PART 3

Resonant Frequencies or Eigenfrequencies:

in general, of the auditory canal, and of specific musical instruments.
We have already presented the three basic characteristics of
sound (pitch, loudness and quality). When analyzing sound sound
quality we have stated that it is mainly characterized by the ) )
harmonic content and also by vibrato/tremolo and attack- pltCh loudness quahty

decay. Finally, when analyzing harmonic content we were
obliged to talk about resonant frequencies.
Resonant frequencies will be the subject of the

present chapter. This discussion is split into three s :
subchapters: harmonic vibrato/ attack

(a) resonant frequencies in general, content tremolo decay
(b) resonant frequencies of the auditory canal, and
(¢) resonant frequencies of specific musical instruments

(a) Resonant Frequencies in general.

; . - . - in peneral
Any object has - in general - its resonant frequencies or
eigenfrequencies, and: Resonant - of the auditory canal
(1) It is easy to make an object vibrate at its resonant Frequencies
frequencies, difficult to make it vibrate at other frequencies. - of specific musical
This means that we must spend energy in order to make the IHSTrHMERLS

object vibrate at a different frequency than its own resonant
frequencies. Well known examples are:

o the simple pendulum i.e. a mass hanging from a cord of length €, which has eigenfrequency f, ZZL % ,
T
where g is the acceleration of gravity,

o the rod pendulum i.e. a rod of length € hanging from its one end which has eigenfrequency f, = 2L 1/3—% .
T

If we just take the rod, move it from the vertical and let it go, it will vibrate at its eigenfrequency mentioned
above. If we want to make it vibrate at a different frequency we must e.g. hold it with our hands and oblige it to
do so, however spending our precious energy! In both the examples presented above there is only one resonant
frequency.

(2) If we create a complex excitation to an object, it will select its resonant frequencies and it will vibrate at
those frequencies (can be quite a few), essentially "filtering out" soon all other frequencies present in the
excitation. We can, for example, hit the rod pendulum so that it can even make a circle but after a while it will
start vibrate at its own well known eigenfrequency.

(3) Most vibrating objects have many

resonant frequencies. As an example we Lcinf“;m
give the case of a chord with both ends (in’2) < o< o< < > =42
fixed. If the length of the chord is L, then
the following condition must be satisfied:
L=n Ay .
2 n=12,34,..
Here neX’ ={1,2,3,4,---} and X, is the node m?ode node mﬁm’de node
corresponding wavelength of the allowed |<::$>|_<:>| L=2(12)
vibration mode. Now, since the velocity fo=n (c2L)
of propagation of the wave, c, is related transverse vibration

to A, and the corresponding frequency, f;,,

by ¢ = Ay £, it follows that: s — iy £/ V)

f, = n% =nf. resonant frequencies of a cord

f) is called the fundamental frequency

and all f,, are called harmonics. In this special case, ¢ is given by the following equation:



\/T [T
c=_[—= .
p (m/L)

T is the tension of the chord, and p = (m/L) is the linear mass density. Since, finally,
T

4mL’
chords of different length have different eigenfrequencies and we can change the set of eigenfrequencies of a
given chord by altering its tension. It follows e.g. that 4-fold tension of a given chord multiplies its
eigenfrequencies with a factor of two (if the length is not modified and if it doesn’t break!). Notice that our
chord’s vibration is #ransverse. The points on the chord which do not move at all are called nodes and the
points which vibrate with maximum amplitude are called antinodes. As depicted in the picture above, in our
case of the chord, the two ends are forced to be nodes, but there are - in general - more nodes.

A second example of an object with many
resonant frequencies is an one-side-closed cylinder
of length L. This allows standing waves with
wavelength, Ay:

f,=n

: one-side-closed
tibe

A

L=n(\/4), n=odd(13.5,..) |-|— L = = —-|
longimdinal  vibration . Antinede

i.e. since ¢ = A,f, allows frequencies:

fn =n fl, fl = C/(4L),

where c is the speed of sound. Again, f) is the
fundamental frequency and f, the nth harmonic.
In this case, the vibration is longitudinal. The
closed end of the cylinder is forced to be a node, . .
since no longitudinal vibration is possible there. On Antinade ﬂ?@hﬂuﬁﬂ' ﬂf the

the contrary, the open end of the cylinder is forced condifion : = =
to be an antinode, since the cylinder meets the free I=nil ) =nodd L::-ng ttudinal wave

Nadez ‘ Node

air molecules. In general, again, there are more nodes and antinodes. For example the third harmonic has two
nodes and two antinodes.

resanant frequencies of an apen cylinder

L »

agntinods node anfinode node anfnode

i.e. since ¢ = A,f, allows frequencies: longittidinal vibration

=3
. B e
where c is the speed of sound. In this case, the E L=4(i/2)
vibration is longitudinal and - by force - the two

ends of the cylinder are antinodes, since the

cylinder meets the free air molecules. As can be L=5¢2)
seen in the picture, the fundamental vibrational

mode has one node and two antinodes, the second | sanditian:
harmonic has two nodes and three antinodes etc L=n{l,/2) n=123.4 f. =n{e/2L)
4 ekl A N

A third example of an object with many
eigenfrequencies is an open cylinder of length L.
This allows standing waves with wavelength, A;,:

Let us now turn to membranes. Suppose we have a plane membrane, homogeneously stretched by a tension T,
given as force per unit length. The membrane has mass per unit area p and the boundary is clamped. Then the
speed of the vibration is given by ¢ = (T/n)"%. A rectangular membrane vibrates at resonant frequencies given
by the equation:



c
f.,== —+t—, m=1,2,3,... and n=1_23,...
2\ a b

Notice that the eigenfrequencies depend on two indices i.e. m and n. We stress that with a complex excitation
the membrane will vibrate at a combination of its resonant frequencies after having expelled all “alien”
frequencies. For a square membrane the equation above becomes:

c

=2—\/m2 +n? =ff\/m2 +n?, m=1,23,... and n=1273,...

a
where fy = fijo = fo; = ¢/(2a) is the fundamental frequency. The following table depicts the first resonant
frequencies of a square membrane (a = b):

mn

m n m n fin fundamental and overtones
0 0 rest

0 1 1 0 f; 1°" harmonic
0 2 2 0 2 f; 2™ harmonic
1 1 V2 fi~1.414 1%

2 1 1 2 V5 £ ~2.236 1

2 2 242 f;=2.828 f;

0 3 3 0 31 3™ harmonic
3 1 1 3 V10 £ ~3.162 f;

2 3 3 2 V13 £~ 3.605 £;

0 4 4 0 4 1; 4™ harmonic

On the other hand, a circular membrane (e.g. a drum and approximately the tympanic membrane) has
eigenfrequencies given by the equation:

fin = Xmn ¢/(272),
where a is the radius of the membrane and X, is the n-th root of the J,(kr) Bessel function. In this case, the
radial part of the solution is a Bessel function J,(kr) and the boundary condition is Ky, @ = Xp, 1.€. the
membrane is supposed to be fixed at r = a. We just give the first four vibrational modes:

fundamental, f;;, with x¢; = 2.4048 % B’ overtone, f5;, with x,; = 5.1336 %

o’ overtone, f;, with x;; = 3.8317 r@ v’ overtone, fy,, with x¢, = 5.5201 %

Summarizing, the lowest resonant frequency of a vibrating object is called its fundamental frequency. If an
object has more than one resonant frequencies these are often called overtones. An harmonic is defined as an
integer multiple of the fundamental frequency, i.e. the nth harmonic is such that f, = n f;, where f; is the
fundamental frequency. In many cases, as in the above mentioned example of the vibrating chord, the overtones
are simply harmonics.

(b) Resonant Frequencies of the Auditory Canal.

The auditory canal, which is roughly 3 cm long and

0.7 cm thick, is approximately an one-side-closed N [T Equal loudness in phons /¢
tube. We have already presented the frequencies of 120 NSO 10 Sh r—
maximum sensitivity of human hearing (picture on o~ NG T oSN/~
the right). Notice that I don’t know if this figure is N \\"'"--..._ﬂ__ _90"\--: T/ N
completely reliable. These curves can somehow be § 80 %\\:\:\‘ :,Q\:J;»\,
modelled supposing that the auditory canal is roughly B %\‘\§:\:~._‘\ __,Lq_\\.._,; /“'\/
approximated by an one-side closed tube. There is a © 60 N \:‘ 2. T~ /’:'\V
significant dip in the range 2 kHz - 5 kHz with a peak > \5,\: ::‘\ - 50—-...:"“‘ /:,\v’
sensitivity around 3.5 kHz - 4 kHz. The observed 2 40 x: :‘\\“‘—- = T ,-Q\i
peak at about 3.7 kHz at body temperature is E i N~ :E ,,\:: N
associated with the «fundamental frequency» of the = RN o I~V '}!’
auditory canal and «corresponds» to a tube length of TR N
2.4 cm. The high sensitivity region at 2 kHz — 5 kHz 0 100 1000 ~=+" 10,000
is very important for the understanding of speech. iy (k)
There is another enhanced sensitivity region roughly the Sensitivity of the Ear is represented by the
which may be associated with the «3rd Equal Loudness Curves

harmonicy of the auditory canal.




The ear’s sensitivity as a function of frequency can be illustrated by playing some wayv files here e.g.

N Al N Al N
50hz.wav 200hz.wav 500hz.wav 1000hz.wav 3000hz.wav
50 Hz 200 Hz 500 Hz 1 kHz 3 kHz
A A A
4000hz.wav 8000hz.wav 10000hz.wav 13500hz.wav 20000hz.wav
4 kHz 8 kHz 10 kHz 13.5 kHz 20 kHz

(c) Resonant Frequencies of specific Musical Instruments.
Many of the instruments of

the orchestra, those utilizing overtones and harmonics

strings and air columns,

produce the fundamental — 100 h: — 100H: ———— 100He
frequency and harmonics. — ¥
Vibrating  strings, open — 200k 7T 200 hz ———— 00 He
cylindrical air columns, and E—F
conical air columns will — i00 He — 300H: — 300 Hz
vibrate at all harmonics of e
the fundamental. One-side- ——dooke oS 400 He — 400 Hz
closed cylinders will vibrate C C

with onlJ; odd harmonics of Strmgsa o Uﬂﬁ.'Sld.ﬁ'Cl'DSﬁd

the fundamental. In all gpen cylindrical and  cylindrical rectangular
categories specified above, . . .

the overtones can be said to conical Air Columns — Air Columns membrane

be harmonic. present harmonic  conttmous lnes = fundamental and

However, sound sources  ~~ — " absent harmonic overtones

such as membranes or other
percussive sources may have resonant frequencies which are not integer multiples of their fundamental
frequencies. They are said to have some non-harmonic overtones.

Many musical instruments use stings like e.g. the guitar, the violin, the piano ectc. Percussive musical

instruments are e.g. the various types of drums. Below we also give some examples of wind instruments.

open air columns like the fl

. ute
flute and the picolo, produce
all harmonics.
Musical instruments with
conical air columns like the
oboe and the saxophone
produce the same resonant
frequencies as an open
cylinder of the same length.

picolo

oboe saxophone

Finally, the clarinet consists of a closed cylindrical air column with a bell-shaped
opening at one end.

clarinet
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Fourier Series and Fourier Transform
By the use of the famous Fourier Series, a periodic function is expressed as a sum of harmonics. In the case
of non-periodic functions a generalisation of the Fourier series is used i.e. the where the
sum is replaced by an integral and as a result the is expressed as an
to the function representation.

e Fourier Series: any periodic function can be expressed as a sum of harmonic functions i.e. cos and sin
(mathematical glossary) or “harmonics” (musical glossary). Mathematically this is expressed in the
following:

THEOREM l:Ifa continuous function f(t) is periodic with period T, i.e. with frequency v = 1/T, then it may be

f(t)—7°+2{a cos +b i 27;}11, (1)

where the coefficients are given by:

2nnt

:_I f(t)co dt, n=0,1,23,... (2a)

and
2 Tcnt

=_J'T/ f(t)sin n=123,... (2b)

The sinusoidal functions (cosines and sinuses) which are added in Eq. (1) are called Fourier components. The
coefficients a, and b, are called Fourier coefficients. Let us now characterize the various Fourier components
to gain some insight. Please have in mind that a function cos(at) or sin(at) has period T, = 27/a.

27nt . 27nt

a, cos— b, s period, T frequency, v comment

ag 1 0 0 any constant background
2t . 2mt

a cos T b, sin T or 1* harmonic
4t . 4mt

2 cos— b, sin—~ =T v, =2V 2" harmonic
6mt . ont

a cos by sin == -T/3 =3y 3" harmonic
8mt . 8mt

ay COST by SlnT T,=T/4 vy=4v 4™ harmonic

As can be seen from the last column of this table the onomatology characterizes “ ” the Fourier
component which has the . All other Fourier components
are called “harmonics” and the Fourier component with frequency v, = n v is characterized as «n™ harmonic».
One can easily show that if the function is even (odd), then only the a, (b,) Fourier coefficients which multiply
cosines (sinusus) survive.

' OvolacTikdg, T0 Bedpnpa Aeet 6Tt T0 Op1o

lim [ (F 24t=0

m t)—s, (t t=

fim [, EO=s.(0)*dt=0

omov sg(t) M avtictoyn memepacpévn oelpd. To kotd wéco M GePd cuykhivel onuelakdc Kot avoroplotd v f(t)
mpoodlopiletar amd T cvvOnkeg Dirichlet. Av Aowmdv (o) 1 cuvdptnon givar TUNUATIKG GLVEXNS Kot povdTtovn, Kot (B7)
o€ kG0e onpeio acvvéxewg Undpxel 70 6p10 amd de€1d Kot amd oploTeEPA, TOTE:

lllilgo|:— + Z{a COS t, b, si ZTF;nt ﬂ _ { f(t),

(f(t_) +1(t, ))/ 2, ot0. onueia aovvéyEiog

omov [ ovveyng




ftt)

2.0 4

One of the simplest examples is the function

f(t) = 1 + cos(2nt/T), 15
which has period T. According to Egs. (2), 10
ag=2anda; =1 .

i.e. in this case we have only the constant

0.0 t

background and the fundamental. 0 Ti2 T
A second famous example is a pulse function
with a period T = 2m, i.e. ()
—a, -—-n<t<0 1
f(t)= I o -
+a, O<t<m | | | | | |
p 1 1 1 | | |
and likewise for any te®R. Using Egs. (2) 0 n _z;n _Tc (l' T 2::: S
we obtain: i | | | : |
| | | | |
4o sin3t  sin 5t I - o
f(t)=—;/sint + + +..
s 3 5
The following two figures depict how adding
the sinusoidal functions with the correct
amplitudes we obtain in the limit the pulse function..
WO [ WOV [ WO e T s O
WU O s VO O s W
= — W W W W Wy
VAV V VAV VV V VYV VV V.V NVALWALNW ALY AA U AL
VAVAVAVAVE VAVAVAVAVEA
functions we add result after having added each function

Another form of Theorem 1 is

f(t)z%)"'zAn sin(%;nt +¢nj, where A =q/a’ +b’ and tan¢, =E—“. (3)

n=l n

Yet, another form of Theorem 1 is obtained using complex notation. Suppose that a function f(t) is periodic
with period T, i.e. with frequency v = 1/T, then it may be approximated arbitrarily well by a “complex Fourier
series”:

. 2mnt

+ o0
£(t)= chel T )

n=-—oo




where

a—o, n=0
1 ¢T/2 _j2mat (f ib )
- T g=03n ""nJ
¢ =7 I_T/zf(t)e dt . 00 (5)
(a, +1b7n)’ n<0
2
This form of Theorem 1 via Egs. (4-5) is the basis for the extremely important , which is

obtained by transforming c, from a discrete variable to a continuous one as the period T— oo.

In the case of functions a generalisation of the Fourier series is used i.e. the
where the sum is replaced by an integral and as a result the is expressed as an
to the function representation.

Next talk for Fourier Transform:
- Hopadeiypata emitoyods kot pun avalvoeng Fourier.
- Fourier analysis of MEG signal (a, p rhythm or general).
- [Tapadeiypata petacynuoticpav t < f (useful for MEG and MRI) ko x < k (useful for MRI).
- The recognition of different vowel sounds of the human voice is largely accomplished by analysis of the
harmonic content by the inner ear.
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