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» Parametric and Implicit «

Let V be a variety of dimension d in Cn.
Its codimension is c = n − d .
Parametric
A (rational) parametric description of V is a rational function
p : Cd → Cn.
V =

{
p(t) | t ∈ Cd

}
Implicit
A standard implicit description of V is a set of polynomial functions
Fi : Cn → C.
V = {x ∈ Cn | Fi(x) = 0, ∀i}
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» Parametric and Implicit «

Parametric Representations
Extensively used in CAGD
Sample and display are simple
Can be local (eg. Bezier curve/patch)
Cannot be used for any variety (not closed under intersection)

Implicit Representations
Provide geometric and algebraic informations (degree, genus,
ideal...)
Intersection and membership are simple
Allow raytracing technics
Describe the whole variety



Introduction A few Implicitization Algorithms Matrix Representations and Syzygies

» Representation Catalogue «
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» Implicitization Toolbox «

Remark : «fi(x , t) := xi − pi(t) = 0» is an easy first step towards
implicitization, where p is a parametrization.

Tools
Groebner bases
Using algebraic tools (ideals, euclidean division...), find
equations equivalent to (fi)i in (C[x , t]\C[x ])∐C[x ],
Elimination theory
Using resultants, eliminate the variable(s) t,
Syzygy theory
Using syzygies and µ-bases, build convenient implicit
representations.
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» Implicit Representation Problems «

Problem (I) : the number of equations required is not obvious when
codim > 1.
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» Implicit Representation Problems «

Problem (II) : implicit representations are not local.
Examples :

Bézier curves self-intersecting
inside their control polygon
Surface trimming



Introduction A few Implicitization Algorithms Matrix Representations and Syzygies

» Implicit Representation Problems «

Problem (II) : implicit representations are not local.
Examples :

Bézier curves self-intersecting
inside their control polygon
Surface trimming

Solution : solving the inversion problem
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» Implicit Representation Problems «

Problem (III) : Instability
Floating-point arithmetic makes the evaluation of high degree
polynomials instable : rounding errors propagate and explode.

Example

P(x) := (x3 − 1)(x − 10)15

P
(
−1
2 +
√
3
2 i
)

= 0

P(−0.5 + 0.866025403784440i) ≈ 1.652551896306318 + 8.724965314413668i

P̃(−0.5 + 0.866025403784440i) = 4.19138410839463 + 1.46574416565220i
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Swept Volumes

» Swept Volume «

C. Laroche. An Implicit Representation of Swept Volumes based on
Local Shapes and Movements. arXiv, 2020. Joint work with A. Raffo

RISC Software GmbH (Hagenberg, Austria) develops tools to
simulate drilling and shaping tools.

Moving tool
A base tool B is a bounded 3D model given by local implicit
patches (Ai , fi)1≤i≤N :

Ai is an area (ball, cube, convex polygon...)
fi is a local implicit procedure : given
x ∈ Ai , fi(x) ≤ 0 ⇐⇒ x ∈ (B ∩ Ai)

A sweeping transformation is a piecewise smooth map I → Iso+(R3)
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Swept Volumes

» Swept Volumes : previous strategy «

Inputs :

Point
Cloud

Rigid
Transformation

Point Cloud of
swept volume Implicit

representation
of swept volume
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Swept Volumes

» Swept Volumes : new strategy «

Inputs :

Point
Cloud

Rigid
Transformation

Implicit
representation
of base volume

Implicit
representation

of swept volume
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Swept Volumes

» Example of local implicit patches : LR-BSplines «

We combine LR-BSplines and sweeping transformations to have
implicit representation of swept volume.

We can use it for boolean operations (intersection, difference,
etc).
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We combine LR-BSplines and sweeping transformations to have
implicit representation of swept volume.

We can use it for boolean operations (intersection, difference,
etc).



Introduction A few Implicitization Algorithms Matrix Representations and Syzygies

Swept Volumes

» Structure of our implicit representation «

C1 → A1
= {(A1, [0, 0.08]),

(A2, [0, 0.1]),
. . .}

C2 → A2 = ∅ C14 → A14
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Sparse Resultant

SINTEF (Oslo, Norway) develops C++ code manipulating
geometric objects (GoTools).
Let f0, . . . , fn be polynomials in n variables.
The coefficients of fi are {ci ,α | 0 ≤ i ≤ n and α ∈ ∆i} with
Support(fi) ⊂ ∆i ⊂ Nn.

Dense Resultant
Use ∆i = {α | |α| ≤ deg(fi)}
Then there is a polynomial ResM in C[ci ,α] such that :

ResM(C) = 0 ⇐⇒ ∃x such that f0(x) = · · · = fn(x) = 0
∀i , degi(ResM) = ∏

j 6=i deg(fj)

Sparse Resultant
Use ∆i = Newton Polytope of Support(fi). Then there is a
polynomial ResS verifying the same properties except that
degi(ResS) = MixedVolume((∆j)j 6=i)



Introduction A few Implicitization Algorithms Matrix Representations and Syzygies

Sparse Resultant

MV(NP(f0),NP(f1)) = 4

MV(NP(f0),NP(f2)) = 3

MV(NP(f1),NP(f2)) = 4



Introduction A few Implicitization Algorithms Matrix Representations and Syzygies

Sparse Resultant

» Sparse Resultant Matrix «

Algorithm (Maple [IZE 2000] and C++ [CL 2018])
1 Compute Newton polytopes Qi of fi ,
2 Compute mixed subdivision of Minkowski sum

Q := Q0 + · · ·+ Qn (from lower hull of a generic lifting),
Each cell is given by σ = S0 + · · ·+ Sn where Si ⊂ Qi and ∃jσ
such that dim(Sjσ ) = 0,
Each point p ∈ ((Q + δ) ∩ Nn) belongs to a unique cell σ(p),
where δ is a small generic translation.

3 Construct

M := (coeff(xp−Sjσ(p)fi , xq))p,q∈((Q+δ)∩Nn)

http://users.uoa.gr/~claroche/publications/SparseResultant.zip

http://users.uoa.gr/~claroche/publications/SparseResultant.zip
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Sparse Resultant

» Mixed Subdivision «

f0 = a00 + a10x + a21x2y + a11xy f1 = b01y + b22x2y2 + b21x2y + b10x

f2 = c00 + c01y + c11xy + c10x

Each cell is S0 + S1 + S2 where at least one is reduced to a point
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Sparse Resultant

» Mixed Subdivision «

f0 = a00 + a10x + a21x2y + a11xy f1 = b01y + b22x2y2 + b21x2y + b10x

f2 = c00 + c01y + c11xy + c10x

Each cell is S0 + S1 + S2 where at least one is reduced to a point
Sparse resultant matrix is indexed by integer points of Q

M =



xyf0
xy2f0
xy2f1
...

x3y2f0
x4y3f2


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Chow Form

» Chow Form «

I. Z. Emiris, C. Konaxis, C. Laroche and I. Kotsireas. Matrix representations
by means of interpolation. ISSAC ’17, pp149-156, jul 2017.

I. Z. Emiris, C. Konaxis and C. Laroche. Implicit representations of
high-codimension varieties. CAGD, 74 :101764, oct 2019.

Definition
Let H0, . . . ,Hd be linear forms where Hi (X ) = ui0X0 + · · ·+ uinXn for
i = 0, . . . , d .
The Chow form of the variety V is the single polynomial RV in the
variables uij such that RV (uij) = 0⇔ V ∩ {H0 = 0, . . . ,Hd = 0} 6= ∅.

Proposition
V is uniquely determined by its Chow form. More precisely, a point
x ∈ Cn lies in V if and only if any (n − d − 1)-
dimensional linear subspace containing x belongs to the Chow form (ie.
the parameters defining this subspace are a root of RV ).
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Chow Form

» Chow Form «

Example
V = Zeros(Y − X 2,X + Y ) = {(−1, 1), (0, 0)} = {A,B}
Then the Chow Form is a polynomial in a, b, c vanishing iff A or B
belongs to aX + bY + c = 0.
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Chow Form

» Chow Form «

Example
V = Zeros(Y − X 2,X + Y ) = {(−1, 1), (0, 0)} = {A,B}
Then the Chow Form is a polynomial in a, b, c vanishing iff A or B
belongs to aX + bY + c = 0.

RV (a, b, c) =
(axA + byA + c)(axB + byB + c)
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Chow Form

» Conical Hypersurface «

Curve in 3 D
For a curve C in C3 and a point G , we have
Cone(G ,C ) = ∪x∈C Line(G , x).

Curve in 4 D
For a curve C in C4 and two points G1,G2, we have
Cone(G1,G2,C ) = ∪x∈C Plane(G1,G2, x).

General Case
For a variety V of codimension c in Cn and c − 1 points
G1, . . . ,Gc−1, we have
Cone(G1, . . . ,Gc−1,V ) = ∪x∈V Aff(G1, . . . ,Gc−1, x).
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Chow Form

» Resultant for Implicitization «

Given p : Cd → Cn a parameterization of V ,
we choose c − 1 generic points G1, . . . ,Gc−1 and ξ01, . . . , ξdd .

Implicitization

Rest


∣∣∣∣∣∣∣∣∣
G1 · · · Gc−1 ξ01 · · · ξ0d p(t) X

1 · · · 1 1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣ ,

. . . ,

∣∣∣∣∣∣∣∣∣
G1 · · · Gc−1 ξd1 · · · ξdd p(t) X

1 · · · 1 1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣

 is a

hypersurface that can be reduced to two components : Cone(G ,V )
and an extraneous hypersuface E of degree d .
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Chow Form

» The Extraneous Factor «

The extraneous plane
H0 = Aff(G , ξ0,X )
H1 = Aff(G , ξ1,X )

}
The extraneous plane is Aff(G , ξ0, ξ1).

The resultant vanishes when H0 ∩ H1 intersects the curve.
When X ∈ Aff(G , ξ0, ξ1), H0 = H1 and intersects the curve anyway.
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Chow Form

» The Extraneous Factor «

The extraneous hypersurface [IZE, CK, CL 2017]
In general, the extraneous factor is an hypersurface E of degree d .
Its equation is given by the following formula :
�d

i=0(G1 . . .Gc−1 ∧ ξi1 . . . ξid ∧ X ) = 0

Degree
Note : Since the degree of the resultant is quite high compared to
the degrees of Cone(G ,V ) and of the extraneous factor, they
appear with some power.

Resultant︸ ︷︷ ︸
degree 6δd +dδd

= Cone(G ,V )q︸ ︷︷ ︸
degree 6δd×q

× E p︸︷︷︸
degree 6d×p
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Chow Form

» Curves in Cn «

http://users.uoa.gr/~claroche/publications/ChowFormImplicitize.zip

Although the method works for any variety of codimension c > 1, it
runs better for curves.

Simpler Terminating Condition [IZE, CK, CL 2017]
n equations are sufficient for describing a curve in Cn. We don’t
have an optimal terminating condition for arbitrary codimension.

Simpler Resultant Computation
We use the univariate Sylvester resultant instead of the multivariate
sparse resultant.

Simpler Extraneous Factor
Extraneous hyperplane = Aff(G1, . . . ,Gn−2, ξ0, ξ1).

http://users.uoa.gr/~claroche/publications/ChowFormImplicitize.zip
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The method

» Syzygies «

L. Busé, C. Laroche and F. Yıldırım. Implicitizing rational curves
by the method of moving quadrics. CAD, 114 :101–111, sep 2019.
Let p =

(
p1
p0
, . . . , pn

p0

)
a parameterization of a curve with deg(pi) = δ

and I :=< p0, . . . , pn >.

The Space of Syzygies

Syz(I) :=
{

h = (h0, . . . , hn) |
n∑

i=0
hi pi = 0

}

Syz(I) is a module.

Syz(I2) :=

h = (h00, . . . , hnn) |
∑

0≤i≤j≤n
hij pi pj = 0


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The method

» The different spaces involved «

C[t]n+1
ν

Syz(I)ν C[t]ν [x0, . . . , xn]1

C[t]ν+δ

L

σp=L◦φp

φp

With :
L(h0, . . . , hn) = ∑

i hi xi

φp(∑i hi xi) = ∑
i hi pi

Syz(I)ν = Ker(σp)
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The method

» The different spaces involved «

C[t](
n+1

2 )
ν

Syz(I2)ν C[t]ν [x0, . . . , xn]2

C[t]ν+2δ

LQ

σpQ=LQ◦φpQ

φpQ

With :
LQ(h00, . . . , hnn) = ∑

i j hi j xi xj

φp
Q(∑i j hi j xi xj) = ∑

i j hi j pi pj

Syz(I2)ν = Ker(σp
Q)
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The method

» Aka. Moving Planes following the Curve «

X = t tX + Z = 1

X = t(t − 1)(t + 1)
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The method

» Algorithm MRep «

Input : p =
(

p1
p0
, . . . , pn

p0

)
and ν > 0

1 Compute basis of Syz(I)ν .

2 Write this basis as


S0
...

Sn

 : rows indexed by Rn+1
ν , columns

indexed by basis elements.
3 Let Mν = ∑

i Sixi .

Theorem
Mν is a matrix of size dim(Rν)× dim(Syz(I)ν) whose entries are
linear in x0, . . . , xn.
For ν ≥ d − 1, it is a Matrix Representation of V . More accuratly,
ν ≥ µn + µn−1 − 1 where µ1 ≤ · · · ≤ µn are degrees of µ-basis.
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The method

» Algorithm QMRep «

Input : p =
(

p1
p0
, . . . , pn

p0

)
and ν ≥ 0

1 Compute Mν (and Syz(I)ν in the process).
2 Compute basis of Syz(I2)ν modulo Syz(I)ν .
3 Define Qν similar to MRep construction.
4 Concatenate MQν =

(
Mν Qν

)
.

Theorem [LB, FY, CL 2019]
MQν is a matrix whose entries are linear or quadratic in x1, . . . , xn.
For ν ≥ µn − 1, it is a Matrix Representation of V .

(A matrix depending on x0, . . . , xn is a Matrix Representation of V
when its rank drops on x iff x ∈ V .)
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The method

» Examples «

Twisted Cubic
The twisted cubic is p = (t, t2, t3).

Its MRep (with ν = 1) is
(

x z y
1 y x

)

QMRep is the Implicit Equations

Its QMRep (with ν = 0) is
(
x y − z z x − y 2 x2 − y

)
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The method

» Examples «

Degree 7 Curve : MRep
A generic degree 7 curve has µ-basis of degrees (2, 2, 3).
A MRep (with ν = 4) is −x−z −z 0 −z 0 0 0 y+4z

11
4 y−15z 5

4 y+z 1
8 y− 1

2 z x+ 3
4 y 1

4 y 0 − 1
8 y− 1

2 z −4y+16z
1− 23

4 y+12z − 3
2 y+3z 3

4 y+3z − 9
4 y+10z x− 1

4 y+4z 1
4 y 1

2 y−2z 9y−32z
5y+14z 1+ 5

4 y+2z − 3
8 y−z 5

2 y+6z 2z x− 1
4 y+4z − 7

8 y+4z −10y−24z
−8z −2z 1−z −4z 0 2z x+y+7z 16z


Degree 7 Curve : QMRep
Its QMRep (with ν = 1) is(

−3x2+ . . . +18z2 32x2+ . . . +48z2 4x2+ . . . −16z2 −x2+ . . . −9z2

x+ . . . −130z2 100x2+ . . . +2040z2 y+ . . . −8z2 −5x2+ . . . −100z2

)

Theorem says we can use ν = 2 for a 3× 7 QMRep.
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Its QMRep (with ν = 1) is(

−3x2+ . . . +18z2 32x2+ . . . +48z2 4x2+ . . . −16z2 −x2+ . . . −9z2

x+ . . . −130z2 100x2+ . . . +2040z2 y+ . . . −8z2 −5x2+ . . . −100z2

)
Theorem says we can use ν = 2 for a 3× 7 QMRep.



Introduction A few Implicitization Algorithms Matrix Representations and Syzygies

The method

» Moving Quadrics following the Curve «
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Sylvester Forms

» Sylvester Forms «

Quadratic Relations from Linear Syzygies
Some quadratic relations come from resultants of the µ-basis :

deg(hk) = µk , hk =
n∑

i=0

(
ai,0sµk −1 · σ +

µk∑
j=1

ai,jsµk −jt j−1 · τ

)
xi

deg(hk′ ) = µk′ , hk′ =
n∑

i=0

(
bi,0sµk′ −1 · σ +

µk′∑
j=1

bi,jsµk′ −jt j−1 · τ

)
xi

Resσ,τ (hk,hk′ ) =

∣∣∣∣∣∣∣
sµk −1 × linear in x0, . . . , xn sµk′ −1 × linear in x0, . . . , xn

degree µk′ − 1 in s, t,
linear in x0, . . . , xn

degree µk − 1 in s, t,
linear in x0, . . . , xn

∣∣∣∣∣∣∣
Resultant produces a quadratic relation of degree µk + µk′ − 2.
Because of factorization, it also produces syzygies of I2 down to
degree max(µk , µk′)− 1.
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Sylvester Forms

» Sylvester Forms «

Example : µ1 = µ2 = 2
h1 = a0sσ + (a1s + a2t)τ
h2 = b0sσ + (b1s + b2t)τ

Res = s ·
∣∣∣∣∣a0 a1s + a2t
b0 b1s + b2t

∣∣∣∣∣ = s[s(a0b1 − a1b0) + t(a0b2 − a2b0)]

But also :
h1 = (a0s + a1t)σ + a2tτ
h2 = (b0s + b1t)σ + b2tτ
Res = t[t(a1b2 − a2b1) + s(a0b2 − a2b0)]

Total : 1 element of Syz(I2) of degree µ1 + µ2 − 2 = 2
and 2 elements of Syz(I2) of degree µ1 + µ2 − 3 = 1
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Sylvester Forms

» Computing Syz(I2) with Sylvester Forms «

Combinatorial Formula
For each couple of degrees µk ≤ µk′ of the µ-basis, there are :
I 1 element of Syz(I2)µk′+µk−2

I 2 elements of Syz(I2)µk′+µk−3
...

I µk elements of Syz(I2)µk′−1

Example : µ = (3, 5, 7)
In degree ν = µ3 − 1 = 6, dim(Syz(I2)6) = 3 + 5 + 1 = 9
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Sylvester Forms

» Computing Syz(I2) with Sylvester Forms «

µ-basis : h1,h2,h3 of degrees 3, 5, 7 :

h1 h2 h3

1× degree 6
2× degree 5
3× degree 4

1× degree 8
2× degree 7
3× degree 6

1× degree 10
2× degree 9
3× degree 8
4× degree 7
5× degree 6µn − 1 
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Sylvester Forms

» Space of Quadratic Relations «
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Sylvester Forms

» Space of Quadratic Relations «
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Sketch of proof

MQν is a Matrix Representation for ν > µ3 − 1
A := C[x0, x1, x2, x3]hom

R := C[s, t; x0, x1, x2, x3]hom (all the moving hypersurfaces)
m :=< s, t > (localisation ideal)
h1,h2,h3 := µ-basis for p
J :=< h1,h2,h3 > (gen. by moving hyperplanes → p)
J ′ := Zeros(h 7→ h(s, t; p(s, t))) (moving hypersurfaces → p)

J ′ is the saturation of J
h1,h2,h3 form a regular sequence in R outside V (m).

J ′ = (J :R m∞) = {h ∈ R such that ∃k ∈ N, hmk ⊂ J}

MQν is a Matrix Representation for ν ≥ µ3 − 1
The theorem we want to prove is rewritten as :

∀ν ≥ µ3 − 1, J ′ν = (J ′〈2〉)ν
where J ′〈2〉 is generated by J ′ ∩ Rdeg(x)≤2.
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Sketch of proof

MQν is a Matrix Representation ⇐⇒ J ′ν = (J ′〈2〉)ν

Čech complex
The Čech complex of B := R/J is given by :
C•m(B) : 0→ B č0−→ Bx0 ⊕ Bx1 ⊕ Bx2 ⊕ Bx3

č1−→ · · · č3−→ Bx0x1x2x3 → 0

Local cohomology
Except for H0

m, the local cohomology of B with support in m is the
cohomology of the Čech complex :

H0
m(B) = {h ∈ B such that ∃k ∈ N, hmk = 0}

= (J :B m∞)/J = J ′/J
H i

m(B) = Ker(či)/ Im(či−1), for i > 1

H2
m(R) ' A⊗C Š, where Š := 1

stC[s−1, t−1]
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Sketch of proof

» Koszul Complex «

MQν is a Matrix Representation ⇐⇒ J ′ν = (J ′〈2〉)ν
Remember that J =< h1,h2,h3 > is graded both w.r.t. C[s, t] and
to C[x0, x1, x2, x3].
Degree shifts w.r.t. C[s, t] : [−]
Degree shifts w.r.t. C[x0, x1, x2, x3] : {−}

K• :0→ R [−µ1 − µ2 − µ3] {−3} d3−→ · · ·

· · · d2−→ R[−µ1]{−1} ⊕ R[−µ2]{−1} ⊕ R[−µ3]{−1} d1−→ R → 0

We have that H0(K•) = R/J = B.

Lemma

H2(H2
m(K•)) ∼−→ H0

m(B) = J ′/J
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Sketch of proof

» Double Complex «

In order to prove the lemma, consider C•m(K•) :

0 · · · 0
↓ ↓

0→ R [−µ1 − µ2 − µ3] {−3} → · · · → R → 0
↓ ↓

... ... . . . ... ...
↓ ↓

0→ R [−µ1 − µ2 − µ3] {−3}x0x1x2x3 → · · · → Rx0x1x2x3 → 0
↓ ↓
0 · · · 0
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Sketch of proof

» Spectral Sequences «

The spectral sequence corresponding to the column filtration of this
double complex converges at the second step because h1,h2,h3
form a regular sequence outside V (m) :

H0
m(H3(K•)) H0

m(H2(K•)) H0
m(H1(K•)) H0

m(B)
0 0 0 H1

m(B)
0 0 0 0

The row filtration of our double complex gives another spectral
sequence that also converge at the second step :

0 0 0 0
0 0 0 0

H3(H2
m(K•)) H2(H2

m(K•)) H1(H2
m(K•)) H0(H2

m(K•))

They both converge to the same limit : the homology of the total
complex of C•m(K•). Thus H2(H2

m(K•)) ∼−→ H0
m(B).
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Sketch of proof

MQν is a Matrix Representation ⇐⇒ H2
m(K1)ν = 0

H2(H2
m(K•)) is obtained from the sequence H2

m(K•) :
H2

m(K3)→ H2
m(K2)→ H2

m(K1)

Using H2
m(R) ' A⊗C Š and the expression of K1, we obtain :

(H2
m(K1))ν '

(
Šν−µ1 ⊕ Šν−µ2 ⊕ Šν−µ3

)
⊗C A{−1}

In particular, ∀ν > µ3 − 1, H2
m(K1)ν = 0.

The decisive exact sequence
The following sequence of graded A-modules is exact for ν > µ3 − 1.(

Šν−µ1−µ2 ⊕ Šν−µ1−µ3 ⊕ Šν−µ2−µ3

)
⊗C A{−2} → (J ′/J)ν → 0

Thus (J ′/J)ν = ((J ′/J)〈2〉)ν and J ′ν = (J ′〈2〉)ν .
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Applications

» Comparison Table (Space Curves) «

Degree (µ-basis degree) MRep size QMRep size
4 (1, 1, 2) 3× 5 2× 4
5 (1, 2, 2) 4× 7 2× 5
6 (2, 2, 2) 4× 6 2× 6
6 (1, 1, 4) 5× 9 4× 8
7 (2, 2, 3) 5× 8 3× 5 (2× 4)
7 (1, 3, 3) 6× 11 3× 7
7 (1, 1, 5) 6× 11 5× 10
10 (3, 3, 4) 7× 11 4× 10 (3× 7)
15 (5, 5, 5) 10× 18 5× 15

Notes : ∑i µi = δ
Evenly distributed µ-bases are the generic case.
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Applications

» Self-Intersection «

Application : border of a sliced cross-cap

MQ2 =

(
1− 5

3 z y 0 − 8
3 xz− 32

9 z2

y 8
3 z 0 xy−y2+4yz

−1+ 5
3 z −y −y2+ 8

3 z− 40
9 z2 −y2− 4

3 yz

−xy− 4
3 yz xy+ 4

3 yz x+ 4
3 z− 5

3 xz− 20
9 z2

x−y+4z− 5
3 xz+ 5

3 yz− 20
3 z2 −y2− 4

3 yz −y− 4
3 z+ 5

3 yz+ 20
9 z2

−y− 4
3 z+ 5

3 yz+ 20
9 z2 −y2− 32

9 z2 −y−y2+ 8
3 z+ 1

3 yz− 40
9 z2

)

(x , y , z) = (0, 0, 0) is a self-intersection
Rank(MQ2(0, 0, 0)) = 1
Ker(MQ2(0, 0, 0)T ) = {(1, 1, 1), (1,−1, 1)}  the two pre-images of
(0, 0, 0) are t = 1 and t = −1
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Applications

» Curve Intersection «

Two parameterized curves : C1 (deg. 7) and C2 (deg. 4).
MQ2 of C1 is of size (3, 7) and can be computed numerically.
MQ2(p2(t)) ≈ 48.618t4−78.594t3−310.76t2+560.59t−228.16

. . .
. . .

. . .
. . .

· · · 255.76t8−1097.4t7+1144.4t6+1095.2t5−3526.1t4+4008.7t3−2886.4t2+1292.7t−253.06


(x , y , z) ≈ (−0.126, 2.743, 3.1833) is an intersection
Using SVD, we check that the rank drops at t = 0.731
p1(0.731) ≈ p2(0.731) ≈ (−0.126, 2.743, 3.1833)
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Applications

» Distance Approximation «

Trick : det(MQν .MQT
ν ) gives a single implicit equation of V ∩ Rn

The following is a figure of
det(MQν .MQT

ν ) = 0 (black) and
det(MQν .MQT

ν ) = ε (yellow)
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Thank you
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