
PART 3 
Resonant Frequencies or Eigenfrequencies:  

in general, of the auditory canal, and of specific musical instruments. 
We have already presented the three basic characteristics of 
sound (pitch, loudness and quality). When analyzing sound 
quality we have stated that it is mainly characterized by the 
harmonic content and also by vibrato/tremolo and attack-
decay. Finally, when analyzing harmonic content we were 
obliged to talk about resonant frequencies.  
            Resonant frequencies will be the subject of the 
present chapter. This discussion is split into three 
subchapters: 
(a) resonant frequencies in general, 
(b) resonant frequencies of the auditory canal, and  
(c) resonant frequencies of specific musical instruments  
 
(a) Resonant Frequencies in general. 
Any object has - in general - its resonant frequencies or 
eigenfrequencies, and:  
(1) It is easy to make an object vibrate at its resonant 
frequencies, difficult to make it vibrate at other frequencies. 
This means that we must spend energy in order to make the 
object vibrate at a different frequency than its own resonant 
frequencies. Well known examples are:  

● the simple pendulum i.e. a mass hanging from a cord of length ℓ, which has eigenfrequency 
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where g is the acceleration of gravity, 

● the rod pendulum i.e. a rod of length ℓ hanging from its one end which has eigenfrequency 
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If we just take the rod, move it from the vertical and let it go, it will vibrate at its eigenfrequency mentioned 
above. If we want to make it vibrate at a different frequency we must e.g. hold it with our hands and oblige it to 
do so, however spending our precious energy! In both the examples presented above there is only one resonant 
frequency. 
(2) If we create a complex excitation to an object, it will select its resonant frequencies and it will vibrate at 
those frequencies (can be quite a few), essentially "filtering out" soon all other frequencies present in the 
excitation. We can, for example, hit the rod pendulum so that it can even make a circle but after a while it will 
start vibrate at its own well known eigenfrequency. 
(3) Most vibrating objects have many 
resonant frequencies. As an example we 
give the case of a chord with both ends 
fixed. If the length of the chord is L, then 
the following condition must be satisfied: 

          
2

nL nλ= . 

Here { },...4,3,2,1n * =ℵ∈  and λn is the 
corresponding wavelength of the allowed 
vibration mode. Now, since the velocity 
of propagation of the wave, c, is related 
to λn and the corresponding frequency, fn, 
by c = λn fn, it follows that: 

          
L2
cnf n = = n f1. 

f1 is called the fundamental frequency  
 

 

and all fn are called harmonics. In this special case, c is given by the following equation: 
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T is the tension of the chord, and ρ = (m/L) is the linear mass density. Since, finally, 
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chords of different length have different eigenfrequencies and we can change the set of eigenfrequencies of a 
given chord by altering its tension. It follows e.g. that 4-fold tension of a given chord multiplies its 
eigenfrequencies with a factor of two (if the length is not modified and if it doesn’t break!). Notice that our 
chord’s vibration is transverse. The points on the chord which do not move at all are called nodes and the 
points which vibrate with maximum amplitude are called antinodes. As depicted in the picture above, in our 
case of the chord, the two ends are forced to be nodes, but there are - in general - more nodes. 
          A second example of an object with many 
resonant frequencies is an one-side-closed cylinder 
of length L. This allows standing waves with 
wavelength, λn: 
 
          L = n (λn/4),     n = odd (1,3,5,…) 
 
i.e. since c = λnfn allows frequencies: 
 
          fn = n f1,     f1 = c/(4L), 
 
where c is the speed of sound. Again, f1 is the 
fundamental frequency and fn the nth harmonic. 
In this case, the vibration is longitudinal. The 
closed end of the cylinder is forced to be a node,  
since no longitudinal vibration is possible there. On 
the contrary, the open end of the cylinder is forced 
to be an antinode, since the cylinder meets the free  
air molecules. In general, again, there are more nodes and antinodes. For example the third harmonic has two 
nodes and two antinodes. 
           
A third example of an object with many 
eigenfrequencies is an open cylinder of length L. 
This allows standing waves with wavelength, λn: 
 
          L = n (λn/2),     n = 1,2,3,4,... 
 
i.e. since c = λnfn allows frequencies: 
 
          fn = n f1,     f1= c/(2L), 
 
where c is the speed of sound. In this case, the 
vibration is longitudinal and - by force - the two 
ends of the cylinder are antinodes, since the 
cylinder meets the free air molecules. As can be 
seen in the picture, the fundamental vibrational 
mode has one node and two antinodes, the second 
harmonic has two nodes and three antinodes etc  
 

Let us now turn to membranes. Suppose we have a plane membrane, homogeneously stretched by a tension T, 
given as force per unit length. The membrane has mass per unit area µ and the boundary is clamped. Then the 
speed of the vibration is given by c = (T/µ)1/2. A rectangular membrane vibrates at resonant frequencies given 
by the equation: 
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Notice that the eigenfrequencies depend on two indices i.e. m and n. We stress that with a complex excitation 
the membrane will vibrate at a combination of its resonant frequencies after having expelled all “alien” 
frequencies. For a square membrane the equation above becomes: 
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where ff = f10 = f01 = c/(2a) is the fundamental frequency. The following table depicts the first resonant 
frequencies of a square membrane (a = b): 

m n m n fmn fundamental and overtones 
0 0   rest  
0 1 1 0 ff 1st harmonic 
0 2 2 0 2 ff 2nd harmonic 
1 1   2 ff  ≈ 1.414 ff  
2 1 1 2 5 ff  ≈ 2.236 ff  
2 2   2 2 ff ≈ 2.828 ff  
0 3 3 0 3 ff 3rd harmonic 
3 1 1 3 10 ff  ≈ 3.162 ff  
2 3 3 2 13 ff ≈ 3.605 ff  
0 4 4 0 4 ff 4th harmonic 

 
On the other hand, a circular membrane (e.g. a drum and approximately the tympanic membrane) has 
eigenfrequencies given by the equation: 

fmn = xmn c/(2πa),  
where a is the radius of the membrane and xmn is the n-th root of the Jm(kr) Bessel function. In this case, the 
radial part of the solution is a Bessel function Jm(kr) and the boundary condition is kmn a = xmn i.e. the 
membrane is supposed to be fixed at r = a. We just give the first four vibrational modes:  

fundamental, f01, with x01 ≈ 2.4048  β΄ overtone, f21, with x21 ≈ 5.1336  

α΄ overtone, f11, with x11 ≈ 3.8317  γ΄ overtone, f02, with x02 ≈ 5.5201  
Summarizing, the lowest resonant frequency of a vibrating object is called its fundamental frequency. If an 
object has more than one resonant frequencies these are often called overtones. An harmonic is defined as an 
integer multiple of the fundamental frequency, i.e. the nth harmonic is such that fn = n f1, where f1 is the 
fundamental frequency. In many cases, as in the above mentioned example of the vibrating chord, the overtones 
are simply harmonics. 
 
(b) Resonant Frequencies of the Auditory Canal. 
The auditory canal, which is roughly 3 cm long and 
0.7 cm thick, is approximately an one-side-closed 
tube. We have already presented the frequencies of 
maximum sensitivity of human hearing (picture on 
the right). Notice that I don’t know if this figure is 
completely reliable. These curves can somehow be 
modelled supposing that the auditory canal is roughly 
approximated by an one-side closed tube. There is a 
significant dip in the range 2 kHz - 5 kHz with a peak 
sensitivity around 3.5 kHz - 4 kHz. The observed 
peak at about 3.7 kHz at body temperature is 
associated with the «fundamental frequency» of the 
auditory canal and «corresponds» to a tube length of 
2.4 cm. The high sensitivity region at 2 kHz – 5 kHz 
is very important for the understanding of speech. 
There is another enhanced sensitivity region roughly 
above 10 kHz which may be associated with the «3rd 
harmonic» of the auditory canal.  



The ear’s sensitivity as a function of frequency can be illustrated by playing some wav files here e.g. 

50hz.wav  200hz.wav  500hz.wav  1000hz.wav  3000hz.wav  
50 Hz 200 Hz 500 Hz 1 kHz 3 kHz 

4000hz.wav  8000hz.wav  10000hz.wav  13500hz.wav  20000hz.wav  
4 kHz 8 kHz 10 kHz 13.5 kHz 20 kHz 

 
(c) Resonant Frequencies of specific Musical Instruments. 
Many of the instruments of 
the orchestra, those utilizing 
strings and air columns, 
produce the fundamental 
frequency and harmonics. 
Vibrating strings, open 
cylindrical air columns, and 
conical air columns will 
vibrate at all harmonics of 
the fundamental. One-side-
closed cylinders will vibrate 
with only odd harmonics of 
the fundamental. In all 
categories specified above, 
the overtones can be said to 
be harmonic.  
 
However, sound sources 
such as membranes or other   
percussive sources may have resonant frequencies which are not integer multiples of their fundamental 
frequencies. They are said to have some non-harmonic overtones.  
 
Many musical instruments use stings like e.g. the guitar, the violin, the piano etc. Percussive musical 
instruments are e.g. the various types of drums. Below we also give some examples of wind instruments.  
Musical instruments with 
open air columns like the 
flute and the picolo, produce 
all harmonics. 

 
flute 

picolo 

Musical instruments with 
conical air columns like the 
oboe and the saxophone 
produce the same resonant 
frequencies as an open 
cylinder of the same length.  

oboe saxophone 
Finally, the clarinet consists of a closed cylindrical air column with a bell-shaped 
opening at one end. 

 
 

clarinet 
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Fourier Series and Fourier Transform 
By the use of the famous Fourier Series, a periodic function is expressed as a sum of harmonics. In the case 
of non-periodic functions a generalisation of the Fourier series is used i.e. the Fourier Transform where the 
sum is replaced by an integral and as a result the non-periodic function is expressed as an integral where also 
non-harmonics contribute to the function representation.  
 
● Fourier Series: any periodic function can be expressed as a sum of harmonic functions i.e. cos and sin 
(mathematical glossary) or “harmonics” (musical glossary). Mathematically this is expressed in the 
following: 
 
THEOREM 1: If a continuous function f(t) is periodic with period T, i.e. with frequency ν = 1/T, then it may be 
approximated arbitrarily well1 by a “Fourier series”: 
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where the coefficients are given by: 
 

 ∫−
π

=
2/T

2/Tn dt
T
nt2cos)t(f

T
2a ,  n = 0,1,2,3,…     (2a) 

and 

∫−
π

=
2/T

2/Tn dt
T
nt2sin)t(f

T
2b .  n = 1,2,3,…     (2b) 

 
The sinusoidal functions (cosines and sinuses) which are added in Eq. (1) are called Fourier components. The 
coefficients an and bn are called Fourier coefficients. Let us now characterize the various Fourier components  
to gain some insight. Please have in mind that a function cos(at) or sin(at) has period Ta = 2π/a. 
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As can be seen from the last column of this table the onomatology characterizes “fundamental” the Fourier 
component which has the same period and frequency as the original function. All other Fourier components 
are called “harmonics“ and the Fourier component with frequency νn = n ν is characterized as «nth harmonic». 
One can easily show that if the function is even (odd), then only the an (bn) Fourier coefficients which multiply 
cosines (sinusus) survive.  
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One of the simplest examples is the function 
 
          f(t) = 1 + cos(2πt/T),  
 
which has period T. According to Eqs. (2), 
 
          a0 = 2 and a1 = 1  
 
i.e. in this case we have only the constant 
background and the fundamental.  
 
 

A second famous example is a pulse function 
with a period T = 2π, i.e. 
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and likewise for any ℜ∈t . Using Eqs. (2) 
we obtain: 
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The following two figures depict how adding 
the sinusoidal functions with the correct  
amplitudes we obtain in the limit the pulse function.. 

  
functions we add result after having added each function 

 
Another form of Theorem 1 is   
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Yet, another form of Theorem 1 is obtained using complex notation. Suppose that a function f(t) is periodic 
with period T, i.e. with frequency ν = 1/T, then it may be approximated arbitrarily well by a “complex Fourier 
series”: 
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This form of Theorem 1 via Eqs. (4-5) is the basis for the extremely important Fourier transform, which is 
obtained by transforming cn from a discrete variable to a continuous one as the period T→ ∞. 
 
● In the case of non-periodic functions a generalisation of the Fourier series is used i.e. the Fourier Transform 
where the sum is replaced by an integral and as a result the non-periodic function is expressed as an integral 
where also non-harmonics contribute to the function representation.  
 
Next talk for Fourier Transform: 
- Παραδείγµατα επιτυχούς και µη αναλύσεως Fourier. 
- Fourier analysis of MEG signal (α, µ rhythm or general). 
- Παραδείγµατα µετασχηµατισµών t ↔ f (useful for MEG and MRI) και x ↔ k (useful for MRI). 
- The recognition of different vowel sounds of the human voice is largely accomplished by analysis of the  
   harmonic content by the inner ear. 
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