8	E_C	V_9	
V'_9	0	0	0	0	0	0	V_9	E_{N2}	
								_	

Πίναχας 3.58: Ιδιοτιμές ενέργειας για την 9Η-πουρίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.880	-15.600
2	-11.920	-13.630
3	-10.770	-12.380
4	-9.501	-10.890
5	-8.627	-9.201
6	-4.743	-4.572
7	-4.021	-3.657
8	-3.161	-2.690
9	-1.477	-0.520

Πίνακας 3.59: HOMO, LUMO και $E_{\rm g}$ της 9Η-πουρίνης σε ${\rm eV}$.

	HOMO	LUMO	Eg
πειραματικά	-9.52	-4.82	4.70
υπολογισμός HKS	-8.627	-4.743	3.884
σχετικό σφάλμα HKS	-0.094	-0.016	-0.174
υπολογισμός MMTS	-9.201	-4.572	4.63
σχετικό σφάλμα MMTS	-0.034	-0.051	-0.015

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.379D και d(MMTS) = 4.406D.

Στον Πίνακα 3.60 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

 $\Sigma \chi$ ήμα 3.58:
ιδιοτιμές ενέργειας της 9Η-πουρίνης

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.4043	0.0000	0.163	-0.3726	0.0000	0.139
5	2	0.0868	0.0000	0.008	-0.1484	0.0000	0.022
5	3	-0.3763	0.0000	0.142	0.3873	0.0000	0.150
5	4	-0.3869	0.0000	0.150	0.4989	0.0000	0.249
5	5	0.4064	0.0000	0.165	-0.3251	0.0000	0.106
5	6	0.4478	0.0000	0.201	-0.4027	0.0000	0.162
5	7	-0.1120	0.0000	0.013	0.0182	0.0000	0.000
5	8	-0.3431	0.0000	0.118	0.3855	0.0000	0.149
5	9	0.2042	0.0000	0.042	-0.1529	0.0000	0.023
6	1	0.3456	0.0000	0.119	0.2806	0.0000	0.079
6	2	0.1866	0.0000	0.035	0.2150	0.0000	0.046
6	3	-0.5607	0.0000	0.314	-0.6075	0.0000	0.369
6	4	0.2402	0.0000	0.058	0.1654	0.0000	0.027
6	5	0.2082	0.0000	0.043	0.2015	0.0000	0.041
6	6	-0.4462	0.0000	0.199	-0.4420	0.0000	0.195
6	7	0.1140	0.0000	0.013	0.0602	0.0000	0.004
6	8	0.1653	0.0000	0.027	0.3037	0.0000	0.092
6	9	-0.4369	0.0000	0.191	-0.3831	0.0000	0.147

Πίνακας 3.60: Ιδιοανύσματα της 9Η-πουρίνης.

Σχήμα 3.59: Οι συντεταγμένες των ατόμων της 9Η-πουρίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 3.60: Οι συντεταγμένες των ατόμων της 9Η-πουρίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.16 1H-1,2,3-Triazolo[4,5-b]pyridine (C₅H₄N₄) ισομερές της 9Η-πουρίνης

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα ;;) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.61: Το μόριο της 1H-1,2,3-Triazolo[4,5-b]pyridine

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.61.

Πίνακας 3.61: Οι συντεταγμένες των ατόμων της 1H-1,2,3-Triazolo[4,5-b]pyridine με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	1.764706	1.292093	0.000000
С	2.141419	-0.072619	0.000000
Ν	1.289790	-1.088591	0.000000
С	0.000000	-0.740021	0.000000
Ν	-1.086802	-1.592742	0.000000
Ν	-2.158623	-0.885350	0.000000
Ν	-1.824693	0.440325	0.000000
С	-0.473171	0.588764	0.000000
С	0.429238	1.655699	0.000000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.16) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.62 και σχηματικά στο Σχήμα 3.62.

E_C	V_2	0	0	0	0	0	0	V'_{9}	
V_2	E_C	V_3	0	0	0	0	0	0	
0	V_3	E_{N2}	V_4	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	V'_8	0	
0	0	0	V_5	E_{N2}	V_6	0	0	0	
0	0	0	0	V_6	E_{N2}	V_7	0	0	
0	0	0	0	0	V_7	E_{N3}	V_8	0	
0	0	0	V'_8	0	0	V_8	E_C	V_9	
V'_9	0	0	0	0	0	0	V_9	E_C	

Πίναχας 3.62: Ιδιοτιμές ενέργειας για την 1H-1,2,3-Triazolo[4,5-b]pyridine σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.070	-16.100
2	-11.790	-13.450
3	-10.650	-12.080
4	-9.019	-9.939
5	-8.886	-9.499
6	-4.973	-5.321
7	-3.907	-3.422
8	-3.345	-2.958
9	-1.463	-0.372

Πίνα
χας 3.63: HOMO, LUMO και $E_{\rm g}$ της 1H-1,2,3-Triazolo
[4,5-b]
pyridine σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.886	-4.973	3.913
υπολογισμός MMTS	-9.499	-5.321	4.178

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.714D και d(MMTS) = 5.072D.

Στον Πίνακα 3.64 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.62: ιδιοτιμές ενέργειας της 1H-1,2,3-Triazolo[4,5-b]pyridine Πίναχας 3.64: Ιδιοανύσματα της 1H-1,2,3-Triazolo[4,5-b]pyridine.

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	-0.4023	0.0000	0.162	0.3765	0.0000	0.142
5	2	-0.4534	0.0000	0.206	0.4647	0.0000	0.216
5	3	-0.0102	0.0000	0.000	0.0791	0.0000	0.006
5	4	0.4568	0.0000	0.209	-0.4749	0.0000	0.226
5	5	-0.0558	0.0000	0.003	-0.0928	0.0000	0.009
5	6	-0.4137	0.0000	0.171	0.4136	0.0000	0.171
5	7	-0.0956	0.0000	0.009	0.0893	0.0000	0.008
5	8	0.4833	0.0000	0.234	-0.4648	0.0000	0.216
5	9	0.0824	0.0000	0.007	-0.0829	0.0000	0.007
6	1	0.3161	0.0000	0.100	-0.2378	0.0000	0.057
6	2	0.2418	0.0000	0.058	-0.3234	0.0000	0.105
6	3	-0.4300	0.0000	0.185	0.3285	0.0000	0.108
6	4	0.2224	0.0000	0.049	-0.1011	0.0000	0.010
6	5	0.3136	0.0000	0.098	-0.3828	0.0000	0.146
6	6	-0.5075	0.0000	0.258	0.5499	0.0000	0.302
6	7	0.2229	0.0000	0.050	-0.3191	0.0000	0.102
6	8	-0.0068	0.0000	0.000	0.0754	0.0000	0.006
6	9	-0.4490	0.0000	0.202	0.4053	0.0000	0.164

Σχήμα 3.63: Οι συντεταγμένες των ατόμων της 1H-1,2,3-Triazolo[4,5-b]pyridine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 3.64: Οι συντεταγμένες των ατόμων της 1H-1,2,3-Triazolo[4,5-b]pyridine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.17 [1,2,4]Triazolo[1,5-a]pyrazine $(C_5H_4N_4)$ - ισομερές της 9Η-πουρίνης

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.65) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.65: Το μόριο της [1,2,4]Triazolo[1,5-a]pyrazine

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 3.65.

Πίνα
κας 3.65: Οι συντεταγμένες των ατόμων της [1,2,4] Triazolo
[1,5-a]
pyrazine με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	-2.126736	-0.225623	0.000000
Ν	-1.621753	-1.493220	0.000000
С	-0.318556	-1.649804	0.000000
С	0.568984	-0.547214	0.000000
Ν	1.898093	-0.426710	0.000000
С	2.075489	0.908357	0.000000
Ν	0.966476	1.656643	0.000000
N	0.000000	0.717409	0.000000
С	-1.351750	0.901128	0.000000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.17) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.66 και σχηματικά στο Σχήμα 3.66.

E_C	V_2	0	0	0	0	0	0	V'_9
V_2	E_{N2}	V_3	0	0	0	0	0	0
0	V_3	E_C	V_4	0	0	0	0	0
0	0	V_4	E_C	V_5	0	0	V'_8	0
0	0	0	V_5	E_{N2}	V_6	0	0	0
0	0	0	0	V_6	E_C	V_7	0	0
0	0	0	0	0	V_7	E_{N2}	V_8	0
0	0	0	V'_8	0	0	V_8	E_{N3}	V_9
V'_9	0	0	0	0	0	0	V_9	E_C

Πίνακας 3.66: Ιδιοτιμές ενέργειας για την [1,2,4]Triazolo[1,5-a]pyrazine σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.500	-16.370
2	-11.450	-13.250
3	-10.930	-12.410
4	-9.223	-10.300
5	-8.272	-8.969
6	-4.857	-4.805
7	-4.138	-3.706
8	-2.904	-2.424
9	-1.834	-0.891

Πίνα
χας 3.67: HOMO, LUMO και $E_{\rm g}$ της [1,2,4] Triazolo
[1,5-a]
pyrazine σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.272	-4.857	3.415
υπολογισμός MMTS	-8.969	-4.805	4.164

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.817D και d(MMTS) = 4.043D.

Στον Πίνακα 3.68 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.66: ιδιοτιμές ενέργειας της [1,2,4]Triazolo[1,5-a]pyrazine Πίναχας 3.68: Ιδιοανύσματα της [1,2,4]Triazolo[1,5-a]pyrazine.

		1	1		1	r	
l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	-0.3863	0.0000	0.149	-0.5107	0.0000	0.261
5	2	0.2525	0.0000	0.064	0.1315	0.0000	0.017
5	3	0.3911	0.0000	0.153	0.4475	0.0000	0.200
5	4	-0.0371	0.0000	0.001	0.2151	0.0000	0.046
5	5	-0.4487	0.0000	0.201	-0.3401	0.0000	0.116
5	6	-0.0252	0.0000	0.001	-0.1507	0.0000	0.023
5	7	0.4280	0.0000	0.183	0.2249	0.0000	0.051
5	8	0.0858	0.0000	0.007	0.1076	0.0000	0.012
5	9	-0.4901	0.0000	0.240	-0.5243	0.0000	0.275
6	1	-0.0157	0.0000	0.000	0.1664	0.0000	0.028
6	2	-0.4758	0.0000	0.226	-0.4814	0.0000	0.232
6	3	0.5341	0.0000	0.285	0.5266	0.0000	0.277
6	4	0.1425	0.0000	0.020	0.2443	0.0000	0.060
6	5	-0.2630	0.0000	0.069	-0.2436	0.0000	0.059
6	6	0.1573	0.0000	0.025	0.1138	0.0000	0.013
6	7	0.1515	0.0000	0.023	0.1794	0.0000	0.032
6	8	-0.3340	0.0000	0.112	-0.3829	0.0000	0.147
6	9	0.4892	0.0000	0.239	0.3905	0.0000	0.152

Σχήμα 3.67: Οι συντεταγμένες των ατόμων της [1,2,4]Triazolo[1,5-a]pyrazine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 3.68: Οι συντεταγμένες των ατόμων της [1,2,4]Triazolo[1,5-a]pyrazine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.18 [1,2,3]Triazolo[1,5-a]pyrazine ($C_5H_4N_4$) - ισομερές της 9Η-πουρίνης

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.69) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.69: Το μόριο της [1,2,3]Triazolo[1,5-a]pyrazine

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α3.69.

Πίνακας 3.69: Οι συντεταγμένες των ατόμων της [1,2,3] Triazolo
[1,5-a]pyrazine με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
Ν	1.626192	1.518443	0.000000
С	2.131277	0.243271	0.000000
С	1.359264	-0.879284	0.000000
Ν	0.000000	-0.701372	0.000000
Ν	-0.946418	-1.660816	0.000000
N	-2.107458	-1.042281	0.000000
С	-1.933158	0.291927	0.000000
С	-0.566103	0.561773	0.000000
С	0.325568	1.664651	0.000000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.18) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.70 και σχηματικά στο Σχήμα 3.70.

E_{N2}	V_2	0	0	0	0	0	0	V'_9	
V_2	E_C	V_3	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	
0	0	V_4	E_{N3}	V_5	0	0	V'_8	0	
0	0	0	V_5	E_{N2}	V_6	0	0	0	(:
0	0	0	0	V_6	E_{N2}	V_7	0	0	
0	0	0	0	0	V_7	E_C	V_8	0	
0	0	0	V'_8	0	0	V_8	E_C	V_9	
V'_9	0	0	0	0	0	0	V_9	E_C	

Πίνακας 3.70: Ιδιοτιμές ενέργειας για την [1,2,3]Triazolo[1,5-a]pyrazine σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.490	-16.430
2	-11.520	-13.430
3	-10.780	-12.210
4	-9.420	-10.250
5	-7.994	-8.632
6	-4.801	-4.649
7	-4.288	-4.338
8	-2.987	-2.434
9	-1.815	-0.766

Πίνα
χας 3.71: HOMO, LUMO και $E_{\rm g}$ της [1,2,3] Triazolo
[1,5-a]
pyrazine σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-7.994	-4.801	3.193
υπολογισμός MMTS	-8.632	-4.649	3.983

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.703D και d(MMTS) = 4.177D.

Στον Πίνακα 3.72 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.70: ιδιοτιμές ενέργειας της [1,2,3] Triazolo
[1,5-a]
pyrazine

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.2851	0.0000	0.081	0.2324	0.0000	0.054
5	2	-0.3299	0.0000	0.109	-0.4074	0.0000	0.166
5	3	-0.4464	0.0000	0.199	-0.4963	0.0000	0.246
5	4	0.1078	0.0000	0.012	0.0831	0.0000	0.007
5	5	0.4709	0.0000	0.222	0.4604	0.0000	0.212
5	6	-0.0867	0.0000	0.008	-0.2133	0.0000	0.046
5	7	-0.4958	0.0000	0.246	-0.4167	0.0000	0.174
5	8	-0.1666	0.0000	0.028	-0.0569	0.0000	0.003
5	9	0.3100	0.0000	0.096	0.3040	0.0000	0.092
6	1	0.4545	0.0000	0.207	0.4689	0.0000	0.220
6	2	0.0649	0.0000	0.004	-0.1960	0.0000	0.038
6	3	-0.4961	0.0000	0.246	-0.3441	0.0000	0.118
6	4	0.3030	0.0000	0.092	0.4090	0.0000	0.167
6	5	-0.1374	0.0000	0.019	-0.3222	0.0000	0.104
6	6	-0.1352	0.0000	0.018	0.0827	0.0000	0.007
6	7	0.3018	0.0000	0.091	0.2103	0.0000	0.044
6	8	-0.0868	0.0000	0.008	-0.2217	0.0000	0.049
6	9	-0.5617	0.0000	0.315	-0.5020	0.0000	0.252

Πίνα
κας 3.72: Ιδιοανύσματα της [1,2,3] Triazolo
[1,5-a]
pyrazine.

Σχήμα 3.71: Οι συντεταγμένες των ατόμων της [1,2,3]Triazolo[1,5-a]pyrazine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 3.72: Οι συντεταγμένες των ατόμων της [1,2,3]Triazolo[1,5-a]pyrazine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

3.19 7H-Πουρίνη 7H-Purine $(C_5H_4N_4)$ - ταυτομερές της 9Η-πουρίνης

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 3.73) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 3.73: Το μόριο της 7Η-πουρίνης

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 3.73.

άτομο	x	y	z
N	-2.214815	-0.026093	0.000000
С	-1.704022	-1.272910	0.000000
N	-0.422678	-1.632561	0.000000
С	0.432364	-0.609166	0.000000
N	1.812672	-0.670810	0.000000
С	2.197405	0.577869	0.000000
Ν	1.162180	1.484411	0.000000
С	0.000000	0.738295	0.000000
С	-1.362989	0.998484	0.000000

Πίναχας 3.73: Οι συντεταγμένες των ατόμων της 7H-πουρίνης με p_z ηλεκτρόνια σε Å.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (3.19) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 3.74 και σχηματικά στο Σχήμα 3.74.

E_{N2}	V_2	0	0	0	0	0	0	V'_9
V_2	E_C	V_3	0	0	0	0	0	0
0	V_3	E_{N2}	V_4	0	0	0	0	0
0	0	V_4	E_C	V_5	0	0	V'_8	0
0	0	0	V_5	E_{N2}	V_6	0	0	0
0	0	0	0	V_6	E_C	V_7	0	0
0	0	0	0	0	V_7	E_{N3}	V_8	0
0	0	0	V'_8	0	0	V_8	E_C	V_9
V'_9	0	0	0	0	0	0	V_9	E_C
								_

Πίνακας 3.74: Ιδιοτιμές ενέργειας για την 7Η-πουρίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.840	-15.550
2	-12.020	-13.720
3	-10.840	-12.480
4	-9.133	-10.650
5	-8.861	-9.289
6	-4.802	-4.657
7	-3.986	-3.611
8	-3.142	-2.645
9	-1.484	-0.540

Πίνακας 3.75: HOMO, LUMO και $E_{\rm g}$ της 7Η-πουρίνης σε $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.861	-4.802	4.06
υπολογισμός MMTS	-9.289	-4.657	4.631

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.364D και d(MMTS) = 4.416D.

Στον Πίνακα 3.76 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 3.74: ιδιοτιμές ενέργειας της 7Η-πουρίνης Πίναχας 3.76: Ιδιοανύσματα της 7Η-πουρίνης.

—			- ()	1 19		- ()	1 10
l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	-0.2615	0.0000	0.068	0.1838	0.0000	0.034
5	2	-0.4127	0.0000	0.170	0.3790	0.0000	0.144
5	3	-0.0739	0.0000	0.005	0.1329	0.0000	0.018
5	4	0.3880	0.0000	0.151	-0.3939	0.0000	0.155
5	5	-0.1142	0.0000	0.013	0.0297	0.0000	0.001
5	6	-0.3861	0.0000	0.149	0.3494	0.0000	0.122
5	7	-0.2025	0.0000	0.041	0.2748	0.0000	0.075
5	8	0.5529	0.0000	0.306	-0.5477	0.0000	0.300
5	9	0.3106	0.0000	0.096	-0.3891	0.0000	0.151
6	1	0.3239	0.0000	0.105	-0.2710	0.0000	0.073
6	2	0.1674	0.0000	0.028	-0.1842	0.0000	0.034
6	3	-0.4332	0.0000	0.188	0.3702	0.0000	0.137
6	4	0.3292	0.0000	0.108	-0.3718	0.0000	0.138
6	5	0.1632	0.0000	0.027	-0.0979	0.0000	0.010
6	6	-0.4742	0.0000	0.225	0.4738	0.0000	0.225
6	7	0.1741	0.0000	0.030	-0.1824	0.0000	0.033
6	8	0.0559	0.0000	0.003	-0.0727	0.0000	0.005
6	9	-0.5348	0.0000	0.286	0.5871	0.0000	0.345

Σχήμα 3.75: Οι συντεταγμένες των ατόμων της 7Η-πουρίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 3.76: Οι συντεταγμένες των ατόμων της 7Η-πουρίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

Σχήμα 3.77: Ενέργεια ιονισμού και ενέργεια διέγερσης πουρινών.

d (D) MMTS	4.493	4.34	4.508	2.718	4.398	3.981	2.317	4.168	4.499
d (D) HKS	4.544	4.396	4.642	3.361	3.932	3.767	2.298	4.201	4.508
Eg (eV) exp	4.65	ı	ı	ı	4.4	ı	ı		4.560
LUMO (eV) exp	-3.80	ı		ı	-3.85	ı	,		4.302
HOMO (eV) exp	-8.45	ı	ı	ı	-8.25	ı	ı		-8.862
Eg (eV) MMTS	4.611	4.294	4.803	3.51	4.501	4.645	2.867	3.463	4.325
LUMO (eV) MMTS	4.129	4.489	4.425	4.202	-3.78	-3.955	-4.306	-5.302	-4.108
HOMO (eV) MMTS	-8.739	-8.783	-9.228	-7.712	-8.281	-8.6	-7.173	-8.765	-8.434
Eg (eV) HKS	3.793	3.604	3.767	2.726	3.528	3.9	2.357	3.51	3.572
LUMO (eV) HKS	-4.460	-4.641	-4.604	-4.649	-4.49	-4.617	-4.84	-4.915	4.914
HOMO (eV) HKS	-8.254	-8.245	-8.371	-7.375	-8.018	-8.516	791.7-	-8.424	-8.487
Image	H\$		Å	\$	\$	Å	A	\$	Å.
Name, formula	Adenine C ₅ H ₅ N ₅ I <mark>somer 1</mark>	2-Aminopurine C ₅ H ₅ N ₅ Isomer 2	1H- Pyrazolo[3,4- d]pyrimidin-4- amine C ₅ H ₅ N ₅ Isomer 3	Pyrimido [5,4- e]-as-triazine, 1,2-dihydro- C ₅ H ₅ N ₅ Isomer 4	Guanine C ₆ H ₈ N ₅ O Isomer 1	7-Amino-S- triazolo(1,5- a)pyrimidin- 5(4H)-one C ₅ H ₅ N ₅ O Isomer 2	Pyrimido[5,4- e]-as-triazin- 5[6h]-one, 1,2- GsH ₅ N ₅ O Isomer 3	7H- imidazo[4,5-d]- v-triazin-4-one, 6-methyl- CsHsNsO Isomer 4	Xanthine C₅H₄N₄O₂

Σχήμα 3.78: Συγκεντρωτικά αποτελέσματα πουρινών.

d (D) MMTS	4.570	4.412	4.523	4.515	4.487	4.406	4.416	5.072	4.043	4.177
Idl (D) HKS	4.478	4.327	4.534	4.53	4.454	4.379	4.364	4.714	3.817	3.703
Eg (eV) exp	4.92	4.34	4.52	4.54	4.25	4.7		ı	ı	ı
LUMO (eV) exp	-3.96	•	-3.79	-3.71	-4.30	-4.82	T	T	ſ	ı
HOMO (eV) exp	-8.88	I	-8.31	-8.25	-8.55	-9.52	ı	ı	ı	ı
Eg (eV) MMTS	4.322	3.892	4.326	4.321	4.163	4.63	4.631	4.178	4.164	3.983
LUMO (eV) MMTS	-4.251	-4.342	-4.107	-4.120	-3.708	-4.572	-4.657	-5.321	-4.805	-4.649
HOMO (eV) MMTS	-8.573	-8.235	-8.432	-8.441	-7.871	-9.201	-9.289	-9.499	-8.969	-8.632
Eg (eV) HKS	3.610	3.197	3.572	3.571	3.494	3.884	4.06	3.913	3.415	3.193
LUMO (eV) HKS	-4.981	-4.834	-4.912	-4.923	-4.660	-4.743	-4.802	-4.973	-4.857	-4.801
HOMO (eV) HKS	-8.591	-8.031	-8.484	-8.494	-8.154	-8.627	-8.861	-8.886	-8.272	-7.994
Image	\$	-A	×.	A.	¥.	8	8	B	8	\$
Name, formula	Hypoxanthin e C ₅ H ₄ N ₄ O	Isoguanine C₅H₅N₅O	Theobromin e C ₇ H ₈ N₄O ₂	Caffeine C ₈ H ₁₀ N₄O ₂	Uric acid C ₅ H₄N₄O ₃	9H-Purine C ₅ H ₄ N ₄ Isomer 1	7H-Purine C ₅ H ₄ N ₄ Isomer 1'	1H-1,2,3- Triazolo[4,5- b]pyridine C ₅ H₄N₄ Isomer 2	[1,2,4]Triazol o[1,5- a]pyrazine C ₅ H₄N₄ Isomer 3	[1,2,3]Triazol o[1,5- alpyrazine C ₅ H₄N₄ Isomer 4

Σχήμα 3.79: Συγκεντρωτικά αποτελέσματα πουρινών
(συνέχεια).

125

Στα διαγράμματα του Σχήματος 3.77 συγκρίνονται τα αποτελέσματα των δύο παραμετροποιήσεων και οι πειραματικές τιμές για τις ενέργειες ιονισμού (=-HOMO) [πάνω] και ενέργειες διέγερσης (= E_g) [κάτω]. Στις ενέργειες διέγερσης οι υπολογισμοί παρουσιάζουν μία γενική υποτίμηση, η οποία είναι μεγαλύτερη με την HKS, ενώ για τις ενέργειες ιονισμού δεν υπάρχει σαφής εικόνα για το ποια προσέγγιση είναι καλύτερη.

Στα Σχήματα 3.78 και 3.79 παρουσιάζονται τα HOMO, LUMO και E_g όπως υπολογίστηκαν με τις δύο παραμετροποιήσεις HKS και MMTS, οι αντίστοιχες πειραματικές τιμές, καθώς και οι υπολογισμένες διπολικές ροπές.

Για την ποσοτική σύγκριση των δύο παραμετροποιήσεων, σχεδιάζουμε τα επί τοις εκατό σφάλματα για τις ενέργειες HOMO και E_g (Σχήμα 3.80). Για την HKS, η μέση τιμή των επί τοις εκατό σφαλμάτων του HOMO ισούται με 0.039 και του E_g με 0.211. Και για την MMTS είναι 0.034 και 0.048 αντίστοιχα.

Σχήμα 3.80: Τα επί τοις εκατό σφάλματα στις ενέργειες ΗΟΜΟ και ενέργειες χάσματος των πουρινών.

Κεφάλαιο 4

Δ ιαζίνες -Πυριμιδίνες

Σε αυτό το κεφάλαιο θα μελετήσουμε τις διαζίνες (πυραζίνη, πυριδαζίνη, πυριμιδίνη) και τις πυριμιδίνες: κυτοσίνη, θυμίνη, ουρακίλη και ισομερή της τελευταίας.

4.1 Πυραζίνη $(C_4H_4N_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.1) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.1: Το μόριο της πυραζίνης

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.1.

Πίναχας 4.1: Οι συντεταγμένες των ατόμων της πυραζίνης με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
N	0.000000	0.00000	-1.40430
С	0.000000	-1.13227	-0.69750
С	0.000000	-1.13227	0.69750
Ν	0.000000	0.00000	1.40434
С	0.000000	1.13227	0.69750
С	0.000000	1.13227	-0.69750

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [36]- [39].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (4.1) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 4.2 και σχηματικά στο Σχήμα 4.2.

$$\begin{bmatrix}
E_{N2} & V_2 & 0 & 0 & 0 & V'_6 \\
V_2 & E_C & V_3 & 0 & 0 & 0 \\
0 & V_3 & E_C & V_4 & 0 & 0 \\
0 & 0 & V_4 & E_{N2} & V_5 & 0 \\
0 & 0 & 0 & V_5 & E_C & V_6 \\
V'_6 & 0 & 0 & 0 & V_6 & E_C
\end{bmatrix}$$
(4.1)

Πίναχας 4.2: Ιδιοτιμές ενέργειας για την πυραζίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-12.400	-14.250
2	-10.300	-12.140
3	-9.167	-9.575
4	-4.671	-4.940
5	-4.233	-3.545
6	-1.838	-1.022

Σχήμα 4.2: ιδιοτιμές ενέργειας της πυραζίνης

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.516D και d(MMTS) = 3.855D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.63	-4.82	4.81
υπολογισμός HKS	-9.167	-4.671	4.496
σχετικό σφάλμα HKS	-0.048	-0.031	-0.065
υπολογισμός MMTS	-9.575	-4.940	4.635
σχετικό σφάλμα MMTS	-0.006	0.025	-0.036

Πίνακας 4.3: HOMO, LUMO και $E_{\rm g}$ της πυραζίνης σε $\rm eV$.

Στον Πίναχα 4.4 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO χαι LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείχτη της ιδιοτιμής l, το δείχτη του ατόμου ν, το πραγματιχό χαι το φανταστιχό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εχφράζει την πιθανότητα παρουσίας του ηλεχτρονίου στο ν-ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	0.0000	0.0000	0.000	0.0000	0.0000	0.000
3	2	-0.5000	0.0000	0.250	-0.5000	0.0000	0.250
3	3	-0.5000	0.0000	0.250	-0.5000	0.0000	0.250
3	4	0.0000	0.0000	0.000	0.0000	0.0000	0.000
3	5	0.5000	0.0000	0.250	0.5000	0.0000	0.250
3	6	0.5000	0.0000	0.250	0.5000	0.0000	0.250
4	1	-0.5394	0.0000	0.291	-0.4988	0.0000	0.249
4	2	0.3233	0.0000	0.105	0.3544	0.0000	0.126
4	3	0.3233	0.0000	0.105	0.3544	0.0000	0.126
4	4	-0.5394	0.0000	0.291	-0.4988	0.0000	0.249
4	5	0.3233	0.0000	0.105	0.3544	0.0000	0.126
4	6	0.3233	0.0000	0.105	0.3544	0.0000	0.126

Πίνακας 4.4: Ιδιοανύσματα της πυραζίνης.

Σχήμα 4.3: Οι συντεταγμένες των ατόμων της πυραζίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

Σχήμα 4.4: Οι συντεταγμένες των ατόμων της πυραζίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (MMTS).

4.2 Πυριδαζίνη $(C_4H_4N_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.5) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.5: Το μόριο της πυριδαζίνης

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.5.

Πίναχας 4.5:	Οι συντεταγ	μένες των	ατόμων τ	ης πυριδαζίνηα	ς με p_z γ	ηλεκτρόνια α	5ε Α.
					5 [~ I ~ ·		

άτομο	x	y	z
N	0.000000	0.66569	-1.22855
С	0.000000	1.32219	-0.06780
С	0.000000	0.69079	1.17769
С	0.000000	-0.69079	1.17769
С	0.000000	-1.32219	-0.06780
N	0.000000	-0.66569	-1.22855

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [36], [37], [40].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (4.2) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 4.6 και σχηματικά στο Σχήμα 4.6.

$$\begin{bmatrix} E_{N2} & V_2 & 0 & 0 & 0 & V'_6 \\ V_2 & E_C & V_3 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 \\ V'_6 & 0 & 0 & 0 & V_6 & E_{N2} \end{bmatrix}$$
(4.2)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.463D και d(MMTS) = 3.559D.

Στον Πίνακα 4.8 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

Πίναχας 4.6: Ιδιοτιμές ενέργειας για την πυριδαζίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-12.470	-14.660
2	-9.743	-10.650
3	-9.520	-10.470
4	-4.680	-4.931
5	-4.308	-3.811
6	-1.876	-0.953

Σχήμα 4.6: ιδιοτιμές ενέργειας της πυριδαζίνης

Πίναχας 4.7: ΗΟΜΟ	D, LUMO אמג	$E_{\rm g}$ της	πυριδαζίνης	$\sigma\epsilon \; \mathrm{eV}$	•
-------------------	-------------	-----------------	-------------	---------------------------------	---

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.31	-4.31	5.00
υπολογισμός HKS	-9.520	-4.680	4.840
σχετικό σφάλμα HKS	0.023	0.086	-0.032
υπολογισμός MMTS	-10.47	-4.931	5.541
σχετικό σφάλμα MMTS	0.125	0.144	0.108

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .
l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	0.3484	0.0000	0.121	-0.4162	0.0000	0.173
3	2	0.5587	0.0000	0.312	-0.5250	0.0000	0.276
3	3	0.2578	0.0000	0.066	-0.2261	0.0000	0.051
3	4	-0.2578	0.0000	0.066	0.2261	0.0000	0.051
3	5	-0.5587	0.0000	0.312	0.5250	0.0000	0.276
3	6	-0.3484	0.0000	0.121	0.4162	0.0000	0.173
4	1	0.5101	0.0000	0.260	-0.5087	0.0000	0.259
4	2	-0.0966	0.0000	0.009	0.2126	0.0000	0.045
4	3	-0.4801	0.0000	0.230	0.4427	0.0000	0.196
4	4	0.4801	0.0000	0.230	-0.4427	0.0000	0.196
4	5	0.0966	0.0000	0.009	-0.2126	0.0000	0.045
4	6	-0.5101	0.0000	0.260	0.5087	0.0000	0.259

Πίνακας 4.8: Ιδιοανύσματα της πυριδαζίνης.

Σχήμα 4.7: Οι συντεταγμένες των ατόμων της πυριδαζίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

Σχήμα 4.8: Οι συντεταγμένες των ατόμων της πυριδαζίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.3 Πυριμιδίνη $(\mathbf{C}_4\mathbf{H}_4\mathbf{N}_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.9) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.9: Το μόριο της πυριμιδίνης

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.9.

Πίνακας 4.9: Οι συντεταγμένες των ατόμων της πυριμιδίνης με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
C	0.000000	0.00000	-1.30990
N	0.000000	1.19494	-0.71415
C	0.000000	1.18325	0.62205
С	0.000000	0.00000	1.35347
C	0.000000	-1.18325	0.62205
N	0.000000	-1.19494	-0.71415

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [14], [36]-[38].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.3) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.10 και σχηματικά στο Σχήμα 4.10.

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.407D και d(MMTS) = 3.530D.

Πίναχας 4.10: Ιδιοτιμές ενέργειας για την πυριμιδίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-12.440	-14.370
2	-10.050	-11.710
3	-9.398	-10.020
4	-4.545	-4.465
5	-4.332	-3.919
6	-1.832	-0.986

Σχήμα 4.10: ιδιοτιμές ενέργειας της πυριμιδίνης

Πίνα
κας 4.11: HOMO, LUMO και $E_{\rm g}$ της πυριμιδίνης σε
 $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.73	-4.63	5.10
υπολογισμός HKS	-9.398	-4.545	4.853
σχετικό σφάλμα HKS	-0.034	-0.018	-0.048
υπολογισμός MMTS	-10.02	-4.465	5.558
σχετικό σφάλμα MMTS	0.030	-0.036	0.090

Στον Πίνακα 4.12 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	-0.4816	0.0000	0.232	0.4082	0.0000	0.167
3	2	-0.2413	0.0000	0.058	0.2148	0.0000	0.046
3	3	0.3479	0.0000	0.121	-0.3825	0.0000	0.146
3	4	0.6399	0.0000	0.409	-0.6697	0.0000	0.448
3	5	0.3479	0.0000	0.121	-0.3825	0.0000	0.146
3	6	-0.2413	0.0000	0.058	0.2148	0.0000	0.046
4	1	0.0000	0.0000	0.000	0.0000	0.0000	0.000
4	2	0.4422	0.0000	0.196	0.3801	0.0000	0.144
4	3	-0.5518	0.0000	0.304	-0.5963	0.0000	0.356
4	4	0.0000	0.0000	0.000	0.0000	0.0000	0.000
4	5	0.5518	0.0000	0.304	0.5963	0.0000	0.356
4	6	-0.4422	0.0000	0.196	-0.3801	0.0000	0.144

Πίνακας 4.12: Ιδιοανύσματα της πυριμιδίνης.

Σχήμα 4.11: Οι συντεταγμένες των ατόμων της πυριμιδίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 4.12: Οι συντεταγμένες των ατόμων της πυριμιδίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.4 Κυτοσίνη $(C_4H_5N_2O)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.13) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.13: Το μόριο της χυτοσίνης

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.13.

Πίνακας 4.13: Οι συντεταγμένες των ατόμων της κυτοσίνης με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	1.10741	0.33852	0.00000
С	1.13638	-1.10116	0.00000
С	-0.06923	-1.72251	0.00000
Ν	-1.20844	-0.99073	0.00000
С	-1.22316	0.43745	0.00000
Ν	0.00000	1.05191	0.00000
Ν	2.28139	1.02140	0.00000
0	-2.30013	1.00225	0.00000

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [14], [17]-[19], [20], [41]- [43].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.4) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.14 και σχηματικά στο Σχήμα 4.14.

E_C	V_2	0	0	0	V_6'	V_7'	0	
V_2	E_C	V_3	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	
0	0	V_4	E_{N3}	V_5	0	0	0	(A, A)
0	0	0	V_5	E_C	V_6	0	V_8	(4.4)
V'_6	0	0	0	V_6	E_{N2}	0	0	
V'_7	0	0	0	0	0	E_{N3}	0	
0	0	0	0	V_8	0	0	E_O	

Πίνακας 4.14: Ιδιοτιμές ενέργειας για την κυτοσίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.420	-15.570
2	-12.740	-13.700
3	-12.180	-12.390
4	-9.632	-10.510
5	-8.889	-9.064
6	-4.694	-4.174
7	-3.893	-2.982
8	-1.851	-0.787

Σχήμα 4.14: ιδιοτιμές ενέργειας της χυτοσίνης

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.445D και d(MMTS) = 3.484D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.9	-4.3	4.6
υπολογισμός HKS	-8.889	-4.694	4.196
σχετικό σφάλμα HKS	-0.001	0.092	-0.088
υπολογισμός MMTS	-9.064	-4.174	4.890
σχετικό σφάλμα MMTS	0.018	-0.029	0.063

Πίνα
жаς 4.15: HOMO, LUMO και $E_{\rm g}$ της κυτοσίνης σε ${\rm eV}$.

Στον Πίνακα 4.16 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.1234	0.0000	0.015	0.1546	0.0000	0.024
5	2	0.6634	0.0000	0.440	0.6619	0.0000	0.438
5	3	0.4470	0.0000	0.200	0.3825	0.0000	0.146
5	4	-0.2874	0.0000	0.083	-0.3603	0.0000	0.130
5	5	-0.2519	0.0000	0.063	-0.1229	0.0000	0.015
5	6	-0.3072	0.0000	0.094	-0.2479	0.0000	0.061
5	7	-0.1598	0.0000	0.026	-0.2036	0.0000	0.041
5	8	0.2809	0.0000	0.079	0.3793	0.0000	0.144
6	1	0.5667	0.0000	0.321	0.5737	0.0000	0.329
6	2	0.0895	0.0000	0.008	0.1486	0.0000	0.022
6	3	-0.5716	0.0000	0.327	-0.6202	0.0000	0.385
6	4	0.3487	0.0000	0.122	0.3142	0.0000	0.099
6	5	-0.2836	0.0000	0.080	-0.1079	0.0000	0.012
6	6	-0.2623	0.0000	0.069	-0.2942	0.0000	0.087
6	7	-0.2376	0.0000	0.056	-0.2498	0.0000	0.062
6	8	0.1295	0.0000	0.017	0.0693	0.0000	0.005

Πίναχας 4.16: Ιδιοανύσματα της χυτοσίνης.

Σχήμα 4.15: Οι συντεταγμένες των ατόμων της κυτοσίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 4.16: Οι συντεταγμένες των ατόμων της κυτοσίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.5 Θυμίνη $(\mathbf{C}_{5}\mathbf{H}_{6}\mathbf{N}_{2}\mathbf{O}_{2})$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.17) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.17: Το μόριο της θυμίνης

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 4.17.

Πίναχας 4.17: Οι συντεταγμένες των ατόμων της θυμίνης με p_z ηλεχτρόνια σε Å.

άτομο	x	y	z
С	-1.21740	0.30337	0.00000
С	-1.07911	-1.03893	0.00000
N	0.15085	-1.66433	0.00000
С	1.36155	-0.98646	0.00000
N	1.20077	0.38858	0.00000
С	0.00000	1.12248	0.00000
0	2.43807	-1.54651	0.00000
0	0.02513	2.33925	0.00000

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [14], [16], [17], [19], [20]- [22], [44]- [46].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.5) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.18 και σχηματικά στο Σχήμα 4.18.

V_2	0	0	0	V_6'	0	0	
E_C	V_3	0	0	0	0	0	
V_3	E_{N3}	V_4	0	0	0	0	
0	V_4	E_C	V_5	0	V_7	0	(4.5)
0	0	V_5	E_{N3}	V_6	0	0	(4.0)
0	0	0	V_6	E_C	0	V_8	
0	0	V_7	0	0	E_O	0	
0	0	0	0	V_8	0	E_O	
	$V_2 \\ E_C \\ V_3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{cccc} V_2 & 0 \\ E_C & V_3 \\ V_3 & E_{N3} \\ 0 & V_4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Πίνα
χας 4.18: Ιδιοτιμές ενέργειας για τη θυμίνη σεeV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.880	-15.910
2	-13.680	-13.780
3	-12.180	-12.470
4	-11.320	-10.820
5	-9.018	-8.989
6	-4.885	-4.088
7	-4.004	-2.900
8	-2.235	-0.937

Σχήμα 4.18: ιδιοτιμές ενέργειας της θυμίνης

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.954D και d(MMTS) = 4.162D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.10	-4.45	4.65
υπολογισμός HKS	-9.018	-4.885	4.133
σχετικό σφάλμα HKS	-0.009	0.098	-0.111
υπολογισμός MMTS	-8.989	-4.088	4.902
σχετικό σφάλμα MMTS	-0.012	-0.081	0.054

Πίνακας 4.19: HOMO, LUMO και $E_{\rm g}$ της θυμίνης σε $\rm eV$.

Στον Πίνακα 4.20 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.7067	0.0000	0.499	-0.6762	0.0000	0.457
5	2	0.4266	0.0000	0.182	-0.4044	0.0000	0.164
5	3	-0.3467	0.0000	0.120	0.3882	0.0000	0.151
5	4	-0.1697	0.0000	0.029	0.0916	0.0000	0.008
5	5	-0.0708	0.0000	0.005	0.0354	0.0000	0.001
5	6	0.2304	0.0000	0.053	-0.1245	0.0000	0.015
5	7	0.1989	0.0000	0.040	-0.2683	0.0000	0.072
5	8	-0.2684	0.0000	0.072	0.3624	0.0000	0.131
6	1	-0.1979	0.0000	0.039	0.2664	0.0000	0.071
6	2	0.6363	0.0000	0.405	-0.6485	0.0000	0.421
6	3	-0.2511	0.0000	0.063	0.2417	0.0000	0.058
6	4	-0.0379	0.0000	0.001	0.0695	0.0000	0.005
6	5	0.2541	0.0000	0.065	-0.2392	0.0000	0.057
6	6	-0.5914	0.0000	0.350	0.5251	0.0000	0.276
6	7	0.0179	0.0000	0.000	-0.0442	0.0000	0.002
6	8	0.2772	0.0000	0.077	-0.3321	0.0000	0.110

Πίναχας 4.20: Ιδιοανύσματα της θυμίνης.

Σχήμα 4.19: Οι συντεταγμένες των ατόμων της θυμίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

Σχήμα 4.20: Οι συντεταγμένες των ατόμων της θυμίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.6 Ουρακίλη $(\mathbf{C}_4\mathbf{H}_4\mathbf{N}_2\mathbf{O}_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.21) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.21: Το μόριο της ουραχίλης

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 4.21.

Πίναχας 4.21: Οι συντεταγμένες των ατόμων της ουραχίλης με p_z ηλεχτρόνια σε Å.

άτομο	x	y	z
N	-1.14085	-1.02448	0.00000
С	0.05300	-1.70627	0.00000
С	1.23911	-1.06740	0.00000
С	1.27923	0.39002	0.00000
N	0.00000	0.98913	0.00000
С	-1.23498	0.36577	0.00000
0	2.27915	1.08017	0.00000
0	-2.29603	0.95190	0.00000

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [14], [18], [44], [46], [47].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.6) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.22 και σχηματικά στο Σχήμα 4.22.

E_{N3}	V_2	0	0	0	V_6'	0	0	
V_2	E_C	V_3	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	
0	0	V_4	E_C	V_5	0	V_7	0	(ΛG)
0	0	0	V_5	E_{N3}	V_6	0	0	(4.0)
V_6'	0	0	0	V_6	E_C	0	V_8	
0	0	0	V_7	0	0	E_O	0	
0	0	0	0	0	V_8	0	E_O	

Πίναχας 4.22: Ιδιοτιμές ενέργειας για την ουραχίλη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-14.880	-15.910
2	-13.690	-13.780
3	-12.190	-12.500
4	-11.310	-10.820
5	-9.024	-8.990
6	-4.885	-4.086
7	-3.999	-2.891
8	-2.217	-0.916

Σχήμα 4.22: ιδιοτιμές ενέργειας της ουραχίλης

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.984D και d(MMTS) = 4.191D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.6	-4.8	4.8
υπολογισμός HKS	-9.024	-4.885	4.138
σχετικό σφάλμα HKS	-0.060	0.018	-0.138
υπολογισμός MMTS	-8.99	-4.086	4.904
σχετικό σφάλμα MMTS	-0.064	-0.149	0.022

Πίνα
χας 4.23: HOMO, LUMO και $E_{\rm g}$ της ουρακίλης σε ${\rm eV}$.

Στον Πίνακα 4.24 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.3491	0.0000	0.122	-0.3897	0.0000	0.152
5	2	-0.4224	0.0000	0.178	0.4011	0.0000	0.161
5	3	-0.7063	0.0000	0.499	0.6757	0.0000	0.457
5	4	-0.2320	0.0000	0.054	0.1252	0.0000	0.016
5	5	0.0715	0.0000	0.005	-0.0359	0.0000	0.001
5	6	0.1690	0.0000	0.029	-0.0910	0.0000	0.008
5	7	0.2718	0.0000	0.074	-0.3661	0.0000	0.134
5	8	-0.1989	0.0000	0.040	0.2671	0.0000	0.071
6	1	0.2524	0.0000	0.064	0.2434	0.0000	0.059
6	2	-0.6378	0.0000	0.407	-0.6493	0.0000	0.422
6	3	0.1952	0.0000	0.038	0.2631	0.0000	0.069
6	4	0.5901	0.0000	0.348	0.5246	0.0000	0.275
6	5	-0.2532	0.0000	0.064	-0.2382	0.0000	0.057
6	6	0.0412	0.0000	0.002	0.0714	0.0000	0.005
6	7	-0.2775	0.0000	0.077	-0.3329	0.0000	0.111
6	8	-0.0195	0.0000	0.000	-0.0455	0.0000	0.002

Πίνακας 4.24: Ιδιοανύσματα της ουρακίλης.

Σχήμα 4.23: Οι συντεταγμένες των ατόμων της ουραχίλης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο χάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 4.24: Οι συντεταγμένες των ατόμων της ουραχίλης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο χάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.7 Pyrazine, 1,4-dioxide $(C_4H_4N_2O_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.25) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 4.25: Το μόριο της Pyrazine, 1,4-dioxide

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.25.

Πίνα
χας 4.25: Οι συντεταγμένες των ατόμων της Pyrazine, 1,4-dioxide μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
N	0.00000	0.00000	1.40492
С	0.00000	1.16623	0.68460
С	0.00000	1.16623	-0.68460
N	0.00000	0.00000	-1.40490
С	0.00000	-1.16623	-0.68460
С	0.00000	-1.16623	0.68460
0	0.00000	0.00000	-2.67970
0	0.00000	0.00000	2.67970

Βρίσκουμε τις πειραματικές τιμές των HOMO, LUMO, E_g στις αναφορές [48], [49], [50].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.7) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.26 και σχηματικά στο Σχήμα 4.26.

E_{N3}	V_2	0	0	0	V'_6	0	V_8	
V_2	E_C	V_3	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	
0	0	V_4	E_{N3}	V_5	0	V_7	0	(17
0	0	0	V_5	E_C	V_6	0	0	(4.7
V_6'	0	0	0	V_6	E_C	0	0	
0	0	0	V_7	0	0	E_O	0	
V_8	0	0	0	0	0	0	E_O	

Πίνακας 4.26: Ιδιοτιμές ενέργειας για την Pyrazine, 1,4-dioxide σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-15.430	-16.480
2	-14.910	-15.580
3	-10.790	-10.090
4	-9.513	-9.690
5	-9.261	-8.460
6	-5.745	-4.951
7	-4.139	-3.430
8	-2.412	-1.222

Σχήμα 4.26: ιδιοτιμές ενέργειας της Pyrazine, 1,4-dioxide

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.801D και d(MMTS) = 5.786D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.330	-4.225	4.105
υπολογισμός HKS	-9.261	-5.745	3.516
σχετικό σφάλμα HKS	0.112	0.360	-0.143
υπολογισμός MMTS	-8.460	-4.951	3.509
σχετικό σφάλμα MMTS	0.016	0.172	-0.145

Πίνα
χας 4.27: HOMO, LUMO και $E_{\rm g}$ της Pyrazine, 1,4-dioxide σε
eV .

Στον Πίνακα 4.28 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν, το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν-ιοστό άτομο για την ιδιοενέργεια E_l .

1		D()	\mathbf{T} ()	1 12	D()	\mathbf{T} ()	2
l	$ \nu $	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ C_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.0000	0.0000	0.000	-0.3037	0.0000	0.092
5	2	-0.5000	0.0000	0.250	-0.1886	0.0000	0.036
5	3	-0.5000	0.0000	0.250	0.1886	0.0000	0.036
5	4	0.0000	0.0000	0.000	0.3037	0.0000	0.092
5	5	0.5000	0.0000	0.250	0.1886	0.0000	0.036
5	6	0.5000	0.0000	0.250	-0.1886	0.0000	0.036
5	7	0.0000	0.0000	0.000	-0.5802	0.0000	0.337
5	8	0.0000	0.0000	0.000	0.5802	0.0000	0.337
6	1	0.4668	0.0000	0.218	-0.4647	0.0000	0.216
6	2	-0.3393	0.0000	0.115	0.3062	0.0000	0.094
6	3	-0.3393	0.0000	0.115	0.3062	0.0000	0.094
6	4	0.4668	0.0000	0.218	-0.4647	0.0000	0.216
6	5	-0.3393	0.0000	0.115	0.3062	0.0000	0.094
6	6	-0.3393	0.0000	0.115	0.3062	0.0000	0.094
6	7	-0.2278	0.0000	0.052	0.3107	0.0000	0.097
6	8	-0.2278	0.0000	0.052	0.3107	0.0000	0.097

Πίναχας 4.28: Ιδιοανύσματα της Pyrazine, 1,4-dioxide.

Σχήμα 4.27: Οι συντεταγμένες των ατόμων της Pyrazine, 1,4-dioxide και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 4.28: Οι συντεταγμένες των ατόμων της Pyrazine, 1,4-dioxide και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4(1H)-Pyrimidinone, 6-hydroxy- $(C_4H_4N_2O_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.29) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

4.8

Σχήμα 4.29: Το μόριο του 4(1H)-Pyrimidinone, 6-hydroxy-

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.29.

Πίνα
κας 4.29: Οι συντεταγμένες των ατόμων της 4(1H)-Pyrimidin
one, 6-hydroxy- με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
N	0.00000	1.18991	1.04410
С	0.00000	0.00000	1.64033
N	0.00000	-1.18991	1.04410
С	0.00000	-1.17173	-0.29261
С	0.00000	0.00000	-1.04085
С	0.00000	1.17173	-0.29261
0	0.00000	-2.35664	-0.92630
0	0.00000	2.35664	-0.92630

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.8) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.30 και σχηματικά στο Σχήμα 4.30.

$$\begin{bmatrix} E_{N2} & V_2 & 0 & 0 & 0 & V'_6 & 0 & 0 \\ V_2 & E_C & V_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & V_3 & E_{N2} & V_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 & V_7 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 & 0 & 0 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C & 0 & V_8 \\ 0 & 0 & 0 & V_7 & 0 & 0 & E_O & 0 \\ 0 & 0 & 0 & 0 & 0 & V_8 & 0 & E_O \end{bmatrix}$$
(4.8)

Πίναχας 4.30: Ιδιοτιμές ενέργειας για την 4(1H)-Pyrimidinone, 6-hydroxy- σε eV.

Σχήμα 4.30: ιδιοτιμές ενέργειας της 4(1H)-Pyrimidinone, 6-hydroxy-

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 2.709D και d(MMTS) = 1.948D.

Πίναχας 4.31: HOMO, LUMO και $E_{\rm g}$ της 4(1H)-Pyrimidinone, 6-hydroxy- σε eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-8.844	-4.194	4.649
υπολογισμός MMTS	-8.605	-3.765	4.840

Στον Πίνακα 4.32 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.1388	0.0000	0.019	0.0646	0.0000	0.004
5	2	0.3510	0.0000	0.123	0.2093	0.0000	0.044
5	3	0.1388	0.0000	0.019	0.0646	0.0000	0.004
5	4	-0.3054	0.0000	0.093	-0.2311	0.0000	0.053
5	5	-0.7077	0.0000	0.501	-0.6861	0.0000	0.471
5	6	-0.3054	0.0000	0.093	-0.2311	0.0000	0.053
5	7	0.2746	0.0000	0.075	0.4303	0.0000	0.185
5	8	0.2746	0.0000	0.075	0.4303	0.0000	0.185
6	1	-0.3064	0.0000	0.094	0.3119	0.0000	0.097
6	2	0.6626	0.0000	0.439	-0.7393	0.0000	0.547
6	3	-0.3064	0.0000	0.094	0.3119	0.0000	0.097
6	4	-0.2459	0.0000	0.060	0.1896	0.0000	0.036
6	5	0.4874	0.0000	0.238	-0.4118	0.0000	0.170
6	6	-0.2459	0.0000	0.060	0.1896	0.0000	0.036
6	7	0.0860	0.0000	0.007	-0.0935	0.0000	0.009
6	8	0.0860	0.0000	0.007	-0.0935	0.0000	0.009

Πίναχας 4.32: Ιδιοανύσματα της 4(1H)-Pyrimidinone, 6-hydroxy-).

Σχήμα 4.31: Οι συντεταγμένες των ατόμων της 4(1H)-Pyrimidinone, 6-hydroxy- και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 4.32: Οι συντεταγμένες των ατόμων της 4(1H)-Pyrimidinone, 6-hydroxy- και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.9 Maleic hydrazide $(C_4H_4N_2O_2)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 4.33) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

 Σ χήμα 4.33: Το μόριο του Maleic hydrazide

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α4.33.

Πίνα
κας 4.33: Οι συντεταγμένες των ατόμων του Maleic hydrazide μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	0.00000	1.46225	0.02753
C	0.00000	0.67081	1.27268
С	0.00000	-0.67081	1.27268
С	0.00000	-1.46225	0.02753
N	0.00000	-0.69593	-1.11273
N	0.00000	0.69593	-1.11273
0	0.00000	-2.68288	-0.02340
Ο	0.00000	2.68288	-0.02340

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (4.9) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 4.34 και σχηματικά στο Σχήμα 4.34.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 & 0 & V_8 \\ V_2 & E_C & V_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 & V_7 & 0 \\ 0 & 0 & 0 & V_5 & E_{N3} & V_6 & 0 & 0 \\ V'_6 & 0 & 0 & 0 & V_6 & E_{N3} & 0 & 0 \\ 0 & 0 & 0 & V_7 & 0 & 0 & E_O & 0 \\ V_8 & 0 & 0 & 0 & 0 & 0 & 0 & E_O \end{bmatrix}$$
(4.9)

	$E_l(MMTS)$	$E_l(HKS)$	l
	-16.170	-14.950	1
)	-13.700	-13.740	2
	-12.390	-12.610	3
	-9.975	-9.841	4
5	-9.138	-9.454	5
)	-5.030	-5.661	6
	-2.701	-3.842	7
)	-0.789	-2.098	8
_			
ИМТ	Μ	HKS	
heor	th	theory	
٠			
•		•	

Πίναχας 4.34: Ιδιοτιμές ενέργειας για το Maleic hydrazide σε eV.

Σχήμα 4.34: ιδιοτιμές ενέργειας του Maleic hydrazide

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 2.588D και d(MMTS) = 2.111D.

Πίνα
жας 4.35: HOMO, LUMO και $E_{\rm g}$ του Maleic hydrazide σε
eV .

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-9.454	-5.661	3.794
υπολογισμός MMTS	-9.138	-5.030	4.108

Στον Πίνακα 4.36 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	-0.2342	0.0000	0.055	0.1245	0.0000	0.016
5	2	-0.0953	0.0000	0.009	0.0575	0.0000	0.003
5	3	0.0953	0.0000	0.009	-0.0575	0.0000	0.003
5	4	0.2342	0.0000	0.055	-0.1245	0.0000	0.016
5	5	0.5770	0.0000	0.333	-0.5640	0.0000	0.318
5	6	-0.5770	0.0000	0.333	0.5640	0.0000	0.318
5	7	-0.3211	0.0000	0.103	0.4038	0.0000	0.163
5	8	0.3211	0.0000	0.103	-0.4038	0.0000	0.163
6	1	0.3554	0.0000	0.126	-0.3228	0.0000	0.104
6	2	0.4815	0.0000	0.232	-0.5029	0.0000	0.253
6	3	-0.4815	0.0000	0.232	0.5029	0.0000	0.253
6	4	-0.3554	0.0000	0.126	0.3228	0.0000	0.104
6	5	0.3273	0.0000	0.107	-0.2933	0.0000	0.086
6	6	-0.3273	0.0000	0.107	0.2933	0.0000	0.086
6	7	0.1862	0.0000	0.035	-0.2385	0.0000	0.057
6	8	-0.1862	0.0000	0.035	0.2385	0.0000	0.057

Πίναχας 4.36: Ιδιοανύσματα του Maleic hydrazide.

Σχήμα 4.35: Οι συντεταγμένες των ατόμων του Maleic hydrazide και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 4.36: Οι συντεταγμένες των ατόμων του Maleic hydrazide και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

4.10 Συγκεντρωτικά αποτελέσματα διαζινών- πυριμιδινών

Σχήμα 4.37: Ενέργεια ιονισμού και ενέργεια διέγερσης διαζινών και πυριμιδινών.

d (D) MMTS	3.855	3.530	3.559
ld (D) HKS	3.516	3.407	3.463
Eg exp (eV)	4.81	5.10	5.00
LUMO exp (eV)	-4.82	-4.63	-4.31
HOMO exp (eV)	-9.63	-9.73	-9.31
Eg (eV) MMTS	4.635	5.558	5.541
LUMO (eV) MMTS	-4.94	-4.465	-4.931
HOMO (eV) MMTS	-9.575	-10.02	-10.47
Eg (eV) HKS	4.496	4.853	4.839
LUMO (eV) HKS	-4.671	-4.545	-4.68
HOMO (eV) HKS	-9.167	-9.398	-9.52
mage	X	Å	
Name, formula	Pyrazin e C₄H₄N₂ <mark>Isomer</mark> 1	Pyrimid ine C ₄ H ₄ N ₂ Isomer 2	Pyridazi ne C ₄ H ₄ N ₂ Isomer 3

Σχήμα 4.38: Συγκεντρωτικά αποτελέσματα διαζινών.

IdI (D) MMTS	3.484	4.162	4.191	5.786	1.948	2.111
ldl (D) HKS	3.445	3.954	3.984	3.801	2.709	2.588
Eg exp (eV)	4.60	4.65	4.8	4.105	I	I
LUMO exp (eV)	4.3	-4.45	4.8	-4.225		I
HOMO exp (eV)	6.8-	- <u>-</u>	9.6-	-8.33		ı
Eg (eV) MMTS	4.89	4.902	4.904	3.509	4.840	4.108
LUMO (eV) MMTS	-4.174	-4.088	-4.086	-4.951	-3.765	-5.03
HOMO (eV) MMTS	-9.064	-8.989	-8.99	-8.46	-8.605	-9.138
Eg (eV) HKS	4.196	4.133	4.138	3.516	4.649	3.794
LUMO (eV) HKS	-4.694	-4.885	-4.885	-5.745	-4.194	-5.661
HOMO (eV) HKS	-8.889	-9.018	-9.024	-9.261	-8.844	-9.454
Image	X.	X	¥,	\mathbf{x}	5	¥.
Name, formula	Cytosine C ₄ H ₅ N ₃ O	Thymine C ₅ H ₆ N ₂ O ₂	Uracil C4H4N2O2 Isomer 1	Pyrazine, 1,4- dioxide C ₄ H ₄ N ₂ O ₂ Isomer 2	4(1H)- Pyrimidin one, 6- hydroxy- C₄H₄N ₂ O ₂ Isomer 3	Maleic hydrazide C₄H₄N₂O₂ Isomer 4

Σχήμα 4.39: Συγκεντρωτικά αποτελέσματα πυριμιδινών.

Στα διαγράμματα του Σχήματος 4.37 συγκρίνονται τα αποτελέσματα των δύο παραμετροποιήσεων και οι πειραματικές τιμές για τις ενέργειες ιονισμού (=-HOMO) [πάνω] και ενέργειες διέγερσης (= E_g) [κάτω]. Όπως και στις πουρίνες, οι υπολογισμοί για τις ενέργειες διέγερσης παρουσιάζουν υποτίμηση με την HKS, η οποία όμως είναι σημαντικά μικρότερη.

Στα Σχήματα 4.38 και 4.39 παρουσιάζονται τα HOMO, LUMO και E_g όπως υπολογίστηκαν με τις δύο παραμετροποιήσεις HKS και MMTS, οι αντίστοιχες πειραματικές τιμές, καθώς και οι υπολογισμένες διπολικές ροπές.

Για την ποσοτική σύγκριση των δύο παραμετροποιήσεων, σχεδιάζουμε τα επί τοις εκατό σφάλματα για τις ενέργειες HOMO και E_g (Σχήμα 4.40). Για την HKS, η μέση τιμή των επί τοις εκατό σφαλμάτων του HOMO ισούται με 0.041 και του E_g με 0.089. Και για την MMTS είναι 0.039 και 0.074 αντίστοιχα.

Σχήμα 4.40: Τα επί τοις εκατό σφάλματα στις ενέργειες ΗΟΜΟ και ενέργειες χάσματος των διαζινών και πυριμιδινών.

Κεφάλαιο 5 Παρόμοια μόρια

5.1 1H-Βενζιμιδαζόλιο ($\mathbf{C}_7\mathbf{H}_6\mathbf{N}_2$)-ισομερές 1

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.1) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 5.1: Το μόριο του 1Η-βενζιμιδαζολίου

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10~p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α5.1.

Πίνα
κας 5.1: Οι συντεταγμένες των ατόμων της 1H-Benzimida
zole με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	2.22927	-0.07103	0.00000
С	1.74563	-1.39383	0.00000
С	0.38415	-1.66662	0.00000
С	-0.50275	-0.58491	0.00000
N	-1.89212	-0.57169	0.00000
С	-2.21669	0.69167	0.00000
N	-1.12978	1.53703	0.00000
С	0.00000	0.73646	0.00000
С	1.36593	1.01863	0.00000

Στις αναφορές [51], [52], [53], [54] βρίσκουμε τις πειραματικές τιμές για τις ενέργειες HOMO, LUMO, E_g.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (5.1) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 5.2 και σχηματικά στο Σχήμα 5.2.

E_C	V_2	0	0	0	0	0	0	V'_9	
V_2	E_C	V_3	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	V'_8	0	
0	0	0	V_5	E_{N2}	V_6	0	0	0	(5.1)
0	0	0	0	V_6	E_C	V_7	0	0	
0	0	0	0	0	V_7	E_{N3}	V_8	0	
0	0	0	V'_8	0	0	V_8	E_C	V_9	
V'_9	0	0	0	0	0	0	V_9	E_C	

Πίναχας 5.2: Ιδιοτιμές ενέργειας για το 1Η-βενζιμιδαζόλιο σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.730	-15.260
2	-11.240	-12.140
3	-10.470	-11.770
4	-8.7590	-9.073
5	-8.523	-8.988
6	-4.553	-4.006
7	-3.850	-3.078
8	-3.110	-2.497
9	-1.460	-0.211

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.286D και d(MMTS) = 4.351D.

Πίνα
κας 5.3: HOMO, LUMO και $E_{\rm g}$ του 1Η-βενζιμιδαζολίου σε
 $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.450	-3.984	4.466
υπολογισμός HKS	-8.523	-4.553	3.969
σχετικό σφάλμα HKS	0.009	0.143	-0.111
υπολογισμός MMTS	-8.988	-4.006	4.981
σχετικό σφάλμα MMTS	0.064	0.006	0.115

Στον Πίνακα 5.4 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

168

Σχήμα 5.2: ιδιοτιμές ενέργειας του 1Η-βενζιμιδαζολίου

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 5.3: Οι συντεταγμένες των ατόμων του 1Η-βενζιμιδαζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.4494	0.0000	0.202	0.5084	0.0000	0.258
5	2	-0.0241	0.0000	0.001	0.1494	0.0000	0.022
5	3	-0.4545	0.0000	0.207	-0.3749	0.0000	0.141
5	4	-0.3131	0.0000	0.098	-0.4552	0.0000	0.207
5	5	0.4038	0.0000	0.163	0.2977	0.0000	0.089
5	6	0.3651	0.0000	0.133	0.3466	0.0000	0.120
5	7	-0.1872	0.0000	0.035	-0.0599	0.0000	0.004
5	8	-0.1914	0.0000	0.037	-0.3017	0.0000	0.091
5	9	0.3533	0.0000	0.125	0.2610	0.0000	0.068
6	1	0.3585	0.0000	0.129	-0.3136	0.0000	0.098
6	2	0.1674	0.0000	0.028	-0.1964	0.0000	0.039
6	3	-0.4927	0.0000	0.243	0.4696	0.0000	0.221
6	4	0.2612	0.0000	0.068	-0.2006	0.0000	0.040
6	5	0.2118	0.0000	0.045	-0.2275	0.0000	0.052
6	6	-0.4815	0.0000	0.232	0.5471	0.0000	0.299
6	7	0.1721	0.0000	0.030	-0.1980	0.0000	0.039
6	8	0.0505	0.0000	0.003	-0.0697	0.0000	0.005
6	9	-0.4729	0.0000	0.224	0.4552	0.0000	0.207

Πίνακας 5.4: Ιδιοανύσματα του 1Η-βενζιμιδαζολίου.

Σχήμα 5.4: Οι συντεταγμένες των ατόμων του 1Η-βενζιμιδαζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.2 1H-Ινδαζόλη ($\mathbf{C}_7\mathbf{H}_6\mathbf{N}_2$)-ισομερές 2

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.5) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 5.5: Το μόριο της 1 Η-Indazole

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α5.5.

Πίναχας 5.5: Οι συντεταγμένες των ατόμων της 1H-Indazole με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	2.23090	-0.09377	0.00000
С	1.74488	-1.42142	0.00000
С	0.38709	-1.68544	0.00000
С	-0.50677	-0.60032	0.00000
С	-1.92633	-0.43509	0.00000
N	-2.26354	0.83896	0.00000
N	-1.09845	1.53666	0.00000
С	0.00000	0.72229	0.00000
С	1.37556	0.99452	0.00000

Στις αναφορές [52], [55], [56] βρίσκουμε τις πειραματικές τιμές για τις ενέργειες HOMO, LUMO, E_g .

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (5.2) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 5.6 και σχηματικά στο Σχήμα 5.6.

E_C	V_2	0	0	0	0	0	0	V'_9	
V_2	E_C	V_3	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	V'_8	0	
0	0	0	V_5	E_C	V_6	0	0	0	(5.2)
0	0	0	0	V_6	E_{N2}	V_7	0	0	
0	0	0	0	0	V_7	E_{N3}	V_8	0	
0	0	0	V'_8	0	0	V_8	E_C	V_9	
V'_9	0	0	0	0	0	0	V_9	E_C	

Πίνα
κας 5.6: Ιδιοτιμές ενέργειας για την 1H-Indazole σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.870	-15.560
2	-11.260	-12.220
3	-10.090	-10.870
4	-8.883	-9.513
5	-8.456	-8.764
6	-4.711	-4.440
7	-3.855	-3.096
8	-3.127	-2.414
9	-1.443	-0.138

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.018D και d(MMTS) = 3.816D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.350	-4.075	4.275
υπολογισμός HKS	-8.456	-4.711	3.745
σχετικό σφάλμα HKS	0.013	0.156	-0.124
υπολογισμός MMTS	-8.764	-4.440	4.324
σχετικό σφάλμα MMTS	0.050	0.090	0.011

Πίναχας 5.7: HOMO, LUMO
 χαι $E_{\rm g}$ της 1 Η-Indazole σε ${\rm eV}$.

Στον Πίναχα 5.8 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO χαι LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείχτη της ιδιοτιμής l, το δείχτη του ατόμου ν, το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εχφράζει την πιθανότητα παρουσίας του ηλεχτρονίου στο ν-ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.2916	0.0000	0.085	-0.1951	0.0000	0.038
5	2	-0.2748	0.0000	0.075	0.3821	0.0000	0.146
5	3	-0.4715	0.0000	0.222	0.4613	0.0000	0.213
5	4	-0.0571	0.0000	0.003	-0.0523	0.0000	0.003
5	5	0.4066	0.0000	0.165	-0.3397	0.0000	0.115
5	6	0.3070	0.0000	0.094	-0.1771	0.0000	0.031
5	7	-0.3661	0.0000	0.134	0.4084	0.0000	0.167
5	8	0.0373	0.0000	0.001	-0.1739	0.0000	0.030
5	9	0.4678	0.0000	0.219	-0.5066	0.0000	0.257
6	1	0.3901	0.0000	0.152	-0.3792	0.0000	0.144
6	2	0.1282	0.0000	0.016	-0.1156	0.0000	0.013
6	3	-0.4750	0.0000	0.226	0.4429	0.0000	0.196
6	4	0.2566	0.0000	0.066	-0.1969	0.0000	0.039
6	5	0.3225	0.0000	0.104	-0.4384	0.0000	0.192
6	6	-0.4503	0.0000	0.203	0.4426	0.0000	0.196
6	7	0.2093	0.0000	0.044	-0.2552	0.0000	0.065
6	8	-0.0479	0.0000	0.002	0.1238	0.0000	0.015
6	9	-0.4325	0.0000	0.187	0.3734	0.0000	0.139

Πίνακας 5.8: Ιδιοανύσματα της 1H-Indazole.

Σχήμα 5.7: Οι συντεταγμένες των ατόμων της 1H-Indazole και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 5.8: Οι συντεταγμένες των ατόμων της 1H-Indazole και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.3 2H-Ινδαζόλη ($\mathbf{C}_7\mathbf{H}_6\mathbf{N}_2$)-ισομερές 2'

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.9) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 5.9: Το μόριο της 2H-Indazole

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α5.9.

Πίναχας 5.9: Ο)ι συντεταγμένες	των ατόμων τη	ς 2H-Indazole	με p_z ηλ	εκτρόνια σε 1	Á.
----------------	------------------	---------------	-------------------------	-------------	---------------	----

άτομο	x	y	z
C	1.72434	1.44212	0.00000
С	2.23089	0.10688	0.00000
С	1.39799	-0.98374	0.00000
С	0.00000	-0.74856	0.00000
N	-0.99329	-1.65806	0.00000
N	-2.10623	-0.90580	0.00000
С	-1.89959	0.43098	0.00000
С	-0.51340	0.59422	0.00000
С	0.37578	1.69861	0.00000

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (5.3) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 5.10 και σχηματικά στο Σχήμα 5.10.

E_C	V_2	0	0	0	0	0	0	V'_9	
V_2	E_C	V_3	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	V'_8	0	
0	0	0	V_5	E_{N2}	V_6	0	0	0	(5.3)
0	0	0	0	V_6	E_{N3}	V_7	0	0	
0	0	0	0	0	V_7	E_C	V_8	0	
0	0	0	V'_8	0	0	V_8	E_C	V_9	
V'_9	0	0	0	0	0	0	V_9	E_C	

Πίνα
κας 5.10: Ιδιοτιμές ενέργειας για την 2H-Indazole σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.840	-15.560
2	-11.460	-12.360
3	-9.857	-10.700
4	-9.333	-9.762
5	-7.869	-8.415
6	-4.995	-4.635
7	-3.623	-2.965
8	-3.308	-2.491
9	-1.409	-0.136

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.031D και d(MMTS) = 4.010D.

	HOMO	LUMO	$E_{\rm g}$
υπολογισμός HKS	-7.869	-4.995	2.874
υπολογισμός MMTS	-8.415	-4.635	3.780

Πίνακας 5.11: HOMO, LUMO και $E_{\rm g}$ της 2H-Indazole σε ${\rm eV}$.

Στον Πίνακα 5.12 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.3232	0.0000	0.104	-0.3727	0.0000	0.139
5	2	-0.2319	0.0000	0.054	0.1993	0.0000	0.040
5	3	-0.4047	0.0000	0.164	0.4628	0.0000	0.214
5	4	0.0495	0.0000	0.002	0.0813	0.0000	0.007
5	5	0.5340	0.0000	0.285	-0.4935	0.0000	0.244
5	6	-0.0555	0.0000	0.003	0.1020	0.0000	0.010
5	7	-0.4773	0.0000	0.228	0.4028	0.0000	0.162
5	8	-0.1673	0.0000	0.028	0.1395	0.0000	0.019
5	9	0.3626	0.0000	0.131	-0.4062	0.0000	0.165
6	1	0.2374	0.0000	0.056	-0.1752	0.0000	0.031
6	2	0.3259	0.0000	0.106	-0.3542	0.0000	0.125
6	3	-0.4372	0.0000	0.191	0.3806	0.0000	0.145
6	4	-0.0358	0.0000	0.001	0.1271	0.0000	0.016
6	5	0.3516	0.0000	0.124	-0.3310	0.0000	0.110
6	6	-0.3484	0.0000	0.121	0.3811	0.0000	0.145
6	7	0.4275	0.0000	0.183	-0.4777	0.0000	0.228
6	8	0.0752	0.0000	0.006	-0.1004	0.0000	0.010
6	9	-0.4600	0.0000	0.212	0.4356	0.0000	0.190

Πίναχας 5.12: Ιδιοανύσματα της 2H-Indazole.

Σχήμα 5.11: Οι συντεταγμένες των ατόμων της 2H-Indazole και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 5.12: Οι συντεταγμένες των ατόμων της 2H-Indazole και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.4 1H-Pyrrolo[2,3-b]pyridine (C₇H₆N₂)-ισομερές 3

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.13) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 5.13: Το μόριο της 1H-Pyrrolo[2,3-b]pyridine

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α5.13.

Πίνακας 5.13: Οι συντεταγμένες των ατόμων της 1H-Pyrrolo[2,3-b]pyridine με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	-2.16978	0.11815	0.00000
С	-1.85267	-1.25138	0.00000
С	-0.52417	-1.65941	0.00000
С	0.46010	-0.66543	0.00000
С	1.89407	-0.61567	0.00000
С	2.24548	0.70835	0.00000
Ν	1.10917	1.49535	0.00000
С	0.00000	0.68197	0.00000
N	-1.26193	1.09680	0.00000

Στις αναφορές [55], [57], [58] βρίσκουμε τις πειραματικές τιμές για τις ενέργειες HOMO, LUMO, E_g .

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (5.4) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 5.14 και σχηματικά στο Σχήμα 5.14.

E_C	V_2	0	0	0	0	0	0	V'_9
V_2	E_C	V_3	0	0	0	0	0	0
0	V_3	E_C	V_4	0	0	0	0	0
0	0	V_4	E_C	V_5	0	0	V'_8	0
0	0	0	V_5	E_C	V_6	0	0	0
0	0	0	0	V_6	E_C	V_7	0	0
0	0	0	0	0	V_7	E_{N3}	V_8	0
0	0	0	V'_8	0	0	V_8	E_C	V_9
V'_9	0	0	0	0	0	0	V_9	E_{N2}

Πίναχας 5.14: Ιδιοτιμές ενέργειας για την 1H-Pyrrolo[2,3-b]
pyridine σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.700	-15.200
2	-11.480	-12.770
3	-10.290	-11.210
4	-8.918	-9.378
5	-8.282	-8.534
6	-4.696	-4.412
7	-3.846	-3.069
8	-3.022	-2.160
9	-1.465	-0.290

Σχήμα 5.14: ιδιοτιμές ενέργειας της 1 Η-Pyrrolo
[2,3-b]
pyridine

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.284D και d(MMTS) = 4.113D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.11	-3.81	4.30
υπολογισμός HKS	-8.282	-4.696	3.586
σχετικό σφάλμα HKS	0.021	0.233	-0.166
υπολογισμός MMTS	-8.534	-4.412	4.122
σχετικό σφάλμα MMTS	0.052	0.158	-0.041

Πίνα
χας 5.15: HOMO, LUMO και $E_{\rm g}$ της 1 Η-Pyrrolo
[2,3-b]
pyridine σε eV .

Στον Πίνακα 5.16 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Πίναχας 5.16: Ιδιοανύσματα της 1H-Pyrrolo[2,3-b]pyridine.

l	ν	$Re(c_{lu})$	$Im(c_{l\nu})$	$ c_{l_{1}} ^2$	$Re(c_{lu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.3459	0.0000	0.120	0.3271	0.0000	0.107
5	2	0.0086	0.0000	0.000	0.0511	0.0000	0.003
5	3	-0.3326	0.0000	0.111	-0.2864	0.0000	0.082
5	4	-0.2232	0.0000	0.050	-0.2403	0.0000	0.058
5	5	0.5184	0.0000	0.269	0.5136	0.0000	0.264
5	6	0.5241	0.0000	0.275	0.5433	0.0000	0.295
5	7	-0.1977	0.0000	0.039	-0.1738	0.0000	0.030
5	8	-0.3150	0.0000	0.099	-0.3729	0.0000	0.139
5	9	0.1954	0.0000	0.038	0.1500	0.0000	0.022
6	1	0.4211	0.0000	0.177	0.4702	0.0000	0.221
6	2	0.1448	0.0000	0.021	0.1298	0.0000	0.017
6	3	-0.5283	0.0000	0.279	-0.5513	0.0000	0.304
6	4	0.2848	0.0000	0.081	0.2635	0.0000	0.069
6	5	0.2040	0.0000	0.042	0.1801	0.0000	0.032
6	6	-0.4193	0.0000	0.176	-0.3639	0.0000	0.132
6	7	0.1267	0.0000	0.016	0.0712	0.0000	0.005
6	8	0.1055	0.0000	0.011	0.1982	0.0000	0.039
6	9	-0.4437	0.0000	0.197	-0.4238	0.0000	0.180

Σχήμα 5.15: Οι συντεταγμένες των ατόμων της 1H-Pyrrolo[2,3-b]pyridine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 5.16: Οι συντεταγμένες των ατόμων της 1H-Pyrrolo[2,3-b]pyridine και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.5 1H-Ιμιδαζόλιο ($\mathbf{C}_3\mathbf{H}_4\mathbf{N}_2$)-ισομερές 1

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.17) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 5.17: Το μόριο του 1Η-ιμιδαζολίου

Οι συντεταγμένες των 5 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 5.17.

Πίναχας 5.17: Οι συντεταγμένες των ατόμων 1Η-ιμιδαζολίου με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
N	0.00000	1.10489	0.00000
С	1.11952	0.29814	0.00000
С	0.63596	-0.98415	0.00000
N	-0.74127	-0.98264	0.00000
С	-1.09146	0.28206	0.00000

Στις αναφορές [51], [59], [60] βρίσκουμε τις πειραματικές τιμές για τις ενέργειες HOMO, LUMO, E_g.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (5.5) χαι υπολογίζει τα ιδιοανύσματα χαι τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 5.18 χαι σχηματιχά στο Σχήμα 5.18.

$$\begin{bmatrix} E_{N3} & V_2 & 0 & 0 & V'_5 \\ V_2 & E_C & V_3 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 \\ 0 & 0 & V_4 & E_{N2} & V_5 \\ V'_5 & 0 & 0 & V_5 & E_C \end{bmatrix}$$
(5.5)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 2.958D και d(MMTS) = 2.847D.

Στον Πίνακα 5.20 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

Πίναχας 5.18: Ιδιοτιμές ενέργειας για το 1Η-ιμιδαζόλιο σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.550	-15.040
2	-10.260	-11.650
3	-8.490	-8.825
4	-3.728	-3.064
5	-2.865	-2.202

 Σ χήμα 5.18:
ιδιοτιμές ενέργειας 1 Η-ιμιδαζολίου

Πίνα
жας 5.19: HOMO, LUMO και $E_{\rm g}$ της 1 Η-Imida
zole σε eV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.90	-2.95	5.95
υπολογισμός HKS	-8.490	-3.728	4.763
σχετικό σφάλμα HKS	-0.046	0.264	-0.199
υπολογισμός MMTS	-8.825	-3.064	5.762
σχετικό σφάλμα MMTS	-0.008	0.039	-0.032

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	-0.0866	0.0000	0.008	0.1392	0.0000	0.019
3	2	0.6180	0.0000	0.382	-0.6115	0.0000	0.374
3	3	0.5183	0.0000	0.269	-0.5806	0.0000	0.337
3	4	-0.2574	0.0000	0.066	0.1924	0.0000	0.037
3	5	-0.5251	0.0000	0.276	0.4823	0.0000	0.233
4	1	0.4171	0.0000	0.174	0.4179	0.0000	0.175
4	2	-0.5415	0.0000	0.293	-0.3967	0.0000	0.157
4	3	0.2183	0.0000	0.048	0.0319	0.0000	0.001
4	4	0.2905	0.0000	0.084	0.3647	0.0000	0.133
4	5	-0.6330	0.0000	0.401	-0.7307	0.0000	0.534

Πίνακας 5.20: Ιδιοανύσματα 1Η-ιμιδαζολίου

Σχήμα 5.19: Οι συντεταγμένες των ατόμων 1Η-ιμιδαζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 5.20: Οι συντεταγμένες των ατόμων 1Η-ιμιδαζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.6 1Η-Πυραζόλιο ($\mathbf{C}_3\mathbf{H}_4\mathbf{N}_2$)-ισομερές 2

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.21) και απαριθμούμε τα άτομά του. Γεωμετρία από [13].

Σχήμα 5.21: Το μόριο του 1Η-πυραζολίου

Οι συντεταγμένες των 5 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α5.21.

άτομο	x	y	z
N	0.00000	1.08723	0.00000
С	1.11136	0.30705	0.00000
C	0.66406	-0.99799	0.00000
С	-0.74547	-0.89129	0.00000
N	-1.14545	0.37674	0.00000

Στις αναφορές [59], [61], [62] βρίσκουμε τις πειραματικές τιμές για τις ενέργειες HOMO, LUMO, E_g.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (5.6) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 5.22 και σχηματικά στο Σχήμα 5.22.

$$\begin{bmatrix} E_{N3} & V_2 & 0 & 0 & V_5' \\ V_2 & E_C & V_3 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 \\ 0 & 0 & V_4 & E_C & V_5 \\ V_5' & 0 & 0 & V_5 & E_{N2} \end{bmatrix}$$
(5.6)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.077D και d(MMTS) = 3.090D.

186

Πίναχας 5.22: Ιδιοτιμές ενέργειας για το 1Η-πυραζόλιο σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.730	-15.44
2	-9.655	-10.27
3	-8.796	-9.617
4	-3.959	-3.626
5	-2.758	-1.826

 Σχήμα 5.22:
ιδιοτιμές ενέργειας του 1 Η-πυραζολίου

Πίνα
κας 5.23: HOMO, LUMO και $E_{\rm g}$ του 1Η-πυραζολίου σε
eV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.15	-3.27	5.88
υπολογισμός HKS	-8.796	-3.959	4.836
σχετικό σφάλμα HKS	-0.039	0.211	-0.178
υπολογισμός MMTS	-9.617	-3.626	5.990
σχετικό σφάλμα MMTS	0.051	0.109	0.019

Στον Πίνακα 5.24 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Πίναχας 5.24: Ιδιοανύα	ματα του 1Ι	Η-πυραζολίου
------------------------	-------------	--------------

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	-0.0004	0.0000	0.000	0.1020	0.0000	0.010
3	2	-0.6011	0.0000	0.361	-0.5561	0.0000	0.309
3	3	-0.4990	0.0000	0.249	-0.6566	0.0000	0.431
3	4	0.1958	0.0000	0.038	-0.0997	0.0000	0.010
3	5	0.5927	0.0000	0.351	0.4891	0.0000	0.239
4	1	-0.4251	0.0000	0.181	0.4312	0.0000	0.186
4	2	0.5695	0.0000	0.324	-0.5480	0.0000	0.300
4	3	-0.1800	0.0000	0.032	0.0764	0.0000	0.006
4	4	-0.3925	0.0000	0.154	0.4991	0.0000	0.249
4	5	0.5555	0.0000	0.309	-0.5087	0.0000	0.259

Σχήμα 5.23: Οι συντεταγμένες των ατόμων του 1Η-πυραζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 5.24: Οι συντεταγμένες των ατόμων του 1Η-πυραζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.7 Καρβαζόλιο $(C_{12}H_9N)$

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 5.25) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 5.25: Το μόριο του καρβαζολίου

Οι συντεταγμένες των 13 ατόμων που συνεισφέρου
ν $14~p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α5.25.

άτομο	x	y	z
N	-0.5644	-0.9979	0.9494
С	0.7619	-0.8222	0.5850
С	1.6096	0.2664	0.8020
С	2.9143	0.1757	0.3220
С	3.3653	-0.9699	-0.3573
С	2.5151	-2.0518	-0.5702
С	1.1983	-1.9888	-0.0987
C	0.0681	-2.8970	-0.1375
С	-0.1331	-4.1797	-0.6611
С	-1.3803	-4.7827	-0.5205
С	-2.4298	-4.1179	0.1380
С	-2.2585	-2.8413	0.6688
С	-1.0051	-2.2421	0.5244

Πίναχας 5.25: Οι συντεταγμένες των ατόμων του χαρβαζολίου με p_z ηλεκτρόνια σε Å.

Στο [63] βρίσκουμε τις πειραματικές τιμές. Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (5.7) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 5.26 και σχηματικά στο Σχήμα 5.26.

E_{N3}	V_2	0	0	0	0	0	0	0	0	0	0	V'_{13}	
V_2	E_C	V_3	0	0	0	V'_7	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	0	0	0	0	
0	0	0	0	V_6	E_C	V_7	0	0	0	0	0	0	
0	V'_7	0	0	0	V_7	E_C	V_8	0	0	0	0	0	
0	0	0	0	0	0	V_8	E_C	V_9	0	0	0	V'_8	
0	0	0	0	0	0	0	V_9	E_C	V_{10}	0	0	0	
0	0	0	0	0	0	0	0	V_{10}	E_C	V_{11}	0	0	
0	0	0	0	0	0	0	0	0	V_{11}	E_C	V_{12}	0	
0	0	0	0	0	0	0	0	0	0	V_{12}	E_C	V_{13}	
V'_{13}	0	0	0	0	0	0	V'_8	0	0	0	V_{13}	E_C	

(5.7)

Πίναχας 5.26: Ιδιοτιμές ενέργειας για το χαρβαζόλιο σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-12.830	-14.380
2	-11.340	-12.240
3	-10.450	-11.570
4	-9.850	-10.420
5	-9.170	-9.579
6	-8.430	-8.675
7	-7.556	-8.080
8	-4.702	-4.149
9	-4.233	-3.545
10	-3.526	-2.713
11	-3.394	-2.681
12	-1.597	-0.450
13	-1.214	0.145

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.276D και d(MMTS) = 3.492D.

Στον Πίνακα 5.28 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

 Σ χήμα 5.26:
ιδιοτιμές ενέργειας του χαρβαζολίου

Πίνα
жаς 5.27: HOMO, LUMO και $E_{\rm g}$ του καρβαζολίου σε
eV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-7.6	-3.9	3.7
υπολογισμός HKS	-7.556	-4.702	2.854
σχετικό σφάλμα HKS	-0.006	0.206	-0.229
υπολογισμός MMTS	-8.080	-4.149	3.931
σχετικό σφάλμα MMTS	0.063	0.064	0.062

Σχήμα 5.27: Οι συντεταγμένες των ατόμων του καρβαζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

 $|c_{l\nu}|^{\overline{2}}$ l $|c_{l\nu}|^2$ $Re(c_{l\nu})$ $Im(c_{l\nu})$ $Re(c_{l\nu})$ $Im(c_{l\nu})$ ν HKS HKS HKS MMTS MMTS MMTS 7 0.57420.0000 0.330 -0.51160.0000 0.2621 7 2-0.03960.0000 0.002 0.1291 0.0000 0.017 7 0.0000 0.119 0.0000 0.130 3 -0.34480.3611 7 4 -0.07990.0000 0.006 0.05310.0000 0.003 7 50.3231 0.0000 0.104-0.34060.00000.116 70.19000.00000.036 -0.22320.0000 0.0506 7 7 -0.2603 0.0000 0.068 0.2311 0.0000 0.053 7 0.053 8 -0.26020.0000 0.068 0.2309 0.0000 7 9 0.1901 0.0000 0.036 -0.2233 0.0000 0.050 -0.34060.116 710 0.3231 0.0000 0.1040.0000 7 11 -0.07990.0000 0.006 0.0532 0.0000 0.0037 12-0.34490.0000 0.119 0.3611 0.0000 0.1307 13 0.0000 -0.03960.002 0.1291 0.0000 0.017 -0.14390.0000 0.0210.13560.00000.018 8 1 8 2 0.0000 0.009 0.0000 0.0923 -0.12160.015 8 -0.31983 0.3383 0.0000 0.114 0.0000 0.102 8 4 -0.36510.0000 0.1330.37610.0000 0.1418 5-0.04420.0000 0.002 0.0203 0.0000 0.000 8 0.3936 0.0000 0.155-0.38490.0000 0.1486 78 -0.27650.0000 0.0760.2895 0.00000.0848 -0.27640.0000 0.076 0.2894 0.0000 0.084 8 8 9 0.3937 0.0000 0.155-0.38490.0000 0.1488 -0.04430.0000 0.002 0.02040.0000 0.000 10 8 11 -0.36500.0000 0.1330.37590.0000 0.141 8 120.3384 0.0000 0.114 -0.31980.00000.1028 13 0.0000 0.008 -0.1215 0.0000 0.015 0.0921

Πίνακας 5.28: Ιδιοανύσματα του καρβαζολίου.

Σχήμα 5.28: Οι συντεταγμένες των ατόμων του καρβαζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

5.8 Συγκεντρωτικά αποτελέσματα παρόμοιων μορίων

Σχήμα 5.29: Ενέργεια ιονισμού και ενέργεια διέγερσης των παρόμοιων μορίων.

d (D) MMTS	4.351	3.816	4.01	4.113	2.847	3.09	3.492
IdI (D) HKS	4.286	4.018	4.031	4.284	2.958	3.077	3.276
Eg exp (eV)	4.466	4.275		4.30	5.95	5.88	3.7
LUMO exp (eV)	-3.984	-4.075		-3.81	-2.95	-3.27	6.C-
HOMO exp (eV)	-8.450	-8.350	ı	-8.11	6'8-	-9.15	9.7-
Eg (eV) MMTS	4.981	4.324	3.78	4.122	5.762	5.99	3.931
LUMO (eV) MMTS	-4.006	-4.44	-4.635	-4.412	3.064	-3.626	-4.149
HOMO (eV) MMTS	-8.988	-8.764	-8.415	-8.534	-8.825	-9.617	-8.08
Eg (eV) HKS	3.969	3.745	2.874	3.586	4.763	4.836	2.854
LUMO (eV) HKS	-4.553	-4.711	-4.995	-4.696	-3.728	-3.959	-4.702
HOMO (eV) HKS	-8.523	-8.456	-7.869	-8.282	-8.49	-8.796	-7.556
Image	H	¥.	Þ	Å.	4	Å	¥.
Name, formula	1H- Benzimidazol c ₇ H ₆ N ₂ Isomer 1	1H-Indazole C ₇ H ₆ N ₂ Isomer 2	2H-Indazole C ₇ H ₆ N ₂ Isomer 2'	1H- Pyrrolo[2,3- b]pyridine C ₇ H ₆ N ₂ Isomer 3	1H-Imidazole C₃H₄N₂ Isomer 1	1H-Pyrazole C ₃ H₄N ₂ Isomer 2	Carbazole C ₁₂ H ₉ N

Σχήμα 5.30: Συγκεντρωτικά αποτελέσματα παρόμοιων μορίων.

Στα διαγράμματα του Σχήματος 5.29 συγκρίνονται τα αποτελέσματα των δύο παραμετροποιήσεων και οι πειραματικές τιμές για τις ενέργειες ιονισμού (=-HOMO) [πάνω] και ενέργειες διέγερσης (= E_g) [κάτω]. Στις ενέργειες διέγερσης η HKS εμφανίζει σημαντική υποτίμηση, ενώ η MMTS είναι σε καλή συμφωνία με τις πειραματικές τιμές. Αντιθέτως για τις ενέργειες ιονισμού η HKS φαίνεται να είναι καλύτερη προσέγγιση.

Στο Σχήμα 5.30 παρουσιάζονται τα HOMO, LUMO και E_g όπως υπολογίστηκαν με τις δύο παραμετροποιήσεις HKS και MMTS, οι αντίστοιχες πειραματικές τιμές, καθώς και οι υπολογισμένες διπολικές ροπές.

Για την ποσοτική σύγκριση των δύο παραμετροποιήσεων, σχεδιάζουμε τα επί τοις εκατό σφάλματα για τις ενέργειες HOMO και E_g (Σχήμα 5.31). Για την HKS, η μέση τιμή των επί τοις εκατό σφαλμάτων του HOMO ισούται με 0.022 και του E_g με 0.168. Και για την MMTS είναι 0.048 και 0.047 αντίστοιχα.

Σχήμα 5.31: Τα επί τοις εκατό σφάλματα στις ενέργειες HOMO και ενέργειες χάσματος των παρόμοιων μορίων.

Κεφάλαιο 6

Μόρια μετρημένα πειραματικά

Για τις ενώσεις αυτού του κεφαλαίου μετρήσαμε πειραματικά τα ενεργειακά χάσματα στο Εργαστήριο Οργανικής Χημείας του Τμήματος Χημείας του ΕΚΠΑ.

Το όργανο που χρησιμοποιήθηκε είναι ένα φασματοφωτόμετρο υπεριώδους - ορατού διπλής δέσμης (UV-1800 Shimadzu).

Η αρχή λειτουργίας του φασματοφωτομέτρου είναι η εξής: Μία πηγή υπεριώδους ακτινοβολίας στέλνει τη δέσμη στο μονοχρωμάτορα, ο οποίος απομονώνει την ακτινοβολία της επιλεγμένης συχνότητας. Στη συνέχεια η δέσμη αυτή χωρίζεται σε δύο δέσμες: η μία περνάει μέσα από κυψελίδα που περιέχει την εξεταζόμενη διαλυμένη ουσία και η άλλη μέσα από κυψελίδα που περιέχει τον αντίστοιχο διαλύτη (για τη μέτρηση του baseline). Οι κυψελίδες είναι από χαλαζία, διότι δεν απορροφά ακτινοβολία με μήκος κύματος μεγαλύτερο από 190 nm. Όση ακτινοβολία δεν απορροφηθεί από τα δύο δείγματα, φτάνει στον ανιχνευτή.

Επιλέγοντας ως τρόπο λειτουργίας το wavelength scanning λαμβάνουμε μία σειρά τιμών απορρόφησης για μια περιοχή τιμών μήχους, δηλαδή λαμβάνουμε το φάσμα απορρόφησης της διαλυμένης ουσίας. Η χορυφή του φάσματος με το μεγαλύτερο μήχος χύματος (δηλαδή μικρότερη ενέργεια) αντιστοιχεί στο ενεργειακό χάσμα. Τα φάσματα που λάβαμε φαίνονται στο σχήμα 6.1.

Σχήμα 6.1: Φάσματα απορρόφησης

6.1 Βενζόλιο (C_6H_6)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.2) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 6.2: Το μόριο του βενζολίου

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 6.1.

άτομο	x	y	z
С	1.9047	3.5333	0.2237
С	3.2883	3.3891	0.2345
С	3.8560	2.1213	0.1612
С	3.0401	0.9977	0.0771
С	1.6565	1.1421	0.0663
С	1.0888	2.4099	0.1396

Παίρνουμε την πειραματική τιμή του ΗΟΜΟ από [10].

To fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (6.1) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 6.2 και σχηματικά στο Σχήμα 6.3.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 \\ V_2 & E_C & V_3 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C \end{bmatrix}$$
(6.1)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 0.000D και d(MMTS) = 0.000D.

Στον Πίνακα 6.4 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

198

Πίναχας 6.2: Ιδιοτιμές ενέργειας για το βενζόλιο σε eV.

-	\mathbf{E}	$\mathbf{P}(1,1,1,1,1,1,1,1,$
l	$E_l(HKS)$	$E_l(MMTS)$
1	-11.660	-12.620
2	-9.181	-9.592
3	-9.181	-9.592
4	-4.219	-3.528
5	-4.219	-3.528
6	-1.738	-0.496

Σχήμα 6.3: ιδιοτιμές ενέργειας του βενζολίου

Πίναχας 6.3:	HOMO,	LUMO	אמו $E_{ m g}$	του	βενζολίου	$\sigma\epsilon \; \mathrm{eV} \; .$
--------------	-------	------	----------------	-----	-----------	--------------------------------------

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.25	-4.50	4.75
υπολογισμός HKS	-9.181	-4.219	4.961
σχετικό σφάλμα HKS	-0.007	-0.062	0.044
υπολογισμός MMTS	-9.592	-3.528	6.064
σχετικό σφάλμα MMTS	0.037	-0.216	0.277

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Λόγω της συμμετρίας του βενζολίου, τα έξι άτομα άνθρακα είναι ισοδύναμα μεταξύ τους και αναμένουμε οι πιθανότητές τους να είναι ίσες (=1/6) για κάθε ιδιοενέργεια. Επειδή στα HOMO και LUMO υπάρχει διπλός εκφυλισμός, ως πιθανότητα θα πρέπει

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	-0.5179	0.0000	0.268	-0.5179	0.0000	0.268
3	2	-0.4798	0.0000	0.230	-0.4798	0.0000	0.230
3	3	0.0381	0.0000	0.001	0.0381	0.0000	0.001
3	4	0.5180	0.0000	0.268	0.5180	0.0000	0.268
3	5	0.4799	0.0000	0.230	0.4799	0.0000	0.230
3	6	-0.0381	0.0000	0.001	-0.0381	0.0000	0.001
4	1	-0.5179	0.0000	0.268	0.5179	0.0000	0.268
4	2	0.4798	0.0000	0.230	-0.4798	0.0000	0.230
4	3	0.0381	0.0000	0.001	-0.0381	0.0000	0.001
4	4	-0.5180	0.0000	0.268	0.5180	0.0000	0.268
4	5	0.4799	0.0000	0.230	-0.4799	0.0000	0.230
4	6	0.0381	0.0000	0.001	-0.0381	0.0000	0.001

Πίναχας 6.4: Ιδιοανύσματα του βενζολίου.

να θεωρήσουμε το μέσο όρο των πιθανοτήτων που αντιστοιχούν στις ιδιοενέργειες l=2, l=3 και l=4, l=5 αντίστοιχα. Ο μέσος όρος αυτός ισούται πράγματι με 1/6.

Σχήμα 6.4: Οι συντεταγμένες των ατόμων του βενζολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS-MMTS).

6.2 Τολουένιο (C_7H_8)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.5) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 6.5: Το μόριο του τολουενίου

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α6.5.

Πίναχας 6.5: Οι συντεταγμένες των ατόμων του τολουενίου με p_z ηλεχτρόνια σε Å.

άτομο	x	y	z
С	3.5948	1.4340	2.1369
С	2.8774	1.5289	0.9424
С	1.5921	2.0571	0.9396
С	1.0127	2.4929	2.1270
С	1.7225	2.3981	3.3187
С	3.0091	1.8708	3.3255

Παίρνουμε την πειραματική τιμή του HOMO από το NIST [11].

To fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίνακα χαμιλτονιανής (6.2) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίνακα 6.6 και σχηματικά στο Σχήμα 6.6.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 \\ V_2 & E_C & V_3 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C \end{bmatrix}$$
(6.2)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.362D και d(MMTS) = 3.362D.

Στον Πίνακα 6.8 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

Πίναχας 6.6: Ιδιοτιμές ενέργειας για το τολουένιο σεeV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-11.650	-12.610
2	-9.185	-9.597
3	-9.169	-9.577
4	-4.231	-3.543
5	-4.215	-3.523
6	-1.747	-0.506

 $\Sigma \chi$ ήμα 6.6:
ιδιοτιμές ενέργειας του τολουενίου

Πίναχας 6.7: HOMO, LUMO
 χαι $E_{\rm g}$ του τολουενίου σε ${\rm eV}$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.90	-4.28	4.62
υπολογισμός HKS	-9.169	-4.231	4.938
σχετικό σφάλμα HKS	0.030	-0.011	0.069
υπολογισμός MMTS	-9.577	-3.543	6.034
σχετικό σφάλμα MMTS	0.076	-0.172	0.306

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	0.5795	0.0000	0.336	0.5795	0.0000	0.336
3	2	0.3047	0.0000	0.093	0.3047	0.0000	0.093
3	3	-0.2711	0.0000	0.073	-0.2711	0.0000	0.073
3	4	-0.5753	0.0000	0.331	-0.5753	0.0000	0.331
3	5	-0.3011	0.0000	0.091	-0.3011	0.0000	0.091
3	6	0.2760	0.0000	0.076	0.2760	0.0000	0.076
4	1	0.5795	0.0000	0.336	-0.5795	0.0000	0.336
4	2	-0.3047	0.0000	0.093	0.3047	0.0000	0.093
4	3	-0.2711	0.0000	0.073	0.2711	0.0000	0.073
4	4	0.5753	0.0000	0.331	-0.5753	0.0000	0.331
4	5	-0.3011	0.0000	0.091	0.3011	0.0000	0.091
4	6	-0.2760	0.0000	0.076	0.2760	0.0000	0.076

Πίναχας 6.8: Ιδιοανύσματα του τολουενίου.

Σχήμα 6.7: Οι συντεταγμένες των ατόμων του τολουενίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS-MMTS).

6.3 Κουμένιο (C_9H_{12})

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.8) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 6.8: Το μόριο του κουμενίου

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α6.9.

Πίναχας 6.9: Οι συντεταγμένες των ατόμων του χουμενίου με p_z ηλεχτρόνια σε Å.

άτομο	x	y	z
С	3.1585	2.0014	2.0268
С	3.9693	0.9132	2.3566
С	5.3486	0.9960	2.2157
С	5.9305	2.1694	1.7457
С	5.1288	3.2578	1.4196
С	3.7474	3.1762	1.5589

Παίρνουμε την πειραματική τιμή του HOMO από το NIST [11].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.3) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.10 και σχηματικά στο Σχήμα 6.9.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 \\ V_2 & E_C & V_3 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C \end{bmatrix}$$
(6.3)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.364D και d(MMTS) = 3.364D.

Στον Πίνακα 6.12 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

204
Πίνακας 6.10: Ιδιοτιμές ενέργειας για το κουμένιο σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-11.650	-12.610
2	-9.185	-9.597
3	-9.168	-9.577
4	-4.232	-3.543
5	-4.215	-3.523
6	-1.746	-0.506

Σχήμα 6.9:
ιδιοτιμές ενέργειας του χουμενίου

Πίνα
κας 6.11: HOMO, LUMO και $E_{\rm g}$ του κουμενίου σε
eV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.71	-4.07	4.64
υπολογισμός HKS	-9.168	-4.232	4.937
σχετικό σφάλμα HKS	0.053	0.040	0.064
υπολογισμός MMTS	-9.577	-3.543	6.034
σχετικό σφάλμα MMTS	0.100	-0.129	0.300

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	0.5792	0.0000	0.335	-0.5792	0.0000	0.335
3	2	0.3082	0.0000	0.095	-0.3082	0.0000	0.095
3	3	-0.2672	0.0000	0.071	0.2672	0.0000	0.071
3	4	-0.5754	0.0000	0.331	0.5754	0.0000	0.331
3	5	-0.3053	0.0000	0.093	0.3053	0.0000	0.093
3	6	0.2719	0.0000	0.074	-0.2719	0.0000	0.074
4	1	0.5792	0.0000	0.335	0.5792	0.0000	0.335
4	2	-0.3082	0.0000	0.095	-0.3082	0.0000	0.095
4	3	-0.2672	0.0000	0.071	-0.2672	0.0000	0.071
4	4	0.5754	0.0000	0.331	0.5754	0.0000	0.331
4	5	-0.3053	0.0000	0.093	-0.3053	0.0000	0.093
4	6	-0.2719	0.0000	0.074	-0.2719	0.0000	0.074

Πίναχας 6.12: Ιδιοανύσματα του χουμενίου.

Σχήμα 6.10: Οι συντεταγμένες των ατόμων του κουμενίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS-MMTS).

6.4 π-Ξυλόλιο (C_8H_{10})

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.11) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 6.11: Το μόριο του π-ξυλολίου

Οι συντεταγμένες των 6 ατόμων που συνεισφέρου
ν $6 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α6.13.

Πίναχας 6.13: Οι συντεταγμένες των ατόμων π-ξυλολίου με p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	1.3949	0.0000	0.0002
С	0.6974	1.2079	0.0001
С	-0.6975	1.2080	0.0000
С	-1.3949	0.0000	0.0002
С	-0.6975	-1.2079	0.0000
С	0.6974	-1.2079	0.0001

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.4) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.14 και σχηματικά στο Σχήμα 6.12.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 \\ V_2 & E_C & V_3 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C \end{bmatrix}$$
(6.4)

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.350D και d(MMTS) = 3.350D.

Στον Πίνακα 6.16 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=3, l=4) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$

Πίναχας 6.14: Ιδιοτιμές ενέργειας για το π-ξυλόλιο σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-11.630	-12.590
2	-9.168	-9.576
3	-9.167	-9.575
4	-4.233	-3.545
5	-4.232	-3.544
6	-1.765	-0.529

Σχήμα 6.12:
ιδιοτιμές ενέργειας του π-ξυλολίου

Πίνα
жας 6.15: HOMO, LUMO και $E_{\rm g}$ του π-ξυλολίου σε
eV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά			4.54
υπολογισμός HKS	-9.167	-4.233	4.934
σχετικό σφάλμα HKS			0.087
υπολογισμός MMTS	-9.575	-3.545	6.031
σχετικό σφάλμα MMTS			0.328

το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο
 ν -ιοστό άτομο για την ιδιοενέργει
α $E_l.$

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
3	1	-0.1238	0.0000	0.015	-0.1238	0.0000	0.015
3	2	0.4264	0.0000	0.182	0.4264	0.0000	0.182
3	3	0.5503	0.0000	0.303	0.5503	0.0000	0.303
3	4	0.1238	0.0000	0.015	0.1238	0.0000	0.015
3	5	-0.4264	0.0000	0.182	-0.4264	0.0000	0.182
3	6	-0.5503	0.0000	0.303	-0.5503	0.0000	0.303
4	1	0.1238	0.0000	0.015	-0.1238	0.0000	0.015
4	2	0.4264	0.0000	0.182	-0.4264	0.0000	0.182
4	3	-0.5503	0.0000	0.303	0.5503	0.0000	0.303
4	4	0.1238	0.0000	0.015	-0.1238	0.0000	0.015
4	5	0.4264	0.0000	0.182	-0.4264	0.0000	0.182
4	6	-0.5503	0.0000	0.303	0.5503	0.0000	0.303

Πίναχας 6.16: Ιδιοανύσματα του π-ξυλολίου.

Σχήμα 6.13: Οι συντεταγμένες των ατόμων του π-ξυλολίου και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS-MMTS).

6.5 Ακετοφαινόνη ($\mathbf{C}_8\mathbf{H}_8\mathbf{O}$)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.14) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 6.14: Το μόριο της ακετοφαινόνης

Οι συντεταγμένες των 8 ατόμων που συνεισφέρου
ν 8 p_z ηλεκτρόνια παρουσιάζονται στον Πίνακ
α6.17.

Πίνα
χας 6.17: Οι συντεταγμένες των ατόμων της ακετοφαινόνης μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
С	6.2783	1.8461	-0.6226
С	6.8266	0.5992	-0.2820
С	5.9994	-0.4897	-0.0261
С	4.6106	-0.3471	-0.1069
С	4.0546	0.8881	-0.4445
С	4.8840	1.9797	-0.7014
С	7.2187	2.9844	-0.8871
0	8.4274	2.8255	-0.8068

Παίρνουμε την πειραματική τιμή του HOMO από το NIST [11].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.5) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.18 και σχηματικά στο Σχήμα 6.15.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 & V_7 & 0 \\ V_2 & E_C & V_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 & 0 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 & 0 & 0 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C & 0 & 0 \\ V_7 & 0 & 0 & 0 & 0 & 0 & E_C & V_8 \\ 0 & 0 & 0 & 0 & 0 & 0 & V_8 & E_O \end{bmatrix}$$
(6.5)

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.550	-13.510
2	-11.630	-12.260
3	-9.364	-9.635
4	-9.174	-9.584
5	-5.695	-4.959
6	-4.226	-3.536
7	-3.501	-2.528
8	-1.561	-0.259

Πίνακας 6.18: Ιδιοτιμές ενέργειας για την ακετοφαινόνη σε eV.

 Σ χήμα 6.15:
ιδιοτιμές ενέργειας της αχετοφαινόνης

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 2.410D και d(MMTS) = 2.559D.

Πίνα
χας 6.19: HOMO, LUMO και $E_{\rm g}$ της ακετοφαινόνης σε
 $\rm eV$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-9.37	-5.04	4.33
υπολογισμός HKS	-9.174	-5.695	3.479
σχετικό σφάλμα HKS	-0.021	0.130	-0.197
υπολογισμός MMTS	-9.584	-4.959	4.624
σχετικό σφάλμα MMTS	0.023	-0.016	0.068

Στον Πίνακα 6.20 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες ΗΟΜΟ και LUMO (l=4, l=5) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής

l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
4	1	-0.0035	0.0000	0.000	-0.0156	0.0000	0.000
4	2	0.4991	0.0000	0.249	0.4931	0.0000	0.243
4	3	0.5013	0.0000	0.251	0.5071	0.0000	0.257
4	4	0.0009	0.0000	0.000	0.0128	0.0000	0.000
4	5	-0.4987	0.0000	0.249	-0.4925	0.0000	0.243
4	6	-0.5009	0.0000	0.251	-0.5066	0.0000	0.257
4	7	-0.0012	0.0000	0.000	-0.0018	0.0000	0.000
4	8	0.0014	0.0000	0.000	0.0090	0.0000	0.000
5	1	0.2166	0.0000	0.047	0.2841	0.0000	0.081
5	2	-0.3366	0.0000	0.113	-0.3307	0.0000	0.109
5	3	-0.0762	0.0000	0.006	-0.1042	0.0000	0.011
5	4	0.3714	0.0000	0.138	0.3898	0.0000	0.152
5	5	-0.0756	0.0000	0.006	-0.1034	0.0000	0.011
5	6	-0.3399	0.0000	0.116	-0.3343	0.0000	0.112
5	7	0.6708	0.0000	0.450	0.5853	0.0000	0.343
5	8	-0.3533	0.0000	0.125	-0.4268	0.0000	0.182

Πίναχας 6.20: Ιδιοανύσματα της αχετοφαινόνης.

Σχήμα 6.16: Οι συντεταγμένες των ατόμων της ακετοφαινόνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 6.17: Οι συντεταγμένες των ατόμων της ακετοφαινόνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

6.6 Διμεθυλανιλίνη ($\mathbf{C}_8\mathbf{H}_{11}\mathbf{N}$)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.18) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 6.18: Το μόριο της διμεθυλανιλίνης

Οι συντεταγμένες των 7 ατόμων που συνεισφέρου
ν $8 \; p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α6.21.

Πίνα
κας 6.21: Οι συντεταγμένες των ατόμων της διμεθυλανιλίνης μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
Ċ	6.3097	1.8475	-0.5977
С	6.8212	0.5672	-0.2856
С	5.9666	-0.5045	-0.0389
С	4.5812	-0.3528	-0.1012
С	4.0650	0.9028	-0.4224
С	4.9049	1.9855	-0.6722
N	7.1569	2.9338	-0.8118

Παίρνουμε την πειραματική τιμή του HOMO από το NIST [11].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.6) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.22 και σχηματικά στο Σχήμα 6.19.

$$\begin{bmatrix} E_C & V_2 & 0 & 0 & 0 & V'_6 & V_7 \\ V_2 & E_C & V_3 & 0 & 0 & 0 & 0 \\ 0 & V_3 & E_C & V_4 & 0 & 0 & 0 \\ 0 & 0 & V_4 & E_C & V_5 & 0 & 0 \\ 0 & 0 & 0 & V_5 & E_C & V_6 & 0 \\ V'_6 & 0 & 0 & 0 & V_6 & E_C & 0 \\ V_7 & 0 & 0 & 0 & 0 & 0 & E_{N3} \end{bmatrix}$$
(6.6)

l	$E_l(HKS)$	$E_l(MMTS)$
1	-12.690	-13.780
2	-10.960	-11.710
3	-9.175	-9.585
4	-8.390	-8.583
5	-4.225	-3.535
6	-3.973	-3.218
7	-1.684	-0.426

Πίναχας 6.22: Ιδιοτιμές ενέργειας για την διμεθυλανιλίνη σε eV.

Σχήμα 6.19: ιδιοτιμές ενέργειας της διμεθυλανιλίνης

Πίναχας 6.23:	HOMO,	LUMO	και	$E_{\rm g}$	της	διμεθυλανιλίν	ης σ	$\epsilon \mathrm{eV}$	
---------------	-------	------	-----	-------------	-----	---------------	------	-------------------------	--

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-7.55	-3.28	4.27
υπολογισμός HKS	-8.390	-4.225	4.165
σχετικό σφάλμα HKS	0.111	0.288	-0.025
υπολογισμός MMTS	-8.583	-3.535	5.047
σχετικό σφάλμα MMTS	0.137	0.078	0.182

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 3.216D και d(MMTS) = 3.196D.

Στον Πίνακα 6.24 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=4, l=5) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$

το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο
 ν -ιοστό άτομο για την ιδιοενέργει
α $E_l.$

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
4	1	0.4472	0.0000	0.200	0.4375	0.0000	0.191
4	2	0.3835	0.0000	0.147	0.3850	0.0000	0.148
4	3	-0.1722	0.0000	0.030	-0.1672	0.0000	0.028
4	4	-0.5028	0.0000	0.253	-0.4985	0.0000	0.248
4	5	-0.1723	0.0000	0.030	-0.1672	0.0000	0.028
4	6	0.3836	0.0000	0.147	0.3850	0.0000	0.148
4	7	-0.4401	0.0000	0.194	-0.4558	0.0000	0.208
5	1	-0.0001	0.0000	0.000	-0.0001	0.0000	0.000
5	2	0.5000	0.0000	0.250	0.5000	0.0000	0.250
5	3	-0.4999	0.0000	0.250	-0.4999	0.0000	0.250
5	4	-0.0002	0.0000	0.000	-0.0001	0.0000	0.000
5	5	0.5001	0.0000	0.250	0.5001	0.0000	0.250
5	6	-0.5000	0.0000	0.250	-0.5000	0.0000	0.250
5	7	0.0000	0.0000	0.000	0.0000	0.0000	0.000

Πίναχας 6.24: Ιδιοανύσματα της διμεθυλανιλίνης.

Σχήμα 6.20: Οι συντεταγμένες των ατόμων της διμεθυλανιλίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

Σχήμα 6.21: Οι συντεταγμένες των ατόμων της διμεθυλανιλίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

6.7 Ινδόλη (C_8H_7N)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.22) και απαριθμούμε τα άτομά του. (Γεωμετρία από το NIST [11]).

Σχήμα 6.22: Το μόριο της ινδόλης

Οι συντεταγμένες των 9 ατόμων που συνεισφέρου
ν $10\ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 6.25.

άτομο	x	y	z
N	1.1958	-0.5585	0.8394
С	-0.1348	-0.3403	1.1477
С	-0.4408	0.9796	0.9468
С	0.7577	1.6269	0.4876
С	1.0856	2.9437	0.1181
С	2.3820	3.2288	-0.2893
С	3.3693	2.2220	-0.3375
С	3.0786	0.9111	0.0208
С	1.7709	0.6284	0.4309

Πίναχας 6.25: Οι συντεταγμένες των ατόμων της ινδόλης με p_z ηλεκτρόνια σε Α.

Παίρνουμε την πειραματική τιμή του HOMO από το NIST [11].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.7) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.26 και σχηματικά στο Σχήμα 6.23.

E_{N3}	V_2	0	0	0	0	0	0	V'_{9} -	
V_2	E_C	V_3	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	V_9''	
0	0	0	V_5	E_C	V_6	0	0	0	(6.7)
0	0	0	0	V_6	E_C	V_7	0	0	
0	0	0	0	0	V_7	E_C	V_8	0	
0	0	0	0	0	0	V_8	E_C	V_9	
V'_9	0	0	V_9''	0	0	0	V_9	E_C	

Πίνα
χας 6.26: Ιδιοτιμές ενέργειας για την ινδόλη σε $\rm eV.$

l	$E_l(HKS)$	$E_l(MMTS)$
1	-13.560	-14.840
2	-11.200	-12.030
3	-9.937	-10.510
4	-8.736	-9.033
5	-8.206	-8.387
6	-4.540	-3.915
7	-3.853	-3.068
8	-2.989	-2.012
9	-1.469	-0.165

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.286D και d(MMTS) = 4.238D.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-7.86	-3.54	4.32
υπολογισμός HKS	-8.206	-4.540	3.665
σχετικό σφάλμα HKS	0.044	0.282	-0.152
υπολογισμός MMTS	-8.387	-3.915	4.472
σχετικό σφάλμα MMTS	0.067	0.106	0.035

Πίνα
жаς 6.27: HOMO, LUMO και $E_{\rm g}$ της ινδόλης σε
 $\rm eV$.

Στον Πίνακα 6.28 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=5, l=6) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
5	1	0.2461	0.0000	0.061	0.2584	0.0000	0.067
5	2	-0.4574	0.0000	0.209	-0.4474	0.0000	0.200
5	3	-0.5106	0.0000	0.261	-0.5147	0.0000	0.265
5	4	0.1729	0.0000	0.030	0.1616	0.0000	0.026
5	5	0.4082	0.0000	0.167	0.4106	0.0000	0.169
5	6	0.0783	0.0000	0.006	0.0889	0.0000	0.008
5	7	-0.3726	0.0000	0.139	-0.3688	0.0000	0.136
5	8	-0.3017	0.0000	0.091	-0.3080	0.0000	0.095
5	9	0.1925	0.0000	0.037	0.1862	0.0000	0.035
6	1	-0.1623	0.0000	0.026	-0.1623	0.0000	0.026
6	2	0.4459	0.0000	0.199	0.4417	0.0000	0.195
6	3	-0.2172	0.0000	0.047	-0.2145	0.0000	0.046
6	4	-0.2892	0.0000	0.084	-0.2867	0.0000	0.082
6	5	0.4988	0.0000	0.249	0.5012	0.0000	0.251
6	6	-0.1507	0.0000	0.023	-0.1562	0.0000	0.024
6	7	-0.3800	0.0000	0.144	-0.3774	0.0000	0.142
6	8	0.4764	0.0000	0.227	0.4801	0.0000	0.231
6	9	-0.0344	0.0000	0.001	-0.0412	0.0000	0.002

Πίνακας 6.28: Ιδιοανύσματα της ινδόλης.

Σχήμα 6.24: Οι συντεταγμένες των ατόμων της ινδόλης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (HKS).

Σχήμα 6.25: Οι συντεταγμένες των ατόμων της ινδόλης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα ΗΟΜΟ και LUMO (MMTS).

6.8 Λουμινόλη ($C_8H_7N_3O_2$)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.26) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 6.26: Το μόριο της λουμινόλης

Οι συντεταγμένες των 13 ατόμων που συνεισφέρου
ν $16\ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακ
α6.29.

άτομο	x	<i>y</i>	z
С	0.3799	-0.3160	-0.0004
С	1.7684	-0.1392	-0.0008
С	2.3062	1.1482	-0.0004
С	1.4633	2.2580	0.0014
С	0.0789	2.0849	0.0015
С	-0.4638	0.7946	0.0002
С	-1.9280	0.6140	-0.0005
N	-2.3881	-0.6823	-0.0010
N	-1.5588	-1.7738	0.0010
С	-0.1866	-1.6782	0.0005
0	0.5189	-2.6829	0.0016
N	2.6844	-1.2159	-0.0019
0	-2.6748	1.5887	-0.0011

Πίναχας 6.29: Οι συντεταγμένες των ατόμων της λουμινόλης με p_z ηλεκτρόνια σε Å.

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.8) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.30 και σχηματικά στο Σχήμα 6.27.

E_C	V_2	0	0	0	V'_6	0	0	0	V'_{10}	0	0	0 -	
V_2	E_C	V_3	0	0	0	0	0	0	0	0	V_{12}	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	0	0	0	0	
V'_6	0	0	0	V_6	E_C	V_7	0	0	0	0	0	0	
0	0	0	0	0	V_7	E_C	V_8	0	0	0	0	V_{13}	(6.
0	0	0	0	0	0	V_8	E_{N3}	V_9	0	0	0	0	
0	0	0	0	0	0	0	V_9	E_{N3}	V_{10}	0	0	0	
V'_{10}	0	0	0	0	0	0	0	V_{10}	E_C	V_{11}	0	0	
0	0	0	0	0	0	0	0	0	V_{11}	E_O	0	0	
0	V_{12}	0	0	0	0	0	0	0	0	0	E_{N3}	0	
0	0	0	0	0	0	V_{13}	0	0	0	0	0	E_O	

Πίναχας 6.30: Ιδιοτιμές ενέργειας για τη λουμινόλη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-15.010	-16.260
2	-13.730	-13.890
3	-12.790	-13.640
4	-12.510	-12.410
5	-11.010	-11.470
6	-9.476	-9.704
7	-9.423	-9.152
8	-8.449	-8.626
9	-5.350	-4.695
10	-4.693	-3.892
11	-3.273	-2.196
12	-3.066	-1.993
13	-1.118	0.310

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 4.458D και d(MMTS) = 4.349D.

Στον Πίνακα 6.32 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=8, l=9) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου u, το πραγματικό και το φανταστικό μέρος του $c_{l
u}$ και το $|c_{l
u}|^2$ το οποίο εχφράζει την πιθανότητα παρουσίας του ηλεχτρονίου στο ν-ιοστό άτομο για την ιδιοενέργεια E_l.

8)

 $\Sigma \chi$ ήμα 6.27: ιδιοτιμές ενέργειας της λουμινόλης

Πίνα
жας 6.31: HOMO, LUMO και $E_{\rm g}$ της λουμινόλης σε
eV .

	HOMO	LUMO	$E_{\rm g}$
πειραματικά			3.56
υπολογισμός HKS	-8.449	-5.350	3.099
σχετικό σφάλμα HKS			-0.129
υπολογισμός MMTS	-8.626	-4.695	3.930
σχετικό σφάλμα MMTS			0.104

Σχήμα 6.28: Οι συντεταγμένες των ατόμων της λουμινόλης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
8	1	0.3127	0.0000	0.098	-0.3060	0.0000	0.094
8	2	0.4163	0.0000	0.173	-0.3949	0.0000	0.156
8	3	0.3820	0.0000	0.146	-0.3623	0.0000	0.131
8	4	-0.1449	0.0000	0.021	0.1462	0.0000	0.021
8	5	-0.4857	0.0000	0.236	0.4633	0.0000	0.215
8	6	-0.2009	0.0000	0.040	0.1724	0.0000	0.030
8	7	0.0303	0.0000	0.001	-0.0402	0.0000	0.002
8	8	0.2316	0.0000	0.054	-0.2906	0.0000	0.084
8	9	-0.2522	0.0000	0.064	0.3056	0.0000	0.093
8	10	0.0104	0.0000	0.000	0.0113	0.0000	0.000
8	11	-0.0099	0.0000	0.000	-0.0256	0.0000	0.001
8	12	-0.4080	0.0000	0.166	0.4062	0.0000	0.165
8	13	-0.0288	0.0000	0.001	0.0908	0.0000	0.008
9	1	-0.3591	0.0000	0.129	-0.3799	0.0000	0.144
9	2	0.0914	0.0000	0.008	0.0775	0.0000	0.006
9	3	0.3453	0.0000	0.119	0.3622	0.0000	0.131
9	4	-0.2798	0.0000	0.078	-0.3009	0.0000	0.091
9	5	-0.1930	0.0000	0.037	-0.1769	0.0000	0.031
9	6	0.3879	0.0000	0.150	0.4130	0.0000	0.171
9	7	0.3788	0.0000	0.143	0.3359	0.0000	0.113
9	8	-0.3041	0.0000	0.092	-0.2710	0.0000	0.073
9	9	0.2844	0.0000	0.081	0.2552	0.0000	0.065
9	10	-0.3158	0.0000	0.100	-0.2855	0.0000	0.082
9	11	0.1560	0.0000	0.024	0.1965	0.0000	0.039
9	12	-0.0396	0.0000	0.002	-0.0336	0.0000	0.001
9	13	-0.1870	0.0000	0.035	-0.2311	0.0000	0.053

Πίναχας 6.32: Ιδιοανύσματα της λουμινόλης.

Σχήμα 6.29: Οι συντεταγμένες των ατόμων της λουμινόλης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

6.9 Φαινανθρολίνη ($\mathbf{C}_{12}\mathbf{H}_8\mathbf{N}_2$)

Χρησιμοποιώντας την εφαρμογή Jmol αναπαριστούμε το μόριο (Σχήμα 6.30) και απαριθμούμε τα άτομά του. (Γεωμετρία από το PubChem [64]).

Σχήμα 6.30: Το μόριο της φαινανθρολίνης

Οι συντεταγμένες των 14 ατόμων που συνεισφέρου
ν $14 \ p_z$ ηλεκτρόνια παρουσιάζονται στον Πίνακα 6.33.

Πίνα
κας 6.33: Οι συντεταγμένες των ατόμων της φαινανθρολίνης μ
ε p_z ηλεκτρόνια σε Å.

άτομο	x	y	z
Ν	1.3676	1.5364	-0.0002
С	2.7202	1.5165	0.0001
С	3.4749	0.3635	0.0002
С	2.7938	-0.8435	0.0000
С	1.3924	-0.8641	-0.0001
С	0.6938	-2.0749	0.0000
С	-0.6938	-2.0748	0.0000
С	-1.3923	-0.8640	-0.0001
С	-2.7938	-0.8435	0.0000
С	-3.4749	0.3635	0.0001
С	-2.7202	1.5164	0.0001
N	-1.3675	1.5365	0.0000
С	-0.6967	0.3660	-0.0001
С	0.6967	0.3659	-0.0001

Παίρνουμε την πειραματική τιμή του HOMO από το NIST [11].

Το fortran πρόγραμμα διαβάζει τις συντεταγμένες από το input αρχείο, διαγωνοποιεί τον πίναχα χαμιλτονιανής (6.9) και υπολογίζει τα ιδιοανύσματα και τις ιδιοτιμές της ενέργειας. Τα αποτελέσματα εμφανίζονται στα output αρχεία για τις δύο παραμετροποιήσεις. Οι ιδιοτιμές παρουσιάζονται στον Πίναχα 6.34 και σχηματικά στο Σχήμα 6.31.

E_{N2}	V_2	0	0	0	0	0	0	0	0	0	0	0	V'_{14}	
V_2	E_C	V_3	0	0	0	0	0	0	0	0	0	0	0	
0	V_3	E_C	V_4	0	0	0	0	0	0	0	0	0	0	
0	0	V_4	E_C	V_5	0	0	0	0	0	0	0	0	0	
0	0	0	V_5	E_C	V_6	0	0	0	0	0	0	0	V_{14}''	
0	0	0	0	V_6	E_C	V_7	0	0	0	0	0	0	0	
0	0	0	0	0	V_7	E_C	V_8	0	0	0	0	0	0	(6.0)
0	0	0	0	0	0	V_8	E_C	V_9	0	0	0	V'_{13}	0	(0.9)
0	0	0	0	0	0	0	V_9	E_C	V_{10}	0	0	0	0	
0	0	0	0	0	0	0	0	V_{10}	E_C	V_{11}	0	0	0	
0	0	0	0	0	0	0	0	0	V_{11}	E_C	V_{12}	0	0	
0	0	0	0	0	0	0	0	0	0	V_{12}	E_{N2}	V_{13}	0	
0	0	0	0	0	0	0	V'_{13}	0	0	0	V_{13}	E_C	V_{14}	
V'_{14}	0	0	0	$V_{14}^{\prime\prime}$	0	0	0	0	0	0	0	V_{14}	E_C	

Πίναχας 6.34: Ιδιοτιμές ενέργειας για τη φαινανθρολίνη σε eV.

l	$E_l(HKS)$	$E_l(MMTS)$
1	-12.960	-14.620
2	-11.830	-13.360
3	-10.780	-11.890
4	-10.020	-10.860
5	-9.858	-10.650
6	-8.886	-9.372
7	-8.324	-8.693
8	-5.306	-5.009
9	-5.057	-4.993
10	-3.991	-3.351
11	-3.474	-2.719
12	-3.019	-2.191
13	-1.932	-0.841
14	-0.759	0.586

Επίσης υπολογίζεται η διπολική ροπή για τη μετάβαση από HOMO σε LUMO σύμφωνα με την εξίσωση 1.131: d(HKS) = 5.861D και d(MMTS) = 2.446D.

Στον Πίνακα 6.36 παρατίθενται τα ιδιοανύσματα που αντιστοιχούν στις ενέργειες HOMO και LUMO (l=7, l=8) αντίστοιχα. Οι στήλες περιέχουν το δείκτη της ιδιοτιμής l, το δείκτη του ατόμου ν , το πραγματικό και το φανταστικό μέρος του $c_{l\nu}$ και το $|c_{l\nu}|^2$ το οποίο εκφράζει την πιθανότητα παρουσίας του ηλεκτρονίου στο ν -ιοστό άτομο για την ιδιοενέργεια E_l .

Σχήμα 6.31: ιδιοτιμές ενέργειας της φαινανθρολίνης

Πίνακας 6.35: HOMO, LUMO και $E_{\rm g}$ της φαινανθρολίνης σε ${\rm eV}$.

	HOMO	LUMO	$E_{\rm g}$
πειραματικά	-8.51	-3.79	4.72
υπολογισμός HKS	-8.324	-5.306	3.019
σχετικό σφάλμα HKS	-0.022	0.400	-0.360
υπολογισμός MMTS	-8.693	-5.009	3.683
σχετικό σφάλμα MMTS	0.022	0.322	-0.220

Σχήμα 6.32: Οι συντεταγμένες των ατόμων της φαινανθρολίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (HKS).

l	ν	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$	$Re(c_{l\nu})$	$Im(c_{l\nu})$	$ c_{l\nu} ^2$
		HKS	HKS	HKS	MMTS	MMTS	MMTS
7	1	-0.2191	0.0000	0.048	0.2098	0.0000	0.044
7	2	-0.2760	0.0000	0.076	0.2353	0.0000	0.055
7	3	0.0500	0.0000	0.003	-0.0552	0.0000	0.003
7	4	0.3117	0.0000	0.097	-0.2766	0.0000	0.077
7	5	0.1560	0.0000	0.024	-0.1410	0.0000	0.020
7	6	-0.4411	0.0000	0.195	0.4631	0.0000	0.214
7	7	-0.4410	0.0000	0.195	0.4631	0.0000	0.214
7	8	0.1560	0.0000	0.024	-0.1411	0.0000	0.020
7	9	0.3118	0.0000	0.097	-0.2767	0.0000	0.077
7	10	0.0501	0.0000	0.003	-0.0552	0.0000	0.003
7	11	-0.2760	0.0000	0.076	0.2354	0.0000	0.055
7	12	-0.2192	0.0000	0.048	0.2098	0.0000	0.044
7	13	0.2392	0.0000	0.057	-0.2944	0.0000	0.087
7	14	0.2393	0.0000	0.057	-0.2944	0.0000	0.087
8	1	0.2135	0.0000	0.046	0.3666	0.0000	0.134
8	2	-0.3433	0.0000	0.118	-0.1927	0.0000	0.037
8	3	-0.0322	0.0000	0.001	-0.2837	0.0000	0.081
8	4	0.3652	0.0000	0.133	0.3389	0.0000	0.115
8	5	-0.1755	0.0000	0.031	0.1142	0.0000	0.013
8	6	-0.3923	0.0000	0.154	-0.0706	0.0000	0.005
8	7	0.3923	0.0000	0.154	-0.0766	0.0000	0.006
8	8	0.1754	0.0000	0.031	0.1112	0.0000	0.012
8	9	-0.3655	0.0000	0.134	0.3453	0.0000	0.119
8	10	0.0324	0.0000	0.001	-0.2840	0.0000	0.081
8	11	0.3434	0.0000	0.118	-0.1988	0.0000	0.040
8	12	-0.2138	0.0000	0.046	0.3699	0.0000	0.137
8	13	-0.1312	0.0000	0.017	-0.3314	0.0000	0.110
8	14	0.1315	0.0000	0.017	-0.3327	0.0000	0.111

Πίναχας 6.36: Ιδιοανύσματα της φαινανθρολίνης.

Σχήμα 6.33: Οι συντεταγμένες των ατόμων της φαινανθρολίνης και οι πιθανότητες παρουσίας του ηλεκτρονίου στο κάθε άτομο για τις ιδιοενέργειες που αντιστοιχούν στα HOMO και LUMO (MMTS).

6.10 Συγκεντρωτικά αποτελέσματα πειραματικά μετρημένων μορίων

πειραματικά.

me, nula	Image	HOMO (eV) HKS	LUMO (eV) HKS	Eg (eV) HKS	HOMO (eV) MMTS	LUMO (eV) MMTS	Eg (eV) MMTS	HOMO exp (eV)	LUMO exp (eV)	Eg exp (eV)	ld (D) HKS	d (D) MMTS
	\mathbf{x}	-9.181	-4.219	4.961	-9.592	-3.528	6.064	-9.25	-4.50	4.75	0.000	0.000
6)	Å.	-9.169	-4.231	4.938	-9.577	-3.543	6.034	-8.9	-4.28	4.62	3.362	3.362
<u>ں</u>	$\frac{1}{2}$	-9.167	-4.233	4.934	-9.575	-3.545	6.031	ı	ı	4.54	3.350	3.350
ن	*	-9.168	-4.232	4.937	-9.577	-3.543	6.034	-8.71	-4.07	4.64	3.364	3.364
en	¥	-9.174	-5.695	3.479	-9.584	-4.959	4.624	-9.37	-5.04	4.33	2.410	2.559
l I	¥.	-8.39	-4.225	4.165	-8.583	-3.535	5.047	-7.55	-3.28	4.27	3.216	3.196
	\$	-8.206	-4.540	3.665	-8.387	-3.915	4.472	-7.86	-3.54	4.32	4.286	4.238
<u>5</u> 0	芬	-8.449	-5.350	3.099	-8.626	-4.695	3.930	ı	ı	3.56	4.458	4.349
:hr 2	HH I	-8.324	-5.306	3.019	-8.693	-5.009	3.683	-8.51	-3.79	4.72	5.861	2.446

Σχήμα 6.35: Συγκεντρωτικά αποτελέσματα πειραματικά μετρημένων μορίων.

٦

Στα διαγράμματα του Σχήματος 6.34 συγκρίνονται τα αποτελέσματα των δύο παραμετροποιήσεων και οι πειραματικές τιμές για τις ενέργειες ιονισμού (=-HOMO) [πάνω] και ενέργειες διέγερσης (=E_g) [κάτω]. Η HKS προσεγγίζει καλύτερα τις πειραματικές τιμές και για τις δύο ενέργειες.

Στο Σχήμα 6.35 παρουσιάζονται τα HOMO, LUMO και E_g όπως υπολογίστηκαν με τις δύο παραμετροποιήσεις HKS και MMTS, οι αντίστοιχες πειραματικές τιμές, καθώς και οι υπολογισμένες διπολικές ροπές.

Για την ποσοτική σύγκριση των δύο παραμετροποιήσεων, σχεδιάζουμε τα επί τοις εκατό σφάλματα για τις ενέργειες HOMO και E_g (Σχήμα 6.36). Για την HKS, η μέση τιμή των επί τοις εκατό σφαλμάτων του HOMO ισούται με 0.041 και του E_g με 0.123. Και για την MMTS είναι 0.066 και 0.200 αντίστοιχα.

Σχήμα 6.36: Τα επί τοις εκατό σφάλματα στις ενέργειες ΗΟΜΟ και ενέργειες χάσματος των μορίων που μετρήθηκαν πειραματικά.

Συμπεράσματα

Δεδομένου ότι η μέθοδος που περιγράφηκε σε αυτή την εργασία λαμβάνει υπόψη λίγες παραμέτρους και της απλότητας της LCAO, η σύγκριση των αποτελεσμάτων με τα πειραματικά δεδομένα είναι μάλλον ικανοποιητική. Σαφής εικόνα μεταξύ των δύο παραμετροποιήσεων για το ποια δίνει καλύτερα αποτελέσματα δεν υπάρχει. Μπορούμε ίσως να πούμε ότι σε γενικές γραμμές η HKS δίνει καλύτερα αποτελέσματα για την ενέργεια ιονισμού, ενώ η MMTS για την ενέργεια διέγερσης. Η μέση τιμή των επί τοις εκατό σφαλμάτων του HOMO είναι 0.037 για την HKS και 0.046 για την MMTS. Και αντίστοιχα για το E_q είναι 0.15 και 0.098.

Στο Σχήμα 6.37 παρουσιάζονται οι πειραματικές τιμές της διπολικής ροπής μετάβασης για όσα μόρια βρήκαμε στη βιβλιογραφία (αναφορές [65] [66] [67]) καθώς και οι αντίστοιχες τιμές που υπολογίσαμε. Οι τιμές αυτές έχουν σημαντική απόκλιση, κι αυτό διότι η προσέγγιση που χρησιμοποιήσαμε είναι χονδροειδής, αφού αγνοήσαμε τις κυματοσυναρτήσεις εκτός των θέσεων των ατόμων στο μόριο. Ωστόσο, είναι ένας εύκολος υπολογισμός για μια πρώτη εκτίμηση της τάξης μεγέθους.

Είναι ενδιαφέρον επίσης να σημειωθεί ότι τα μόρια που παρουσιάζουν συμμετρία στη γεωμετρία τους, εμφανίζουν την ίδια συμμετρία και στις πιθανότητες παρουσίας του ηλεκτρονίου στα άτομα για κάθε ιδιοενέργεια. Τέτοια μόρια είναι τα:

• καρβαζόλιο, φαινανθρολίνη, διμεθυλανιλίνη, πυριδαζίνη και πυριμιδίνη με \mathbf{C}_{2v} συμμετρία,

- πυραζίνη με D_{2h} συμμετρία και
- βενζόλιο με D_{6h} συμμετρία.

Name, formula	Image	d (D) HKS	d (D) MMTS	d (D) exp
$\begin{array}{c} Caffeine \\ C_8 H_{10} N_4 O_2 \end{array}$	7¢	4.53	4.515	3.118
Adenine C₅H₅N₅	de la comparte da la	4.544	4.493	3.4
Guanine C₅H₅N₅O	-¢¢¢	3.932	4.398	3.0
Cytosine C₄H₅N₃O	Å	3.445	3.484	2.8
Thymine C₅H₀N₂O₂	*	3.954	4.162	3.4
Acetophenone CଃHଃO	\$\$\$	2.410	2.559	2.998
Dimethylaniline CଃH₁℩N	¥¥	3.216	3.196	1.851
Indole C ₈ H ₇ N	XX-	4.286	4.238	2.173

Σχήμα 6.37: Αριθμητικά αποτελέσματα και πειραματικά δεδομένα για τις διπολικές ροπές μετάβασης.

Βιβλιογραφία

- E. Huckel, Zeitschrift fur Physik, **70** (1931) 204; **72** (1931) 310; **76** (1932) 628;
 83 (1933) 632.
- R.B. Woodward and R. Hoffmann, Stereochemistry of Electrocyclic Reactions, J. Am. Chem. Soc. 87 (1965) 395.
- [3] L.G.D. Hawke, G. Kalosakas, and C. Simserides, Empirical LCAO parameters for molecular orbitals in planar organic molecules, Mol. Phys. 107 (2009) 1755.
- [4] M. Mantela, A. Morphis, M. Tassi, and C. Simserides, Lowest ionization and excitation energies of biologically important heterocyclic planar molecules, Mol. Phys. **114** (2016) 709.
- [5] (a) W.A. Harrison, Electronic Structure and the Properties of Solids, Dover, New York (1989); (b) W.A. Harrison, Elementary Electronic Structure, World Scientific, River Edge, NJ (1999).
- [6] Ε.Ν. Οικονόμου, Φυσική Στερεάς Κατάστασης, Τόμος Ι, Μέταλλα, ημιαγωγοί, μονωτές. Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο 2010. Μέρος δεύτερο: Εισαγωγή στη μέθοδο LCAO. Γενικά για τη μέθοδο LCAO. Και Κεφάλαιο 8. Η LCAO στην απλούστερη εκδοχή της: Μόρια.
- [7] R.M. Eisberg, Θεμελιώδης Σύγχρονη Φυσική, Έκδόσεις Πνευματικού, 4η έκδοση, σελ. 305, Αθήνα (1995).
- [8] Λώρενς Χόουκ, Διπλωματική Εργασία: Υπολογισμός παραμέτρων της μεθόδου ισχυρής δέσμευσης για την μοντελοποίηση μεταφοράς ηλεκτρικού φορτίου στο DNA, Πανεπιστήμιο Πατρών, Τμήμα Επιστήμης των Υλικών, Επιβλέποντες Γ. Καλόσακας, Κ. Σιμσερίδης, Πάτρα (2007).
- [9] G.E. Davico, V.M. Bierbaum, C.H. DePuy, G. Barney Ellison, R.R. Squires, The C-H Bond Energy of Benzene, J. Am. Chem. Soc. 117 (1995) 2590.
- [10] Οι πειραματικές τιμές για το βενζόλιο προέρχονται από πηγές που αναφέρονται στο άρθρο [3] ήτοι:
 (a) J.O. Howell, J.M. Goncalves, C. Amatore, L. Klasinc, R.M. Wightman, and J.K. Kochi, J. Am. Chem. Soc. **106** (1984) 3968.

- (b) B. Kovac, M. Mohraz, E. Heilbronner, V. Boekelheide, and H. Hopf, J. Am. Chem. Soc. **102** (1980) 4314.
- (c) W. Kaim, H. Tesmann, and H. Bock, Chem. Ber. **113** (1980) 3221.
- (d) T. Kobayashi, Phys. Lett. **69** (1978) 105.
- (e) L. Klasinc, I. Novak, M. Scholz, and G. Kluge, Croat. Chem. Acta. 51 (1978) 43.
- (f) W. Schmidt, J. Chem. Phys. **66** (1977) 828.
- (g) E. Clar and W. Schmidt, Tetrahedron. **32** (1976) 2563.
- (h) P.K. Bischof, M.J.S. Dewar, D.W. Goodman, and T.B. Jones, J. Organomet. Chem. 82 (1974) 89.
- (i) M. Klessinger, Angew. Chem. Int. Ed. Engl. **11** (1972) 525.
- (j) H. Bock, G. Wagner, and J. Kroner, Chem. Ber. **105** (1972) 3850.
- (k) R. Gleiter, E. Heilbronner, and V. Hornung, Angew. Chem. Int. Edn **9** (1970) 901.
- (l) J.A. Sell and A. Kupperman, Chem. Phys. **33** (1978) 367.

(m) M. Gower, L.A.P. Kane-Maguire, J.P. Maier, and D.A. Sweigart, J. Chem. Soc. Dalton Trans. **316** (1977).

- (n) H. Bock, W. Kaim, and H.E. Rohwer, J. Organomet. Chem. **135** (1977) 14.
- (o) T. Kobayashi and S. Nagakura, J. Electron Spectrosc. Relat. Phenom. 7 (1975) 187.
- (p) W. Schafer and A. Schweig, Angew. Chem. 84 (1972) 898.
- (q) T.A. Carlson and C.P. Anderson, Chem. Phys. Lett. **10** (1971) 561.
- (r) H. Bock and W. Fuss, Angew. Chem. Int. Edn Engl. **10** (1971) 182.

(s) C.N.R. Rao, Ultra-violet and Visible Spectroscopy: Chemical Applications, Butterworth, London (1975).

(t) H.H. Perkampus, UV-VIS Atlas of Organic Compounds, VCH, Weinheim, (1992).

- [11] National Institute of Standards and Technology, Chemistry WebBook, http://webbook.nist.gov/chemistry/.
- [12] R.C. Hirt, F. Halverson, and R.G. Schmitt, s-Triazine. II. The near-ultraviolet absorption spectrum, The Journal of Chemical Physics 22 (1954) 1148.
- [13] Ο υπολογισμός της γεωμετρίας έγινε στο επίπεδο θεωρίας B3LYP/6-311++G** από τον υποψήφιο διδάχτορα του Τμήματος Φυσιχής ΕΚΠΑ κ. Ανδρέα Μόρφη.
- [14] N.S. Hush and A.S. Cheung, Ionization potentials and donor properties of nucleic acid bases and related compounds, Chem. Phys. Lett. 34 (1975) 11.
- [15] (a) J. Lin, C. Yu, S. Peng, I. Akiyama, K. Li, L.K. Lee, and P.R. LeBreton, J. Am. Chem. Soc. **102** (1980) 4627;
 (b) J. Lin, C. Yu, S. Peng, I. Akiyama, K. Li, L.K. Lee, and P.R. LeBreton, J. Phys. Chem. **84** (1980) 1006;

(c) S. Peng, A. Padva, and P.R. LeBreton, Proc. Nat. Acad. Sci. USA **73** (1976) 2966.

- [16] D. Voet, W.B. Gratzer, R.A. Cox, and P. Doty, Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet, Biopolymers 1 (1963) 193.
- [17] T. Yamada and H. Fukutome, Vacuum ultraviolet absorption spectra of sublimed films of nucleic acid bases, Biopolymers 6 (1968) 43.
- [18] Y. Matsuoka and B. Norden, Linear dichroism studies of nucleic acids. II. Calculation of reduced dichroism curves of A-and B-form DNA, J. Phys. Chem. 86 (1982) 1378.
- [19] W. Voelter, R. Records, E. Bunnenberg, and C. Djerassi, Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines, and nucleosides, J. Am. Chem. Soc. **90** (1968) 6163.
- [20] C.A. Sprecher and W.C. Johnson, Circular dichroism of the nucleic acid monomers, Biopolymers 16 (1977) 2243.
- [21] L.B. Clark, Electronic spectrum of the adenine chromophore, J. Phys. Chem. 94 (1990) 2873.
- [22] W.C. Brunner and M.F. Maestre, Circular dichroism of some mononucleosides, Biopolymers 14 (1975) 555.
- [23] L.B. Clark, Electronic spectra of crystalline 9-ethylguanine and guanine hydrochloride, J. Am. Chem. Soc. 99 (1977) 3934.
- [24] V. Feyer, O. Plekan, R. Richter, M. Coreno, and K.C. Prince, Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine, Chemical Physics 358 (2009) 33.
- [25] D. Dougherty, E.S. Younathan, R. Voll, S. Abdulnur, and S.P. McGlynn, Photoelectron Spectroscopy of some Biological Molecules, Journal of Electron Spectroscopy and Related Phenomena 13 (1978) 379.
- [26] S. Dobrinas, A. Soceanu, V. Popescu, G. Stanciu, and S. Smalberger, Optimization of a UV-VIS Spectrometric Method for Caffeine Analysis in tea, coffee and other beverages, Scientific Study and Research 14 2 (2013) 71.
- [27] L. Lopez-Martinez, P.L. L?pez-de-Alba, R. Garcia-Campos, and L.M. De Le?n-Rodriguez, Simultaneous determination of methylxanthines in coffees and teas by UV-Vis spectrophotometry and partial least squares, Analytica Chimica Acta 493 (2003) 83.

- [28] A.R. Khanchi, M.K. Mahani, and M. Hajihosseini, M.G. Maragheh, M. Chaloosi, and F. Bani, Simultaneous spectrophotometric determination of caffeine and theobromine in Iranian tea by artificial neural networks and its comparison with PLS, Food Chemistry 103 (2007) 1062.
- [29] J. Chen and B. Kohler, Ultrafast nonradiative decay by hypoxanthine and several methylxanthines in aqueous and acetonitrile solution, PCCP 14 (2012) 10677.
- [30] D. Ajo, M.B. Cingi, I. Fragala, and G. Granozzi, UV Phoelectron Spectra of Biological Xanthines: Theophylline, Theobromine and Caffeine, Spectroscopy Letters 10 (1977) 757.
- [31] M. Vlassa, M. Filip, V. Pascalau, V. Coman, and C. Dragomir, Determination of purine derivatives in bovine urine using rapid chromatographic techniques, Archiva Zootechnica 12 4 (2009) 59.
- [32] L.F. Cavalieri, A. Bendich, J.F. Tinker, and G.B. Brown, Ultraviolet Absorption Spectra of Purines, Pyrimidines and Triazolopyrimidines, Spectra of Purines, Pyrimidines and Triazolopyrimidines **70** (1948) 3875.
- [33] V.M. Orlov, A.N. Smirnov, and Ya.M. Varshavsky, Ionization potentials and electron-donor ability of nucleic acid babes and their analogues, Tetrahedron Letters 17 (1976) 4377.
- [34] B.L. Goodall, A.M. Robinson, and C.L. Brosseau, Electrochemical-surface enhanced Raman spectroscopy (E-SERS) of uric acid: a potential rapid diagnostic method for early preeclampsia detection, Phys.Chem. Chem. Phys. 15 (2013) 1382.
- [35] L.B. Clark and I. Tinoco, Correlations in the ultraviolet spectra of the purine and pyrimidine bases, JACS 87 (1965) 12.
- [36] R. Gleiter, E. Heilbronner, and V. Hornung, Applications of photoelectron spectroscopy. 28. Photoelectron spectra of azabenzenes and azanaphthalenes. I. Pyridine, diazines, s-triazine, and s-tetrazine, Helv. Chim. Acta 55 (1972) 255.
- [37] R.J. Suffolk, Photoelectron spectra of the perfluorodiazines, J. Electron Spectrosc. Relat. Phenom. 3 (1974) 53.
- [38] A. Bolovinos, P. Tsekeris, J. Philis, E. Pantos, G. Andritsopoulos, Absolute vacuum ultraviolet absorption spectra of some gaseous azabenzenes, Journal of Molecular Spectroscopy 103 (1984) 240.
- [39] M.J.S. Dewar and S.D Worley, Photoelectron Spectra of Molecules. II. The Ionization Potentials of Azabenzenes and Azanaphthalenes, The Journal of Chemical Physicis 51 1 (1969) 263.
- [40] F. Halverson and R.C. Hirt, Near Ultraviolet Solution Spectra of the Diazines, The Journal of Chemical Physics 19 6 (1951) 711.
- [41] K. Raksanyi, I. Foldvary, J. Fidy, and L. Kittler, The electronic structure of cytosine, 5-azacytosine, and 6-azacytosine, Biopolymers 17 (1978) 887.
- [42] F. Zaloudek, J.S. Novros, and L.B. Clark, The electronic spectrum of cytosine, J. Am. Chem. Soc. 107 (1985) 7344.
- [43] A.F. Fucaloro and L.S. Forster, Stretched-film spectra and transition moments of nucleic acid bases, J. Am. Chem. Soc. 93 (1971) 6443.
- [44] D. Dougherty, K. Wittel, J. Meeks, and S.P. McGlynn, Photoelectron spectroscopy of carbonyls. Ureas, uracils, and thymine, J. Am. Chem. Soc. 98 (1976) 3815.
- [45] D.W. Miles, M.J. Robins, R.K. Robins, M.W. Winkley and H. Eyring, Circular dichroism of nucleoside derivatives. IV. Uracil derivatives, J. Am. Chem. Soc. 91 (1969) 824.
- [46] G. Lauer, W. Schafer, and A. Schweig, Functional subunits in the nucleic acid bases uracil and thymine, Tetrahedron Letters 16 (1975) 3939.
- [47] (a) M.H. Palmer, I. Simpson, and R.J. Platenkamp, J. Mol. Struct. 66 (1980) 243;
 (b) A. Pavda, P.R. LeBreton, R.J. Dinerstein, and J.N.A. Ridyard, Biochem. Biophys. Res. Commun. 60 (1974) 1262.
- [48] J. Maier, J. Muller, and T. Kubota, Ionisation Energies and the Electronic Structures of the N-oxides of diazabenzenes, Helvetica Chimica Acta 58 182 (1975) 1634.
- [49] B. Klein, and J. Berkowitz, Pyrazines. I. Pyrazine-N-oxides. Preparation and Spectral Characteristics, J. Am. Chem. Soc. 81 19 (1959) 5160.
- [50] T. Kubota, Electronic Spectra and Electronic Structures of Some Basic Heterocyclic N-Oxides, Bulletin of the Chemical Society of Japan 35 (1962) 946.
- [51] G. Ramsey, Substituent effects on imidazole basicity and photoelectron spectroscopy determined ionization energies, J. Org. Chem. 44 (1979) 2093.
- [52] B. Kovac, L. Klasinc, B. Stanovnik, and M. Tisler, Photoelectron spectroscopy of heterocycles. Azaindenes and azaindolizines, J. Heterocyclic Chem. 17 (1980) 689.
- [53] G. Berden, W. Meerts, and E. Jalviste, Rotationally resolved ultraviolet spectroscopy of indole, indazole, and benzimidazole: Inertial axis reorientation in the $S_1({}^1L_b) \leftarrow S_O$ transitions, J. Chem. Phys. **103** (1995) 9596.

- [54] R.D. Gordon, and R.F. Yang, free access Vapor absorption spectra of benzoxazole, benzimidazole, and benzothiazole near 2850Å, Canadian Journal of Chemistry 48 (1970) 1722.
- [55] H. Su, M. Pradhan, and W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of indazole cation, Chemical Physics Letters 411 (2005) 86.
- [56] E. Cane, A. Trombetti, B. Velino, and W. Caminati, Assignment of the 290-nm electronic band system of indazole [1,2-benzodiazole] as $\pi^* \pi$ by rotational band contour analysis, Journal of Molecular Spectroscopy **155** (1992) 307.
- [57] K. Fuke, H. Yoshiuchi, K. Kaya, Y Achiba, K. Sato, and K. Kimura, Multiphoton ionization photoelectron spectroscopy and two-color multiphoton ionization threshold spectroscopy on the hydrogen bonded phenol and 7-azaindole in a supersonic jet, Chemical Physics Letters **108** 2 (1984) 179.
- [58] P. Ilich, 7-Azaindole: the low-temperature near-UV/vis spectra and electronic structure, Journal of Molecular Structure 354 (1995) 37.
- [59] S. Cradock, R.H. Findlay, and M.H. Palmer, The molecular energy levels of the azoles: A study by photoelectron spectroscopy and ab initio molecular orbital calculations, Tetrahedron 29 (1973) 2173.
- [60] K. Jani, Photosensitized Reaction of Imidazole, J. Curr. Chem. Pharm. Sc. 4 (2014) 34.
- [61] H. Daamen, A. Oskam, D.J. Stufkens, and H.W. Waaijers, Bonding properties of group VIB metal pentacarbonyl azole complexes studied by electronic absorption, photoelectron, ¹³C NMR and vibrational spectroscopy, Inorganica Chimica Acta **34** (1979) 253.
- [62] D.S. Noyce, E. Ryder, and B.H. Walker, J. Org. Chem. 20 (1955) 1681.
- [63] H. Walba and G.E.K Branch, The absorption spectra of some N-substituted p-aminotriphenylmethyl ions, J. Am. Chem. Soc. 73 (1951) 3341.
- [64] PubChem Compound Database, https://www.ncbi.nlm.nih.gov/pccompound/.
- [65] A. Belay, K. Ture, M. Redi, and A. Asfaw, Measurement of caffeine in coffee beans with UV/vis spectrometer, Food Chemistry 108 (2008) 310.
- [66] R. Lyn, A. Rodger, and B. Norden, The CD of Ligand-DNA Systems. 2. Poly(dA-dT) B-DNA, Biopolymers 32 (1992) 1201.
- [67] N. Berova, K. Nacanishi, and R. Woody, Circular Dichroism: Principles and Applications, Wiley-VCH, 2nd edition (2000), p.85.