THz and above THz electron or hole oscillations in DNA dimers and trimers

K. Lambropoulos, K. Kaklamanis, G. Georgiadis, C. Simserides

National and Kapodistrian University of Athens, Faculty of Physics, Greece
http://www.phys.uoa.gr/
http://users.uoa.gr/~csimseri
Why study DNA electronic & charge transfer properties?

Nanotechnology:
• (self)-assembling nanocircuits
• nanodevices as a molecular wire

Biology:
• carcinogenesis and mutagenesis
e.g. hole migration to guanine - - - direct strand breaks occur preferentially at guanines
• long-range charge transfer along DNA may be crucial for DNA damage & repair
Introduction to DNA

Charge transfer in DNA

Results for dimers

Results for trimers

Greater sequences
Introduction to DNA
From double helix to chromosomes

Histones: proteins which package and order DNA into structural units called nucleosomes.

Chromatin: the combination of DNA, histone, and other proteins that make up chromosomes.

Metaphase chromosome: a chromosome in that stage of the cell cycle when it is most condensed and easiest to distinguish and so to study.
base pair separation ~ 3.4 Å
helix step ~ 34 Å

base pairs:
Cytosine <3 H bonds> Guanine
Adenine <2 H bonds> Thymine
Charge transfer in DNA
From Schrödinger’s equation to a Tight-Binding System of Differential Equations

Description at the base-pair level

Starting from the time-dependent Schrödinger’s equation:

\[i\hbar \frac{\partial \Psi_{DNA}^{H/L}}{\partial t} = \hat{H}_{DNA} \Psi_{DNA}^{H/L} \]

We analyze the DNA wavefunction into the bp wavefunctions:

\[\Psi_{DNA}^{H/L}(\mathbf{r}, t) = \sum_{\mu} A_{\mu}(t) \Psi_{bp(\mu)}^{H/L}(\mathbf{r}) \]

\[|A_{\mu}(t)|^2 \] probability to find the carrier at base-pair \(\mu \)

we find that the time evolution of the coefficients \(A_{\mu}(t) \) obeys the following system of equations:

\[i\hbar \frac{dA_{\mu}}{dt} = E_{H/L}^{bp(\mu)} A_{\mu} + t_{H/L}^{bp(\mu,\mu-1)} A_{\mu-1} + t_{H/L}^{bp(\mu,\mu+1)} A_{\mu+1} \]

\(E_{H/L}^{bp} \) : on-site energies of the two possible base-pairs

\(t_{H/L}^{bp} \) : hopping parameters for all possible combinations of successive base-pairs
HOMO and LUMO on-site energies of the base-pairs

- Calculated by various authors
- Used for the solution of the tight-binding system of equations

\[i\hbar \frac{dA_\lambda}{dt} = \left(E^{bp(\lambda)}_{H/L} \right) A_\lambda + t^{bp(\lambda;\lambda-1)}_{H/L} A_{\lambda-1} + t^{bp(\lambda;\lambda+1)}_{H/L} A_{\lambda+1} \]

<table>
<thead>
<tr>
<th>B-DNA base-pair</th>
<th>A-T</th>
<th>G-C</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E^{bp}_H)</td>
<td>-8.3</td>
<td>-8.0</td>
<td>[4]</td>
</tr>
<tr>
<td>(E^{bp}_L)</td>
<td>-4.9</td>
<td>-4.5</td>
<td>[4]</td>
</tr>
<tr>
<td>(E_{\pi-\pi^*})</td>
<td>3.4</td>
<td>3.5</td>
<td>[4]</td>
</tr>
<tr>
<td>(E^{bp}) first pr.</td>
<td>-(7.8-8.2)</td>
<td>-(6.3-7.7)</td>
<td>[7–12]</td>
</tr>
<tr>
<td>(E_{\pi-\pi^*}) first pr.</td>
<td>6.4</td>
<td>4.3-6.3</td>
<td>[12, 13]</td>
</tr>
<tr>
<td>(E^{bp \text{ used}}_H)</td>
<td>8.3</td>
<td>8.0</td>
<td>[4]</td>
</tr>
<tr>
<td>(E^{bp \text{ used}}_L)</td>
<td>-4.9</td>
<td>-4.5</td>
<td>[4]</td>
</tr>
</tbody>
</table>

All energies in eV
Hopping parameters between successive base-pairs

- Calculated by various authors
- Used for the solution of the tight-binding system of equations

\[
\frac{i\hbar}{dA_\lambda}{d_\lambda} = E_{H/L}^{bp(\lambda)} A_\lambda + t_{H/L}^{bp(\lambda;\lambda-1)} A_{\lambda-1} + t_{H/L}^{bp(\lambda;\lambda+1)} A_{\lambda+1}
\]

- Successive base-pairs \(\Leftrightarrow \) denoted by \(YX \) \{ \lambda \quad Y \quad Y_{compl} \}
 \quad \lambda' \quad X \quad X_{compl} \quad 3' \quad 5' \quad 3'

| Base-pair sequence | \(t_{H}^{bp} \) [9] | \(|t_{H}^{bp}| \) [19] | \(t_{H}^{bp} \) [8] | \(t_{L}^{bp} \) [20] | \(t_{H}^{bp} \) [21] | \(t_{L}^{bp} \) used | \(t_{H}^{bp} \) [9] | \(|t_{L}^{bp}| \) [8] | \(t_{L}^{bp} \) used |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| AA, TT | -8 | 26 | -25 | 8-17 | 19(19) | 22 | 20 | -29 | 35 | -29 |
| AT | 20 | 55 | | | 47(74) | 37 | -35 | 0.5 | 0.5 |
| AG, CT | -5 | 25 | -50 | | 35(51) | 43 | 30 | 3 | 3 |
| AC, GT | 2 | 26 | | | 25(38) | 20 | -10 | 32 | 32 |
| TA | 47 | 50 | | | 32(68) | 52 | -50 | 2 | 2 |
| TG, CA | -4 | 27 | | | 11(11) | 25 | 10 | 17 | 17 |
| TC, GA | -79 | 122 | -160 | | 71(108) | 60 | 110 | -1 | 35 | -1 |
| GG, CC | -62 | 93 | -140 | 75 | 72(101) | 63 | 100 | 20 | 35 | 20 |
| GC | 1 | 22 | | | 20(32) | 22 | -10 | -10 | -10 |
| CG | -44 | 78 | | | 51(84) | 74 | 50 | -8 | -8 |

All hopping parameters in meV
General solution of the tight-binding system of equations

To solve the system:

\[i\hbar \frac{dA_\lambda}{dt} = E_{H/L}^{bp(\lambda)} A_\lambda + t_{H/L}^{bp(\lambda; \lambda-1)} A_{\lambda-1} + t_{H/L}^{bp(\lambda; \lambda+1)} A_{\lambda+1} \]

we define the vector matrix

\[\mathbf{x}(t) = \begin{bmatrix} A_1(t) \\ A_2(t) \\ \vdots \\ A_N(t) \end{bmatrix} \]

Therefore:

\[\dot{\mathbf{x}}(t) = \tilde{\mathbf{A}} \mathbf{x}(t), \quad \tilde{\mathbf{A}} = -\frac{i}{\hbar} \begin{bmatrix} E_{H/L}^{bp(1)} & t_{H/L}^{bp(1; 2)} & 0 & \cdots & 0 & 0 & 0 \\ t_{H/L}^{bp(2; 1)} & E_{H/L}^{bp(2)} & t_{H/L}^{bp(2; 3)} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & E_{H/L}^{bp(N-1; N-2)} & t_{H/L}^{bp(N-1; N-1)} & \cdots & t_{H/L}^{bp(N-1; N)} \\ 0 & 0 & 0 & \cdots & t_{H/L}^{bp(N; N-1)} & E_{H/L}^{bp(N)} & \cdots & E_{H/L}^{bp(N)} \end{bmatrix} \]

eigenvalue method, the general solution is:

\[\mathbf{x}(t) = \sum_{k=1}^{N} c_k \mathbf{v}_k e^{-\frac{i}{\hbar} \lambda_k t} \]

\(\mathbf{v}_k \): normalized (linearly independent) eigenvectors

\(\lambda_k \): eigenvalues.
Results for dimers

- guanine
- cytosine
- adenine
- thymine

Hydrogen bonds

Carrier, schematically jumping back and forth

Frequency f

~ 97 THz (electron)

~ 90 THz (hole)
Dimers: solution, periods, frequencies

10 unique dimers, 6 made of identical monomers

General solution: \[\ddot{x}(t) = \sum_{k=1}^{2} c_k \dot{y}_k e^{-\frac{\lambda_k t}{T}} \quad \text{Initial condition:} \quad \ddot{x}(0) = \begin{bmatrix} A_1(0) \\ A_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

Suppose \(\lambda_2 \geq \lambda_1 \).

It follows that:

\[f = \frac{1}{T} - \frac{\lambda_2 - \lambda_1}{h} \]

1) Dimers consisting of identical monomers (e.g. GG ≡ CC, AT):

\[f = \frac{1}{T} = \frac{2|\theta_{bp}|}{h} \quad \text{(periodic carrier movement)} \]

2) Dimers consisting of different monomers (e.g. GA ≡ TC, CT ≡ AG):

\[f = \frac{1}{T} = \frac{\sqrt{(2\theta_{bp})^2 + (\Delta_{bp})^2}}{h} \quad \text{(periodic carrier movement)} \]

\[\Delta_{bp} = |E^{bp1} - E^{bp2}| \]
Dimers: maximum transfer percentage, pure maximum transfer rate

Maximum transfer percentage, \(p \): the maximum value of \(|A_2(t)|^2 \)

\[
p = \frac{(2tbp)^2}{(2tbp)^2 + (\Delta bp)^2}
\]

1) Dimers consisting of identical monomers \((\Delta bp = 0)\):

\[
p = 1 \ (100\%)
\]

2) Dimers consisting of different monomers:

\[
p < 1 \ (<100\%)
\]

Pure maximum transfer rate: \(pf \)

\[
pf = \frac{2|t_{bp}|}{h}\sqrt{\frac{(2t_{bp})^2}{(2t_{bp})^2 + (\Delta_{bp})^2}}
\]

Dimers consisting of identical monomers:

\[
pf = \frac{2|t_{bp}|}{h}
\]
Periodic carrier transfer in base-pair dimers

Left column: holes (HOMO) Right column: electrons (LUMO)
1st row: T in fs (■), f in THz (★)
2nd row: pf in THz (★), p (■)
GG ≡ CC and AA ≡ TT dimers

$|A_\mu(t)|^2$, $\mu = 1, 2$ for hole and electron transfer in GG ≡ CC and AA ≡ TT dimers. The maximum transfer percentage $p = 1$ (100%).
$|A_\mu(t)|^2$, $\mu = 1, 2$ for hole transfer in GA≡TC, GT≡AC, CA≡TG, and CT≡AG dimers. The maximum transfer percentage $p < 1$ (less than 100%).
Results for trimers
Trimers: solution, periods, frequencies

32 unique trimers, 8 made of identical monomers

General solution: $\tilde{x}(t) = \sum_{k=1}^{3} c_k \bar{v}_k e^{-\frac{1}{h} \lambda_k t}$
Initial condition: $\tilde{x}(0) = \begin{bmatrix} A_1(0) \\ A_2(0) \\ A_3(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Suppose $\lambda_1 \leq \lambda_2 \leq \lambda_3$

It occurs that:

$T_{21} = \frac{h}{\lambda_2 - \lambda_1}$, $T_{32} = \frac{h}{\lambda_3 - \lambda_2}$, $T_{31} = \frac{h}{\lambda_3 - \lambda_1}$

Notation: $T_M = T_{M(21)} = T_{M(32)}$, $T_E = T_{E(31)}$

1) Trimers consisting of identical monomers with no crosswise purines (e.g. GGG \equiv CCC):

$\begin{bmatrix} T_M = \frac{h}{t_b p \sqrt{2}} \\ T_E = \frac{h}{2 t_b p \sqrt{2}} \Rightarrow \frac{T_M}{T_E} = \frac{2}{1} \end{bmatrix}$
(periodic carrier movement)

2) Trimers consisting of identical monomers with crosswise purines (e.g. ATA \equiv TAT):

$\begin{bmatrix} T_M = \frac{h}{\sqrt{t_b p^2 + t_b p^2}} \\ T_E = \frac{h}{2 \sqrt{t_b p^2 + t_b p^2}} \Rightarrow \frac{T_M}{T_E} = \frac{2}{1} \end{bmatrix}$
(periodic carrier movement)

3) Trimers consisting of different monomers (e.g. GAC \equiv GTC):

$\begin{bmatrix} T_{M(32)} = \frac{h}{\Delta_{\text{hy}}^2 + \frac{\Delta_{\text{hy}}^2}{4} + t_b p^2 + t_b p^2} \\ T_{E(31)} = \frac{h}{2 \sqrt{\Delta_{\text{hy}}^2} + t_b p^2 + t_b p^2} \\ T_{M(21)} = \frac{h}{-\Delta_{\text{hy}}^2 + \sqrt{\Delta_{\text{hy}}^2} + t_b p^2 + t_b p^2} \end{bmatrix}$
(carrier movement may be non periodic)
Trimers: maximum transfer percentage, pure maximum transfer rate

(defined only in periodic cases of trimers)

Maximum transfer percentage, \(p \): the maximum value of \(|A_3(t)|^2 \)

1) Dimers consisting of identical monomers with no crosswise purines:

\[
p = 1 \ (100\%)
\]

2) Trimers consisting of identical monomers with crosswise purines:

\[
p < 1 \ (<100\%)
\]

Pure maximum transfer rate: \(pf \)
Periodic carrier transfer in base-pair trimers made of identical monomers

Left column: holes (HOMO)
Right column: electrons (LUMO)

1st row: \(T \) in fs (■), \(f \) in THz (★)
2nd row: \(pf \) in THz (★), \(p \) (■)
GGG ≡ CCC and AAA ≡ TTT trimers

$|A_\mu(t)|^2$, $\mu = 1, 2, 3$ for hole and electron transfer in GGG ≡ CCC and AAA ≡ TTT trimers (no crosswise purines). The maximum transfer percentage $p = 1$ (100%).
|A_μ(t)|^2, \ μ = 1, 2, 3 for hole transfer in GGC \equiv GCC, GCG \equiv CGC, CGG \equiv CCG, AAT \equiv ATT, ATA \equiv TAT, and TAA \equiv TTA trimers (crosswise purines). The maximum transfer percentage \ p < 1 (<100%).
GAA \equiv TTC, GTG \equiv CAC, CGA \equiv TCG, and AGT \equiv ACT trimers

$|A_\mu(t)|^2$, $\mu = 1, 2, 3$ for hole transfer in GAA \equiv TTC, GTG \equiv CAC, CGA \equiv TCG, and AGT \equiv ACT trimers (some examples of trimers consisting of different monomers).
Greater sequences
Tetramers

136 unique tetramers, 20 made of identical monomers

-Simplest case: GGGG ≡ CCCC and AAAA ≡ TTTT (identical monomers with no crosswise purines).

-Fractions of the periods involved in carrier movement:

\[
\frac{T_{43}}{T_{41}} = \sqrt{5} + 1
\]

\[
\frac{T_{42}}{T_{41}} = 1 + \frac{\sqrt{5}}{5}
\]

\[
\frac{T_{32}}{T_{41}} = \frac{3 + \sqrt{5}}{5}
\]

Even in this case, carrier movement is not periodic.

-Increasing the number of monomers above 3 periodicity is lost (generally).
Conclusions

- We can induce charge oscillations in all DNA dimers by adding an extra charge.

\[f \approx 0.25–100 \text{ THz} \]

1) identical monomers: \(p=1 \)
2) different monomers: \(p<1 \)

- Carrier movement is still periodic in trimers made of identical monomers.

\[f \approx 0.5–33 \text{ THz} \] (narrower)

1) no crosswise purines: \(p=1 \)
2) crosswise purines: \(p<1 \)

- Oscillations in dimers and trimers mainly in MIR and FIR range.

- Trimers made up of different monomers: periodicity depends on specific parameter values.

- Increasing the number of monomers above three, leads –generally – to loss of periodicity.
The end

Thank you!
Related Work

