Compact and efficient implicit representations

Clément Laroche

ESR1 of Arcades, Marie Skłodowska-Curie Fellows Association

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Marie Skłodowska-Curie Actions

Athens, Thursday 30th of April 2020 http://users.uoa.gr/~claroche

ARCADES Network

- 13 PhD students
- 6 hosting countries; Barcelona, Glasgow, Sophia-Antipolis, Wien, Linz, Athens, Oslo
- 14 research centers and industrial partners
- 2 secondments per PhD student (in my case : SINTEF, Oslo, and RISC, Linz)
- Algebraic Geometry, Rigidity Theory, Computer Graphics, CAD-CAE...

Table of Contents

Introduction

- 2 A few Implicitization Algorithms
 - Swept Volumes
 - Sparse Resultant
 - Chow Form

3 Matrix Representations and Syzygies

- The method
- Sylvester Forms
- Sketch of proof
- Applications

Table of Contents

1 Introduction

- A few Implicitization Algorithms
 - Swept Volumes
 - Sparse Resultant
 - Chow Form

3 Matrix Representations and Syzygies

- The method
- Sylvester Forms
- Sketch of proof
- Applications

\approx Parametric and Implicit \checkmark

Let V be a variety of dimension d in \mathbb{C}^n . Its codimension is c = n - d.

Parametric

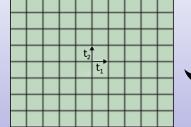
A (rational) parametric description of V is a rational function $p : \mathbb{C}^d \to \mathbb{C}^n$. $V = \left\{ p(t) \mid t \in \mathbb{C}^d \right\}$

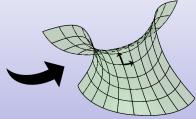
Implicit

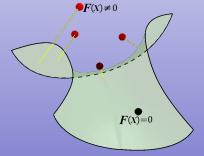
A standard implicit description of V is a set of polynomial functions $F_i : \mathbb{C}^n \to \mathbb{C}$. $V = \{x \in \mathbb{C}^n \mid F_i(x) = 0, \forall i\}$

Matrix Representations and Syzygies

Parametric







Implicit

ㅋㅋトㅋㅋトㅋ 글 돈ㅋ 말 돈ㅋ

≈ Parametric and Implicit

Parametric Representations

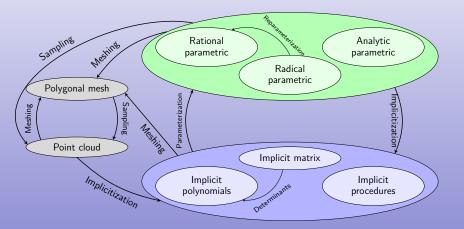
- Extensively used in CAGD
- Sample and display are simple
- Can be local (eg. Bezier curve/patch)
- Cannot be used for any variety (not closed under intersection)

Implicit Representations

- Provide geometric and algebraic informations (degree, genus, ideal...)
- Intersection and membership are simple
- Allow raytracing technics
- Describe the whole variety

Matrix Representations and Syzygies

\approx Representation Catalogue \checkmark



- ④ 이 ▷ ④ 이 ▷ ④ 들 ▷ ④ 드 ▷ - -

\sim Implicitization Toolbox 🛩

Remark : $(f_i(x, t)) := x_i - p_i(t) = 0$ is an easy first step towards implicitization, where p is a parametrization.

Tools

Groebner bases

Using algebraic tools (ideals, euclidean division...), find equations equivalent to $(f_i)_i$ in $(\mathbb{C}[x, t] \setminus \mathbb{C}[x]) \coprod \mathbb{C}[x]$,

Elimination theory

Using resultants, eliminate the variable(s) t,

Syzygy theory

Using syzygies and $\mu\text{-}\mathsf{bases},$ build convenient implicit representations.

Matrix Representations and Syzygies

\sim Implicit Representation Problems \checkmark

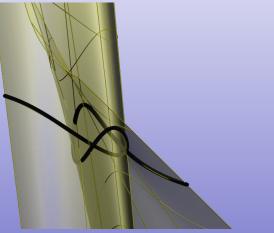
Problem (I) : the number of equations required is not obvious when $\operatorname{codim} > 1$.



Matrix Representations and Syzygies

\sim Implicit Representation Problems \checkmark

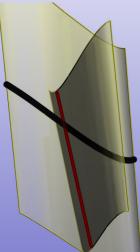
Problem (I) : the number of equations required is not obvious when $\operatorname{codim} > 1$.



Matrix Representations and Syzygies

\sim Implicit Representation Problems \checkmark

Problem (I) : the number of equations required is not obvious when $\operatorname{codim} > 1$.



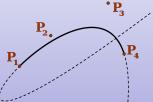
() ㅋ이トㅋ들トㅋ일ト ---

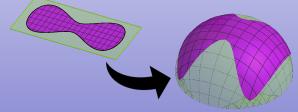
Matrix Representations and Syzygies

≈ Implicit Representation Problems

Problem (II) : implicit representations are not local. *Examples :*

- Bézier curves self-intersecting inside their control polygon
- Surface trimming



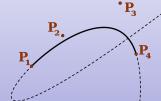


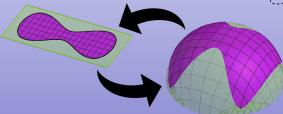
Matrix Representations and Syzygies

≈ Implicit Representation Problems

Problem (II) : implicit representations are not local. *Examples :*

- Bézier curves self-intersecting inside their control polygon
- Surface trimming





Solution : solving the inversion problem

Matrix Representations and Syzygies

≈ Implicit Representation Problems

Problem (III) : Instability

Floating-point arithmetic makes the evaluation of high degree polynomials instable : rounding errors propagate and explode.

Example

$$P(x) := (x^3 - 1)(x - 10)^{15}$$

$$P\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)=0$$

 $P(-0.5 + 0.866025403784440i) \approx 1.652551896306318 + 8.724965314413668i$ $\tilde{P}(-0.5 + 0.866025403784440i) = 4.19138410839463 + 1.46574416565220i$

Table of Contents

Introduction

2 A few Implicitization Algorithms

- Swept Volumes
- Sparse Resultant
- Chow Form

3 Matrix Representations and Syzygies

- The method
- Sylvester Forms
- Sketch of proof
- Applications

Swept Volumes

≈ Swept Volume ∽

C. Laroche. An Implicit Representation of Swept Volumes based on Local Shapes and Movements. arXiv, 2020. Joint work with A. Raffo

RISC Software GmbH (Hagenberg, Austria) develops tools to simulate drilling and shaping tools.

Moving tool

A base tool B is a bounded 3D model given by local implicit patches $(A_i, f_i)_{1 \le i \le N}$:

- A_i is an area (ball, cube, convex polygon...)
- f_i is a local implicit procedure : given $x \in A_i, f_i(x) \le 0 \iff x \in (B \cap A_i)$

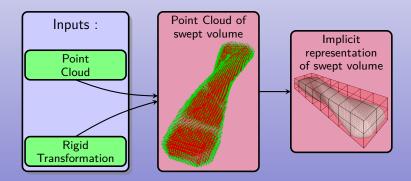
A sweeping transformation is a piecewise smooth map $I \to Iso^+(\mathbb{R}^3)$

A few Implicitization Algorithms

Matrix Representations and Syzygies

Swept Volumes

\sim Swept Volumes : previous strategy \checkmark



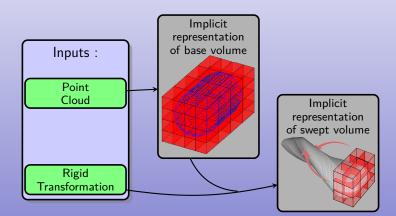
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ

A few Implicitization Algorithms

Matrix Representations and Syzygies

Swept Volumes

\sim Swept Volumes : new strategy \checkmark



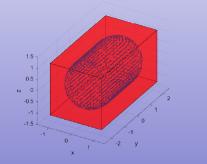
A few Implicitization Algorithms

Swept Volumes

\sim Example of local implicit patches : LR-BSplines \checkmark

We combine LR-BSplines and sweeping transformations to have implicit representation of swept volume.

└ We can use it for boolean operations (intersection, difference, etc).



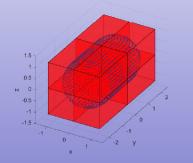
A few Implicitization Algorithms

Swept Volumes

\sim Example of local implicit patches : LR-BSplines \checkmark

We combine LR-BSplines and sweeping transformations to have implicit representation of swept volume.

└ We can use it for boolean operations (intersection, difference, etc).



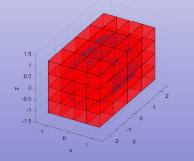
A few Implicitization Algorithms

Swept Volumes

\sim Example of local implicit patches : LR-BSplines \checkmark

We combine LR-BSplines and sweeping transformations to have implicit representation of swept volume.

└ We can use it for boolean operations (intersection, difference, etc).

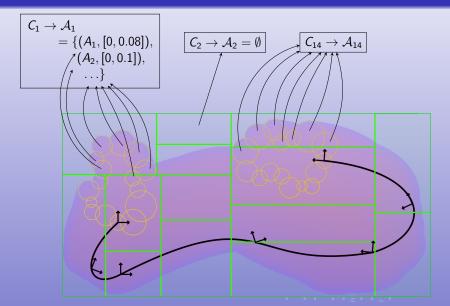


A few Implicitization Algorithms

Matrix Representations and Syzygies

Swept Volumes

\sim Structure of our implicit representation \checkmark



Sparse Resultant

SINTEF (Oslo, Norway) develops C++ code manipulating geometric objects (GoTools).

Let f_0, \ldots, f_n be polynomials in *n* variables.

The coefficients of f_i are $\{c_{i,\alpha} \mid 0 \le i \le n \text{ and } \alpha \in \Delta_i\}$ with Support $(f_i) \subset \Delta_i \subset \mathbb{N}^n$.

Dense Resultant

Use
$$\Delta_i = \{ \alpha \mid |\alpha| \leq \deg(f_i) \}$$

Then there is a polynomial Res_M in $\mathbb{C}[c_{i,\alpha}]$ such that :

•
$$\operatorname{Res}_{M}(C) = 0 \iff \exists x \text{ such that } f_{0}(x) = \cdots = f_{n}(x) = 0$$

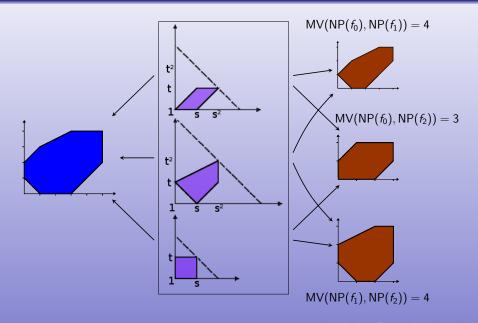
•
$$\forall i, \deg_i(\operatorname{Res}_M) = \prod_{j \neq i} \deg(f_j)$$

Sparse Resultant

Use Δ_i = Newton Polytope of Support(f_i). Then there is a polynomial Res₅ verifying the same properties except that $\deg_i(\operatorname{Res}_5) = \operatorname{MixedVolume}((\Delta_j)_{j \neq i})$

Matrix Representations and Syzygies

Sparse Resultant



Sparse Resultant

≈ Sparse Resultant Matrix ≠

Algorithm (Maple [IZE 2000] and C++ [CL 2018])

- Compute Newton polytopes Q_i of f_i ,
- Compute mixed subdivision of Minkowski sum $Q := Q_0 + \cdots + Q_n$ (from lower hull of a generic lifting), Each cell is given by $\sigma = S_0 + \cdots + S_n$ where $S_i \subset Q_i$ and $\exists j_{\sigma}$ such that dim $(S_{j_{\sigma}}) = 0$, Each point $p \in ((Q + \delta) \cap \mathbb{N}^n)$ belongs to a unique cell $\sigma(p)$, where δ is a small generic translation.
- Onstruct

$$M := (\operatorname{coeff}(x^{p-S_{j_{\sigma}(p)}}f_i, x^q))_{p,q \in ((Q+\delta) \cap \mathbb{N}^n)}$$

http://users.uoa.gr/~claroche/publications/SparseResultant.zip

A few Implicitization Algorithms

Matrix Representations and Syzygies

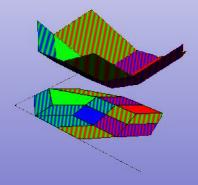
Sparse Resultant

≈ Mixed Subdivision

$$f_0 = a_{00} + a_{10}x + a_{21}x^2y + a_{11}xy \qquad f_1 = b_{01}y + b_{22}x^2y^2 + b_{21}x^2y + b_{10}x$$

 $f_2 = c_{00} + c_{01}y + c_{11}xy + c_{10}x$

Each cell is $S_0 + S_1 + S_2$ where at least one is reduced to a point



A few Implicitization Algorithms

Matrix Representations and Syzygies

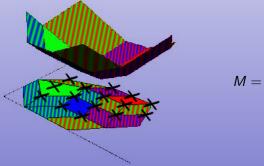
Sparse Resultant

≈ Mixed Subdivision

$$f_0 = a_{00} + a_{10}x + a_{21}x^2y + a_{11}xy \qquad f_1 = b_{01}y + b_{22}x^2y^2 + b_{21}x^2y + b_{10}x$$

$$f_2 = c_{00} + c_{01}y + c_{11}xy + c_{10}x$$

Each cell is $S_0 + S_1 + S_2$ where at least one is reduced to a point Sparse resultant matrix is indexed by integer points of Q



$$I = \begin{pmatrix} xyf_0 \\ xy^2 f_0 \\ xy^2 f_1 \\ \vdots \\ x^3 y^2 f_0 \\ x^4 y^3 f_2 \end{pmatrix}$$

Chow Form

≈ Chow Form ∽

I. Z. Emiris, C. Konaxis, C. Laroche and I. Kotsireas. *Matrix representations by means of interpolation*. ISSAC '17, pp149-156, jul 2017.
I. Z. Emiris, C. Konaxis and C. Laroche. *Implicit representations of high-codimension varieties*. CAGD, 74 :101764, oct 2019.

Definition

Let H_0, \ldots, H_d be linear forms where $H_i(X) = u_{i0}X_0 + \cdots + u_{in}X_n$ for $i = 0, \ldots, d$.

The Chow form of the variety V is the *single* polynomial R_V in the variables u_{ij} such that $R_V(u_{ij}) = 0 \Leftrightarrow V \cap \{H_0 = 0, \dots, H_d = 0\} \neq \emptyset$.

Proposition

V is uniquely determined by its Chow form. More precisely, a point $x \in \mathbb{C}^n$ lies in V if and only if any (n - d - 1)-dimensional linear subspace containing x belongs to the Chow form (ie. the parameters defining this subspace are a root of R_V).

A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

≈ Chow Form

Α.

в

Example

$$V = \operatorname{Zeros}(Y - X^2, X + Y) = \{(-1, 1), (0, 0)\} = \{A, B\}$$

Then the Chow Form is a polynomial in *a*, *b*, *c* vanishing iff *A* or *B* belongs to $aX + bY + c = 0$.

A few Implicitization Algorithms

Matrix Representations and Syzygies

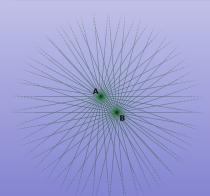
Chow Form

≈ Chow Form *∽*

Example

$$V = \text{Zeros}(Y - X^2, X + Y) = \{(-1, 1), (0, 0)\} = \{A, B\}$$

Then the Chow Form is a polynomial in *a*, *b*, *c* vanishing iff *A* or *B* belongs to $aX + bY + c = 0$.



$$R_V(a, b, c) = (ax_A + by_A + c)(ax_B + by_B + c)$$

A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

≈ Conical Hypersurface 🛩

Curve in 3 D

For a curve \mathscr{C} in \mathbb{C}^3 and a point G, we have $Cone(G, \mathscr{C}) = \bigcup_{x \in \mathscr{C}} Line(G, x)$.

Curve in 4 D

For a curve \mathscr{C} in \mathbb{C}^4 and two points G_1, G_2 , we have $\text{Cone}(G_1, G_2, \mathscr{C}) = \bigcup_{x \in \mathscr{C}} \text{Plane}(G_1, G_2, x).$

A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

≈ Conical Hypersurface

Curve in 3 D

For a curve \mathscr{C} in \mathbb{C}^3 and a point G, we have $Cone(G, \mathscr{C}) = \bigcup_{x \in \mathscr{C}} Line(G, x)$.

Curve in 4 D

For a curve \mathscr{C} in \mathbb{C}^4 and two points G_1, G_2 , we have $Cone(G_1, G_2, \mathscr{C}) = \bigcup_{x \in \mathscr{C}} Plane(G_1, G_2, x).$

General Case

For a variety V of codimension c in \mathbb{C}^n and c-1 points G_1, \ldots, G_{c-1} , we have Cone $(G_1, \ldots, G_{c-1}, V) = \bigcup_{x \in V} \operatorname{Aff}(G_1, \ldots, G_{c-1}, x).$

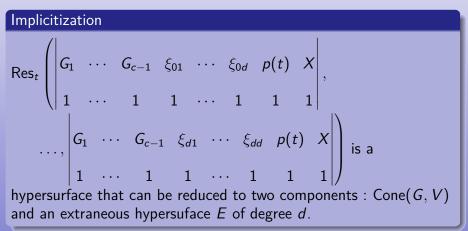
A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

\sim Resultant for Implicitization \checkmark

Given $p : \mathbb{C}^d \to \mathbb{C}^n$ a parameterization of V, we choose c - 1 generic points G_1, \ldots, G_{c-1} and $\xi_{01}, \ldots, \xi_{dd}$.



- ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ

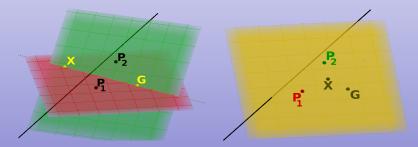
A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

pprox The Extraneous Factor 🛩

The extraneous plane



The resultant vanishes when $H_0 \cap H_1$ intersects the curve. When $X \in Aff(G, \xi_0, \xi_1)$, $H_0 = H_1$ and intersects the curve anyway.

A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

pprox The Extraneous Factor 🛩

The extraneous hypersurface [IZE, CK, CL 2017]

In general, the extraneous factor is an hypersurface E of degree d. Its equation is given by the following formula : $\odot_{i=0}^{d}(G_1 \dots G_{c-1} \wedge \xi_{i1} \dots \xi_{id} \wedge X) = 0$

Chow Form

pprox The Extraneous Factor 🛩

The extraneous hypersurface [IZE, CK, CL 2017]

In general, the extraneous factor is an hypersurface E of degree d. Its equation is given by the following formula : $\odot_{i=0}^{d}(G_1 \dots G_{c-1} \wedge \xi_{i1} \dots \xi_{id} \wedge X) = 0$

Degree

Note : Since the degree of the resultant is quite high compared to the degrees of Cone(G, V) and of the extraneous factor, they appear with some power.

$$\underbrace{\mathsf{Resultant}}_{\mathsf{degree}\,\leqslant\delta^d+d\delta^d}=\underbrace{\mathsf{Cone}(G,V)^q}_{\mathsf{degree}\,\leqslant\delta^d\times q}\times\underbrace{E^p}_{\mathsf{degree}\,\leqslant d\times p}$$

A few Implicitization Algorithms

Matrix Representations and Syzygies

Chow Form

http://users.uoa.gr/~claroche/publications/ChowFormImplicitize.zip Although the method works for any variety of codimension c > 1, it runs better for curves.

Chow Form

\approx Curves in $\mathbb{C}^n \not \sim$

http://users.uoa.gr/~claroche/publications/ChowFormImplicitize.zip Although the method works for any variety of codimension c > 1, it runs better for curves.

Simpler Terminating Condition [IZE, CK, CL 2017]

n equations are sufficient for describing a curve in \mathbb{C}^n . We don't have an optimal terminating condition for arbitrary codimension.

Chow Form

\approx Curves in $\mathbb{C}^n \not \sim$

http://users.uoa.gr/~claroche/publications/ChowFormImplicitize.zip Although the method works for any variety of codimension c > 1, it runs better for curves.

Simpler Terminating Condition [IZE, CK, CL 2017]

n equations are sufficient for describing a curve in \mathbb{C}^n . We don't have an optimal terminating condition for arbitrary codimension.

Simpler Resultant Computation

We use the univariate Sylvester resultant instead of the multivariate sparse resultant.

Chow Form

http://users.uoa.gr/~claroche/publications/ChowFormImplicitize.zip Although the method works for any variety of codimension c > 1, it runs better for curves.

Simpler Terminating Condition [IZE, CK, CL 2017]

n equations are sufficient for describing a curve in \mathbb{C}^n . We don't have an optimal terminating condition for arbitrary codimension.

Simpler Resultant Computation

We use the univariate Sylvester resultant instead of the multivariate sparse resultant.

Simpler Extraneous Factor

Extraneous hyperplane = Aff(
$$G_1, \ldots, G_{n-2}, \xi_0, \xi_1$$
).

Table of Contents

Introduction

- 2 A few Implicitization Algorithms
 - Swept Volumes
 - Sparse Resultant
 - Chow Form

3 Matrix Representations and Syzygies

- The method
- Sylvester Forms
- Sketch of proof
- Applications

A few Implicitization Algorithms

Matrix Representations and Syzygies

The method

≈ Syzygies 🛩

L. Busé, C. Laroche and F. Yıldırım. *Implicitizing rational curves* by the method of moving quadrics. CAD, 114 :101–111, sep 2019. Let $p = \left(\frac{p_1}{p_0}, \ldots, \frac{p_n}{p_0}\right)$ a parameterization of a curve with $\deg(p_i) = \delta$ and $I := \langle p_0, \ldots, p_n \rangle$.

The Space of Syzygies

$$\mathsf{Syz}(I) := \left\{ h = (h_0, \ldots, h_n) \mid \sum_{i=0}^n h_i \, p_i = 0 \right\}$$

Syz(I) is a module.

A few Implicitization Algorithms

The method

≈ Syzygies 🛩

L. Busé, C. Laroche and F. Yıldırım. *Implicitizing rational curves* by the method of moving quadrics. CAD, 114 :101–111, sep 2019. Let $p = \left(\frac{p_1}{p_0}, \ldots, \frac{p_n}{p_0}\right)$ a parameterization of a curve with $\deg(p_i) = \delta$ and $I := \langle p_0, \ldots, p_n \rangle$.

The Space of Syzygies

$$\mathsf{Syz}(I) := \left\{ h = (h_0, \ldots, h_n) \mid \sum_{i=0}^n h_i \, p_i = 0 \right\}$$

Syz(I) and $Syz(I^2)$ are modules.

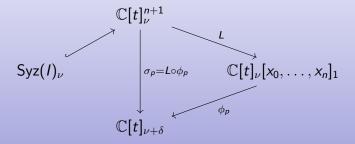
$$\mathsf{Syz}(l^2) := \left\{ h = (h_{00}, \dots, h_{nn}) \mid \sum_{0 \le i \le j \le n} h_{ij} \, p_i \, p_j = 0 \right\}$$

A few Implicitization Algorithms

Matrix Representations and Syzygies

The method

pprox The different spaces involved ${\mathscr S}$



With :

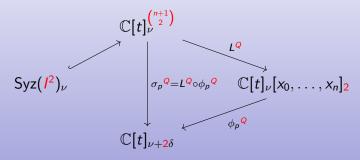
• $L(h_0, \ldots, h_n) = \sum_i h_i x_i$ • $\phi_p(\sum_i h_i x_i) = \sum_i h_i p_i$ • $Syz(I)_{\nu} = Ker(\sigma_p)$

A few Implicitization Algorithms

Matrix Representations and Syzygies

The method

pprox The different spaces involved ${\mathscr A}$



With :

•
$$L^{Q}(h_{00}, \ldots, h_{nn}) = \sum_{ij} h_{ij} x_{i} x_{j}$$

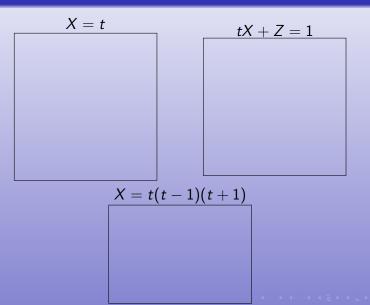
• $\phi_{p}^{Q}(\sum_{ij} h_{ij} x_{i} x_{j}) = \sum_{ij} h_{ij} p_{i} p_{j}$
• $Syz(I^{2})_{\nu} = Ker(\sigma_{p}^{Q})$

A few Implicitization Algorithms

Matrix Representations and Syzygies

The method

\sim Aka. Moving Planes following the Curve \checkmark



A few Implicitization Algorithms

The method

ᅕ Algorithm MRep 🛩

Input :
$$p = \left(\frac{p_1}{p_0}, \dots, \frac{p_n}{p_0}\right)$$
 and $\nu > 0$
Compute basis of Syz(I) $_{\nu}$.
Write this basis as $\begin{pmatrix} S_0 \\ \vdots \\ S_n \end{pmatrix}$: rows indexed by R_{ν}^{n+1} , columns indexed by basis elements.

• Let
$$\mathbb{M}_{\nu} = \sum_{i} S_{i} x_{i}$$

Theorem

 \mathbb{M}_{ν} is a matrix of size dim $(R_{\nu}) \times \text{dim}(\text{Syz}(I)_{\nu})$ whose entries are linear in x_0, \ldots, x_n . For $\nu \ge d - 1$, it is a Matrix Representation of V. More accuratly, $\nu \ge \mu_n + \mu_{n-1} - 1$ where $\mu_1 \le \cdots \le \mu_n$ are degrees of μ -basis.

A few Implicitization Algorithms

Matrix Representations and Syzygies

The method

≈ Algorithm QMRep ∽

Input :
$$p = \left(\frac{p_1}{p_0}, \dots, \frac{p_n}{p_0}\right)$$
 and $\nu \ge 0$

• Compute \mathbb{M}_{ν} (and $\text{Syz}(I)_{\nu}$ in the process).

- **2** Compute basis of $Syz(I^2)_{\nu}$ modulo $Syz(I)_{\nu}$.
- **Output** Define \mathbb{Q}_{ν} similar to MRep construction.

• Concatenate
$$\mathbb{M}\mathbb{Q}_{\nu} = \begin{pmatrix} \mathbb{M}_{\nu} & \mathbb{Q}_{\nu} \end{pmatrix}$$
.

Theorem [LB, FY, CL 2019]

 \mathbb{MQ}_{ν} is a matrix whose entries are linear or quadratic in x_1, \ldots, x_n . For $\nu \ge \mu_n - 1$, it is a Matrix Representation of V.

(A matrix depending on x_0, \ldots, x_n is a Matrix Representation of V when its rank drops on $\underline{\mathbf{x}}$ iff $\underline{\mathbf{x}} \in V$.)

The method

A few Implicitization Algorithms

Twisted Cubic

The twisted cubic is
$$p = (t, t^2, t^3)$$
.
Its MRep (with $\nu = 1$) is $\begin{pmatrix} x & z & y \\ 1 & y & x \end{pmatrix}$

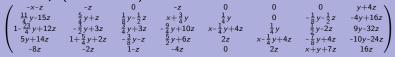
QMRep is the Implicit Equations

Its QMRep (with
$$\nu = 0$$
) is $\begin{pmatrix} x \ y - z & z \ x - y^2 & x^2 - y \end{pmatrix}$

The method

Degree 7 Curve : MRep

A generic degree 7 curve has μ -basis of degrees (2, 2, 3). A MRep (with $\nu = 4$) is



Degree 7 Curve : QMRep

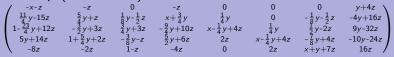
Its QMRep (with
$$\nu = 1$$
) is

$$\begin{pmatrix} -3x^2 + \ldots + 18z^2 & 32x^2 + \ldots + 48z^2 & 4x^2 + \ldots - 16z^2 & -x^2 + \ldots - 9z^2 \\ x + \ldots - 130z^2 & 100x^2 + \ldots + 2040z^2 & y + \ldots - 8z^2 & -5x^2 + \ldots - 100z^2 \end{pmatrix}$$

The method

Degree 7 Curve : MRep

A generic degree 7 curve has μ -basis of degrees (2, 2, 3). A MRep (with $\nu = 4$) is



Degree 7 Curve : QMRep

Its QMRep (with $\nu = 1$) is $\begin{pmatrix} -3x^2 + \ldots + 18z^2 & 32x^2 + \ldots + 48z^2 & 4x^2 + \ldots - 16z^2 & -x^2 + \ldots - 9z^2 \\ x + \ldots - 130z^2 & 100x^2 + \ldots + 2040z^2 & y + \ldots - 8z^2 & -5x^2 + \ldots - 100z^2 \end{pmatrix}$

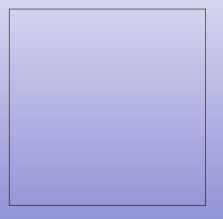
Theorem says we can use $\nu = 2$ for a 3×7 QMRep.

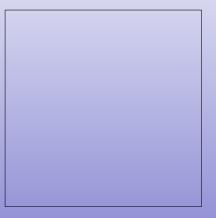
A few Implicitization Algorithms

Matrix Representations and Syzygies

The method

\sim Moving Quadrics following the Curve \checkmark





A few Implicitization Algorithms

Matrix Representations and Syzygies

Sylvester Forms

≈ Sylvester Forms ≁

Quadratic Relations from Linear Syzygies

Some quadratic relations come from resultants of the μ -basis : $deg(\mathbf{h}_{\mathbf{k}}) = \mu_{k}, \quad \mathbf{h}_{\mathbf{k}} = \sum_{i=0}^{n} \left(a_{i,0} s^{\mu_{k}-1} \cdot \sigma + \sum_{j=1}^{\mu_{k}} a_{i,j} s^{\mu_{k}-j} t^{j-1} \cdot \tau \right) x_{i}$ $deg(\mathbf{h}_{\mathbf{k}'}) = \mu_{k'}, \quad \mathbf{h}_{\mathbf{k}'} = \sum_{i=0}^{n} \left(b_{i,0} s^{\mu_{k'}-1} \cdot \sigma + \sum_{j=1}^{\mu_{k'}} b_{i,j} s^{\mu_{k'}-j} t^{j-1} \cdot \tau \right) x_{i}$ $Res_{\sigma,\tau}(\mathbf{h}_{\mathbf{k}}, \mathbf{h}_{\mathbf{k}'}) = \begin{vmatrix} s^{\mu_{k}-1} \times & \text{linear in } x_{0}, \dots, x_{n} \\ \text{degree } \mu_{k'} - 1 \text{ in } s, t, \\ \text{linear in } x_{0}, \dots, x_{n} \end{vmatrix} \quad s^{\mu_{k'}-1} \times \begin{vmatrix} \text{linear in } x_{0}, \dots, x_{n} \\ \text{linear in } x_{0}, \dots, x_{n} \end{vmatrix}$

Resultant produces a quadratic relation of degree $\mu_k + \mu_{k'} - 2$. Because of factorization, it also produces syzygies of I^2 down to degree max $(\mu_k, \mu_{k'}) - 1$.

A few Implicitization Algorithms

Matrix Representations and Syzygies

Sylvester Forms

≈ Sylvester Forms

Example : $\mu_1 = \mu_2 = 2$

$$\begin{aligned} & \mathbf{h}_1 = a_0 s \sigma + (a_1 s + a_2 t) \tau \\ & \mathbf{h}_2 = b_0 s \sigma + (b_1 s + b_2 t) \tau \\ & \text{Res} = s \cdot \begin{vmatrix} a_0 & a_1 s + a_2 t \\ b_0 & b_1 s + b_2 t \end{vmatrix} = s[s(a_0 b_1 - a_1 b_0) + t(a_0 b_2 - a_2 b_0)] \end{aligned}$$

Total : 1 element of Syz(l^2) of degree $\mu_1 + \mu_2 - 2 = 2$ and 2 elements of Syz(l^2) of degree $\mu_1 + \mu_2 - 3 = 1$

A few Implicitization Algorithms

Matrix Representations and Syzygies

Sylvester Forms

\sim Computing Syz(I^2) with Sylvester Forms \checkmark

Combinatorial Formula

For each couple of degrees $\mu_k \leq \mu_{k'}$ of the μ -basis, there are :

- ▶ 1 element of $Syz(I^2)_{\mu_{k'}+\mu_k-2}$
- > 2 elements of $Syz(I^2)_{\mu_{k'}+\mu_k-3}$

• μ_k elements of $Syz(I^2)_{\mu_{k'}-1}$

Example : $\mu = (3, 5, 7)$

In degree $\nu = \mu_3 - 1 = 6$, dim $(Syz(I^2)_6) = 3 + 5 + 1 = 9$

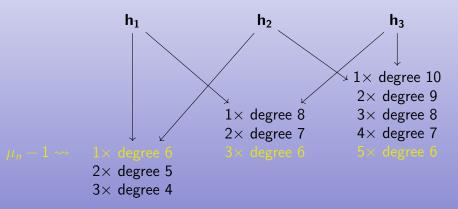
A few Implicitization Algorithms

Matrix Representations and Syzygies

Sylvester Forms

 \approx Computing Syz(I^2) with Sylvester Forms \ll

 μ -basis : $\mathbf{h_1}, \mathbf{h_2}, \mathbf{h_3}$ of degrees $\mathbf{3}, \mathbf{5}, \mathbf{7}$:

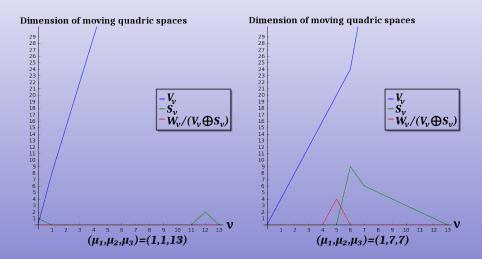


A few Implicitization Algorithms

Matrix Representations and Syzygies

Sylvester Forms

\sim Space of Quadratic Relations 🛩



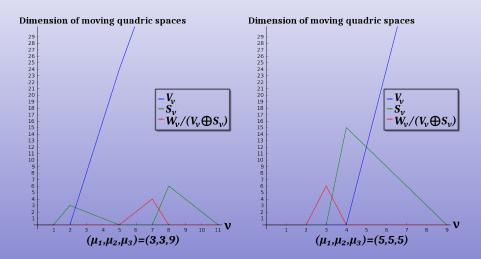
→ → → → Ξ → → □ →

A few Implicitization Algorithms

Matrix Representations and Syzygies

Sylvester Forms

\sim Space of Quadratic Relations \checkmark



ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ

Introduction	
000000000	

Matrix Representations and Syzygies

Sketch of proof

$$\begin{split} & \mathbb{MQ}_{\nu} \text{ is a Matrix Representation for } \nu \ge \mu_3 - 1 \\ & \mathcal{A} := \mathbb{C}[x_0, x_1, x_2, x_3]^{\text{hom}} \\ & \mathcal{R} := \mathbb{C}[s, t; x_0, x_1, x_2, x_3]^{\text{hom}} \\ & \mathfrak{m} := < s, t > \\ & \mathsf{h}_1, \mathsf{h}_2, \mathsf{h}_3 := \mu \text{-basis for } p \\ & \mathcal{J} := < \mathsf{h}_1, \mathsf{h}_2, \mathsf{h}_3 > \\ & \mathcal{J}' := \operatorname{Zeros}(\mathsf{h} \mapsto \mathsf{h}(s, t; p(s, t))) \end{split}$$
 (all the moving hypersurfaces) (localisation ideal) (gen. by moving hyperplanes $\rightarrow p$) (moving hypersurfaces $\rightarrow p$)

J' is the saturation of J

 $\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3$ form a regular sequence in R outside $V(\mathfrak{m})$.

$$J' = (J:_R \mathfrak{m}^\infty) = \{\mathbf{h} \in R ext{ such that } \exists k \in \mathbb{N}, extbf{h} \mathfrak{m}^k \subset J\}$$

Introduction	
000000000	

Matrix Representations and Syzygies

Sketch of proof

$$\begin{split} & \mathbb{MQ}_{\nu} \text{ is a Matrix Representation for } \nu \ge \mu_3 - 1 \\ & \mathcal{A} := \mathbb{C}[x_0, x_1, x_2, x_3]^{\text{hom}} \\ & \mathcal{R} := \mathbb{C}[s, t; x_0, x_1, x_2, x_3]^{\text{hom}} \\ & \mathfrak{m} := < s, t > \\ & \mathsf{h}_1, \mathsf{h}_2, \mathsf{h}_3 := \mu \text{-basis for } p \\ & \mathcal{J} := < \mathsf{h}_1, \mathsf{h}_2, \mathsf{h}_3 > \\ & \mathcal{J}' := \operatorname{Zeros}(\mathsf{h} \mapsto \mathsf{h}(s, t; p(s, t))) \end{split}$$
 (all the moving hypersurfaces) (localisation ideal) (gen. by moving hyperplanes $\rightarrow p$) (moving hypersurfaces $\rightarrow p$)

J' is the saturation of J

 $\mathbf{h_1}, \mathbf{h_2}, \mathbf{h_3}$ form a regular sequence in R outside $V(\mathfrak{m})$.

$$J'=(J:_{{\mathcal R}}{\mathfrak m}^\infty)=\{{f h}\in {\mathcal R} ext{ such that } \exists k\in {\mathbb N}, \, {f h}{\mathfrak m}^k\subset J\}$$

$\mathbb{MQ}_{ u}$ is a Matrix Representation for $u \geq \mu_3 - 1$

The theorem we want to prove is rewritten as : $\forall \nu \geq \mu_3 - 1, \ J'_{\nu} = (J'\langle 2 \rangle)_{\nu}$ where $J'\langle 2 \rangle$ is generated by $J' \cap R_{\deg(x) \leq 2}$.

 $\rightarrow 0$

Sketch of proof

$$\mathbb{MQ}_{\nu}$$
 is a Matrix Representation $\iff J'_{\nu} = (J'\langle 2 \rangle)_{\nu}$

Čech complex

The Čech complex of
$$B := R/J$$
 is given by :
 $\mathcal{C}^{\bullet}_{\mathfrak{m}}(B) : 0 \to B \xrightarrow{\check{c}_0} B_{x_0} \oplus B_{x_1} \oplus B_{x_2} \oplus B_{x_3} \xrightarrow{\check{c}_1} \cdots \xrightarrow{\check{c}_3} B_{x_0x_1x_2x_3}$

Local cohomology

Except for $H^0_{\mathfrak{m}}$, the local cohomology of *B* with support in \mathfrak{m} is the cohomology of the Čech complex :

$$\begin{aligned} H^0_{\mathfrak{m}}(B) &= \{\mathbf{h} \in B \text{ such that } \exists k \in \mathbb{N}, \ \mathbf{h}\mathfrak{m}^k = 0\} \\ &= (J :_B \mathfrak{m}^\infty)/J = J'/J \\ H^i_{\mathfrak{m}}(B) &= \operatorname{Ker}(\check{c}_i)/\operatorname{Im}(\check{c}_{i-1}), \ \text{for } i \geq 1 \\ H^2_{\mathfrak{m}}(R) &\simeq A \otimes_{\mathbb{C}} \check{S}, \ \text{where } \check{S} := \frac{1}{st} \mathbb{C}[s^{-1}, t^{-1}] \end{aligned}$$

A few Implicitization Algorithms

Sketch of proof

≈ Koszul Complex ≠

$$\begin{split} \mathbb{MQ}_{\nu} \text{ is a Matrix Representation } & \Longleftrightarrow J'_{\nu} = (J'\langle 2 \rangle)_{\nu} \\ \text{Remember that } J = <\mathbf{h_1},\mathbf{h_2},\mathbf{h_3} > \text{ is graded both w.r.t. } \mathbb{C}[s,t] \text{ and} \\ \text{to } \mathbb{C}[x_0,x_1,x_2,x_3]. \\ \text{Degree shifts w.r.t. } \mathbb{C}[s,t]:[-] \\ \text{Degree shifts w.r.t. } \mathbb{C}[x_0,x_1,x_2,x_3]: \{-\} \end{split}$$

$$\mathcal{K}_{\bullet} : 0 \to R \left[-\mu_1 - \mu_2 - \mu_3 \right] \{-3\} \xrightarrow{d_3} \cdots$$
$$\cdots \xrightarrow{d_2} R \left[-\mu_1 \right] \{-1\} \oplus R \left[-\mu_2 \right] \{-1\} \oplus R \left[-\mu_3 \right] \{-1\} \xrightarrow{d_1} R \to 0$$

We have that $H_0(K_{\bullet}) = R/J = B$.

Lemma

$$H_2(H^2_{\mathfrak{m}}(K_{ullet})) \xrightarrow{\sim} H^0_{\mathfrak{m}}(B) = J'/J$$

A few Implicitization Algorithms

Sketch of proof

\sim Double Complex \checkmark

In order to prove the lemma, consider $\mathcal{C}^{\bullet}_{\mathfrak{m}}(K_{\bullet})$:

A few Implicitization Algorithms

Sketch of proof

≈ Spectral Sequences

The spectral sequence corresponding to the column filtration of this double complex converges at the second step because $\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3$ form a regular sequence outside $V(\mathfrak{m})$:

$$\begin{array}{cccc} H^{0}_{\mathfrak{m}}(H_{3}(K_{\bullet})) & H^{0}_{\mathfrak{m}}(H_{2}(K_{\bullet})) & H^{0}_{\mathfrak{m}}(H_{1}(K_{\bullet})) & H^{0}_{\mathfrak{m}}(B) \\ 0 & 0 & 0 & H^{1}_{\mathfrak{m}}(B) \\ 0 & 0 & 0 & 0 \end{array}$$

The row filtration of our double complex gives another spectral sequence that also converge at the second step :

$$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ H_3(H_{\mathfrak{m}}^2(K_{\bullet})) & H_2(H_{\mathfrak{m}}^2(K_{\bullet})) & H_1(H_{\mathfrak{m}}^2(K_{\bullet})) & H_0(H_{\mathfrak{m}}^2(K_{\bullet})) \end{array}$$

They both converge to the same limit : the homology of the total complex of $\mathcal{C}^{\bullet}_{\mathfrak{m}}(K_{\bullet})$. Thus $H_2(H^2_{\mathfrak{m}}(K_{\bullet})) \xrightarrow{\sim} H^0_{\mathfrak{m}}(B)$.

Sketch of proof

$$\mathbb{MQ}_{\nu}$$
 is a Matrix Representation $\iff H^2_{\mathfrak{m}}(K_1)_{\nu} = 0$

$$H_2(H^2_{\mathfrak{m}}(K_{ullet}))$$
 is obtained from the sequence $H^2_{\mathfrak{m}}(K_{ullet})$:
 $H^2_{\mathfrak{m}}(K_3) o H^2_{\mathfrak{m}}(K_2) o H^2_{\mathfrak{m}}(K_1)$

Using $H^2_{\mathfrak{m}}(R)\simeq A\otimes_{\mathbb{C}}\check{S}$ and the expression of K_1 , we obtain :

$$(H^2_{\mathfrak{m}}(K_1))_{
u}\simeq \left(\check{S}_{
u-\mu_1}\oplus\check{S}_{
u-\mu_2}\oplus\check{S}_{
u-\mu_3}
ight)\otimes_{\mathbb{C}} A\{-1\}$$

In particular, $\forall \nu \geqslant \mu_3 - 1$, $H^2_{\mathfrak{m}}(K_1)_{\nu} = 0$.

The decisive exact sequence

The following sequence of graded A-modules is exact for $\nu \ge \mu_3 - 1$.

$$\left(\check{S}_{\nu-\mu_1-\mu_2}\oplus\check{S}_{\nu-\mu_1-\mu_3}\oplus\check{S}_{\nu-\mu_2-\mu_3}
ight)\otimes_{\mathbb{C}} A\{-2\}
ightarrow (J'/J)_{
u}
ightarrow 0$$

Thus $(J'/J)_{\nu} = ((J'/J)\langle 2 \rangle)_{\nu}$ and $J'_{\nu} = (J'\langle 2 \rangle)_{\nu}$.

A few Implicitization Algorithms

Matrix Representations and Syzygies

Applications

≈ Comparison Table (Space Curves)

Degree (μ -basis degree)	MRep size	QMRep size
4 (1, 1, 2)	3 × 5	2×4
5 (1, 2, 2)	4 × 7	2×5
6 (2,2,2)	4 × 6	2 × 6
6 (1,1,4)	5 × 9	4 × 8
7 (2,2,3)	5 × 8	$3 \times 5 (2 \times 4)$
7 (1,3,3)	6 × 11	3 × 7
7 (1,1,5)	6 imes 11	5 imes 10
10 (3, 3, 4)	7 imes 11	$4 \times 10 (3 \times 7)$
15 (5, 5, 5)	10 imes 18	5 imes15

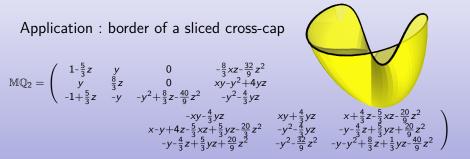
Notes : $\sum_{i} \mu_{i} = \delta$ Evenly distributed μ -bases are the generic case.

A few Implicitization Algorithms

Matrix Representations and Syzygies

Applications

\sim Self-Intersection \checkmark



(x, y, z) = (0, 0, 0) is a self-intersection

 $\begin{aligned} &\mathsf{Rank}(\mathbb{MQ}_2(0,0,0)) = 1 \\ &\mathsf{Ker}(\mathbb{MQ}_2(0,0,0)^{\mathcal{T}}) = \{(1,1,1), (1,-1,1)\} \; \rightsquigarrow \; \text{the two pre-images of} \\ &(0,0,0) \; \text{are} \; t = 1 \; \text{and} \; t = -1 \end{aligned}$

Applications

\sim Curve Intersection \checkmark

Two parameterized curves : C_1 (deg. 7) and C_2 (deg. 4). \mathbb{MQ}_2 of C_1 is of size (3,7) and can be computed numerically. $\mathbb{MQ}_2(p_2(t)) \approx$

 $48.618t^4 - 78.594t^3 - 310.76t^2 + 560.59t - 228.16$

$(x, y, z) \approx (-0.126, 2.743, 3.1833)$ is an intersection

Using SVD, we check that the rank drops at t = 0.731 $p_1(0.731) \approx p_2(0.731) \approx (-0.126, 2.743, 3.1833)$

A few Implicitization Algorithms

Matrix Representations and Syzygies

Applications

≈ Distance Approximation

Trick : det($\mathbb{M}\mathbb{Q}_{\nu}.\mathbb{M}\mathbb{Q}_{\nu}^{T}$) gives a single implicit equation of $V \cap \mathbb{R}^{n}$ The following is a figure of det($\mathbb{M}\mathbb{Q}_{\nu}.\mathbb{M}\mathbb{Q}_{\nu}^{T}$) = 0 (black) and det($\mathbb{M}\mathbb{Q}_{\nu}.\mathbb{M}\mathbb{Q}_{\nu}^{T}$) = ϵ (yellow)

and the second

All mark

A few Implicitization Algorithms

Matrix Representations and Syzygies

Thank you

ㅋㅋ▶ㅋㅋ▶ㅋ물▶ㅋ말▶ㅋ