Theory of Ferromagnetism driven by superexchange in Dilute Magnetic Semiconductors

Mon 26 Aug 2013 (17:15 - 17:30) 25-30 August 2013 Rodos Palace Convention Center Rhodes, Greece

C. Simserides ¹, J.A. Majewski ², K.N. Trohidou ³, T. Dietl ^{2,4,5}

1. Physics Department, University of Athens, Greece

2. Institute of Theoretical Physics, University of Warsaw, Poland

3. Institute for Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR Demokritos, Athens, Greece

4. Institute of Physics, Polish Academy of Sciences, Warszawa, Poland

5. WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

Acknowledgements

FunDMS Advanced Grant of the ERC (Grant No. 227690), Ideas 7th Framework Programme of European Community. Computer time in Athens partly provided by the National Grid Infrastructure HellasGrid.

summary

```
theoretically study ferromagnetism in Ga_{1-x}Mn_xN
```

Tight Binding:

determine exchange integrals J_{ij} : Mn Spins *i* & *j* @ distances R_{ij} up to 16th NN in zb GaN

experimentally determined input parameters

> no itinerant carriers

> ferromagnetic superexchange between Mn^{3+} (for all explored R_{ij})

Monte Carlo:

extensive simulations determine T_c (cumulant crossing method)

Our predictions for $T_c(x)$ quantitative agreement with experimental data (randomly distributed Mn³⁺, 0.01 < x < 0.1)

Conclusion: ferromagnetic superexchange

Mn acceptor binding energy in III-V compounds

- \Rightarrow no itinerant holes
- ⇒ no efficient ferro-magnetism according to *p-d* Zener model

Mn³⁺ energy diagram . . .

(Ga,Mn)N - dilute ferromagnetic insulator

Mn²⁺ in II-VI antiferromagnetic superexchange

Mn substitutes cations (Cd, Zn, . . .)

local magnetic moments ONLY! no holes

without p-d hybridization

Fig. 5 Schematic illustration of the antiferromagnetic superexchange between spins (red arrows) localised on open d shells, mediated via the p-d hybridisation by entirely occupied anion p states. A spin-dependent shift of the orbitals, occurring for an antiferromagnetic arrangement of neighbour Mn spins (lower panel), enhances the lowering of the system energy associated with the p-d hybridisation.

532 | Chem. Soc. Rev., 2010, 39, 528-539

Bonanni and Dietl

Mn³⁺ in GaN Cr²⁺ in II-VI DMS ferromagnetic coupling

Energy level diagram describing the stabilization of the ferromagnetic spin arrangement as a result of the interaction between two hybrid orbitals located on two impurities, here labeled TM1 and TM2, in a **tetrahedral semiconductor**. In the case of partial occupancy of the individual hybrid orbitals, the ferromagnetic configuration is stabilized by the preferential filling of the lower energy state.

Zunger Lany Raebiger Physics 3, 53 (2010)

ab initio nn Mn-Mn exchange energy

assigned to double exchange

- a Sato and Katayama-Yoshida (2001)
- b v. Schilfgaarde and Mryasov (2001)
- c Uspenskii et al. (2003)
- d Sanyal et al., (2003);
- e Q.Wang, et al. (2004);
- f M. Wierzbowska, et al. (2004);
- g Mahadevan and Zunger, (2004);
- h Zhao, et al. (2004);
- i Bergqvist et al.(2005);
- j Boguslawski and Bernholc (2005);
- k Sato, et al.(2005);
- I Kang, et al., (2005);
- m Luo and Martin, (2005);
- n Marques et al. (2006);
- o Tan-don et al. (2006);
- p Hynninen et al. (2006);
- q Kang et al. (2006);
- r Larson and Satpathy (2007);
- s Cui et al. (2007);
- t Hynninen et al. (2007);
- u Larson et al. (2008);
- v Chan et al. (2008).
- w Gonzalez Szawacki et al. (2011)

$Ga_{1-x}Mn_{x}N$ exp Curie temperature

 T_c up to 13 K at x = 10%

$Ga_{1-x}Mn_{x}N$ exp vs. *ab initio* theory Curie temperature

Hence...

tight binding approximation

 \ldots \therefore \Rightarrow

$Ga_{x}Mn_{1-x}N$ ferromagnetic superexchange

Cr-doped zb zinc chalcogenides (ZnS, ZnSe, ZnTe) Blinowski, Kacman, Majewski Phys. Rev. B 53, 9524 (1996) This theory can be adopted for Mn-doped zincblende GaN.

Element or Ion	Electron Configuration	Spin	
Cr	[Ar] 3d ⁵ 4s ¹		
Mn	$[Ar] 3d^5 4s^2$		
Cr ²⁺	[Ar] 3d ⁴	2	substitutional Cr-doped zb zinc chalcogenides
Mn ³⁺	[Ar] 3d ⁴	2	substitutional Mn-doped zb GaN

no hole is created by a substitutional Mn_{Ga}

Experiments

[Sawicki *et al.*, Phys. Rev. B 85, 205204 (2012), Stefanowicz *et al.*, Phys. Rev. B 88, 081201(R) (2013)]:
 (i) ~ all Mn³⁺, substitutionally incorporated
 (ii) highly resistive material even at 300 K
 (ii) highly resistive material even at 300 K

\Rightarrow superexchange

sign determined by Anderson-Goodenough-Kanamori rules

Method of \mathcal{J}_{ij} calculation

4th-order perturbation in V_{pd} \forall orbital configurations γ and δ interaction between Mn_{Ga} spins $-k_B \sum_{\alpha \beta} \mathcal{J}_{\alpha\beta} v^{\delta} (R_{12}) \mathcal{S}_{1\alpha} \mathcal{S}_{2\beta}$ $\gamma(\delta)$: which t_2 orbital (d_{yz}, d_{xz}, d_{xy}) remains empty @ 1 (2) ion a (β): x, y, z Mn³⁺ ground state: 1 of 3 possible orbital singlets tetragonal Jahn-Teller distortions (x, y, z)4 out of 5 d orbitals singly occupied 2 e & 2 of 3 t_2 unperturbed magnetic ions: Parmenter Hamiltonian unperturbed band states: empirical TBA $sp^3 s^*$ superexchange tensor $J_{\alpha\beta}^{\gamma\delta}(\mathbf{R}_{12}) = F_{\alpha\beta}^{\gamma\delta}(\mathbf{R}_{12}) + H_{\alpha\beta}^{\gamma\delta}(\mathbf{R}_{12})$ between occupied orbitals (F) occupied orbitals - empty orbital (H) between empty orbitals (G) Mn³⁺ Mn³⁺

Then, we determine the average of $\mathcal{J}_{\alpha\beta}{}^{\gamma\delta}$ @ given distance $\mathcal{R}_{ij} \Rightarrow \mathcal{J}_{ij}$

Parmenter Hamiltonian ...

for a given eigenvalue of N

the eigenvalue of $H_0 + H'_{ee} = E_N^S$

is minimized by maximizing the eigenvalue of $\vec{s} \cdot \vec{s}$

(Hund's rule satisfied)

That portion of the total Hamiltonian describing the localized center by itself can be taken as

$$H_0 + H'_{ee} = (\epsilon_0 + J - \frac{1}{2}U)N + \frac{1}{2}(U - \frac{1}{2}J)N^2 - J\vec{S}\cdot\vec{S}$$
(30)

rotationally invariant Parmenter Hamiltonian

different energies E_N ^S to states with different total spin values S of the N delectrons

Parmenter, Phys. Rev. B 8, 1273 (1973)

Method of \mathcal{J}_{ij} calculation

 $\begin{array}{l} V_{pd\sigma} = - \; 1.5 \pm 0.1 \; eV \\ V_{sp\sigma} = - \; 1.5 \; eV \\ V_{pp\pi} = \; 0.675 \; eV \\ V_{pp\sigma} = - \; 1.62 \; eV \end{array}$

Parameters taken from experiments

Graf et al., Phys. Status Solidi B **239**, 277 (2003) Han et al., Appl. Phys. Lett. **86**, 042505 (2005) Hwang et al., Phys. Rev. B **72**, 085216 (2005)

1st (2nd) set of J_{ij} e₂ = 4.8 eV (4.4 eV) & 10 NN (16 NN)

the change of e_2 from 4.8 to 4.4 eV is within its expected experimental uncertainty

 \mathcal{J}_{ij} can be calculated at any \mathcal{R}_{ij}

NO supercells used

Important!

We need 16NN for percolation of x = 0.01!

\mathcal{J} sets

Sawicki et al., Phys. Rev. B 85, 205204 (2012)

Stefanowicz et al., Phys. Rev. B 88, 081201(R) (2013)

EXAMPLE x = 0.03 1st set of J_{ij}

EXAMPLE x = 0.03 1st set of J_{ij} fourth order cumulant method

 $T_{C}(x)$ obtained by Monte Carlo simulations using the sets of J_{ij} shown in (a-b).

$$T_{C}(x) \propto x^{m}$$
 $m = 2.2 \pm 0.2$

Conclusion

 $T_{C}(x)$ agrees quantitatively with experiments Mn^{3+}_{Ga} in $Ga_{1-x}Mn_{x}N$, 0.01 < x < 0.1

 \Rightarrow ferromagnetic superexchange

 $\rightarrow T_C \approx 13 \text{ K} \quad @x = 0.1$

 $T_c(x) \propto x^m$ $m = 2.2 \pm 0.2$

- both for ferromagnetic ordering (here) partly filled t_2 states of Td coordinated TM ions
- and spin-glass freezing (Mn-, Co-based II-VI DMSs) t₂ states entirely occupied for majority spin direction

 \Rightarrow verifies the scaling law $m = \lambda/d$, $J_{ij} \propto R_{ij}^{-\lambda} = d$ (dimensionality)

Rammal, R., and J. Souletie, 1982, Magnetism of Metals and Alloys (North-Holland)

Conclusion

Predict room-temperature ferromagnetism $x \approx 0.5$

```
High-T_c regime shifted to even lower x?
(ITM transition & delocalization of holes supplied by Mn ions)
```

Future growth effort: possible to obtain $Ga_{1-x}Mn_xN$ with randomly Mn^{3+} & x >> 0.1 ?

TBA vs. ab initio

our \mathcal{J}_{ij} significantly smaller

 $\Rightarrow \text{ smaller } T_c \text{ s \&} \\ \text{ stronger dependence } T_c(x)$

current *ab initio* methods **overestimate** coupling between TM levels & band states OK here [Parmenter generalization of Anderson Hamiltonian]

within present formalism possible to compute J_{ij} for any $R_{ij'}$

able to evaluate $T_c(x)$ down to e.g. x = 0.01

Thank you!

α-GaN wu	rtzite	a = 0.3188 nm, a	c = 0.5185 nm	n H ideal c,	Here $c/a \approx 1.62$ $(a = (\frac{8}{3})^{1/2} \approx 1.62$	26, <mark>a-GaN</mark> 533. <mark>vs</mark>
β-GaN zinc-blende lattice parameter (identical density of cation sites): $a_0 = (\sqrt{3}a^2c)^{1/3} = 0.45$ nm						
First-nearest neighbors		Second-nearest neighbors		5 Third-neare	Third-nearest neighbors	
	Number	Distance	Number	Distance	Number	Distance
fcc	12	D	6	$D\sqrt{2}$	24	$D (3)^{\frac{1}{2}}$

hep 12 D 6 $D\sqrt{2}$ 2 $D(8/3)^{\frac{1}{2}}$

D is the diameter of hard touching spheres", i.e. D = a hcp the same atomic packing factor $\pi/\sqrt{18} \approx 0.74$ $D = \frac{\sqrt{2}}{2}a_0$ fcc

almost identical bond percolation threshold and site percolation threshold for nearest neighbors

The total energy difference between α -GaN and β -GaN only $\approx 10-15$ meV/atom

Hence, α -GaN can be approximated by β -GaN in a first decent approach. fcc, distance of *n*th NN

$$r_n = \begin{cases} D\sqrt{n}, & n \le 13\\ D\sqrt{n+1}, & 14 \le n \le 16 \end{cases}$$

PHYSICAL REVIEW B

VOLUME 8, NUMBER 3

Effect of Orbital Degeneracy on the Anderson Model of a Localized Moment in a Metal

R. H. Parmenter

Department of Physics, University of Arizona, Tucson, Arizona 85721 (Received 21 March 1973)

As conventionally written, the localized-center portion of the Anderson Hamiltonian suffers from the defect of lack of rotational invariance in real space (and possibly spin space also) when describing a center with (2l + 1) degenerate spatial orbitals. A simple modification is suggested which restores the rotational invariance in both spaces. The eigenvalues of this localized-center portion of the Hamiltonian can be determined by inspection, and are consistent with Hund's rule. The modification leads to nontrivial changes in the properties of the full Anderson Hamiltonian. Within the context of the Hartree-Fock approximation, the likelihood of orbital broken symmetry is reduced.

a localized magnetic center

l orbital quantum number

$$l = 2$$
 (*d* orbitals)

m magnetic quantum number
 $m = -2, -1, 0, 1, 2$

$$N_{m0} \equiv \sum_{s} n_{ms} , \qquad N_{0s} \equiv \sum_{m} n_{ms} , \qquad \vec{\mathbf{s}} = \sum_{m} \vec{\mathbf{s}}_{m}$$
$$N \equiv \sum_{ms} n_{ms} = \sum_{m} N_{m0} = \sum_{s} N_{0s} . \qquad \vec{\mathbf{L}} = \sum_{s} \vec{\mathbf{L}}_{s}$$

 $n_{ms} \equiv c_{ms}^{\dagger} c_{ms}$

 \vec{S}_m being the total spin angular momentum of all electrons in orbital m, and \vec{L}_s being the total orbital angular momentum of all electrons of spin s.

0, 1, 2

1273

Parmenter Hamiltonian 2 $H_0 = \epsilon_0 \sum_{ms} n_{ms}$ $H_{ee} = \frac{1}{2} U \sum_{s} n_{ms} n_{m,-s}$ Anderson, one m
The electron-electron
interaction Hamiltonian H_{ee} represents the Coulomb
interaction between two opposite-spin electrons
on the center. $H_0 + H_{ee}$ represents the center by
itself,

Parmenter, all *m*

the exact form of H_{ee} is $H_{ee} = \frac{1}{2} \sum_{m_1 m_2} \sum_{m_3 m_4} \sum_{s_1 s_2} \delta_{m_1 + m_2, m_3 + m_4} \langle m_3 m_4 | V | m_1 m_2 \rangle$ $\times (c_{m_3 s_1} c_{m_4 s_2})^{\dagger} c_{m_1 s_1} c_{m_2 s_2}, \quad (11)$ where $\langle m_3 m_4 | V | m_1 m_2 \rangle \equiv \int \int d^3 r_1 d^3 r_2 \psi_{m_3}^*(\vec{r}_1) \psi_{m_4}^*(\vec{r}_2)$ $\times V(r_{12}) \psi_{m_1}(\vec{r}_1) \psi_{m_2}(\vec{r}_2) . \quad (12)$ roperties of the H_{ee} are t commutes with the m operator \vec{S} and the $\vec{L} = \sum \vec{L}_s$

The rotational invariance properties of the $H_{\bullet\bullet}$ are manifested by the fact that it commutes with the total spin angular momentum operator \vec{S} and the total orbital angular momentum operator \vec{L} , where

$$\vec{S}_m$$
 being the total spin angular momentum of all electrons in orbital m , and \vec{L}_s being the total orbital angular momentum of all electrons of spin s .

Parmenter Hamiltonian 3

Following Anderson, we now assume that all nondiagonal values of Coulomb integral are the same and all nondiagonal values of exchange integral are the same, i.e.,

$$U_{mm'} = U, \quad J_{mm'} = J \quad \text{if } m' \neq m$$
 (23)

Similarly, we assume all diagonal values are the same:

$$U_{mm} \equiv J_{mm} = U_0 \quad . \tag{24}$$

Unlike Anderson, we do *not* assume U_0 is the same as U, but rather we choose U_0 and α such that

$$(1-\alpha)U_0 = U, \qquad \alpha U_0 = J, \qquad (25)$$

so that

$$U_0 = (U + J)$$
, (26)

$$\alpha = J(U+J)^{-1} . \tag{27}$$

This choice ensures that $\overline{U}_{mm} = U$ and $\overline{J}_{mm} = J$ are both completely independent of m and m'. Thus,

$$H'_{\rm ee} = (J - \frac{1}{2} U)N + \frac{1}{2} (U - \frac{1}{2} J)N^2 - J\vec{S} \cdot \vec{S} \quad . \tag{28}$$

By inspection, H'_{ee} is invariant to rotations in both real and spin space. The rotational invariance in real space has been restored to H'_{ee} by the choice (26).

That portion of the total Hamiltonian describing the localized center by itself can be taken as

$$H_0 + H'_{ee} = (\epsilon_0 + J - \frac{1}{2}U)N + \frac{1}{2}(U - \frac{1}{2}J)N^2 - J\vec{S}\cdot\vec{S}.$$
(30)

- [1] T. Dietl and H. Ohno, arXiv:1307.3429.
- [2] A. Bonanni, M. Sawicki, T. Devillers, W. Stefanowicz, B. Faina, T. Li, T.E. Winkler, D. Sztenkiel, A. Navarro-Quezada, M. Rovezzi, R. Jakieła, A. Grois, M. Wegscheider, W. Jantsch, J. Suffczyński, F. D'Acapito, A. Meingast, G. Kothleitner, T. Dietl, Phys. Rev. B 84, 035206 (2011)
- [3] W. Stefanowicz, D. Sztenkiel, B. Faina, A. Grois, M. Rovezzi, T. Devillers, F. d'Acapito, A. Navarro-Quezada, T. Li, R. Jakieła, M. Sawicki, T. Dietl, A. Bonanni, Phys. Rev. B 81, 235210 (2010)
- [4] M. Sawicki, T. Devillers, S. Gałęski, C. Simserides, S. Dobkowska, B. Faina, A. Grois, A. Navarro-Quezada, K.N. Trohidou, J.A. Majewski, T. Dietl, A. Bonanni, Phys. Rev. B 85, 205204 (2012)
- [5] G. Kunert, S. Dobkowska, T. Li, H. Reuther, C. Kruse, S. Figge, R. Jakieła, A. Bonanni, J. Grenzer, W. Stefanowicz, J. von Borany, M. Sawicki, T. Dietl, D. Hommel, Appl. Phys. Lett. **101**, 022413 (2012)
- [6] S. Stefanowicz, G. Kunert, C. Simserides, J.A. Majewski, W. Stefanowicz, C. Kruse, S. Figge, Tian Li, R. Jakieła, K.N. Trohidou, A. Bonanni, D. Hommel, M. Sawicki, T. Dietl, Phys. Rev. B 88, 081201(R) (2013)
- [7] A. Twardowski, H.J.M. Swagten, W.J.M. de Jonge,
 M. Demianiuk, Phys. Rev. B 36, 7013 (1987); H.J.M.
 Swagten, A. Twardowski, P.J.T. Eggenkamp, W.J.M. de
- [19] M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Colorado Press, Oxford, 1999
- [20] M. Matsumoto and T. Nishimura, ACM. Trans. Model. Comput. Simul. 8, 3 (1998)
- [21] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction, Springer Verlag, 1988
- [22] E. Sarigiannidou, F. Wilhelm, E. Monroy, R. M. Galera, E. Bellet-Amalric, A. Rogalev, J. Goulon, J. Cibert, H. Mariette, Phys. Rev. B 74, 041306 (2006)
- [23] M. Sawicki, E. Guziewicz, M.I. Łukasiewicz, O. Proselkov, I. A. Kowalik, W. Lisowski, P. Dluzewski, A. Wittlin, M. Jaworski, A. Wolska, W. Paszkowicz, R. Jakiela,

Jonge, ibid. 46, 188 (1992)

- [8] A. Lipińska, C. Simserides, K.N. Trohidou, M. Goryca, P. Kossacki, A. Majhofer, T. Dietl, Phys. Rev. B 79, 235322 (2009)
- [9] J. Blinowski, P. Kacman, J.A. Majewski, Phys. Rev. B 53, 9524 (1996)
- [10] R. Zallen, The physics of amorphous solids, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004
- [11] G. Pollack, Rev. Mod. Phys. 36, 748 (1964)
- [12] C.D. Lorenz, R. May, R.M. Ziff, J. Stat. Phys. 98, 961 (2000)
- [13] M. Ferhat, A. Zaoui, M. Certier, B. Khelifa, Phys. Status Solidi B 195, 415 (1996)
- [14] J. Gosk, M. Zajac, A. Wolos, M. Kaminska, A. Twardowski, I. Grzegory, M. Bockowski, S. Porowski, Phys. Rev. B 71, 094432 (2005)
- [15] A. Stroppa and G. Kresse, Phys. Rev. B 79, 201201(R) (2009)
- [16] T. Graf, S.T.B. Goennenwein, M.S. Brandt, Phys. Status Solidi B 239, 277 (2003)
- [17] B. Han, B.W. Wessels, M.P. Ulmer, Appl. Phys. Lett. 86, 042505 (2005)
- [18] J.I. Hwang, Y. Ishida, M. Kobayashi, H. Hirata, K. Takubo, T. Mizokawa, A. Fujimori, J. Okamoto, K. Mamiya, Y. Saito, Y. Muramatsu, H. Ott, A. Tanaka, T. Kondo, H. Munekata, Phys. Rev. B 72, 085216 (2005)
 - B. S. Witkowski, L. Wachnicki, M.T. Klepka, F.J. Luque,
 D. Arvanitis, J.W. Sobczak, M. Krawczyk, A. Jablonski,
 W. Stefanowicz, D. Sztenkiel, M. Godlewski, T. Dietl,
 Phys. Rev. B 88, 085204 (2013)
- [24] R. Rammal and J. Souletie, Magnetism of Metals and Alloys, North-Holland, Amsterdam, 1982
- [25] T. Dietl, Phys. Rev. B 77, 085208 (2008)
- [26] K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010)

Energy level diagram describing the stabilization of the ferromagnetic spin arrangement as a result of the interaction between two hybrid orbitals located on two impurities, here labeled TM1 and TM2, in a **tetrahedral semiconductor**.

In the case of partial occupancy of the individual hybrid orbitals, the ferromagnetic configuration is stabilized by the preferential filling of the lower energy state.

Energy level diagram describing how an individual hybrid orbital is formed from the coupling between the host cation vacancy orbitals t(p) and the 3d orbitals t(d)+e(d).

Mulliken labels

Transformational properties of atomic orbitals

- When bonds are formed, atomic orbitals combine according to their symmetry.
- Symmetry properties and degeneracy of orbitals and bonds can be learned from corresponding character tables by their inspection holding in mind the following transformational properties:

Atomic orbital	Transforms as		
S	X ² +y ² +Z ²		
p _x	х		
p _y	У		
pz	Z		
d _{z2}	z ² , 2z ² -x ² -y ²		
d _{x2-y2}	x²-y²		
d _{xy}	ху		
d _{xz}	XZ		
d _{vz}	уz		

Polyatomic Molecular Orbital Theory

Atomic orbital	Mulliken labels				
	C _{2v}	D _{an}	D _{4h}	Td	O _h
s	a ₁	a _l '	a _{1g}	a ₁	a _{1g}
p _x	b ₁	(e')	eu	$\begin{pmatrix} t_2 \end{pmatrix}$	tiu
Py	b ₂	(e')	eu	t ₂	t _{1u}
pz	a ₁	a2"	a _{2u}	(t ₂)	tiu
d _{z2}	a ₁	a ₁ '	a _{1g}	e	eg
d _{x2-y2}	a ₁	(e')	b _{1g}	e	eg
d _{xy}	a ₂	(e')	b _{2g}	$\langle t_2 \rangle$	(t _{2g})
d _{xz}	b ₁	(e")	eg	t ₂	t _{2g}
d _{yz}	b ₂	(e")	eg	(t ₂)	t _{2g}

CFT

Crystal Field Theory (CFT)

- http://chemistry.umeche.maine.edu/Modeling/mulliken.html
- http://www.adichemistry.com/inorganic/cochem/jahnteller/jahn-teller-distortion.html
- http://www.mpilkington.com/Lecture_7.pdf καλό
- http://chemistry.osu.edu/~ljoyce/Chem651/Chem651_part2.pdf πολύ καλό

Jahn Teller distortions

- http://www.adichemistry.com/inorganic/cochem/jahnteller/jahn-teller-distortion.html
- http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Coordination_Chemistry/Coordination_Numbers/Jahn-Teller_Distortions

potential exchange

. . .

kinetic exchange

superexchange

sp-d Zener or RKKY mechanism

double-exchange

Stoner mechanism

Dietl and Ohno arXiv 1307.3429v2

Bonanni and Dietl Chem. Soc. Rev. 39 (2010) 528

(a) superexchange vs. (b) double exchange

Figure from Annie K. Powell Nature Chemistry **2**, 351 (2010) "Molecular magnetism: A bridge to higher ground" [a] Superexchange: localized system

electrons remain in their orbitals

spin info transferred according to symmetry

-here antiferromagnetic superexchange-

mediated by a pair of electrons on O^{2–}

[b] Double-exchange: simultaneous transfer of two electrons

 1^{st} e.g. "spin up" from O^{2-} to Mn^{4+}

 2^{nd} "spin up" from Mn^{3+} to O^{2-}

ferromagnetic info transferred back and forth by itinerant electrons

(c) carrier-mediated coupling (sp-d Zener or RKKY mechanism)

Holes induce Ferromagnetism! (Ga,Mn)As

Figure from Jungwirth et al., Rev. Mod. Phys. 78 (2006) 809

FIG. 3. (Color online) Top panel: Substitutional Mn_{Ga} and interstitial Mn_I in GaAs. Bottom panel: Two $e_g 3d$ orbitals and three $t_{2g} 3d$ orbitals of Mn.

equations

$$r_n = \begin{cases} D\sqrt{n}, & n \le 13\\ D\sqrt{n+1}, & 14 \le n \le 16 \end{cases}$$

Table 1: The two sets of J_{ij} used. The columns contain the order of neighbors, the number of atoms z_n centered at a distance r_n from a given atom, the distance between neighbors r_n measured in D, the 1st set of J_{ij} and the 2nd set of $J_i j$ measured in Kelvin and a representative vector or the class $R(C_n)$ measured in $[a_0/2]$ (cf. subsection2.1).

order	Z_n	r_n	$J_{ij}(\mathbf{K})$	$J_{ij}(\mathbf{K})$	a vector
1st	12	1	8.8340	27.3684	(1,1,0)
2nd	6	$\sqrt{2}$	0.5569	1.8190	(2,0,0)
3rd	24	$\sqrt{3}$	1.0916	2.9216	(2,1,1)
4th	12	2	1.0088	2.6552	(2,2,0)
5th	24	$\sqrt{5}$	0.0467	0.1258	(3,1,0)
6th	8	$\sqrt{6}$	0.1402	0.3661	(2,2,2)
7th	48	$\sqrt{7}$	0.0971	0.2544	(3,1,2)
8th	6	$\sqrt{8}$	0.0017	0.0046	(4,0,0)
9th	12	3	0.0770	0.2028	(3,3,0)
	24		0.0054	0.0144	(4,1,1)
10th	24	$\sqrt{10}$	0.0082	0.0219	(4,2,0)
11th	24	$\sqrt{11}$		0.0514	(3,3,2)
12th	24	$\sqrt{12}$		0.0300	(4,2,2)
13th	24	$\sqrt{13}$		0.0015	(5,1,0)
	48			0.0289	(4,1,3)
14th	48	$\sqrt{15}$		0.0029	(5,1,2)
15th	12	4		0.0197	(4,4,0)
16th	24	$\sqrt{17}$	<u>,</u>	0.0037	(5,3,0)
	24			0.0088	(4,3,3)
sum	428				

The Heisenberg Hamiltonian used reads

$$\mathcal{H}_{dd} = -k_B \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j.$$
(7)

 k_B is the Boltzmann constant. We treat the Mn⁺³ spins S_i, S_j as classical vectors with norm S = 2. At each Monte Carlo (MC) sweep, the mean spin projections (l = x, y, z,) and the mean spin norm

$$\overline{S}_{l} = \frac{\sum_{i=1}^{N} S_{il}}{N}, \quad \overline{S} = \frac{\sum_{i=1}^{N} S_{i}}{N}.$$
(8)

are calculated. $N = N_{Mn}$ is the number of Mn ions. Hence, we denote mean values (i.e. per Mn ion) by $\overline{\cdots}$. We denote statistical averages [44] by $\langle \cdots \rangle$, i.e.

$$\langle S_l \rangle = \frac{\sum_{n=1}^{n_t} \overline{S_l}}{n_t}, \quad \langle S \rangle = \frac{\sum_{n=1}^{n_t} \overline{S}}{n_t}.$$
 (9)

 $n(n_t)$ denotes successive (the total number of) MC sweeps used for the statistical average. Similarly, for any integer p one could define

$$\langle S^p \rangle = \frac{\sum_{n=1}^{n_t} \overline{S}^p}{n_t}.$$
 (10)

The spin susceptibility components per spin (χ_{S_l}) and the spin susceptibility per spin (χ_S) read [44]

$$\chi_{S_l} = \frac{N}{T} [\langle S_l^2 \rangle - \langle S_l \rangle^2], \quad \chi_S = \frac{N}{T} [\langle S^2 \rangle - \langle S \rangle^2]. \quad (11)$$

Method of \mathcal{J}_{ii} calculation

Average over 9 possible pairs of Mn d orbitals (d_{yz}, d_{zx}, d_{xy}) for a class (shell) of neighbors of the given lattice site assumed to be the site (0,0,0)

$$\overline{\boldsymbol{J}}(\boldsymbol{C}_n) = \frac{1}{9} \sum_{\gamma,\delta=1}^{3} \boldsymbol{J}_{xx}^{\gamma\delta}(\vec{\boldsymbol{R}}(\boldsymbol{C}_n))$$

 $J_{xx}^{\gamma\delta}(\vec{R}(C_n)) \quad \text{is the exchange integral for the Mn-Mn distance defined by } \vec{R}(C_n) \\ \mathcal{C}_n \text{ is the } n \text{th shell of the lattice site (or atom) at (0,0,0).}$ It consists of lattice points that have the same distance to the point (0,0,0) and can be transformed to each other by a symmetry operation of the point group \mathcal{O}_{h} . The shell (class) defined that way cannot consist of more than 48 R vectors.

$$\begin{aligned} \boldsymbol{J}_{xx}^{\gamma\delta}(\vec{\boldsymbol{R}}(\boldsymbol{C}_n)) &= \boldsymbol{J}_{yy}^{\gamma\delta}(\vec{\boldsymbol{R}}(\boldsymbol{C}_n)) = \boldsymbol{J}_{zz}^{\gamma\delta}(\vec{\boldsymbol{R}}(\boldsymbol{C}_n)). \\ & \boldsymbol{J}_{\alpha\beta}^{\gamma\delta}(\vec{\boldsymbol{R}}(\boldsymbol{C}_n)) = 0, \text{ for } \alpha \neq \beta. \\ & \boldsymbol{C}_n = \{\vec{\boldsymbol{R}}_j, j = 1, ..., N_n \ |\vec{\boldsymbol{R}}_j| = d_n, \forall_{i,j} \ \vec{\boldsymbol{R}}_j = \hat{P}\vec{\boldsymbol{R}}_i, \ \hat{P} \in O_h\}. \end{aligned}$$

A vector belonging to the class C_n is denoted by Further, $y(\delta) = 1 \equiv yz$, $y(\delta) = 2 \equiv zx$, $y(\delta) = 3 \equiv xy$.

The Tight-Binding calculations are performed for zincblende GaN, i.e. the cationic sublattice is fcc. The integrals over the Brillouin zone have been performed using 2048 k-points. This guarantees that J_{ij} are computed with an accuracy of 0.0002 K.

