
PART 4 
 

Fourier Series and Fourier Transform 
By the use of the famous Fourier Series, a periodic function is expressed as a sum of harmonics. In the case 
of non-periodic functions a generalisation of the Fourier series is used i.e. the Fourier Transform where the 
sum is replaced by an integral and as a result the non-periodic function is expressed as an integral where also 
non-harmonics contribute to the function representation.  
 
● Fourier Series: any periodic function can be expressed as a sum of harmonic functions i.e. cos and sin 
(mathematical glossary) or “harmonics” (musical glossary). Mathematically this is expressed in the 
following: 
 
THEOREM 1: If a continuous function f(t) is periodic with period T, i.e. with frequency ν = 1/T, then it may be 
approximated arbitrarily well1 by a “Fourier series”: 
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where the coefficients are given by: 
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The sinusoidal functions (cosines and sinuses) which are added in Eq. (1) are called Fourier components. The 
coefficients an and bn are called Fourier coefficients. Let us now characterize the various Fourier components  
to gain some insight. Please have in mind that a function cos(at) or sin(at) has period Ta = 2π/a. 
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As can be seen from the last column of this table the onomatology characterizes “fundamental” the Fourier 
component which has the same period and frequency as the original function. All other Fourier components 
are called “harmonics“ and the Fourier component with frequency νn = n ν is characterized as «nth harmonic». 
                                                 
1 Ουσιαστικώς, το θεώρηµα λεει ότι το όριο 
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όπου sk(t) η αντίστοιχη πεπερασµένη σειρά. Το κατά πόσο η σειρά συγκλίνει σηµειακώς και αναπαριστά την f(t) 
προσδιορίζεται από τις συνθήκες Dirichlet. Αν λοιπόν (α΄) η συνάρτηση είναι τµηµατικά συνεχής και µονότονη, και (β΄) 
σε κάθε σηµείο ασυνέχειας υπάρχει το όριο από δεξιά και από αριστερά, τότε: 
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One can easily show that if the function is even (odd), then only the an (bn) Fourier coefficients which multiply 
cosines (sinusus) survive.  
 

Example 1 
One of the simplest examples is 
the function 
 
          f(t) = 1 + cos(2πt/T),  
 
which has period T. According 
to Eqs. (2), 
 
          a0 = 2 and a1 = 1  
 
i.e. in this case we have only the 
constant background and the 
fundamental.  
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Example 2 
The picture on the right shows an 
example of a composite curve 
(green) which is the algebric sum of 
the other two curves: 
(a) the black one i.e. the fundamental 
with frequency 0.5 Hz, and 
(b) the red one i.e. the 3rd harmonic 
with frequency 1.5 Hz. 
          The process of adding the 
black and the red curve to construct 
the green one is the harmonic 
synthesis. The opposite process of 
finding which components are 
needed to construct the green curve 
is called harmonic analysis.  
          The frequency of the 
composite green curve is 0.5Hz i.e. 
the greatest common divisor (GCD)  
of (0.5 Hz, 1.5 Hz). In this case it 
coincides with the fundamental 
frequency.   
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Almost the same 
example (Joos Fig.7) 
of a composite curve 
(green) which is the 
algebric sum of the 
other two curves: 
(a) the black one i.e. 
the fundamental with 
frequency 100 Hz, and 
(b) the red one i.e. the 
3rd harmonic with 
frequency 300 Hz. 
          The frequency 
of the composite green 
curve (“pitch”) is 100 
Hz i.e. the GCD of 
(100 Hz, 300 Hz). In 
this case it coincides 
with the fundamental 
frequency.   
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Example 3(Joos Figs. 9-10) 
A composite wave (blue) whose components do not include the fundamental frequency i.e. the frequency of the 
wave is ν but its components are 2ν, 3ν, 4ν (“the fundamental component ν is missing from the energy 
spectrum”). Specifically, the blue curve (100 Hz) is made up from the sum of the black (200 Hz), the red (300 
Hz) and the green (400 Hz) curve. The frequency of the composite curve (“pitch”) is the GCD of (200 Hz, 300 
Hz, 400 Hz). Although none of its components is 100 Hz, the resulting composite wave has a pitch of 100 Hz! 

 
 



Now, if we remove the 300 Hz component, the resulting blue curve will have a frequency of 200 Hz i.e., again, 
the pitch is the GCD of the components’ frequencies (200 Hz, 400 Hz). Now, the pitch of the composite curve 
coincides with the fundamental frequency (200Hz).  

 
 
The corresponding fact of perception is that by removing the 300 Hz component we have transformed a wave 
of pitch 100 Hz, into a wave of pitch 200Hz! Πρέπει να το δοκιµάσω αυτό. 
 
Να δοκιµάσω επίσης το παρακάτω. Listening to a composite sound wave with components 600 Hz, 800 Hz 
and 1000 Hz, a pitch of 200 Hz will be heard. Then, if to these a fairly strong component at 300 Hz is added, 
the pitch will be heard to drop one octave to 100 Hz. Thus, the pitch can be defined as the greatest common 
divisor (GCD) of the frequencies actually present.  
 
 
 
Notice Joos paragraph 1.23 referring to Figs. 6,8.  “It might seem that not only the sinusoid but equally well 
some other shape, e.g. Fig. 8A or 8B, could be taken as basic, so that an arbitrary exactly repetitive wave could 
than be analysed into components of that chosen basic shape, each component having the same shape as the 
other components though with a different period and presumably a different amplitude too. IT IS NOT POSSIBLE 
TO DO SO. As soon as it is decided that the components shall all have the same shape and shall be exactly 
repetitive, that settles it: the components will be sinusoids. The sinusoid is as basic to harmonic analysis as the 
integers 1,2,3 … are to ordinary arithmetic”. Είναι έτσι; ∆ες επίσης τι ακριβώς είναι τα wavelets. (Μήνυµα 
Σταυρινού) 
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A second famous example is a pulse function 
with a period T = 2π, i.e. 
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and likewise for any ℜ∈t . Using Eqs. (2) 
we obtain: 
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The following two figures depict how adding 
the sinusoidal functions with the correct  
amplitudes we obtain in the limit the pulse function.. 

  
functions we add result after having added each function 

 
Another form of Theorem 1 is   
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Yet, another form of Theorem 1 is obtained using complex notation. Suppose that a function f(t) is periodic 
with period T, i.e. with frequency ν = 1/T, then it may be approximated arbitrarily well by a “complex Fourier 
series”: 
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This form of Theorem 1 via Eqs. (4-5) is the basis for the extremely important Fourier transform, which is 
obtained by transforming cn from a discrete variable to a continuous one as the period T→ ∞. 
 
● In the case of non-periodic functions a generalisation of the Fourier series is used i.e. the Fourier Transform 
where the sum is replaced by an integral and as a result the non-periodic function is expressed as an integral 
where also non-harmonics contribute to the function representation.  
 
Next talk for Fourier Transform: 



- Παραδείγµατα επιτυχούς και µη αναλύσεως Fourier. 
- Fourier analysis of MEG signal (α, µ rhythm or general). 
- Παραδείγµατα µετασχηµατισµών t ↔ f (useful for MEG and MRI) και x ↔ k (useful for MRI). 
- The recognition of different vowel sounds of the human voice is largely accomplished by analysis of the  
   harmonic content by the inner ear. 
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