PART 4

Fourier Series and Fourier Transform
By the use of the famous Fourier Series, a periodic function is expressed as a sum of harmonics. In the case
of non-periodic functions a generalisation of the Fourier series is used i.e. the where the
sum is replaced by an integral and as a result the is expressed as an
to the function representation.

e Fourier Series: any periodic function can be expressed as a sum of harmonic functions i.e. cos and sin
(mathematical glossary) or “harmonics” (musical glossary). Mathematically this is expressed in the
following:

THEOREM 1:Ifa continuous function f(t) is periodic with period T, i.e. with frequency v = 1/T, then it may be

. 2mnt
f(t)— +Z[a cos +b sin T }, (1)

where the coefficients are given by:

=—j F(t) cos 2" gt | n=0,123,.. (2a)

and
2nnt

:_J' f(t)sin n=123,.. (2b)

The sinusoidal functions (cosines and sinuses) which are added in Eq. (1) are called Fourier components. The
coefficients a, and b, are called Fourier coefficients. Let us now characterize the various Fourier components
to gain some insight. Please have in mind that a function cos(at) or sin(at) has period T, = 2n/a.
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As can be seen from the last column of this table the onomatology characterizes “ ” the Fourier
component which has the . All other Fourier components

are called “harmonics* and the Fourier component with frequency v, = n v is characterized as «n™ harmonic.
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One can easily show that if the function is even (odd), then only the a, (b,) Fourier coefficients which multiply
cosines (sinusus) survive.

Example 1

One of the simplest examples is 2.5 periods of the function f(t)=1+cos(2nt/T)
the function
20+

f(t) = 1 + cos(2xt/T),

which has period T. According fo
to Egs. (2), 1

ag=2anda; =1
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Example 2

The picture on the right shows an
example of a composite curve
(green) which is the algebric sum of S _
the other two curves: . \ [ ‘
(a) the black one i.e. the fundamental \
with frequency 0.5 Hz, and
(b) the red one i.e. the 3™ harmonic
with frequency 1.5 Hz. .
T}?e pr}(l)cess of adding the LS IIE ) /\/\/\/\/\/\/\/\/\/\ v=1.3Hz
black and the red curve to construct 3rd harmonic
the green one is the harmonic
synthesis. The opposite process of
finding which components are
needed to construct the green curve
is called harmonic analysis. fundamental
The  frequency of  the
composite green curve is 0.5Hz i.e.
the greatest common divisor (GCD)
of (0.5 Hz, 1.5 Hz). In this case it
coincides with the fundamental

Harmonic Analysis or Synthesis

2sin(tr) v=0.5Hz

frequency.
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Almost  the same

example (JOQS Fig.7) Harmonic Analysis or Synthesis the pitchis
of a composite curve the greatest common divisor

(green) which is the \ of 100Hz, 300Hz
algebric sum of the '

other two curves: v =100 Hz |
(a) the black one i.e. \nd
the fundamental with

frequency 100 Hz, and :
(b) the red one i.e. the | 2 harmonic AV AV AV AVAVAVAVAVAVAVAVAVERCESUCIED
39 harmonic with | V=300HZz

frequency 300 Hz.

The frequency
of the composite green | fundamental

curve (“pitch”) is 100 v=400 bz 2sin(200xt)
Hz ie. the GCD of
(100 Hz, 300 Hz). In
this case it coincides ' 0.60 ' 0.51 ' 0.62 ' 01';3 ' 0.'04
with the fundamental t(s)
frequency.
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Example 3(Joos Figs. 9-10)
A composite wave (blue) whose components do not include the fundamental frequency i.e. the frequency of the
wave is v but its components are 2v, 3v, 4v (“the fundamental component v is missing from the energy
spectrum”). Specifically, the blue curve (100 Hz) is made up from the sum of the black (200 Hz), the red (300
Hz) and the green (400 Hz) curve. The frequency of the composite curve (“pitch”) is the GCD of (200 Hz, 300
Hz, 400 Hz). Although none of its components is 100 Hz, the resulting composite wave has a pitch of 100 Hz!

the pitch is
the greatest common divisor
of 200 Hz, 300 Hz, 400 Hz

composite curve
v=100Hz

3rd harmonic N/ 1.5sin(600xt)
v =300 Hz

2nd harmonic 2sin(400xt)
v =200 Hz
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Now, if we remove the 300 Hz component, the resulting blue curve will have a frequency of 200 Hz i.e., again,
the pitch is the GCD of the components’ frequencies (200 Hz, 400 Hz). Now, the pitch of the composite curve
coincides with the fundamental frequency (200Hz).

the pitch is
the greatest common divisor
of 200 Hz, 400 Hz

composite curve
v =200Hz

fundamental 2sin(400xt)
v =200 Hz
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The corresponding fact of perception is that by removing the 300 Hz component we have transformed a wave
of pitch 100 Hz, into a wave of pitch 200Hz! Ilpéret va o doxiudow avto.

Na dokudow emions o wapakxdro. Listening to a composite sound wave with components 600 Hz, 800 Hz
and 1000 Hz, a pitch of 200 Hz will be heard. Then, if to these a fairly strong component at 300 Hz is added,
the pitch will be heard to drop one octave to 100 Hz. Thus, the pitch can be defined as the greatest common
divisor (GCD) of the frequencies actually present.

Notice Joos paragraph 1.23 referring to Figs. 6,8. “It might seem that not only the sinusoid but equally well
some other shape, e.g. Fig. 8A or 8B, could be taken as basic, so that an arbitrary exactly repetitive wave could
than be analysed into components of that chosen basic shape, each component having the same shape as the
other components though with a different period and presumably a different amplitude too. IT IS NOT POSSIBLE
TO DO SO. As soon as it is decided that the components shall all have the same shape and shall be exactly
repetitive, that settles it: the components will be sinusoids. The sinusoid is as basic to harmonic analysis as the
integers 1,2,3 ... are to ordinary arithmetic”. Eivol éto1; Aeg emiong 1t axpifog eivar ta wavelets. (Mnvopa
2T00PIVOv)
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A second famous example is a pulse function

with a period T =27, i.e. )
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The following two figures depict how adding
the sinusoidal functions with the correct
amplitudes we obtain in the limit the pulse function..
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functions we add result after having added each function

Another form of Theorem 1 is

f(t)=a70+ZAn sin(zz}nt +(|)nj, where A =,/a2 +b’ and tan¢, =;—“. 3)
n=l

Yet, another form of Theorem 1 is obtained using complex notation. Suppose that a function f(t) is periodic
with period T, i.e. with frequency v = 1/T, then it may be approximated arbitrarily well by a “complex Fourier
series”:
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f)= D€ T 4)
n=-mw
where
370, n=0
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c, —¥I_T/2f(t)e dt={=2 =0 00 (5)
(a—n +1b—n) , n<0
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This form of Theorem 1 via Egs. (4-5) is the basis for the extremely important , which is

obtained by transforming ¢, from a discrete variable to a continuous one as the period T— oo.
In the case of functions a generalisation of the Fourier series is used i.e. the
where the sum is replaced by an integral and as a result the is expressed as an

to the function representation.

Next talk for Fourier Transform:



- [Tapadeiypata entrvyovg Kot pn avaivcemng Fourier.
- Fourier analysis of MEG signal (a, pu rhythm or general).
- Hopadeiypata petacynuaticpov t <> f (useful for MEG and MRI) kot x <» k (useful for MRI).
- The recognition of different vowel sounds of the human voice is largely accomplished by analysis of the
harmonic content by the inner ear.
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