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Abstract: The hyperfield came into being due to a mathematical necessity that appeared during the
study of the valuation theory of the fields by M. Krasner, who also defined the hyperring, which
is related to the hyperfield in the same way as the ring is related to the field. The fields and the
hyperfields, as well as the rings and the hyperrings, border on each other, and it is natural that
problems and open questions arise in their boundary areas. This paper presents such occasions,
and more specifically, it introduces a new class of non-finite hyperfields and hyperrings that is
not isomorphic to the existing ones; it also classifies finite hyperfields as quotient hyperfields or
non-quotient hyperfields, and it gives answers to the question that was raised from the isomorphic
problems of the hyperfields: when can the subtraction of a field F’s multiplicative subgroup G from
itself generate F? Furthermore, it presents a construction of a new class of hyperfields, and with
regard to the problem of the isomorphism of its members to the quotient hyperfields, it raises a new
question in field theory: when can the subtraction of a field F’s multiplicative subgroup G from itself
give all the elements of the field F, except the ones of its multiplicative subgroup G?

Keywords: fields; hyperfields; rings; hyperrings; multiplicative subgroups; hypergroups; canonical
hypergroups

MSC: 12-11; 12K99; 12E20; 16Y20; 20N20

1. Introduction

The hypergroup is the very first hypercompositional structure that appeared in Al-
gebra. It was introduced in 1934 by F. Marty while he was studying problems in non-
commutative algebra, such as cosets determined by non-invariant subgroups. Unfortu-
nately, Marty was killed in 1940, at the age of 29, during World War II, while he was serving
in the French Air Force as a lieutenant and hence his mathematical heritage on hypergroups
was only three papers [1–3]. Nevertheless, his ideas did not remain in France only. They
spread quickly throughout Europe and across the pond. Already, by the end of the 1930s
and in the 1940s, both in Europe and in the USA, important mathematicians such as M.
Krasner [4–8], J. Kuntzmann [8–10], H. Wall [11], O. Ore [12–14], M. Dresher [13], E. J.
Eaton [14,15], L. W. Griffiths [16], W. Prenowitz [17–19], and A.P. Dietzman [20], studied the
general form of the hypergroup as well as other, special forms of this algebraic structure,
resulting to its enrichment with additional axioms. The basic concept behind the hyper-
group is the hypercomposition. A hypercomposition or hyperoperation over a non-empty set E
is a mapping from the cartesian product E×E into the power set P(E) of E. A hypergroup
is a non-empty set E enriched with a hypercomposition “·”, which satisfies the following
two axioms:

(i) The axiom of associativity:

a·(b·c) = (a·b)·c, for all a,b,c ∈ E
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(ii) The axiom of reproductivity:

a·E = E·a = E, for all a ∈ E

Papers [21,22] present in detail that the group is defined with exactly the same axioms.
Namely, a group is a non-empty set E that is enriched with a composition (i.e., a mapping
from the cartesian product E×E into the set E) that satisfies the axioms (i) and (ii).

If “·” is an internal composition on a set E and A, B are subsets of H, then A·B signifies
the set {a · b|(a, b) ∈ A× B}, while if “·” is a hypercomposition then A·B is the union
∪

(a,b)∈A×B
a · b. Ab and aB have the same meaning as A{b} and {a}B respectively. In general,

the singleton {a} is identified with its member a.

Theorem 1. If either A = ∅ or B = ∅, then AB = ∅ and vice versa.

Proof. The proof will be given with the use of symbolic logic. So, it must be proved that:

A×B = ∅⇔ (A = ∅) ∨ (B = ∅)

or equivalently that:
A×∅ = ∅ = ∅×B

To this end, we have the following equivalent statements:

A×B 6= ∅⇔
⇔ ∃ (s,t) ∈ A×B (definition of the Empty Set)
⇔ ∃ s∈A ∧ ∃ t∈B (definition of the Cartesian Product)
⇔ A 6= ∅ ∧ B 6= ∅ (definition of the Empty Set)
⇔ ¬ (A = ∅ ∨ B = ∅) (De Morgan’s Laws)

Hence, by the law of contraposition:

(A = ∅) ∨ (B = ∅)⇔ A×B = ∅ �

Theorem 2. Refs. [21,22] The result of the hypercomposition of any two elements in a hypergroup
H is always non-void.

Proof. Suppose that ab = ∅, for some a, b ∈ H. By the reproductive axiom, aH = H and
bH = H. Hence:

H = aH = a(bH) = (ab)H = ∅H = ∅

which is absurd. �

The second hypercompositional structure that appeared in Algebra was the hyper-field.
It was introduced by M. Krasner in 1956 for the purpose of defining a certain approximation
of a complete valued field by a sequence of such fields [23]. Its construction is as follows:

Let K be a valued field and let |··| be its valuation. Let ρ be a real number such that
0≤ρ<1 and let πρ be the equivalence relation in K, which is defined as follows:

a ≡ 0⇔ 0 ≡ a , if a = 0
b ≡ a⇔

∣∣∣ b
a − 1

∣∣∣ ≤ ρ⇔ | b− a | ≤ ρ| a | , if a 6= 0

The classes mod πρ are circles Cξ = C(ξ, ρ|ξ|) of center ξ∈K and radius ρ|ξ|. It turns
out that the element-wise (pointwise) multiplication of any two classes (i.e., each element
of one class with all elements of the other) is a class, while their element-wise sum is a
union of classes. Certain properties apply in the set K/πρ of these equivalence classes.
These properties were the defining axioms of the hyperfield. So, a hyperfield is an algebraic
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structure (H,+,·) where H is a non-empty set, “·” is an internal composition on H, and “+” is a
hypercomposition on H, which satisfies the axioms:

I. Multiplicative axiom
H = H*∪{0}, where (H*,·) is a multiplicative group and 0 is a bilaterally absorbing 
element of H, i.e., 0x = x0 = 0, for all x∈H

II. Additive axioms
i. associativity:

a+(b+c) = (a+b)+c, for all a,b,c ∈ H
ii. commutativity:

a+b = b+a, for all a,b ∈ H
iii. for every a∈H there exists one and only one a’∈H such that 0∈a+a’. a’ is written

–a and called the opposite of a; moreover, instead of a+(–b) we write a–b.
iv. reversibility:

if a∈b+c, then c∈a-b

III. Distributive axiom
a·(b+c) = a·b+a·c, (b+c)·a = b·a+c·a, for all a,b,c ∈ H

By virtue of axioms II.iii and II.iv it holds that a+0=a for all a∈H. Indeed, 0∈a–a;
therefore, a∈a+0. Next, if for any x∈H, it is true that x∈a+0, then 0∈a–x, consequently, x=a.

If the multiplicative axiom I is replaced by the axiom:

I′. H* is a multiplicative semigroup having a bilaterally absorbing element 0,

then, a more general structure is obtained which is called hyperring [24].
It is easy to see that a non-empty set H enriched with the additive axioms II is a

hypergroup. This special hypergroup was named canonical hypergroup by Jean Mittas,
who studied it in depth and presented his research results through a multitude of pa-
pers, e.g., [25–28].

Apparently, fields and rings satisfy the above axioms, and hence, they are also called
trivial hyperfields and trivial hyperrings, respectively. It is worth mentioning, though, that
several algebraic properties which are valid for the rings and the fields are not transferred
in the hyperrings and hyperfields. The following proposition is such an example.

Proposition 1. Let P be a hyperring. Then,

(a + b)(c + d) ⊆ ac + ac + ad + bd

for any a,b,c,d ∈ P.

Proof.

(a + b)(c + d) = ∪
x∈a+b

x(c + d) = ∪
x∈a+b

(xc + xd) ⊆ ∪
z∈a+b

zc + ∪
w∈a+b

wc =

= (a + b)c + (a + b)d = ac + ac + ad + bd

(see also [29]) �

Another example is the polynomials over a hyperring P. As in the case of rings, a
polynomial p over a hyperring P is defined as an ordered set (a0, a1, . . .) where all the a′is
after a certain one (say after an) are zero. The elements ai are the coefficients of p and n is
the degree of p. If p = (ai) and q =

(
bj
)

then

p + q = { (ci)|ci ∈ ai + bi} and pq =

{
(ci)|ci ∈ ∑

j+k = i
ajbk

}
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The set of the polynomials over P is not a hyperring since its multiplicative part is not
a semigroup, but it is a semihypergroup. This algebraic structure was named superring by
J. Mittas [30,31]. In [32], R. Ameri, M. Eyvazi, and S. Hoskova-Mayerova proved that the
distributive axiom is not valid for the multiplication of the polynomials over a hyperring.
More precisely, it is indicated that the weak distributive axiom holds, i.e.,

r · (p + q) ⊆ r · p + r · q, (p + q) · r ⊆ p · r + q · r

Moreover, as it is proved in [33] (Theorem 16), the direct sum of hypermodules is not
a hypermodule but a weak hypermodule in the sense that it satisfies the weak distributive
axiom. Unfortunately, there are numerous published papers that contain incorrect results
as they are based on the erroneous assumption that the direct sum of hypermodules
is a hypermodule or that the distributivity holds for the multiplication of polynomials
over a hyperring.

Krasner named the hyperfields, which he used for the approximation of the com-
plete valued field, residual hyperfields. Next, while working on the question of how rich
the class of the hyperrings and hyperfields is, he was led to the construction of a more
general class of hyperrings and hyperfields, i.e., the class of the quotient hyperfields and the
quotient hyperrings [24].

Note on the notation: In the following pages, in addition to the typical algebraic nota-
tions, we are using Krasner’s notation for the complement and the difference [34]. So, we
denote by A··B the set of elements that are in the set A but not in the set B. If K is a field or
a hyperfield, then K* denotes the set K··{0}.

2. The Quotient Hyperfield/Hyperring

The construction of the quotient hyperfield or hyperring is based on a field or ring,
respectively. Let F be a field and G a subgroup of F’s multiplicative group F*. Then, the
multiplicative classes modulo G in F form a partition of F. Krasner observed that the
product of two such classes, considered as subsets of F, is also a class modulo G, while
their sum is a union of such classes. Next, he proved that the set F/G of the classes of this
partition becomes a hyperfield if the multiplication and the addition are defined as follows:

xG · yG = xyG

xG † yG = {(xp + yq)G | p, q ∈ G}

for all xG, yG ∈ F/G.
Moreover, Krasner proved that if R is a ring and G is a normal subgroup of its

multiplicative group, then the above construction gives a hyperring [24].
From the proof that R/G is a hyperring, it derives that the definition of the addition

in R/G as well as the proof of the additive axioms do not require the normality of G. On
the other hand, the definition of the multiplication and the proof of the multiplicative and
distributive axioms require only that the equality:

xG · yG = {xg1yg2 | g1, g2 ∈ G} = {xyg | g ∈ G } = xyG

holds. But the validity of this equality is equivalent to the normality of G only when G
is a subgroup of a group and not when G is a subgroup of a semigroup, which is the
case when R is a ring. This was proved by Ch. Massouros [35] via an example, which is
generalized below.

Example 1. Let Robe a unitary ring such that 2 6=0. Let us consider the cartesian product R = Ro
n.

R is enriched with the following addition and multiplication:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)
(a1, . . . , an)(b1, . . . , bn) = (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn))
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It is well known that (R,+) is a group. Next, observe that the multiplication is not commutative. Indeed:

(a1, . . . , an)(b1, . . . , bn) = (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn))

while:
(b1, . . . , bn)(a1, . . . , an) = (b1(a1 + . . . + an), . . . , bn(a1 + . . . + an))

On the contrary, the multiplication is associative:

(a1, . . . , an)[(b1, . . . , bn)(c1, . . . , cn)] =
= (a1, . . . , an)(b1(c1 + . . . + cn), . . . , bn(c1 + . . . + cn)) =

=

(
a1(b1(c1 + . . . + cn) + . . . + bn(c1 + . . . + cn)), . . .
. . . , an(b1(c1 + . . . + cn) + . . . + bn(c1 + . . . + cn))

)
=

= (a1(b1 + . . . + bn)(c1 + . . . + cn), . . . , an(b1 + . . . + bn)(c1 + . . . + cn)) =
= (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn))(c1, . . . , cn) =
= [(a1, . . . , an)(b1, . . . , bn)](c1, . . . , cn)

and distributive:

(a1, . . . , an)[(b1, . . . , bn) + (c1, . . . , cn)] =
= (a1, . . . , an)(b1 + c1, . . . , bn + cn) =
= (a1(b1 + c1 + . . . bn + cn), . . . , an(b1 + c1 + . . . bn + cn)) =
= (a1(b1 + . . . + bn) + a1(c1 + . . . + cn), . . . , an(b1 + . . . + bn) + an(c1 + . . . + cn)) =
= (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn)) + (a1(c1 + . . . + cn), . . . , an(c1 + . . . + cn)) =
= (a1, . . . , an)(b1, . . . , bn) + (a1, . . . , an)(c1, . . . , cn)

Thus (R,+, ·) is a ring. A non-zero element (a1, . . . , an) of R is idempotent if a1 + . . . + an = 1.
Indeed:

(a1, . . . , an)
2 = (a1(a1 + . . . + an), . . . , an(a1 + . . . + an)) = (a1 · 1, . . . , an · 1) = (a1, . . . , an)

Thus, the elements e1 = (1, . . . , 0), . . . , en = (0, . . . , 1) are idempotent. Moreover, the opposite of
the ei = (0, . . . , 1, . . . , 0), i = 1, . . . , n is −ei = (0, . . . ,−1, . . . , 0), which is different from the
ei because 2ei = (0, . . . , 2, . . . , 0) 6= (0, . . . , 0) = 0. Since (−ei)

2 = ei
2 = ei, the 2-element sets

Gi = {−ei, ei}, i = 1, . . . , n are multiplicative subgroups of R. Next, if a = (a1, . . . , an) is an
element in R, then:

aGi = (a1, . . . , an){−ei, ei} =
= {(a1, . . . , an)(0, . . . ,−1, . . . , 0), (a1, . . . , an)(0, . . . ,−1, . . . , 0)} =
= {(−a1, . . . ,−an), (a1, . . . , an)} = {−a, a}

while

Gia = {−ei, ei}(a1, . . . , an) =
= {(0, . . . ,−1, . . . , 0)(a1, . . . , an), (0, . . . ,−1, . . . , 0)(a1, . . . , an)} =
= {(0, . . . ,−a1 − . . .− an, . . . , 0), (0, . . . , a1 + . . . + an, . . . , 0)}

Consequently, the multiplicative subgroups Gi, i = 1, . . . , n are not normal. Nevertheless, they
satisfy the condition:

(aGi)(bGi) = abGi

Indeed,

(aGi)(bGi) = {−a, a}{−b, b} = {(−a)(−b), (−a)b, a(−b), ab} = {−ab, ab} = abGi

Therefore, the quotients R/Gi, i = 1, . . . , n are hyperrings. Observe that Gi is a right neutral
element for multiplication in R/Gi, but it is not a left one as well. In contrast, when the quotient
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hyperring is constructed via a normal subgroup G of the ring’s multiplicative semigroup, then G is
a bilateral neutral element for the multiplication in the quotient hyperring.

The aforementioned hyperrings, although they are not quotient hyperrings of a ring by
a normal subgroup of its multiplicative semigroup, they are still embeddable in such quotient
hyperrings [35,36].

A large number of papers has been published on the hyperfields and hyperrings,
starting from the pioneer work of J. Mittas [37–44] and continuing with a plenitude of
researchers, such as Ch. Massouros [29,35,45–51], A. Nakassis [36], G. Massouros [50–54],
R. Rota [55,56], S. Jančic-Rašović [57–59], I. Cristea [58–64], H. Bordbar [59–61], M. Kankaraš [62],
V. Vahedi et al. [63–65], M. Jafarpour et al. [63–66], A. Connes and C. Consani [67,68],
O. Viro [69,70], R. Ameri, M. Eyvazi and S. Hoskova-Mayerova [32,71], M. Baker et al. [72–74],
J. Jun [75], O. Lorscheid [76], Z. Liu [77], H. Shojaei and D. Fasino [78], K. Das et al. [79],
K. Roberto et al. [80–82], P. Corsini [83], B. Davvaz, V. Leoreanu-Fotea [84], C. Yatras [85–87],
S. Atamewoue Tsafack, S. Wen, B.O. Onasanya, et al. [88], A. Linz, and P. Touchard [89],
S. Creech [90], T. Gunn [91], etc. In the recent years, several hyperfields which belong to the
class of quotient hyperfields have appeared, a fact that is not mentioned or even noticed,
while, sometimes, an unsuccessful terminology is used for them. More specifically:

(a) In the papers [67,68] by A. Connes and C. Consani and afterward in many subsequent
papers (e.g. [69,72,75,76]), the name «Krasner’s hyperfield» is used for the hyperfield,
which is constructed over the set {0, 1} via the hypercomposition:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = {0, 1}

Oleg Viro, in his paper [69], justifiably states about this hyperfield: «To the best of my
knowledge, K did not appear in Krasner’s papers». His remark is absolutely correct. Actu-
ally, the above is a special case of a quotient hyperfield, and in this sense, it belongs
to a special class of Krasner hyperfields. Indeed, for a field F and its multiplicative
subgroup F*, the quotient hyperfield F/F* = {0,F*} is isomorphic to the hyperfield
considered by A. Connes and C. Consani. More precisely, in the case of hyperfields
with cardinality 2, the following theorem holds:

Theorem 3. The two-element non-trivial hyperfield is isomorphic to a quotient hyperfield.

(b) In the papers [67,68] by A. Connes and C. Consani, a hyperfield is considered over
the set {−1, 0, 1} with the following hypercomposition:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 1, −1− 1 = −1, 1− 1 = −1 + 1 = {−1, 0, 1}

This hyperfield is now called «sign hyperfield» by some authors. Nevertheless, this
hyperfield is a quotient hyperfield as well. Indeed, let F be an ordered field and let F+

be its positive cone. Then the quotient hyperfield F/F+ = {–F+,0,F+} is isomorphic to
the sign hyperfield.

(c) The «phase hyperfield» that appeared recently in the bibliography (see, e.g., [69,72]) is
just the quotient hyperfield C/R+, where C is the field of complex numbers and R+

is the set of positive real numbers. The elements of this hyperfield are the rays of the
complex field with origin at the point (0,0). The sum of two elements zR+, wR+ of
C/R+ is the set {(zp + wq)R+ | p, q ∈ R+}. When zR+ 6= wR+, this sum consists
of all the interior rays xR+ of the convex angle which is created from zR+ and wR+,
while if wR+ = −zR+ then, the sum of the two opposite rays zR+, −zR+ is the set
{ 0, −zR+, zR+}. This hyperfield is presented in detail in [46].

Note on the notation: In the following theorems, new hyperfields are constructed
via other hyperfields or fields. To avoid any confusion between the new and the old
hypercomposition we use + as the sign for the initial addition and symbols such as u, +̂,
+̃, etc., to denote the new one.
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Theorem 4. Let (F, +, ·) be a field. If we define the hypercomposition u on F as follows:

x u y = { x, y, x + y },                          if  y 6= −x  and  x, y 6= 0, 
x u (−x) = F,                                         for all  x ∈ F*,
x u 0 = 0 u x = x,                                for all  x ∈ F,

then (F, u, ·) is a hyperfield isomorphic to a quotient hyperfield.

Proof. From the verification of the axioms, it follows that (F, u, ·) is a hyperfield (see
also [46]). Next, since (F,+,·) is a field, the polynomial ring F[x] is an integral domain, and
so the field F(x) of the rational functions over F can be defined. We can then assume that in
all rational functions, the coefficient of the highest power of the denominator’s polynomial
is 1 since, if this is not the case, we can make it via the appropriate division. Now, let G be
the set

G = { π(x) ∈ F(x) | am = 1 }

where am is the coefficient of the numerator’s highest power. G is a multiplicative subgroup
of the multiplicative group of F(x). Therefore, we can consider the quotient hyperfield
(F(x)/G, u, ·). The function ϕ : F → F(x)/G , with ϕ(a) = aG, for each a∈F, is one-to-one,
since if a, b are distinct elements in F, then

aG = {π(x) ∈ F(x) with am = a } and bG = {π(x) ∈ F(x) with am = b }

are distinct elements of F(x)/G. Moreover, ϕ is a surjection since every element aG of
F(x)/G is the image of the corresponding element a of F. Next, let

π1(x) =

k
∑

i=1
aitai

l
∑

j=1
bjt

bj

, ak = 1, bl = 1 and π2(x) =

n
∑

i=1
a′it

ai

l
∑

j=1
bjt

bj

, a′n = 1, bl = 1

be two elements in G. We assume that π1(x) and π2(x) have the same denominator because
if they are rational expressions with unlike denominators, we can convert them into rational
expressions with common denominators. Let us consider the sum:

aG u bG = { [aπ1(x) + bπ2(x)]G | π1(x), π2(x) ∈ G } with bG 6= −aG

Then:

(i) If k > n, then the coefficient of the highest power of the polynomial aπ1(x) + bπ2(x)
is a, thus aπ1(x) + bπ2(x) ∈ aG, and therefore aG ∈ aG u bG. On the other hand,
the coefficient of the highest power of the polynomial bπ1(x) + aπ2(x) is b, thus
bπ1(x) + aπ2(x) ∈ bG and therefore bG ∈ aG u bG.

(ii) If k = n, then the coefficient of the highest power of the polynomial aπ1(x) + bπ2(x)
is a + b, thus aπ1(x) + bπ2(x) ∈ (a + b)G, and therefore (a + b)G ∈ aG u bG.

Consequently, ϕ is an isomorphism, and thus the Theorem. �

It needs to be clarified here that the definition of the hypercomposition for the non-
opposite elements, in combination with the axioms of the hyperfield, allows no different
way for the definition of the hypercomposition of two opposite elements. More precisely,
we have the following two Propositions (for their proofs see [46]):

Proposition 2. In a hyperfield K, with cardK > 3, the sum x+y of any two elements x,y 6=0 contains
these two elements if and only if the difference x−x equals K for all x 6=0.
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Proposition 3. In a hyperfield K, with cardK > 3, the sum x+y of any two non-opposite elements
x,y 6=0 does not contain the participating elements if and only if the difference x−x equals to {−x,0,x},
for all x 6=0.

The hypercomposition that appears in Proposition 2 is called closed (or containing;
sometimes it is also called extensive [92]), while the hypercomposition that appears in
Proposition 3 is called open [93]. In particular, a hypercomposition in a hypergroupoid
(E,+) is called right closed if a∈b+a for all a,b∈E, left closed if a∈a+b for all a,b∈E, and closed if
{a,b}⊆a+b for all a,b∈E. A hypercomposition is called right open if a/∈b+a for all a,b∈E with
b 6=a while it is called left open if a/∈a+b for all a,b∈E with b 6=a. A hypercomposition is called
open if it is both right and left open. Right closed hypercompositions are left open, and left
closed compositions are right open. If the commutativity is valid, then the right/left closed
and the closed (resp. the right/left open and the open) hypercompositions coincide.

The following Theorem presents the construction of a hyperfield that is equipped
with a closed hypercomposition, and therefore, the definition of the sum of two opposite
elements in it is restricted by the provisions of Proposition 2.

Theorem 5. Ref. [46] Let (H, +, ·) be a hyperfield. If we define a new hypercomposition «u» on H
as follows:

x u y = {x, y} ∪ (x + y),                    for all x, y ∈ H*, with y 6= −x, 
x u (−x) = H,                                     for all x ∈ H*,
x u 0 = 0 u x = x,                             for all x ∈ H,

then, (H, u, ·) is a hyperfield and when (H, +, ·) is a quotient hyperfield, then (H, u, ·) is also a
quotient hyperfield.

The proof of this theorem can be found in [46].
The hyperfield, which is constructed by the above Theorems 4 and 5, will be termed

augmented hyperfield because the composition or the hypercomposition is augmented to
contain the two addends. The augmented hyperfield of a field or a hyperfield F is denoted
by [F]. The augmented hyperfield’s distinctive feature is that it always provides the in-
formation (the elements) that produced the result. As shown in the following sections,
different hyperfields can have the same augmented hyperfield.

Theorems 4 and 5 ensure that the augmented hyperfield of a field or a quotient hyper-
field is a quotient hyperfield, but it is not known yet whether all the members of a family of
hyperfields whose augmented hyperfield is a quotient hyperfield are quotient hyperfields.

In the following construction Theorems, Proposition 2 is used to define the sum of two
opposite elements:

Theorem 6. Ref [46] Let G be a non-unitary multiplicative group and let (H*,·) be its direct
product with the multiplicative group {−1,1}. Consider the set H = H*∪{0}, where 0 is a bilaterally
absorbing element in H, i.e., 0w=w0=0, for all w∈H. The following hypercomposition is introduced
on H:

(x, i) +̂ (y, j) = {(x, i), (y, j)}, i f (y, j) 6= (x,−i),
(x, i)+̂(x,−i) = H, f or all (x, i) ∈ H*,
(x, i) +̂ 0 = 0 +̂ (x, i) = (x, i) and 0+̂0 = 0 f or all (x, i) ∈ H*.

Then, (H,+̂,·) is a hyperfield.
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Theorem 7. Ref. [46] Let (G, ·) be a non-unitary multiplicative group and 0 a bilaterally absorbing
element. If we define a hypercomposition +̂ on H = G∪{0} as follows:

x +̂ y = {x, y}, f or all x, y ∈ G, with y 6= x,
x +̂ x = H, f or all x, y ∈ G,
x +̂ 0 = 0 +̂ x = x, f or all x ∈ H,

then, the triplet (H, +̂, ·) becomes a hyperfield.

In [46], it is proved that the above Theorem constructs a family of hyperfields, which
contains quotient hyperfields, but it is not known yet whether this family contains non-
quotient hyperfields as well.

Theorem 8. Let Q be a multiplicative group that has more than two elements and let 0 be a
multiplicatively bilaterally absorbing element. If we define a hypercomposition +̃ on H = Q∪{0}
as follows:

x +̃ y = Q, f or all x, y ∈ Q, with y 6= x,
x +̃ x = H · ·{x}, f or all x ∈ Q,
x +̃ 0 = 0 +̃ x = x, f or all x ∈ H,

then, the triplet H(Q) = (Q∪{0}, +̃, ·) is a hyperfield.

The following example proves the existence of quotient hyperfields which are con-
structed according to the above Theorem.

Example 2. (i) Consider the field Z41. This field’s multiplicative subgroup of order 4

G = {1, 4, 10, 16, 18, 23, 25, 31, 37, 40}

has the property G–G=G+G=Z41··G and xG+yG=Z41··{0} when x 6=y with
x, y ∈

{
3k
∣∣∣ k = 0, 1, 2, 3

}
. Therefore, the quotient hyperfield

Z41/G =
{

0, G, 3G, 32G, 33G
}

is of the type of hyperfields of Theorem 8.

(ii) Consider the field Z71. Its multiplicative subgroup of order 5 is

G = {1, 20, 23, 26, 30, 32, 34, 37, 39, 41, 45, 48, 51, 70}

and it has the property G–G=G+G=Z71··G and xG+yG=Z71··{0} when x 6=y with
x, y ∈

{
2k
∣∣∣ k = 0, 1, 2, 3, 4

}
. Therefore, the quotient hyperfield

Z71/G =
{

0, G, 2G, 22G, 23G, 24G
}

is of the type of hyperfields of Theorem 8.
(iii) Consider the field Z101. This field’s multiplicative subgroup of order 5

G = {1, 6, 10, 14, 17, 32, 36, 39, 41, 44, 57, 60, 62, 65, 69, 84, 87, 91, 95, 100}

has the property G–G=G+G=Z101··G and xG+yG=Z101··{0} when x 6=y with
x, y ∈

{
2k
∣∣∣ k = 0, 1, 2, 3, 4

}
. Therefore, the quotient hyperfield

Z101/G =
{

0, G, 2G, 22G, 23G, 24G
}
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is of the type of hyperfields of Theorem 8.

The hyperfields of Theorems 6 and 7 are called b-hyperfields due to the binary result
of the hypercomposition, which consists of the two addends when they are different
elements. Moreover, the hyperfields of Theorems 4, 5, 6, and 7 were termed monogenic
(monogène) because they are generated by just a single element of the hyperfield [46].
Additionally, the hyperfield which is constructed by Theorem 8 is monogenic (monogène)
because H=x+̃x+̃x+̃x. The monogenic (monogène) canonical hypergroup was introduced and
studied in depth by J. Mittas [26]. The set of the canonical subhypergroups of a canonical
hypergroup H is a complete lattice, thus for a given subset X of H there always exists the
least (in the sense of inclusion) canonical subhypergroup X of H which contains X. Now,
if X is the singleton {x}, then the canonical subhypergroup that is generated from it, is
called monogenic (monogène). If H = {x}, then H itself is called monogenic (monogène). The
study of the monogenic (monogène) hypergroups led to the definition of the order of a
canonical hypergroup’s elements [26] and sequentially to the order of the elements of a
hyperfield [41]. Since:

mx + nx =

{
(m + n)x, if mn > 0
(m + n)x + min{ |m|, |n| } (x− x), if mn < 0

for the monogenic (monogène) hypergroup it holds:

{x} = mx + n(x− x), m, n ∈ Z

and as it is true that –(x–x)=x–x, we can assume that (m,n)∈Z×N instead of Z×Z.
Thus, two mutually exclusive cases can appear:

(I) For every (m,n)∈Z×N, with m 6=0, 0/∈mx+n(x–x), in which case x, as well as {x} are
said to be of infinite order denoted by ω(x)=+∞.

Proposition 4. Ref. [26] ω(x)=+∞ if and only if m′x∩m”x=∅, for every m′,m”∈Z with m′ 6=m”.

(II) There exists (m,n)∈Z×N, with m 6=0, such that 0∈mx+n(x–x). In the following, p
will denote the minimum positive integer for which there exists n∈N, such that
0∈px+n(x–x).

Proposition 5. Ref. [26] For a given m∈Z there exists n∈N such that 0∈mx+n(x–x), if and only
if m is divided by p.

For m=kp, k∈Z*, let q(k) be the minimum nonnegative integer such that 0∈kpx+q(k)(x–x).
Then q is a function from Z to N. Mittas called the pair ω(x)=(p,q) order of both x and {x}.
Also, he named p the principal order of x and q the associative order of x [26,41]. Therefore, the
order of all the elements of the hyperfields which are constructed by the Theorems 4, 5 and
6 is (1,1) because 0∈x+(x–x), while the order of the elements of the monogenic (monogène)
hyperfield of Theorem 7 is (2,0), since 0∈x+x=2x+0(x–x) and of the hyperfield of Theorem 8
is (4,0), since 0∈x+x+x+x=4x+0(x–x).

These definitions were later used in other hypercompositional structures, such as the
fortified transposition hypergroups [22], the hyperringoids [52], the M-polysymmetrical
hyperrings [86] etc.

3. The Non-Quotient Hyperfields/Hyperrings

M. Krasner realized that the existence of non-quotient hyperfields and hyperrings was
an essential question for the self-sufficiency of the theory of hyperfields and hyperrings vis-
à-vis that of fields and rings, since if all hyperrings and hyperfields could be isomorphically
embedded into the quotient hyperrings, then several conclusions of their theory could
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have been obtained in a direct and straightforward way, through the use of the ring, field
and modules theories, instead of developing new techniques and proof methodologies.
Therefore, in his paper [24], he raised the relevant question. The answer to this question led
to the construction of two classes of hyperfields and hyperrings, which contain elements
that are not isomorphic to the quotient ones. The following Theorems 9 and 10 which were
proved by Ch. Massouros, refer to hyperfields with closed hypercompositions and they
prove the existence of finite and infinite non-quotient hyperfields. The subsequent Theorem
11 was proved by A. Nakassis, it is on hyperfields with open hypercompositions and it
reveals another class of finite non-quotient hyperfields. Moreover, Theorem 12 gives a new
class of infinite non-quotient hyperfields which do not belong to the previous two classes,
and Theorem 13 uncovers a new class of infinite non-quotient hyperrings.

Theorem 9. Ref. [35] Let Θ be a multiplicative group that has more than two elements and let (K*, ·)
be its direct product with the multiplicative group {−1, 1}. Consider the set K = K*∪{0}, where 0 is
a bilaterally absorbing element in K, i.e., 0w=w0=0, for all w∈K. The following hypercomposition is
introduced on K:

(x, i)
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(y, j) = {(x, i), (y, j), (x,−i), (y,−j)}, i f (y, j) 6= (x, i), (x,−i)
(x, i)
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(x, i) = K · ·{(x, i), (x,−i), 0}
(x, i)
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(x,−i) = K · ·{(x, i), (x,−i)}
(x, i)
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the ring, field and modules theories, instead of developing new techniques and proof 

methodologies. Therefore, in his paper [24], he raised the relevant question. The answer 

to this question led to the construction of two classes of hyperfields and hyperrings, 

which contain elements that are not isomorphic to the quotient ones. The following The-

orems 9 and 10 which were proved by Ch. Massouros, refer to hyperfields with closed 

hypercompositions and they prove the existence of finite and infinite non-quotient hy-

perfields. The subsequent Theorem 11 was proved by A. Nakassis, it is on hyperfields 

with open hypercompositions and it reveals another class of finite non-quotient hyper-
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, ·) is a hyperfield which is not isomorphic to a quotient hyperfield
when Θ is a periodic group.

For the proof of the above Theorem, see [29,47].

Proposition 6. Ref. [36] Let (T,·) be a multiplicative group of order m, with m > 3. Addi-
tionally, let H = T∪{0} where 0 is a multiplicatively absorbing element. If H is equipped with
the hypercomposition:

x
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y = H · ·{0, x, y} f or all x, y ∈ T, with y 6= x,
x

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 38 
 

 

since 0x+x=2x+0(x–x )  and of the hyperfield of Theorem 8 is (4,0), since 

0x+x+x+x=4x+0(x–x ) . 
These definitions were later used in other hypercompositional structures, such as 

the fortified transposition hypergroups [22], the hyperringoids [52], the M-

polysymmetrical hyperrings [86] etc.  

3. The Non-Quotient Hyperfields/Hyperrings 

M. Krasner realized that the existence of non-quotient hyperfields and hyperrings 

was an essential question for the self-sufficiency of the theory of hyperfields and hyper-

rings vis-à-vis that of fields and rings, since if all hyperrings and hyperfields could be 

isomorphically embedded into the quotient hyperrings, then several conclusions of their 

theory could have been obtained in a direct and straightforward way, through the use of 

the ring, field and modules theories, instead of developing new techniques and proof 

methodologies. Therefore, in his paper [24], he raised the relevant question. The answer 

to this question led to the construction of two classes of hyperfields and hyperrings, 

which contain elements that are not isomorphic to the quotient ones. The following The-

orems 9 and 10 which were proved by Ch. Massouros, refer to hyperfields with closed 

hypercompositions and they prove the existence of finite and infinite non-quotient hy-

perfields. The subsequent Theorem 11 was proved by A. Nakassis, it is on hyperfields 

with open hypercompositions and it reveals another class of finite non-quotient hyper-

fields. Moreover, Theorem 12 gives a new class of infinite non-quotient hyperfields 

which do not belong to the previous two classes, and Theorem 13 uncovers a new class 

of infinite non-quotient hyperrings.  

Theorem 9. Ref. [35] Let Θ be a multiplicative group that has more than two elements and let  

(Κ* ,  ∙)  be its direct product with the multiplicative group {−1, 1}. Consider the set Κ = Κ*{0} ,  

where 0 is a bilaterally absorbing element in Κ, i.e., 0w=w0=0 , for all wΚ. The following hy-

percomposition is introduced on Κ: 

(x, i )  ⨥ (y, j)  = {(x, i ) ,  (y,j ) ,  (x,- i) ,  (y,- j)} ,      if  (y, j)  ≠ (x, i) ,  (x,- i)  

(x, i )  ⨥ (x, i)  = Κ ∙ ∙ {(x, i) ,  (x,−i ) ,  0}  

(x, i )  ⨥ (x,- i)  =  Κ ∙ ∙ {(x, i) ,  (x,−i)}  

(x, i )  ⨥ 0 = 0 ⨥ (x, i)  = (x, i)     and    0 ⨥ 0 = 0 

 

Then, the triplet K(Θ) = (Κ ,  ⨥,  ∙ )  is a hyperfield that does not belong to the class of quotient hy-

perfields when Θ is a periodic group. 

For the proof of the above Theorem, see [35]. 

Theorem 10. Refs. [29,47] Let Θ be a multiplicative group which has more than two elements 

and let 0 be a multiplicatively bilaterally absorbing element. If we define a hypercomposition ⨥ on 

H = Θ{0}  as follows: 

x ⨥ y = {x ,  y} ,  for all x ,yΘ, with y ≠ x, 

x ⨥ x = H ∙ ∙ {x} , for all xΘ,  

x ⨥ 0 = 0 ⨥ x = x, for all xH, 

 

then, the triplet H(Θ) = (Θ{0} ,  ⨥ ,  )  is a hyperfield which is not isomorphic to a quotient hy-

perfield when Θ is a periodic group. 

For the proof of the above Theorem, see [29] and [47]. 

x = {0, x}, f or all x ∈ T,
x

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 38 
 

 

since 0x+x=2x+0(x–x )  and of the hyperfield of Theorem 8 is (4,0), since 

0x+x+x+x=4x+0(x–x ) . 
These definitions were later used in other hypercompositional structures, such as 

the fortified transposition hypergroups [22], the hyperringoids [52], the M-

polysymmetrical hyperrings [86] etc.  

3. The Non-Quotient Hyperfields/Hyperrings 

M. Krasner realized that the existence of non-quotient hyperfields and hyperrings 

was an essential question for the self-sufficiency of the theory of hyperfields and hyper-

rings vis-à-vis that of fields and rings, since if all hyperrings and hyperfields could be 

isomorphically embedded into the quotient hyperrings, then several conclusions of their 

theory could have been obtained in a direct and straightforward way, through the use of 

the ring, field and modules theories, instead of developing new techniques and proof 

methodologies. Therefore, in his paper [24], he raised the relevant question. The answer 

to this question led to the construction of two classes of hyperfields and hyperrings, 

which contain elements that are not isomorphic to the quotient ones. The following The-

orems 9 and 10 which were proved by Ch. Massouros, refer to hyperfields with closed 

hypercompositions and they prove the existence of finite and infinite non-quotient hy-

perfields. The subsequent Theorem 11 was proved by A. Nakassis, it is on hyperfields 

with open hypercompositions and it reveals another class of finite non-quotient hyper-

fields. Moreover, Theorem 12 gives a new class of infinite non-quotient hyperfields 

which do not belong to the previous two classes, and Theorem 13 uncovers a new class 

of infinite non-quotient hyperrings.  

Theorem 9. Ref. [35] Let Θ be a multiplicative group that has more than two elements and let  

(Κ* ,  ∙)  be its direct product with the multiplicative group {−1, 1}. Consider the set Κ = Κ*{0} ,  

where 0 is a bilaterally absorbing element in Κ, i.e., 0w=w0=0 , for all wΚ. The following hy-

percomposition is introduced on Κ: 

(x, i )  ⨥ (y, j)  = {(x, i ) ,  (y,j ) ,  (x,- i) ,  (y,- j)} ,      if  (y, j)  ≠ (x, i) ,  (x,- i)  

(x, i )  ⨥ (x, i)  = Κ ∙ ∙ {(x, i) ,  (x,−i ) ,  0}  

(x, i )  ⨥ (x,- i)  =  Κ ∙ ∙ {(x, i) ,  (x,−i)}  

(x, i )  ⨥ 0 = 0 ⨥ (x, i)  = (x, i)     and    0 ⨥ 0 = 0 

 

Then, the triplet K(Θ) = (Κ ,  ⨥,  ∙ )  is a hyperfield that does not belong to the class of quotient hy-

perfields when Θ is a periodic group. 

For the proof of the above Theorem, see [35]. 

Theorem 10. Refs. [29,47] Let Θ be a multiplicative group which has more than two elements 

and let 0 be a multiplicatively bilaterally absorbing element. If we define a hypercomposition ⨥ on 

H = Θ{0}  as follows: 

x ⨥ y = {x ,  y} ,  for all x ,yΘ, with y ≠ x, 

x ⨥ x = H ∙ ∙ {x} , for all xΘ,  

x ⨥ 0 = 0 ⨥ x = x, for all xH, 

 

then, the triplet H(Θ) = (Θ{0} ,  ⨥ ,  )  is a hyperfield which is not isomorphic to a quotient hy-

perfield when Θ is a periodic group. 

For the proof of the above Theorem, see [29] and [47]. 

0 = 0

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 38 
 

 

since 0x+x=2x+0(x–x )  and of the hyperfield of Theorem 8 is (4,0), since 

0x+x+x+x=4x+0(x–x ) . 
These definitions were later used in other hypercompositional structures, such as 

the fortified transposition hypergroups [22], the hyperringoids [52], the M-

polysymmetrical hyperrings [86] etc.  

3. The Non-Quotient Hyperfields/Hyperrings 

M. Krasner realized that the existence of non-quotient hyperfields and hyperrings 

was an essential question for the self-sufficiency of the theory of hyperfields and hyper-

rings vis-à-vis that of fields and rings, since if all hyperrings and hyperfields could be 

isomorphically embedded into the quotient hyperrings, then several conclusions of their 

theory could have been obtained in a direct and straightforward way, through the use of 

the ring, field and modules theories, instead of developing new techniques and proof 

methodologies. Therefore, in his paper [24], he raised the relevant question. The answer 

to this question led to the construction of two classes of hyperfields and hyperrings, 

which contain elements that are not isomorphic to the quotient ones. The following The-

orems 9 and 10 which were proved by Ch. Massouros, refer to hyperfields with closed 

hypercompositions and they prove the existence of finite and infinite non-quotient hy-

perfields. The subsequent Theorem 11 was proved by A. Nakassis, it is on hyperfields 

with open hypercompositions and it reveals another class of finite non-quotient hyper-

fields. Moreover, Theorem 12 gives a new class of infinite non-quotient hyperfields 

which do not belong to the previous two classes, and Theorem 13 uncovers a new class 

of infinite non-quotient hyperrings.  

Theorem 9. Ref. [35] Let Θ be a multiplicative group that has more than two elements and let  

(Κ* ,  ∙)  be its direct product with the multiplicative group {−1, 1}. Consider the set Κ = Κ*{0} ,  

where 0 is a bilaterally absorbing element in Κ, i.e., 0w=w0=0 , for all wΚ. The following hy-

percomposition is introduced on Κ: 

(x, i )  ⨥ (y, j)  = {(x, i ) ,  (y,j ) ,  (x,- i) ,  (y,- j)} ,      if  (y, j)  ≠ (x, i) ,  (x,- i)  

(x, i )  ⨥ (x, i)  = Κ ∙ ∙ {(x, i) ,  (x,−i ) ,  0}  

(x, i )  ⨥ (x,- i)  =  Κ ∙ ∙ {(x, i) ,  (x,−i)}  

(x, i )  ⨥ 0 = 0 ⨥ (x, i)  = (x, i)     and    0 ⨥ 0 = 0 

 

Then, the triplet K(Θ) = (Κ ,  ⨥,  ∙ )  is a hyperfield that does not belong to the class of quotient hy-

perfields when Θ is a periodic group. 

For the proof of the above Theorem, see [35]. 

Theorem 10. Refs. [29,47] Let Θ be a multiplicative group which has more than two elements 

and let 0 be a multiplicatively bilaterally absorbing element. If we define a hypercomposition ⨥ on 

H = Θ{0}  as follows: 

x ⨥ y = {x ,  y} ,  for all x ,yΘ, with y ≠ x, 

x ⨥ x = H ∙ ∙ {x} , for all xΘ,  

x ⨥ 0 = 0 ⨥ x = x, for all xH, 

 

then, the triplet H(Θ) = (Θ{0} ,  ⨥ ,  )  is a hyperfield which is not isomorphic to a quotient hy-

perfield when Θ is a periodic group. 

For the proof of the above Theorem, see [29] and [47]. 

x = x, f or all x ∈ H,
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, ·) is a hyperfield.

It is worth noting here that the elements of the above hyperfield are self-opposite, and
since the hypercomposition is open, Proposition 3 imposes the definition of the sum of the
self-opposite elements so that H(T) fulfills the axioms of the hyperfield.
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Theorem 11. Ref. [36] If T is a finite multiplicative group of m, m>3 elements and if the hyperfield
H(T) is isomorphic to a quotient hyperfield F/Q, then Q∪{0} is a field of m−1 elements while F is a
field of (m−1)2 elements.

Obviously, the cardinality of T can be chosen in such a way that H(T) cannot be
isomorphic to a quotient hyperfield.

For the proof of Theorem 11, the following important counting lemma was introduced
and used by A. Nakassis.

Lemma 1. Ref. [36] Let H be a hyperfield equipped with a hypercomposition such that the differences
x−x, x∈H have only 0 in common. If H is isomorphic to a quotient hyperfield F/Q, then the
cardinality of the sum of any two non-opposite elements is equal to the cardinality of Q.

Proof. Suppose that H is a hyperfield equipped with a hypercomposition such that
(x− x) ∩ (y− y) = {0} for all x,y∈H with x 6=y. Assume that H is isomorphic to a quotient
hyperfield F/Q. Let a′,b′ with a′ 6=b′ be two elements in H and let aQ, bQ be their homomorphic
images in F/Q. Then a′+b′ has the same cardinality with aQ + bQ = {(a + bq)Q | q ∈ Q}.
Next, if (a + bq)Q = (a + bp)Q, then

a + bq = (a + bp)r ⇔ a− ar = bq− bpr ⇒ (aQ− aQ) ∩ (bQ− bQ) 6= ∅

However, since the equality (aQ − aQ) ∩ (bQ − bQ) = {0} is valid, it follows that a−ar=0.
Therefore r=1 and consequently bq−bp=0 or equivalently q=p. Hence card(aQ+bQ)=cardQ
and so the lemma. �

A direct consequence of Nakassis’ lemma is that if a hyperfield H is isomorphic to a
quotient hyperfield and the differences x−x, x∈H have only 0 in common, then the sums
of the non-opposite elements have the same cardinality. This result is very useful to the
classification of hyperfields which is presented in Section 5.

In the following, the class of non-quotient hyperrings and hyperfields will be enriched
with another family of such structures.

J. Mittas in the first section of [41], constructed the following hyperfield, which is
called tropical hyperfield nowadays (see, e.g., [69,70,72,75,76]) because it is proved to be a
suitable and effective algebraic tool for the study of tropical geometry:

Example 3. Ref. [41] Let (E,·) be a totally ordered multiplicative semigroup, having a mini-
mum element 0, which is bilaterally absorbing with regard to the multiplication. The following
hypercomposition is defined on E:

x
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y =

{
max{x, y} i f x 6= y
{z ∈ E | z ≤ x} i f x = y

Then (E,
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( , , )E +   is such a structure.  Next suppose that ( , , )E +   is isomorphic to a quotient hyper-

ring ( )/ , ,R Q +  .  As  xx+x , for all xE  and because 2 1 1 Q Q= +  + , it follows that 

2 Q .  Hence 2Q  is a class different from Q  which belongs to Q Q+ , therefore 2Q Q  

and so 2Q Q Q+ = .  Next: 

3 2 1 2Q Q Q= +  + =   

4 3 1 Q Q= +  + , thus 4 Q   

4 2 2 2 2Q Q= +  + , thus 4 2Q    

Consequently 4Q  is a new class different from Q  and 2Q  and furthermore, since it 

belongs to Q Q+ , it holds that 4Q Q . Therefore: 

4Q Q Q+ =      

5 4 1 4Q Q Q= +  + =  

6 2 3 2 2Q Q Q=    =   

Hence, for 7, we have: 

on the one hand 7 6 1 2Q Q Q= +  + =  

while, on the other hand, 7 4 3 Q Q= +  + , subsequently 7 Q .  

This is a contradiction and therefore ( , , )E +   does not belong to the class of quotient hy-

perrings or hyperfields. □ 

Note that Theorem 12′s hypercomposition is neither open nor closed. Also, note 

that the above Theorem enriches the class of non-quotient hyperrings with many new 

members in addition to the ones it is constructing. Indeed, [35] gives a method of con-

structing non-quotient hyperrings when at least one non-quotient hyperfield is known. 

In particular, the following Theorem is valid: 

, ·) is a hyperring. If E · ·{0} is a multiplicative group, then (E,
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Proof. The verification of the axioms of the hyperring and the hyperfield proves that
(E,
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Hence 2Q is a class different from Q which belongs to Q + Q, therefore 2Q < Q and so
2Q + Q = Q. Next:

3 = 2 + 1 ∈ 2Q + Q = Q
4 = 3 + 1 ∈ Q + Q, thus 4 /∈ Q
4 = 2 + 2 ∈ 2Q + 2Q, thus 4 /∈ 2Q
Consequently 4Q is a new class different from Q and 2Q and furthermore, since it
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Note that Theorem 12′s hypercomposition is neither open nor closed. Also, note that
the above Theorem enriches the class of non-quotient hyperrings with many new members
in addition to the ones it is constructing. Indeed, [35] gives a method of constructing
non-quotient hyperrings when at least one non-quotient hyperfield is known. In particular,
the following Theorem is valid:

Theorem 13. Ref. [35] The direct sum of the hyperrings Si, i∈I is not isomorphic to a sub-hyperring
of a quotient hyperring if at least one of the Si is not a quotient hyperfield.

Thus, for example, if R is the field of the real numbers and R̆+ the hyperfield of
Theorem 12 which is constructed over the set of the non-negative real numbers, then
R⊕ R̆+ is a non-quotient hyperring.

Another class of non-quotient hyperrings was constructed by Nakassis in [36]. Nakas-
sis’ hyperrings are endowed with open hypercompositions.

4. Problems in the Theory of Fields that arose from a Question in the Theory
of Hyperfields

The constructions of specific monogenic (monogène) hyperfields in the early 1980s,
led directly to the hitherto open question of whether these constructions can produce
non-quotient hyperfields as well [35,49,94]. It should be noted that to date they have given
several hyperfields all of which are quotient [46,47,49]. Theorem 4 gives a family of such
monogenic quotient hyperfields. If x−x=H, x∈H* is valid in a monogenic (monogène)
hyperfield H which is isomorphic to a quotient hyperfield F/G, then G−G = F. Hence, the
problem of the isomorphism of monogenic hyperfields to quotient hyperfields, simultane-
ously brought into being the following problem in the theory of fields:

When can a subgroup G of the multiplicative group of a field F generate F via the
subtraction of G from itself?

The answer to this question for subgroups of finite fields of index 2 and 3 was given
in [49]. The following Theorem presents the results of papers [47,49,95,96] collectively:
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Theorem 14. Refs. [33,48] Let F be a finite field and G be a subgroup of its multiplicative group of
index n and order m. Then, G–G=F, if and only if:

n = 2 and m > 2,
n = 3 and m > 5,
n = 4, −1 ∈ G and m > 11,
n = 4, −1 /∈ G and m > 3,
n = 5, charF = 2 and m > 8,
n = 5, charF = 3 and m > 9,
n = 5, charF 6= 2, 3 and m > 23

Remark 1. From the above Theorem, it becomes apparent that the validity of the equality
G–G=F depends on the cardinality of G. However, this does not mean that any subset S of
the field F with the same cardinality as G has the property S–S=F. For example, if F=Z19,
then its multiplicative subgroup of index 3, G={1,7,8,11,13,17} satisfies the equality G–G=F,
while its subset S={1,6,8,11,13,17}, which has the same cardinality as G, does not. It must
also be noted that G’s cosets have the same property as G.

Working with the subgroups of index 6, in light of the above Theorem, we have the
following Proposition:

Proposition 7. If G is a subgroup of index 6 of the multiplicative group of a finite field F such that
G−G=F and −1/∈G, then G has more than 10 elements.

Proof.−G and G have the same number of elements and−G∩G=∅. Moreover, (−G)(−G)=G.
Consequently W=−G∪G is a subgroup of index 3 of the multiplicative group of F. Thus, by
Theorem 14, cardW>5 and therefore cardG>10. �

Proposition 7 provides a very accurate result. Indeed, the field with the fewest
elements which has a multiplicative subgroup of index 6 that satisfies the assumptions
of the above Proposition is Z67 and this field’s multiplicative subgroup of index 6 is
G = {1,9,14,15,22,24,25,40,59,62,64}. As shown in Cayley Table 1, G–G=Z67 is valid.

Table 1. The Cayley table of the subtraction G–G.
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Proof. The multiplicative subgroup of a field of characteristic 2 has 2𝑘 − 1 elements. 

Therefore, it is not divisible by 6, because it has an odd number of elements. 

Lemma 2. Fields of characteristic 3 have no multiplicative subgroups of index 6. 

Proof. The multiplicative subgroup of a field of characteristic 3 has 3𝑘 − 1 elements, 

which is a non-multiple of number 3 and hence non-divisible by 6. □  

Taking into consideration Proposition 7, Lemmas 1, 2 and applying techniques that 

are similar to the ones developed in [47,49,95,96], we have the Theorem: 

Theorem 15. Let F be a finite field and G be a subgroup of its multiplicative group of index 6 

and order m. Then, G –G = F , if and only if: 

– 1  G     and  m  11, 

– 1  G ,  charF = 11  and  m  20, 

– 1  G ,  charF = 13  and  m  28, 

– 1  G ,  charF  11, 13  and  m  30. 

 

The conclusions of the above Theorem are sharp. The examples that follow are in-

dicative of this fact. 
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Lemma 1. Fields of characteristic 2 have no multiplicative subgroups of index 6.

Proof. The multiplicative subgroup of a field of characteristic 2 has 2k − 1 elements.
Therefore, it is not divisible by 6, because it has an odd number of elements. �

Lemma 2. Fields of characteristic 3 have no multiplicative subgroups of index 6.

Proof. The multiplicative subgroup of a field of characteristic 3 has 3k − 1 elements, which
is a non-multiple of number 3 and hence non-divisible by 6. �

Taking into consideration Proposition 7, Lemmas 1, 2 and applying techniques that
are similar to the ones developed in [47,49,95,96], we have the Theorem:

Theorem 15. Let F be a finite field and G be a subgroup of its multiplicative group of index 6 and
order m. Then, G–G=F, if and only if:

−1 /∈ G, and m ≥ 11,
−1 ∈ G, charF = 11 and m ≥ 20,
−1 ∈ G, charF = 13 and m ≥ 28,
−1 ∈ G, charF 6= 11, 13 and m ≥ 30.

The conclusions of the above Theorem are sharp. The examples that follow are
indicative of this fact.

Example 4. The field GF[112] consists of all the linear polynomials with coefficients in the field of
residues modulo 11. In GF[112], the polynomial x2 +1 is irreducible. Thus, in the multiplication
the polynomials are combined according to the ordinary rules, setting x2 = −1 = 10, and working
modulo 11. GF [112] has the following multiplicative subgroup of index 6,

G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x}

which has 20 elements. It can be verified that G–G=GF[112].

Example 5. The field GF[132] consists of all the linear polynomials with coefficients in the field of
residues modulo 13. The addition and the multiplication are defined in the usual way, replacing x2

by 11, since the polynomial x2 + 2 is irreducible. GF[132] has the following multiplicative subgroup
of index 6,

G =


1, 5, 8, 12,
5x + 1, 8x + 1, 2x + 2, 11x + 2, 3x + 3, 10x + 3, 5x + 4, 8x + 4, x + 5, 12x + 5,
x + 6, 12x + 6, x + 7, 12x + 7, x + 8, 12x + 8, 5x + 9, 8x + 9,
3x + 10, 10x + 10, 2x + 11, 11x + 11, 5x + 12, 8x + 12


which has 28 elements. It can be verified that G–G=GF[132].

Example 6. The field Z181of residues modulo 181 has the following multiplicative subgroup of
index 6,

G =

{
1, 5, 25, 27, 29, 36, 42, 46, 48, 49, 56, 59, 64, 67, 82, 99,
114, 117, 122, 125, 132, 133, 135, 139, 145, 152, 154, 156, 176, 180

}
which has 30 elements. It can be verified that G− G = Z181.

Similar conclusions to those of Theorem 14 for the multiplicative subgroups of index
3 have been published in [97] without however mentioning the mathematical necessity
that led to this problem. The papers [98–100] also deal with this problem without proving
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though the clear and accurate results that are given by Theorems 14 and 15. On the other
hand, in [98–100], the following Theorem is proved:

Theorem 16. Refs. [98–100] If G is a subgroup of finite index in the multiplicative group of an
infinite field F, then G−G=F.

The above Theorem leads to an extension of Theorems 9 and 10. Indeed, since all finite
groups are periodic, while there also exists infinite periodic groups, Theorems 9 and 10
generate finite and infinite non-quotient hyperfields. However, according to Theorem 16, if
a hyperfield H is the quotient of an infinite field with a multiplicative subgroup of finite
index, then x−x=H for all x∈H. Thus, the following Theorem holds:

Theorem 17. There do not exist finite quotient hyperfields with the hypercompositions which are
defined in Theorems 9 and 10.

Furthermore, Theorem 8 sets a new question in the theory of fields:

When can a subgroup G of the multiplicative group of a field F generate F··G via its
subtraction from itself?

Example 2 presents three finite fields which have a multiplicative subgroup G pos-
sessing the above property, while the sum of any two of its cosets gives all the non-zero
elements of the field F. It is worth mentioning that the rather old paper [101] investigates
conditions under which the sum of two cosets of a multiplicative subgroup G of a finite
field has a nonempty intersection with at least 3 cosets of G.

5. Classification of Finite Hyperfields into Quotient and Non-Quotient Hyperfields

The enumeration of certain finite hyperfields has been conducted in several
papers [66,71,73,77]. Paper [66] deals with hyperfields of order less than or equal to
4, [73,77] deals with hyperfields of order less than or equal to 5, and [71] deals with
hyperfields of order less than or equal to 6. In [71], R. Ameri, M. Eyvazi, and S. Hoskova-
Mayerova make a thorough check of the isomorphism of these hyperfields to the quotient
hyperfields using conclusions from the papers [46–48,95–97]. This section addresses the
isomorphism problems with the use of the techniques which were developed from the
above study, while it covers some of the gaps that appear in [71].

5.1. Hyperfields of Order 2

According to Theorem 3 there is one two-element non-trivial hyperfield, which is
isomorphic to the quotient hyperfield F/F*, where F is any field with cardF>2 and F* is its
multiplicative group. Hence, there exist two hyperfields of order 2, the above and Z2

5.2. Hyperfields of Order 3

Hyperfields of order 3 have two non-zero elements. There are five isomorphism classes
of these hyperfields [66,71,73,77]. The trivial hyperfield Z3 is the first of them. Next, there
are three hyperfields of order 3, which derive as quotients of a finite field F by an index
2 multiplicative subgroup G of its multiplicative group. According to Theorem 14, the
following three cases can be valid for the subgroup G:

i. G–G 6= F, which applies only when F = Z5 and G = {1,4}
ii. −1 /∈ G (i.e., {−1, 1} 6⊆ G) and G–G = F, which applies when

cardF = 2(cardG) + 1 = 2(2k + 1) + 1 = 4k + 3

iii. −1∈G (i.e., {−1, 1} ⊆ G) and G–G = G + G = F, which applies when

cardF = 2(cardG) + 1 = 2(2k) + 1 = 4k + 1, k > 2



Mathematics 2023, 11, 1289 17 of 35

Therefore, there exist the corresponding three isomorphism classes of quotient hyper-
fields of order 3 constructed from finite fields:

i. Z5/{1,4}
ii. GF[pq]/G, pq=3(mod4)
iii. GF[pq]/G, pq=1(mod4)

The above classification can also derive as follows:
The first two classes are the field Z3 and its augmented hyperfield. The Cayley tables

of their additive parts are shown in the following Table 2:

Table 2. The Cayley tables of the additive group of Z3 and of the additive canonical hypergroup of
its augmented hyperfield [Z3].
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 0 −1 1 

0 0 −1 1 
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1 1 {−1,0 ,1}  1 

By Theorem 4, the augmented hyperfield of Z3 is a quotient hyperfield. Observe that [Z3] is
isomorphic to the quotient hyperfield Z7/{1,2,4}. More generally, the augmented hyperfield
of Z3 is isomorphic to the quotient hyperfield GF[pq]/G, pq = 3(mod4), G being an index
2 multiplicative subgroup of the field’s multiplicative group.

The next two classes are the quotient hyperfield Z5/{1,4} and its augmented hyperfield
[Z5/{1,4}]. Denoting by 1 the group G={1,4} and by a its coset 2G={2,3}, we have the
following Cayley tables (Table 3) for the additive canonical hypergroups of Z5/{1,4} and of
its augmented hyperfield:

Table 3. The Cayley tables of the additive canonical hypergroups of the hyperfield Z5/{1,4} and its
augmented hyperfield [Z5/{1,4}].
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Table 4. The Cayley table of the canonical hypergroup of the hyperfield 𝐹/𝐹+. 

 0 −1 1 

0 0 −1 1 

−1 −1 −1 {−1,0 ,1}   

1 1 {−1,0 ,1}  1 

According to Theorem 5, the augmented hyperfield of a quotient hyperfield is a quo-
tient hyperfield. Therefore, [Z5/{1,4}] is a quotient hyperfield which is isomorphic to
Z13/{1,3,4,9,10,12}. More generally, [Z5/{1,4}] is isomorphic to the quotient hyperfield
GF[pq]/G, pq = 1(mod4), G being an index 2 multiplicative subgroup of the field’s multi-
plicative group.

The fifth and final class of the order 3 hyperfields is the quotient of an infinite field,
and in particular, it is the quotient of an ordered field F by its positive cone F+. This is
the so-called «sign hyperfield» and the Cayley table of its canonical hypergroup is shown
in Table 4:
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Table 4. The Cayley table of the canonical hypergroup of the hyperfield F/F+.
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The above conclusions are summed up in the following Theorem:

Theorem 18. All the hyperfields of order 3 are quotient hyperfields which are classified into 5
isomorphism classes having the following representatives:

i. Z3 and its augmented hyperfield [Z3].
ii. Z5/{1,4} and its augmented hyperfield [Z5/{1,4}].
iii. The quotient hyperfield of an ordered field F by its positive cone F+.

Hence, the next Theorem holds:

Theorem 19. All the hyperfields of order 2 and 3 are quotient hyperfields.

5.3. Hyperfields of Order 4

There are 7 isomorphism classes of hyperfields of order 4, as they have been enu-
merated in [66,71,73,77]. These consist of the Galois field GF[22], 4 classes of quotient
hyperfields, and 2 classes of non-quotient hyperfields.

Note on the notation: In the subsequent paragraphs, we denote the quotient hyperfields
by QHFj

i and the non-quotient hyperfields by NQHFj
i . The subscript i denotes the order of

the hyperfield, while the superscript j lists the classes.

5.3.i. Quotient Hyperfields of Order 4

The first two classes are the field GF[22] and its augmented hyperfield. Recall that,
according to Theorem 4, the augmented hyperfield of GF[22] is a quotient hyperfield. The
Cayley tables of their additive parts are presented in Table 5:

Table 5. The Cayley tables of the additive group of GF[22] and of the additive canonical hypergroup
of its augmented hyperfield [GF[22]], which is also denoted by QFH1

4 .
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Table 5. Cont.
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GF [22 ]  0 1 x x + 1 

0 0 1 x x + 1 

1 1 0 x + 1 x 

x x x + 1 0 1 
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𝑄𝐹𝐻4
1 0 1 x x+1 

0 0 1 x x+1 

1 1 {0,1,x ,x + 1}  {1,x ,x + 1}  {1,x ,x + 1}  
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Regarding their multiplicative part, the four elements are combined according to the usual
rules, working modulo 2 and writing x2 as x+1 since x2+x+1 is the irreducible polynomial
of degree 2. Therefore, Table 6 is the Cayley table of the multiplicative group of the field
GF[22] and its augmented hyperfield:

Table 6. The Cayley table of the multiplicative group of the field GF[22] and of its augmented
hyperfield [GF[22]].
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We keep using Theorem 14 to examine the next two classes. So, according to Theorem 14,
for the fields F with cardinality less than or equal to 16, it holds G—G 6=F, when G is a
multiplicative subgroup of index 3. These fields are Z7, Z13, and GF[24]. GF[24] is the field
of all the polynomials of degree ≤3, with coefficients in Z2.

The multiplicative subgroup of index 3 in the field Z7 is G={1,6}, and 2G, 22G are
its cosets. Denoting by 1, a, a2 the group G and its two cosets, respectively, we have the
following Cayley table (Table 7) for the additive canonical hypergroup of the quotient
hyperfield Z7/{1,6}.

Table 7. The Cayley table of the additive canonical hypergroup of the quotient hyperfield Z7/{1,6}.
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𝑄𝐻𝐹4
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The multiplicative subgroup of index 3 in the field ℤ13 is G = {1,5 ,8,12}  and 2G, 22G 

are its cosets. Denoting by  1, 𝑎, 𝑎2  the group G and its two cosets, respectively, we have 

the following Cayley Table 8 for the additive canonical hypergroups of the quotient hy-

perfield ℤ13/{1,5 ,8,12} . 

  

The multiplicative subgroup of index 3 in the field Z13 is G={1,5,8,12} and 2G, 22G are
its cosets. Denoting by 1, a, a2 the group G and its two cosets, respectively, we have the
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following Cayley Table 8 for the additive canonical hypergroups of the quotient hyperfield
Z13/{1,5,8,12}.

Table 8. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z13/{1,5,8,12}.
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In the field GF[24] of all polynomials of degree ≤3 with coefficients in Z2, the addition
and the multiplication of the polynomials are defined in the usual way, by replacing x4 with
x+1, since x4+x+1 is the irreducible polynomial of degree 4. The multiplicative subgroup of
index 3 in the field GF[24] is

G =
{

1, x3 + x2, x3 + x2 + x + 1, x3, x3 + x
}

and xG, x2G are its cosets. Observe that the quotient hyperfield

GF
[
24
]/{

1, x3 + x2, x3 + x2 + x + 1, x3, x3 + x
}

is isomorphic to Z13/{1,5,8,12}.
Notice that QHF1

4 is the augmented hyperfield of both QHF2
4 and QHF3

4 . Moreover,
according to Theorem 14, the hyperfield QHF1

4 is isomorphic to the quotient hyperfield of
a finite field F by a subgroup of its multiplicative group of index 3, when card F > 3·5 + 1.
The hyperfield Z19/{1,7,8,11,12,18} is a representative of this class of quotient hyperfields.

All the above classes of quotient hyperfields derive from the quotient of finite fields
with their multiplicative subgroups, but the last one derives from an infinite field. The
Cayley table of the canonical hypergroup of this hyperfield appears in Table 9:

Table 9. The Cayley table of the canonical hypergroup of the quotient hyperfield of an infinite field
by a multiplicative subgroup of index 3.
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b-hyperfield is such a hyperfield. Indeed, as it is shown in [97], the multiplicative subgroup
G=v−1(3Z)={p3kv | k∈Z and v is a p-adic unit} of the field Qp of the p-adic numbers with
p-adic valuation v, is of index 3 and G⊆G+aG, while a2G 6⊂G+aG. Therefore, because of
Proposition 2, for the quotient hyperfield Qp/G it holds that xG—xG=Qp, x=1,a,a2, and so
QHF4

4 is a quotient hyperfield.

Remark 2. In [71], it is inaccurately stated that the hyperfield QHF4
4 is isomorphic to

GF
[
24]/{1, x3, x3 + x, x3 + x2, x3 + x2 + x + 1

}
. This is not true because, as it is shown

above, this is isomorphic to QHF3
4 .

5.3.ii. Non-Quotient Hyperfields of Order 4

The non-quotient hyperfields of order 4 are presented next. Since the multiplicative
group of the hyperfields of order 4 has 3 elements, Theorem 10 can be applied to construct
a non-quotient hyperfield. The Cayley table of the canonical hypergroup of this hyperfield
is presented in Table 10:

Table 10. The Cayley table of the additive canonical hypergroup of the non-quotient b-hyperfield
with 4 elements.
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NQHF2
4 is a non-quotient hyperfield. Indeed, having analyzed above all the cases of

quotient hyperfields that derive from finite fields, we conclude that if NQHF2
4 belongs to

the quotient hyperfields it must originate from a quotient of an infinite field F by some
multiplicative subgroup G of index 3. But in this case, G is a subgroup of finite index
in the multiplicative group of the infinite field F. Therefore, by Theorem 16, the equality
G – G = F must hold. However, this is not true in NQHF2

4 . Consequently, NQHF2
4 is not a

quotient hyperfield.
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5.4. Hyperfields of Order 5

Since the multiplicative group of finite fields is cyclic, the multiplicative group of the
quotient hyperfields resulting from finite fields is cyclic as well. Therefore,

Proposition 8. Finite hyperfields whose multiplicative part is a non-cyclic group cannot be derived
from quotients of finite fields.

Thus, the finite hyperfields whose multiplicative part is a non-cyclic group derive
only from quotients of infinite fields. On the other hand, because of Theorem 14, if G is a
subgroup of finite index in the multiplicative group of an infinite field F, then G−G = F,
and therefore, if H is a finite hyperfield isomorphic to a quotient hyperfield of an infinite
field F by a subgroup G of its multiplicative group, then x−x = H must hold for all x∈H*.
Consequently, the next Theorem holds:

Theorem 20. If the multiplicative group of a finite hyperfield H is not cyclic and x-x 6= H, x∈H*,
then H is not isomorphic to a quotient hyperfield.

There exist two groups of order 4, both of which are Abelian. One is the cyclic
group C4 (∼=Z/4Z), and the other is F. Klein’s Vierergruppe V (∼=C2 ×C2), which is not
cyclic. Moreover, it is known that the multiplicative group of the finite fields is cyclic.
However, this is not valid for non-trivial hyperfields. Papers [29,35,46] show how to
construct hyperfields from any abelian multiplicative group. Therefore, hyperfields can
be constructed from the Vierergruppe as well, and thus, the smallest hyperfield with a
non-cyclic multiplicative group has 5 elements.

5.4.1. Hyperfields with the Vierergruppe as Their Multiplicative Group

In [71], it has been shown that there exist 11 hyperfields whose multiplicative group is
the Vierergruppe. Recall that the Cayley table of the Vierergruppe is the following Table 12:

Table 12. The Cayley table of the Vierergruppe.

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 38 
 

 

5.4. Hyperfields of Order 5 

Since the multiplicative group of finite fields is cyclic, the multiplicative group of 

the quotient hyperfields resulting from finite fields is cyclic as well. Therefore, 

Proposition 8. Finite hyperfields whose multiplicative part is a non-cyclic group cannot be de-

rived from quotients of finite fields. 

Thus, the finite hyperfields whose multiplicative part is a non-cyclic group derive 

only from quotients of infinite fields. On the other hand, because of Theorem 14, if G is a 

subgroup of finite index in the multiplicative group of an infinite field F, then G − G  = F, 

and therefore, if H is a finite hyperfield isomorphic to a quotient hyperfield of an infinite 

field F by a subgroup G of its multiplicative group, then x − x  = H must hold for all 

xH*. Consequently, the next Theorem holds: 

Theorem 20. If the multiplicative group of a finite hyperfield H is not cyclic and x - x  H, 

xH*, then H is not isomorphic to a quotient hyperfield. 

There exist two groups of order 4, both of which are Abelian. One is the cyclic 

group C4 (ℤ/4ℤ), and the other is F. Klein’s Vierergruppe V ( C2 ×C2), which is not cy-

clic. Moreover, it is known that the multiplicative group of the finite fields is cyclic. 

However, this is not valid for non-trivial hyperfields. Papers [29,35,46] show how to 

construct hyperfields from any abelian multiplicative group. Therefore, hyperfields can 

be constructed from the Vierergruppe as well, and thus, the smallest hyperfield with a 

non-cyclic multiplicative group has 5 elements. 

5.4.1. Ηyperfields with the Vierergruppe as Their Multiplicative Group  

In [71], it has been shown that there exist 11 hyperfields whose multiplicative group 

is the Vierergruppe. Recall that the Cayley table of the Vierergruppe is the following Ta-

ble 12: 

Table 12. The Cayley table of the Vierergruppe. 

 1 a b c 

1 1 a b c 

a a 1 c b 

b b c 1 a 

c c b a 1 

As the Vierergruppe is not a cyclic group, the next Corollary follows from the above 

Theorem 20: 

Corollary 1. If the multiplicative part of a hyperfield H is the Vierergruppe and if x − x  H , 

x  H*, then H is a non-quotient hyperfield. 

By Corollary 1, among the 11 hyperfields whose multiplicative part is the Vierer-

gruppe, the following 4, which are shown in Table 13, are non-quotient hyperfields. 

  

As the Vierergruppe is not a cyclic group, the next Corollary follows from the above
Theorem 20:

Corollary 1. If the multiplicative part of a hyperfield H is the Vierergruppe and if x−x 6=H, x∈H*,
then H is a non-quotient hyperfield.

By Corollary 1, among the 11 hyperfields whose multiplicative part is the Vierergruppe,
the following 4, which are shown in Table 13, are non-quotient hyperfields.
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Table 13. The Cayley tables of the additive canonical hypergroups of the non-quotient hyperfields
whose multiplicative group is the Vierergruppe.
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The following is an alternative proof that the hyperfields NQHF2
5 and NQHF4

5 are
non-quotient hyperfields, which is not based on Corollary 1. Indeed:

(α) For NQHF2
5 observe that the opposite of 1 is c, the opposite of a is b and more-

over that:
(1 + c) ∩ (a + b) = {0, a, b} ∩ {0, 1, c} = {0}

Therefore, according to Lemma 1, if NQHF2
5 were isomorphic to a quotient hyperfield, then

the sums of any two non-opposite elements should have the same cardinality. However,
this is not the case because, for example:

card(1+a)=4 while card(1+1)=3.

(β) For NQHF4
5 observe that it is the hyperfield constructed via Theorem 10, when

the Vierergruppe is used. Since the Vierergruppe is periodic, Theorem 10 implies that the
hyperfield NQHF4

5 cannot be isomorphic to a quotient hyperfield.
The classification of the remaining 7 hyperfields that appear in [71] is a hitherto open

problem, and it also raises the question of whether there exist quotient hyperfields that
have the Vierergruppe as their multiplicative group. It is worth mentioning here that the
hypercompositions in all 7 unclassified hyperfields are closed, and so x − x contains all the
elements of the hyperfield for each x in the Vierergruppe.

5.4.2. Hyperfields Having as Multiplicative Group the Cyclic Group C4

In [71], it is shown that there exist 16 hyperfields whose multiplicative group is
the cyclic group C4. Some of them have been identified as quotient hyperfields. Their
classification is completed in the following, starting with the quotient hyperfields.

5.4.2.i. Quotient Hyperfields with Multiplicative Group Being the Cyclic Group C4

We begin with the field Z5 and then we continue with the quotient hyperfields of finite
fields, along with their augmented hyperfields which, according to Theorems 4 and 5, are
quotient hyperfields as well (Table 14).

Table 14. The Cayley tables of the additive group of Z5 and of the canonical hypergroup of its
augmented hyperfield [Z5], which is also denoted by QHF1

5 .
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3 3 {1, 3, 4} {0, 1, 2, 3, 4} {1, 3} {3, 4, 2} 

4 4 {0, 1, 2, 3, 4} {2, 4, 1} {3, 4, 2} {4, 3} 

Next, G = {1, 3, 9}  is the multiplicative subgroup of order 4 of the field ℤ13 and 2G, 

22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its cosets, respectively, 

Table 15 gives the Cayley tables for the additive canonical hypergroups of ℤ13 /G and of 

its augmented hyperfield: 

  



Mathematics 2023, 11, 1289 25 of 35

Table 14. Cont.
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Next, G = {1,3,9} is the multiplicative subgroup of order 4 of the field Z13 and 2G,
22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its cosets, respectively,
Table 15 gives the Cayley tables for the additive canonical hypergroups of Z13/G and of its
augmented hyperfield:

Table 15. The Cayley tables of the additive canonical hypergroup of the hyperfield Z13/G, which is
also denoted by QHF2

5 and of its augmented hyperfield [Z13/G], which is also denoted by QHF3
5 .
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Theorem 14 will continue to be used for the classification of the next classes of quo-

tient hyperfields of order 5. Thus, in addition to the above, the fields with cardinality 

less than or equal to 4·11+1=45 are the following ones: 

GF[32], GF[52], ℤ17, ℤ29, ℤ37, and ℤ41.  

GF[32] consists of the 9 polynomials in x of degree 0 or 1 with coefficients in the 

field ℤ3 and writing x2 as 2 whenever it occurs. G = {1,2}  is the multiplicative subgroup 
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( ) ( )  ( ) 2 , , 1 , 2 1 0,1,2,33
k

G G G xG x G x G xF G k  = + + = + =
 

  
 

Denoting the coset (x+1)G by a and G by 1, the additive canonical hypergroup of 

the GF [32] / G  is shown in Table 16: 
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Theorem 14 will continue to be used for the classification of the next classes of quotient
hyperfields of order 5. Thus, in addition to the above, the fields with cardinality less than
or equal to 4·11+1=45 are the following ones:

GF[32], GF[52], Z17, Z29, Z37, and Z41.

GF[32] consists of the 9 polynomials in x of degree 0 or 1 with coefficients in the field
Z3 and writing x2 as 2 whenever it occurs. G = {1,2} is the multiplicative subgroup of index
4 in the field GF[32]. The hyperfield GF[32]/G is the following one:

GF
[
32
]/

G = {G, xG, (x + 1)G, (x + 2)G} =
{
(x + 1)kG

∣∣∣ k = 0, 1, 2, 3
}

Denoting the coset (x+1)G by a and G by 1, the additive canonical hypergroup of the
GF[32]/G is shown in Table 16:

Table 16. The Cayley table of the additive canonical hypergroup of the quotient hyperfield GF[32]/G,
which is also denoted by QHF4

5 .
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GF[52] consists of the 25 polynomials in x of degree 0 or 1 with coefficients in the
field Z5. Since x2+3x+4 is the irreducible polynomial of degree 2 we are writing x2 as
− 3x− 4 = 2x + 1 whenever it occurs. G = {1, 4, 2x, 3x+4, 3x, 2x+1} is the multiplicative
subgroup of index 4 in the field GF[52]. The hyperfield GF[52]/G is the following:

GF
[
52
]/

G = {G, 2G, (x + 1)G, (2x + 2)G} =
{
(x + 1)kG

∣∣∣ k = 0, 1, 2, 3
}

Denoting the coset (x+1)G by a and G by 1, the Cayley table for the additive canonical
hypergroup of the GF[52]/G is presented in Table 17:
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Table 17. The Cayley table of the additive canonical hypergroup of the quotient hyperfield GF[52]/G,
which is also denoted by QHF5

5 .
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5 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 0 , 1 , a2, a3}  { a , a2, a3}  { 1, a , a2, a3}  { 1 , a , a2}  

a a { a , a2, a3}  { 0 , 1 , a, a3}  { 1 , a2, a3}  { 1 , a , a2, a3}  

a2 a2 { 1 , a , a2, a3}  { 1 , a2, a3}  { 0 , 1 , a, a2}  { 1, a, a3}  
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The multiplicative subgroup of index 4 in the field ℤ17  is  G = {1, 4, 13, 16 }  and 5G, 

52G, 53G, are its cosets.  Denoting by  1, a, a2, a3  the group G and its three cosets, respec-

tively, we have the following Cayley Table 18 for the additive canonical hypergroups of 

the quotient hyperfield ℤ17 / G: 

  

The multiplicative subgroup of index 4 in the field Z17 is G = {1,4,13,16} and 5G, 52G,
53G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets, respectively, we
have the following Cayley Table 18 for the additive canonical hypergroups of the quotient
hyperfield Z17/G:

Table 18. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z17/{1,4,13,16}, which is also denoted by QHF6

5 .
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Notice that the hyperfields QHF4
5 , QHF5

5 and QHF6
5 have the same augmented hy-

perfield QHF7
5 . Because of Theorem 4, this hyperfield is a quotient hyperfield. Fur-

thermore, it can be verified that this hyperfield is isomorphic to the quotient hyperfield
Z53/{1,10,13,15,16,24,28,36,42,44,46,47,49}. The Cayley table of the additive canonical hy-
pergroup of this hyperfield appears in Table 19:
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Table 19. The Cayley table of the additive canonical hypergroup of the augmented hyperfield of
QHF4

5 , QHF5
5 and QHF6

5 which is simultaneously the additive hypergroup of the quotient hyperfield
Z53/{1,10,13,15,16,24,28,36,42,44,46,47,49}.
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𝑄𝐻𝐹5
7 0 1 a a2 a3 

0 0 1 a a2 a3 
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a2 a2 { 1, a, a2, a3}  { 1, a, a2, a3}  { 0, 1, a, a2, a3}   2 31, , ,a a a  
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The multiplicative subgroup of index 4 in the field ℤ29 is G = {1,7,16,20,23,24,25}  
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respectively, we have the following Cayley Table 20 for the additive canonical hyper-

groups of the quotient hyperfield ℤ29 / G: 

  

The multiplicative subgroup of index 4 in the field Z29 is G = {1,7,16,20,23,24,25} and
2G, 22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets,
respectively, we have the following Cayley Table 20 for the additive canonical hypergroups
of the quotient hyperfield Z29/G:

Table 20. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z29/{1,7,16,20,23,24,25}.
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G={1,7,9,10,12,16,26,33,34} is the multiplicative subgroup of index 4 in the field Z37
and 2G, 22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets,
respectively, we have the following Cayley Table 21 for the additive canonical hypergroups
of the quotient hyperfield Z37/G:
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Table 21. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z37/{1,7,9,10,12,16,26,33,34}.

Mathematics 2023, 11, x FOR PEER REVIEW 31 of 38 
 

 

Table 20. The Cayley table of the additive canonical hypergroup of the quotient hyperfield  

ℤ29 / {1,7 ,16,20,23,24,25}  

𝑄𝐻𝐹5
8 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 1, a, a3}  { 1, a, a2, a3}  { 0, 1, a, a2, a3}  { 1, a, a2, a3}  

a a { 1, a, a2, a3}  { 1, a, a2}  { 1, a, a2, a3}  { 0, 1, a, a2, a3}  

a2 a2 { 0, 1, a, a2, a3}  { 1, a, a2, a3}  { a, a2, a3}  { 1, a, a2, a3}  

a3 a3 { 1, a, a2, a3}  { 0, 1, a, a2, a3}  { 1, a, a2, a3}  { 1, a2, a3}  

G = { 1, 7 , 9 , 10, 12, 16, 26, 33, 34 }  is the multiplicative subgroup of index 4 in the 

field ℤ37 and 2G, 22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its 

three cosets, respectively, we have the following Cayley Table 21 for the additive canon-

ical hypergroups of the quotient hyperfield  ℤ37 / G: 

Table 21. The Cayley table of the additive canonical hypergroup of the quotient hyperfield 

ℤ37 / { 1, 7 , 9 , 10, 12, 16, 26, 33, 34 }   

𝑄𝐻𝐹5
9  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 1, a, a2, a3}   { 1, a, a2, a3}  { 0, 1, a, a2, a3}  { 1, a, a2, a3}  

a a { 1, a, a2, a3}  { 1, a, a2, a3}  { 1, a, a2, a3}  { 0, 1, a, a2, a3}  

a2 a2 { 0, 1, a, a2, a3}  { 1, a, a2, a3}  { 1, a, a2, a3}   { 1, a, a2, a3}   

a3 a3 { 1, a, a2, a3}  { 0, 1, a, a2, a3}  { 1, a, a2, a3}  { 1, a, a2, a3}   

G = { 1, 4, 10, 16, 18, 23, 25, 31, 37, 40}  is the multiplicative subgroup of index 4 in the 

field ℤ41 and 3G, 32G, 33G, are its cosets. Denoting by 1, a, a2, a3  the group G and its 

three cosets, respectively, we have the following Cayley Table 22 for the additive canon-

ical hypergroup of the quotient hyperfield ℤ41/ G: 

  

G={1,4,10,16,18,23,25,31,37,40} is the multiplicative subgroup of index 4 in the field
Z41 and 3G, 32G, 33G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets,
respectively, we have the following Cayley Table 22 for the additive canonical hypergroup
of the quotient hyperfield Z41/G:

Table 22. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z41/{1,4,10,16,18,23,25,31,37,40}.

Mathematics 2023, 11, x FOR PEER REVIEW 32 of 38 
 

 

Table 22. The Cayley table of the additive canonical hypergroup of the quotient hyperfield  

ℤ41/ {1, 4 , 10, 16, 18, 23, 25, 31, 37, 40}  

𝑄𝐻𝐹5
10 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {0, a, a2, a3}  {1, a, a2, a3}  {1, a, a2, a3}  {1, a, a2, a3}  

a a {1, a, a2, a3}  {0, 1, a2, a3}  {1, a, a2, a3}  {1, a, a2, a3}  

a2 a2 {1, a, a2, a3}  {1, a, a2, a3}  {0, 1, a, a3}  {1, a, a2, a3}  

a3 a3 {1, a, a2, a3}  {1, a, a2, a3}  {1, a, a2, a3}  {0, 1, a, a2 }  

5.4.2.ii. Non-Quotient Hyperfields with Multiplicative Group Being the Cyclic Group C4 

The first non-quotient hyperfield can be constructed via Theorem 10. The Cayley 

Table 23 presents its additive canonical hypergroup: 

Table 23. The Cayley table of the additive canonical hypergroup of the non-quotient hyperfield 

constructed via Theorem 10.  

𝑁𝑄𝐻𝐹5
1  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {0, a, a2, a3}   {1, a}  {1, a2 }  {1, a3}  

a a {1, a}  {0, 1, a2, a3}  {a, a2 }  {a, a3}  

a2 a2 {1, a2 }  {a, a2 }  {0, 1, a, a3}   {a2, a3}   

a3 a3 {1, a3}  {a, a3}  {a2, a3}  {0, 1, a, a2 }   

Cayley Table 24 presents the additive canonical hypergroup of the second non-

quotient hyperfield: 

Table 24. The Cayley table of the additive canonical hypergroup of the second non-quotient hyperfield. 

𝑁𝑄𝐻𝐹5
2  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {a, a2, a3}   {1, a, a2, a3}  {0, a, a3}  {1, a, a2, a3}  

a a {1, a, a2, a3}  {1, a2, a3}  {1, a, a2, a3}  {0, 1, a2 }  

a2 a2 {0, a, a3}  {1, a, a2, a3}  {1, a, a3}   {1, a, a2, a3}   

a3 a3 {1, a, a2, a3}  {0, 1, a2 }  {1, a, a2, a3}  {1, a, a2 }   

We will prove that 𝑁𝑄𝐻𝐹5
2 is a non-quotient hyperfield. Note that the opposite of 1 

5.4.2.ii. Non-Quotient Hyperfields with Multiplicative Group Being the Cyclic Group C4

The first non-quotient hyperfield can be constructed via Theorem 10. The Cayley
Table 23 presents its additive canonical hypergroup:



Mathematics 2023, 11, 1289 30 of 35

Table 23. The Cayley table of the additive canonical hypergroup of the non-quotient hyperfield
constructed via Theorem 10.
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We will prove that 𝑁𝑄𝐻𝐹5
2 is a non-quotient hyperfield. Note that the opposite of 1 We will prove that NQHF2

5 is a non-quotient hyperfield. Note that the opposite of 1 is
a2, the opposite of a is a3 and that:(

1 + a2
)
∩
(

a + a3
)
=
{

0, a, a3
}
∩
{

0, 1, a2
}
= {0}

Therefore, according to Lemma 1, if NQHF2
5 were isomorphic to a quotient hyperfield,

then the sums of any two non-opposite elements should have had the same cardinality.
However, this is not the case because, for example,

card(1+a)=4 while card(1+1)=3.

5.4.2.iii. Non-Classified Hyperfields Having as Multiplicative Group the Cyclic Group C4

There remain three hyperfields whose multiplicative group is the cyclic group C4. For
these hyperfields the hypercompositions are defined as shown in Table 25:
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Table 25. The Cayley tables of the additive canonical hypergroup of the three non-classified hyper-
fields with multiplicative group C4.
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From the analysis and conclusions of the previous section, it follows that the above
three hyperfields cannot be derived as a quotient of finite fields by subgroups of their
multiplicative group. Thus, the question of whether they are isomorphic or not to quotient
hyperfields of non-finite fields by multiplicative subgroups of index 4, still remains open.

6. Discussion

Marc Krasner introduced the hyperfield in 1956, and until 1983, no hyperfields other
than the residuals ones were known in the wider mathematical society, regardless of the fact
that Krasner had made his associates aware of the construction of the quotient hyperfields
and hyperrings, which generalize the residual hyperfields. The criticism that he received
was that if all hyperrings and hyperfields could be isomorphically embedded into the
quotient hyperrings, then several conclusions of their theory would have been reached in a
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very straightforward manner, with the use of the theories of rings, fields, and modules, and
it wouldn’t have been necessary to develop new techniques, methods and methodologies
for their proofs. Thus, in 1983, M. Krasner published the construction of the quotient
hyperfields and hyperrings and raised the questions [24]:

Are all hyperrings which are not rings isomorphic to the subhyperrings of quotient
hyperrings R/G of some ring R by some of its normal multiplicative subgroups G when
they are not rings? Are all hyperfields isomorphic to a quotient K/G of a field K by some
of its multiplicative subgroups G?

Negative answers to these questions first came from the works in [29,35] and then
from [36,47], while Theorem 12 also constructs a new class of non-quotient hyperrings and
hyperfields. The constructions thought of certain hyperfields which were introduced for
answering Krasner’s questions gave rise to the following problem in field theory:

When does a subgroup G of the multiplicative group of a field F possess the ability to
generate F via the subtraction of G from itself?

So far, we do not have a clear and complete general solution to this problem. In the
finite fields, we have sharp conclusions for the subgroups of indexes 2,3,4,5,6, as described
in Theorems 14 and 15. Moreover, the construction of new hyperfields (Theorem 8) and the
research on whether they belong to the quotient hyperfields introduced a new problem in
the theory of fields:

Under what conditions can a field F’s multiplicative subgroup G generate F··G via the
subtraction of G from itself?

The question of the classification of hyperfields arose naturally as a follow-up to
Krasner’s question, and the Table 26 below summarizes the results of the classification of
finite hyperfields with 2, 3, 4, 5 elements.

Table 26. Classification of the hyperfields of order 2,3,4,5.

Order of
Hyperfields

Number of
Hyperfields
with Cyclic

Multiplicative
Subgroup

Number of
Hyperfields

with
Non-Cyclic

Multiplicative
Subgroup

Fields Quotient
Hyperfields

Non-
Quotient

Hyperfields

Unclassified
Hyperfields

2 2 – 1 1 – –

3 5 – 1 4 – –

4 7 – 1 4 2 –

– 11 – – 4 7
5

16 – 1 10 2 3

Evidently, the classification of the 10 unclassified finite hyperfields remains an open
problem. For the infinite non-quotient hyperfields, note that besides the construction of
finite non-quotient hyperfields, Theorems 9 and 10 give the construction of infinite non-
quotient hyperfields as well. Additionally, Theorem 12 presents the construction of a class
of such hyperfields. Evident examples of infinite quotient hyperfields are R/Q*, R/Q+,
C/Q*, C/Q+, C/R*, C/R+ etc.
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59. Bordbar, H.; Jančic-Rašović, S.; Cristea, I. Regular local hyperrings and hyperdomains. AIMS Math. 2022, 7, 20767–20780.

[CrossRef]
60. Bordbar, H.; Cristea, I.; Novak, M. Height of hyperideals in Noetherian Krasner hyperrings. UPB Sci. Bull. Ser. A Appl. Math.

Phys. 2017, 79, 31–42.
61. Bordbar, H.; Cristea, I. Regular parameter elements and regular local hyperrings. Mathematics 2021, 9, 243. [CrossRef]
62. Cristea, I.; Kankaraš, M. The Reducibility Concept in General Hyperrings. Mathematics 2021, 9, 2037. [CrossRef]
63. Vahedi, V.; Jafarpour, M.; Aghabozorgi, H.; Cristea, I. Extension of elliptic curves on Krasner hyperfields. Comm. Algebra 2019, 47,

4806–4823. [CrossRef]
64. Vahedi, V.; Jafarpour, M.; Cristea, I. Hyperhomographies on Krasner hyperfields. Symmetry 2019, 11, 1442. [CrossRef]
65. Vahedi, V.; Jafarpour, M.; Hoskova-Mayerova, S.; Aghabozorgi, H.; Leoreanu-Fotea, V.; Bekesiene, S. Derived Hyperstructures

from Hyperconics. Mathematics 2020, 8, 429. [CrossRef]
66. Iranmanesh, M.; Jafarpour, M.; Aghabozorgi, H.; Zhan, J.M. Classification of Krasner Hyperfields of Order 4. Acta Math. Sin.

(Engl. Ser.) 2020, 36, 889–902. [CrossRef]
67. Connes, A.; Consani, C. From monoids to hyperstructures: In search of an absolute arithmetic. arXiv 2010, arXiv:1006.4810.
68. Connes, A.; Consani, C. The hyperring of adèle classes. J. Number Theory 2011, 131, 159–194. [CrossRef]
69. Viro, O. Hyperfields for tropical geometry I. Hyperfields and dequantization. arXiv 2010, arXiv:1006.3034.
70. Viro, O. On basic concepts of tropical geometry. Proc. Steklov Inst. Math. 2011, 273, 252–282. [CrossRef]
71. Ameri, R.; Eyvazi, M.; Hoskova-Mayerova, S. Advanced results in enumeration of hyperfields. AIMS Math. 2020, 5, 6552–6579.

[CrossRef]
72. Baker, M.; Bowler, N. Matroids over hyperfields. In Proceedings of the ICNAAM 2017, Thessaloniki, Greece, 25–30 September

2017. AIP Conference Proceedings 1978, 340010. [CrossRef]
73. Baker, M.; Jin, T. On the Structure of Hyperfields Obtained as Quotients of Fields. Proc. Am. Math. Soc. 2021, 149, 63–70. [CrossRef]
74. Baker, M.; Lorscheid, O. Descartes’ rule of signs, Newton polygons, and polynomials over hyperfields. J. Algebra 2021, 569,

416–441. [CrossRef]
75. Jun, J. Geometry of hyperfields. arXiv 2017, arXiv:1707.09348. [CrossRef]
76. Lorscheid, O. Tropical geometry over the tropical hyperfield. arXiv 2019, arXiv:1907.01037. [CrossRef]
77. Liu, Z. Finite Hyperfields with order n≤5. arXiv 2020, arXiv:2004.07241. [CrossRef]
78. Shojaei, H.; Fasino, D. Isomorphism Theorems in the Primary Categories of Krasner Hypermodules. Symmetry 2019, 11, 687.

[CrossRef]
79. Das, K.; Singha, M. Topological Krasner hyperrings with special emphasis on isomorphism theorems. Appl. Gen. Topol. 2022, 23,

201–212. [CrossRef]
80. Roberto, K.; Mariano, H. On superrings of polynomials and algebraically closed multifields. J. Appl. Log. IFCoLog J. Log. Appl.

2022, 9, 419–444.
81. Roberto, K.; Mariano, H.; Ribeiro, H. On algebraic extensions and algebraic closures of superfields. arXiv 2022, arXiv:2208.08537.

http://doi.org/10.1007/BF01761468
http://doi.org/10.1063/1.3636971
http://doi.org/10.1007/BF01222860
http://doi.org/10.1016/0012-365X(94)00385-V
http://doi.org/10.2478/auom-2013-0024
http://doi.org/10.3934/math.20221138
http://doi.org/10.3390/math9030243
http://doi.org/10.3390/math9172037
http://doi.org/10.1080/00927872.2019.1596279
http://doi.org/10.3390/sym11121442
http://doi.org/10.3390/math8030429
http://doi.org/10.1007/s10114-020-8282-z
http://doi.org/10.1016/j.jnt.2010.09.001
http://doi.org/10.1134/S0081543811040134
http://doi.org/10.3934/math.2020422
http://doi.org/10.1063/1.5043953
http://doi.org/10.1090/proc/15207
http://doi.org/10.1016/j.jalgebra.2020.10.024
http://doi.org/10.1016/j.jalgebra.2020.11.005
http://doi.org/10.1216/rmj.2022.52.189
http://doi.org/10.48550/arXiv.2004.07241
http://doi.org/10.3390/sym11050687
http://doi.org/10.4995/agt.2022.14778


Mathematics 2023, 11, 1289 35 of 35

82. Roberto, K.; Ribeiro, H.; Mariano, H. Quadratic Extensions of Special Hyperfields and the general Arason-Pfister Hauptsatz.
arXiv 2022, arXiv:2210.03784.

83. Corsini, P. Prolegomena of Hypergroup Theory; Aviani Editore: Udine, Italy, 1993.
84. Davvaz, B.; Leoreanu-Fotea, V. Hyperring Theory and Applications; International Academic Press: Palm Harber, FL, USA, 2007.
85. Mittas, J.; Yatras, C. M-polysymmetrical hyperrings. Ratio Math. 1997, 12, 45–65.
86. Yatras, C. Characteristic of M-polysymmetrical hyperrings and some properties of M- polysymmetrical hyperrings with unity.

Bull. Greek Math. Soc. 1996, 38, 115–125.
87. Yatras, C. M-polysymmetrical subhyperrings and M-polysymmetrical hyperideals. In Proceedings of the 6th International

Congruence on Algebraic Hyperstructures and Applications, Prague, Czech Republic, 1–9 September 1996; Democritous Univ. of
Thrace Press: Komotini, Greece, 1996; pp. 103–113.

88. Atamewoue Tsafack, S.; Wen, S.; Onasanya, B.O.; Feng, Y. Skew polynomial superrings. Soft Comput. 2022, 26, 11277–11286.
[CrossRef]

89. Linz, A.; Touchard, P. On the hyperfields associated to valued fields. arXiv 2022, arXiv:2211.05082.
90. Creech, S. Extensions of hyperfields. arXiv 2019, arXiv:1912.05919.
91. Gunn, T. Tropical Extensions and Baker-Lorscheid Multiplicities for Idylls. arXiv 2022, arXiv:2211.06480.
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