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Framework

Birational Map

A Blow-up 7 is a birational map but is not a diffeomorphism.
Here, we will discuss only of blow-ups between 2-dimensional
complex spaces. Such blow-ups can be used to regularize
planar (complex) curves.
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Definition

Let H={(P,L)e C> xP}(C) | Pe L}
= {(((x,y), (w: 2)) € C* x P(C) | xz = yw}.
We note 7 the projection of H on C2.

Definitions
1

o 71 is a blow-up of the origin of C2.
o 7 is a blow-down on that point.

o 71(0) ~ P!(C) is called the exceptional divisor of .

The map 7 is an analytic isomorphism from H\7~%(0) to

C2\{0}.
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The space H

Figure: The map  is also called the Hopf Bundle
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Total Preimage, Strict Preimage

Let f € C[x, y].
The zero set of f will be noted I and we define f := f o .

Définitions

o £ 1(0) is the total preimage of T.
We note it I'.

o The closure of £ 1(0)\m 1(0) is the strict preimage of I
We note it I
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Total Preimage, Strict Preimage
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Total Preimage, Strict Preimage




The Blow-up of a Point isti irs ion of Singularity ith Multiple Branches
0000000

Resolution of Singularity

Composing Blow-ups

Amap 7:X& Y, ~=2 %% ¥ is a blow-up composition
if all the 7;'s are blow-ups.

We will discuss only of blow-up compositions verifying the
followings:

@ = is a neighborhood of 0 € C2.
@ 7o blows-up only the origin.

(@ 7 blows-up one or several points belonging to the
exceptional divisor of 7m;_;.
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Resolution of Singularity

Strong Resolution of a Singularity

A strong resolution of a singularity is a blow-up composition
verifying the followings:

@ The strict preimage I is smooth (no cusp, no
self-intersection...).

@ The strict preimage intersects the exceptional divisor only
transversally.

@ The strict preimage intersects the exceptional divisor only
at its smooth points (ie. not at points of self-intersection
of the exceptional divisor).
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Resolution of Singularity
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Resolution of Singularity
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Resolution of Singularity
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Puiseux Series

Definition

A Puiseux Series (at the origin) of f € C|[x, y]| is a series
peC [[X%]] for some n that has a limit at x = 0 and such
that f(x, p(x)) = 0.

Examples

f(x,y) = y2 — x3 has a unique Puiseux series: ¢(x) = x2

3 _ x2 has two distinct Puiseux series:

f(x,y) =y? —x
e1(x) = x + 3x* —

Pa(x) = —x — 3x2+ ...




of a Point Characteristic Pairs

esolution of Singularity
0®0000 o >

Case with Multiple Branches

Puiseux Characteristic Pairs

The Puiseux Characteristic Pairs (ny, my), ..., (n,, m,) of the
Puiseux series p(x) = >, o ax" are defined by:

o ™ _ k= min{x e Q\N | a, # 0}
m

n; ) 1
—z/ﬁ;zm/n{/@e@|aﬁ;«é0and I€¢—N
my...Mmj my...Mmj_y

With gcd(n;, m;) = 1 for each i.

v

o(x) = X2 4 xi o(x) = X7 4 x3
(3,2),(7,2) (3,2), (10,3)

N
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Puiseux Characteristic Pairs

Property

For i € [2, r], we have n;_ym; < n;

Associated Puiseux Series

Pairs of coprime integers verifying the above property are the
Puiseux pairs of some Puiseux serles

A

SO(X) = xm —|-xm1m2 A . —|-x'"1
= X" 4 X" 4 X
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Zariski Characteristic Pairs

The Zariski Characteristic Pairs (p1,q1), .-, (pr, qr)
associated to a Puiseux series are defined by:

O pri=m
pi = nj — ni—1m;

o(x) = X7 + x4 o(x) = X7 + x3
(3,2),(7,2) (3,2),(14,3) Puiseux Pairs
(3,2),(1,2) (3,2),(5,3) Zariski Pairs
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Resolution of S ity ) Multiple Branches

Geometric Interpretation

On top left, the outer circle rolls twice
around itself.

On bottom right, the circle rolls only once
around itself despite travelling the same dis-
tance.

The difference is due to the rotation around
the inner circle.

The Zariski characteristic pairs discount that
“inner rotation” (ie. the rotation of the roots

due to lower-degree terms).
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Geometric Interpretation

NS

x| = € in @1(x) = x2 and in pa(x) = x3 + x
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Slow Approximation by Continued Fraction

1
For B € Q, we note & = hy + — 7 its expression as a
q q .

- - ' . + T
continued fraction. hm

Definition

The slow approximation of ’—; is the sequence of size E(g)

defined by:
o a,=kforl<k<hg
03k=h0+k+hof0rh0<k<ho+h1

1

@ a = hy + 1

k—(hoth+ -+ hiy)
forh0+"'+h,',1<k<ho—i—---+h,—

o
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Slow Approximation by Continued Fraction

17

Example

The slow approximation of = by continued fraction is given

by the following:

1 2 3 too high!
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Slow Approximation by Continued Fraction

17

Example

The slow approximation of = by continued fraction is given

by the following:

1
1 2 3 2+§ 2+§ too low!
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Slow Approximation by Continued Fraction

17

Example

The slow approximation of = by continued fraction is given

by the following:
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Resolution of Singularity - 1 Branch - 1 Characteristic Pair

Theorem

Let f € C|[x,y] with a singularity at the point 0 but only one
branch with exactly one Zariski characteristic pair (p, q).
Then a strong resolution of the singularity is obtained by a

composition of ¢ (B) blows-up.
q

y = x2 is strongly desingularized by a composition of 3
blows-up.

17 . o o a0
y = x7 is strongly desingularized by a composition of 7
blows-up.
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SETIES

Resolution Tree of y = x3

#1 #3 #2
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SETIES

Resolution Tree of y = x3

@ ®
#1 #3 #2
Yy = X2 1 3/2 2
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Resolution Tree of y = x3

@ ®
#1 #3 #2
3
y =xz 1 % 2

%
Il
< X
N
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SETIES

Resolution Tree of y = X7

@ @ @ @ ®
#1 #2 #5 #6 #7 #4 #3
2+1 241 1

1 2 242 " 541 241 2+5 3
2
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Resolution Tree of y = X7

® ° ° ® ® °
#1 #2 #5 45 #7 #4 #3
1 2 24l 2% 24 241 3
2 3
}/:Xg = x7 y=x? y=x y=1 xzy% x:y%
— 3 y = x3
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Resolution of Singularity - 1 Branch - Several Characteristic
Pairs

Theorem

Let f € C|x, y]| with a singularity at the point 0 and only one
branch with r Zariski characteristic pairs (p1, 1), - - -, (pr, Gr)-
Then the resolution tree of f is obtained by taking all the

resolution trees T <&) and attaching them consecutively.
qi
A strong resolution of the singularity is thus a composition of

¢ (ﬂ> bt (&> S,
5] ar
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Example

o ® o ® °
#4 #5 #8 #9 #10 #7 #6
® ®

#1 #3 #2
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Introduction to the Problem

Goal

When the curve has several intersecting branches, we need
both to make them smooth but also make sure that they do
not intersect anymore after the blow-ups.

Remark

| A\

If B; and B, are two transversal branches, then they don't cut
each other after a single blow-up.

A\

The d branches of a homogeneous polynomial of degree d are
always transverse.
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Coincidence Exponent

Definition
Let pe C [[X%H and o' € C [[x%]] two Puiseux series

corresponding to two branches of a curve through 0.
Their Coincidence Exponent is defined by:

Clp, ¢') = max{val(o(v) - o'(¢))}

where o (and o) are taken among the m different choices of
the m*" roots.

Example

| A

o(x) = x3 + x5 + x10
' (x) = x> — x% + x5

Clp,¢') = val(xX0 — xs) = 10

N
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o(x) = X3 + x4
o'(x) = X3 4 x4
Clo¢') =1
#5 #5 #4

#1 #3 #2

Case with Multiple Branches
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#7 #3 #9 #6 #3 #10 #9
® o o °
#5 #4 #5 #7 #6
—eo—o

#1 #3 #2
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SETIES
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7' (0)
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SETIES

' ([0,1])
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SETIES

7'(0)

rl

7 '(0)
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