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Abstract: State machines are a type of mathematical modeling tool that is commonly used to in-
vestigate how a system interacts with its surroundings. The system is thought to be made up of
discrete states that change in response to external inputs. The state machines whose environment is a
two-element magma are investigated in this study, focusing on the case when the magma is a group
or a hypergroup. It is shown that state machines in any two-element magma can only have up to
three states. In particular, the quasi-automata and quasi-multiautomata state machines are described
and enumerated.
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1. Introduction

The state machines and the hypergroups are mathematical achievements of the twenti-
eth century. The state machines are mathematical models which are mostly used for the
study of actual physical or behavioral processes. Their roots can be traced back to mathe-
matical logic and they are the primary and major components of Computer Theory. Alan
Mathison Turing (1912–1954) developed his theoretical universal-algorithm machine to
address the question of whether an algorithm for providing proofs whenever they do exist
can be found and he discovered that some tasks which this abstract machine is expected
to be able to perform are impossible even for it. The usefulness of the state machines
quickly began to spread in other sciences as well. For example, Warren Sturgis McCulloch
(1898–1969) and Walter Harry Pitts (1923–1969) created a mathematical model in neuro-
science [1]. The model they constructed for a “neural net” was a state machine of the
same nature as Turing’s. Stephen Cole Kleene (1909–1994) later elaborated their model [2],
while Noam Chomsky created mathematical models in linguistics for the description of
languages [3,4]. The rapid development of technology in the twentieth century has made it
possible to materialize such theoretical machines by creating the computers. This devel-
opment fulfilled the timeless dream of mankind, to create machines like the Antikythera
mechanism of the Hellenistic era (the earliest known analog computer, dated back to the
second century BC [5–7]), and the mechanical calculating devices created by Blaise Pascal
(1623–1662), by Gottfried Wilhelm von Leibniz (1646–1716), by Charles Babbade (1792–1871)
and his co-worker Ada Augusta (1815–1852), the daughter of poet Lord Byron, all of which
were as powerful as their respective technologies would allow.

The basic building blocks of a state machine are their internal qualities which are
named internal states. The internal states are reacting to certain changes in their environ-
ment and this reaction causes state transitions. In the general case, it does not matter what
the states and the environment of a state machine really are.

For example, in biology, we can consider the state of a cell in its environment, which
consists of certain chemical and physical conditions, such as PH, temperature, light and
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so on. When these chemicals do not remain within a range of concentrations and/or the
physical conditions exceed a threshold value, the cell changes its behavior, e.g., a plant cell
performs photosynthesis under the “input” of sunlight.

Also, a population group or a business can move to a new state when the economic
and social changes in its environment cross a certain threshold.

Respectively in an electronic system which involves various electrical components, the
flow of electric current can activate some of these components and the system can switch
from one state to another. In fact, as in the case of some circuits with flip-flops, the new
state depends on both, the input pulse and the previous state of the circuit.

So, the same environmental change (input) can shift the system into different states,
depending on its previous state (condition).

A lot of ink has been shed on the research and study of the behavior of such systems,
both living and non-living. In this paper, we approach this issue from a different perspective,
i.e., we will address the question of how many different state machines can “survive” or
can be acceptable in a given environment. Undoubtedly, the interaction between a system
and its environment can be vastly complicated and it still remains an area that needs to
be understood, if we wish to be in a position to predict the behaviour of the system and
perceive the level of the environmental constraints it can endure as well as their impact
on it.

We will attempt this approach with the tools of abstract Algebra, which is the most
extensively used branch of Mathematics in the study of the state machines. So, in this
paper, the environment is a set equipped with a rule of synthesis such that the result of
the synthesis of any two elements is one or more elements. In Éléments de Mathématique,
Algèbre [8], Nicolas Bourbaki used the Greek word magma, which comes from the verb
µάσσω (=knead), to indicate such a set, while in [9] this notion was generalized so as to
include more structures. Here, we use the magma of two elements, which is the environ-
ment of the binary state machines, like the 0–1 environment which is used in the digital
technology. The interaction of the environment on the states is modeled algebraically via
the different types of the associativity.

Sometimes, algebraic tools had been developed before even the relevant questions
were asked and this is one of the most fascinating aspects of mathematics: to give the
answers long before the rest of the world realizes why they should ask the questions.

During the 20th century, Algebra itself faced, and on most occasions overcame, many
difficult and serious challenges that were deriving from various mathematical and not
only areas, such as the Theory of Equations, Geometry, Topology, Quantum Mechanics,
Chemistry, etc. Also, the 20th century put an end to the paradise of determinism. David
Hilbert’s (1862–1943) visions collapsed under Kurt Gödel’s (1906–1978) work. Quantum
Mechanics, the uncertainty principle of Werner Heisenberg (1901–1976), the axiomatic
foundation of probability by Andrey Kolmogorov (1903–1987) made uncertainty inherent
in science and brought into existence its mathematics. In this direction, Frédéric Marty
(1911–1940) in a series of three papers [10–12] introduced the hypergroup in Algebra
and gave some of its initial properties. His untimely death during World War II, while
serving as a French Army officer, did not allow him to write more papers. However, the
aforementioned three were enough to bring into being the Hypercompositional Algebra.
The fundamental notion of the Hypercompositional Algebra is the hypercomposition, that
is, a law of synthesis of any two elements, which yields a set of elements instead of a single
element only.

The introduction of Hypercompositional Algebra into Computer Theory occurred in
the G.G. Massouros Ph.D. thesis [5], under the supervision of J. Mittas (1921–2012). There
followed more papers by the same author and Ch. Massouros, e.g., [13–21], as well as other
researchers such as J. Chvalina [22–28], L. Chvalinová [22], Š. Hošková-Mayerová [24,25],
M. Novák [26–32], S. Křehlík [26,27,29–31,33], M.M. Zahedi [34], M. Ghorani [34,35], D.
Heidari and S. Doostali [36], R.A. Borzooei et al. [37]. In relation to this subject, there are
applications of the Hypercompositional Algebra in graph theory, artificial intelligence,
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cryptography, sensor networks and many more that, indicatively, can be found in [38–60].
Also, results in the above areas, up to the date it was published, can be found in P. Corsini
and V. Leoreanu’s book [61].

The following section presents the necessary preliminary notions for the self-sufficiency
of the paper. The third section contains a study of operators’ and hyperoperators’ actions
and the way they define hypercompositional structures in the set on which they operate.
The fourth paragraph focuses on the detailed study of the magma of two elements, which
is the environment of the binary state machines. The next (fifth) paragraph is dedicated
to the analysis of the binary state machines, when their environment has the structure of
a group or a hypergroup. The quasi-automata and quasi-multiautomata that can exist in
such an environment are studied and enumerated.

2. Preliminaries

The fundamental notion of the Hypercompositional Algebra is the hypercomposition,
that is, a law of synthesis which yields a set of elements instead of a single element, when
applied on any two elements. More specifically, we have the definitions [9]:

Definition 1. Let E be a non-void set. A mapping from E× E into E is called a composition on
E, while a mapping from E× E into the power set P(E) of E is called a hypercomposition on E. A
hypercomposition is called partial, if ab = ∅, for some a, b in E. A set enriched with a composition
or a hypercomposition is called a magma.

The above definition, which was introduced in [9], extends the definition of the
magma given by Nicolas Bourbaki [8] in order to include laws of synthesis which are
hypercompositions on a set E.

Let (E,⊥) be a magma. For any two non-void subsets X, Y of E, X⊥Y =
={x⊥y ∈ E|x ∈ X, y ∈ Y}, if ⊥ is a composition and X⊥Y = ∪

x∈X, y∈Y
(x⊥y), if ⊥ is a

hypercomposition.
If X or Y is empty, then X⊥Y is empty. If a ∈ E, we usually write a⊥Y instead of

{a}⊥Y and X⊥a instead of X⊥{a}. In general, the singleton {a} is identified with its
member a. Sometimes it is convenient to use the relational notation A ≈ B to assert that
subsets A and B have a non-void intersection. Then, as the singleton {a} is identified
with its member a, the notation a ≈ A or A ≈ a is used as a substitute for a ∈ A. The
relation ≈may be considered as a weak generalization of the equality, since, if A and B
are singletons and A ≈ B, then A = B. Thus, a ≈ b⊥c means a = b⊥c, if the synthesis
is a composition and a ∈ b⊥c, if the synthesis is a hypercomposition. This notation
is extensively used when it is not necessary to distinguish between a composition or a
hypercomposition with respect to a law of synthesis.

Definition 2. A law of synthesis (x, y)→ x⊥y on a set E is called associative if the property,

(x⊥y)⊥z = x⊥(y⊥z)

is valid, for all elements x, y, z in E, while it is called reproductive if for all elements x in E the
equality

x⊥E = E⊥x = E

holds.

Definition 3. An associative magma is called α semigroup if the law of synthesis on the magma is
a composition, while it is called α semihypergroup if the law of synthesis is a non-partial hypercom-
position.
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Definition 4. A reproductive magma is called α quasigroup if the law of synthesis on the magma
is a composition, while it is called α quasihypergroup if the law of synthesis is a non-partial
hypercomposition.

Definition 5. An associative and reproductive magma is called α group if the law of synthesis on the
magma is a composition, while it is called α hypergroup if the law of synthesis is a hypercomposition.

The above Definition 5 appeared in [9], which also contains a detailed presentation
of the fundamental properties that derive from the axioms of the associativity and the
reproductivity in groups and hypergroups. Among other things, in [9] it is proved that:

Theorem 1. If G is a group, then:

i. there exists an element e ∈ G such that ea = a = ae for all a ∈ G
ii. for each element a ∈ G there exists an element a′ ∈ G such that a′a = e = aa′

Theorem 2. If H is a hypergroup, then:

ab 6= ∅ for all a, b ∈ H

Thus, the hypercomposition in a hypergroup cannot be partial. In this paper, we will
consider only non-partial hypercompositions.

It is very common in the bibliography to enrich a magma with the axiom of associativ-
ity. Besides, another equality that can be valid in the successive synthesis of the magma’s
elements is the inverted associativity. Recall that a composition or a hypercomposition on a
non-void set E is called left inverted associative if

(a⊥b)⊥c = (c⊥b)⊥a, for every a, b, c ∈ E,

while it is called right inverted associative if

a⊥(b⊥c) = c⊥(b⊥a), for every a, b, c ∈ E.

The notion of the inverted associativity was initially conceived by Kazim and Naseerud-
din [62]. A magma equipped with a left inverted associativity is called left almost semigroup
if the law of synthesis is a composition, while it is called left almost semihypergroup if the law
of synthesis is a hypercomposition. The terminology is analogous for the right inverted
associative magma.

Definition 6. A reproductive magma which satisfies the axiom of the left inverted associativity is
called a left almost-group (LA-group) when the law of synthesis on the magma is a composition,
while it is called α left almost-hypergroup (LA-hypergroup) when the law of synthesis is a hypercom-
position. A reproductive, right inverted associative magma is called a right almost-group (RA-group)
or a right almost-hypergroup (RA-hypergroup) when the law of synthesis is a composition or a
hypercomposition respectively.

Apparently, if the law of synthesis is commutative, then the almost left or almost
right groups and hypergroups are groups and hypergroups, respectively. However, it is
possible for both associativity and inverted associativity to be valid in a magma. Such
cases can be found in the examples of [63], which presents a detailed study of the left/right
almost-hypergroups. For the quasi-canonical LA-hypergroups, see [64].

Every law of synthesis in a magma induces two new laws of synthesis. If the law of
synthesis is written multiplicatively, then the two induced laws are:

a/b = {x ∈ E | a ≈ xb} and b\a = {x ∈ E | a ≈ bx}
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Thus x ≈ a/b if and only if a ≈ xb and x ≈ b\a if and only if a ≈ bx. In the case of a
multiplicative magma, the two induced laws are called inverse laws and they are named
right division and left division, respectively. If the magma is commutative, it is obvious that
the right and left divisions coincide.

Directly connected to the induced laws of synthesis is the transposition axiom, which
was firstly introduced by W. Prenowitz (1906–2000) for the study of geometry with the
tools of Hypercompositional Algebra (e.g., [65]) and afterwards it was generalized by J.
Jantosciak (1942–2017) in [66].

Definition 7. A magma E is called α transposition magma if it satisfies the axiom:

b\a ≈ c/d implies ad ≈ bc, f or all a, b, c, d ∈ E

It is obvious that in a transposition magma the following implication

a\b ≈ d/c ⇒ ad ≈ bc , f or all a, b, c, d ∈ E

is valid as well. In [9], the above implications reversed and so we have the two reverse
transposition axioms:

Weak reverse transposition axiom:

ad ≈ bc implies b\a ≈ c/d or a\b ≈ d/c, f or all a, b, c, d ∈ E

Strong reverse transposition axiom:

ad ≈ bc implies b\a ≈ c/d and a\b ≈ d/c, f or all a, b, c, d ∈ E

However, the following property also applies:

ad ≈ bc ⇔ a\b ≈ d/c or b\a ≈ c/d , f or all a, b, c, d ∈ E

This axiom was named bilateral transposition axiom [9].
Special notation: In the following pages, in addition to the typical algebraic notations,

we are using Krasner’s notation for the complement and difference. So, we denote by A··B
the set of elements that are in the set A, but not in the set B.

3. Action of a Magma on a Set

Let E and S be two non-empty sets. A mapping of E into the set SS of the mappings of
S into itself is called an action of E on S. Let a→ δa be an action of E on S. The mapping δ
of S× E to S such that δ(s, a) = δa(s) is an external law of composition on S, with E being
the operating set. δ is called the law of right action of E on S. The law of left action of E on S is
defined in a similar way. The element δa(s) is also called the transform of s under a. It is
usually denoted by a right (resp. left) multiplicative notation sa (resp. as). The elements of
E are called operators.

A mapping
_
δ of S× E to the power set P(S) of S is an external law of hypercomposi-

tion on S. Then, the elements of E are called hyperoperators [67]. If a ∈ E is a hyperoperator,
then the multiplicative notation sa (resp. as) signifies an element of P(S), that is, sa ⊆ S
(resp. as ⊆ S).

A subset T of S is called stable under the action a→ δa of E on S if δa(T) ⊆ T for all
a ∈ E. The intersection of a family of stable subsets of S under a given action is a stable
subset of S as well. Therefore, if X is any subset of S, there exists a smallest stable subset of
S that contains it. This subset is said to be generated by X and it consists of the elements
(δa1 ◦ δa2 ◦ · · · ◦ δan)(x), where x ∈ X, n > 0, ai ∈ E for all i.

Definition 8. An element s2 of S is called connected to an element s1 of S if there exists an element
a of E such that δa(s1) = s2.
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It must be mentioned that s2 being connected to s1 does not necessarily imply that s1
is connected to s2. If s2 is connected to s1, there may be a sequence a1, a2, . . . , an of elements
of E such that (δa1 ◦ δa2 ◦ · · · ◦ δan)(s1) = s2. Thus, via the notion of the connected elements,
a hypercomposition can be defined on S, as follows:

s1 + s2 =

{
{s ∈ S | s = s1a and s2 = sb, with a, b ∈ E}, if s2 is connected to s1

{s1, s2}, if s2 is not connected to s1

Proposition 1. If the set of the operators E over a non-void set S is a unitary magma, then (S,+)
becomes a hypergroup.

Proof. Since E is a unitary magma, the result of the hypercomposition always contains the
two participating elements, thus s + S = S + s = S for all s ∈ S and so the reproductive
axiom is valid. Moreover, the associativity holds. Indeed, if s1, s2 and s3 are not connected
to each other, then

s1 + (s2 + s3) = (s1 + s2) + s3 = {s1, s2, s3}

Next, suppose that s2 and s3 are connected to s1. Also let s3 be connected to s2. Then:

(s1 + s2) + s3 = {q ∈ S | q = s1a and s2 = (s1a)b, with a, b ∈ E}+ s3 =

=

{
s ∈ S | s = (s1a)c, s2 = (s1a)b, and

s3 = ((s1a)c)d with a, b, c, d ∈ E

}
=

= s1 + s3

and

s1 + (s2 + s3) = s1 + {q ∈ S | q = s2a and s3 = (s2a)b, with a, b ∈ E} =

=

{
s ∈ S | s = s1c and (s1c)d = s2a, (s2a)k = s3 or

(s1c)l = s3 with a, c, d, k, l ∈ E

}
=

= s1 + s3

Similar is the proof of all the other cases and hence the proposition. �

Corollary 1. The set of vertices of a directed graph is endowed with the structure of the hypergroup
if the result of the hypercomposition of two vertices vi and vj is the set of the vertices which appear
in all the possible paths that connect vi to vj, or {vi, vj}, if there do not exist any connecting paths
from vertex vi to vertex vj.

If E is a magma, an equivalence relation ξ on E is called a congruence relation if

(a, b) ∈ ξ, (c, d) ∈ ξ implies


[{y} × bd] ∩ ξ 6= ∅ for all y ∈ ac

and
[ac× {z}] ∩ ξ 6= ∅ for all z ∈ bd

When the law of synthesis in the magma is a composition, then ac and bd are singletons
and the above definition is simplified to:

(a, b) ∈ ξ, (c, d) ∈ ξ implies (ac, bd) ∈ ξ

The set E/ξ of all equivalence classes defined on E by ξ becomes an associative magma
if we define

ξa·ξb = {ξc | c ≈ ab} for all ξa, ξb ∈ E/ξ
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Proposition 2. Every congruence relation ξ on a magma E is a normal equivalence relation, and
therefore the set E/ξ becomes a magma under the law of synthesis

Cx·Cy = {Cz | z ≈ xy}

where Cx is the class of an arbitrary element x ∈ E.

Proof. Since ξ is a congruence relation, for each x, y ∈ E it holds:

z′ ∈ Cx·Cy ⇒
⇒ (∃(x′, y′)) ∈ Cx × Cy) [z ≈ x′y′]⇒ (∃z ≈ xy)[z′ξ z]⇒ z′ ∈ Cz ⇒
⇒ Cx·Cy ⊆ ∪

z≈xy
Cz

Conversely now:

z′′ ∈ ∪
z≈xy

Cz ⇒

⇒ (∃z ≈ xy)[z′′ ξz]⇒
(
∃(x′′ , y′′ ) ∈ E2)[x′′ ξx ∧ y′′ ξy ∧ z′′ ≈ x′′ y′′ ]⇒

⇒ z′′ ∈ Cx·Cy ⇒ ∪
z≈xy

Cz ⊆ Cx· Cy

Thus, Cx·Cy = ∪
z≈xy

Cz, and so the quotient set E/ξ, enriched with the law of synthesis

Cx·Cy = {Cz | z ≈ xy}, is a magma. Obviously, if the law of synthesis is a composition,
then the previous equality is simplified to Cx·Cy = Cxy. �

Corollary 2. Every congruence relation ξ on a hypergroup E is a normal equivalence relation, and
therefore the quotient E/ξ becomes a hypergroup under the hypercomposition
Cx·Cy = {Cz | z ≈ xy}. If E is a group, then E/ξ is a group as well, under the composition

Cx·Cy = Cxy

Proposition 3. If E is a transposition magma and ξ is a congruence relation on E, then E/ξ is a
transposition magma.

Proof. Suppose that for some elements Cx, Cy, Cz, Cw, of the quotient set E/ξ it holds
that Cy\Cx ≈ Cz/Cw. Then there exist elements x′, y′, z′, w′ belonging to Cx, Cy, Cz, Cw,
respectively, such that y′\x′ ≈ z′/w′. Since the transposition axiom is valid in E, it derives
that x′w′ ≈ y′z′. Therefore, Cx·Cw ≈ Cy·Cz and hence the proposition. �

Definition 9. A state machine M is a triplet (S, E, δ) where S and E are sets and δ is mapping of
S× E to S.

The set S describes the internal qualities of the system. The elements of S are called
internal states of M. If S is finite, then M is called a finite state machine. The set E describes
the environmental inputs that can affect the system. The mapping δ describes the environ-
mental influences on the internal qualities of the system and it is called a state transition
function. Such a system is obviously quite general and can be used in a variety of cases.
From the mathematical standpoint, a state machine is a set with operators and the fact that
we can successfully approach, describe and examine such systems via algebraic tools and
techniques is one of the most impressive and remarkable achievements of modern algebra.

Example 1. State machines can be depicted by the so-called transition diagrams. Thus, if S = {s1}
and E is a finite set, then the relevant state machine is illustrated with the transition diagram
presented in Figure 1:
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Figure 2. Transition diagrams for a state machine with two states and a singleton as the set of
the operators.

Another way of specifying a state machine is by writing out the transition function δ in tabular
form, thus creating the so-called state transition table. For example, the state transition table of the
last in the above figure state machine is the following one:
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Suppose that a ∈ E is applied to the state s ∈ S of a state machine M. Then the machine
moves to state δ(s, a) = δa(s) = sa. Next, if another input, say b ∈ E, is applied to the
machine, the resultant state is:

δ(δa(s), b) = δb(δa(s)) = δb(sa) = (sa)b

Since δb(δa(s)) = (δb ◦ δa)(s), if E is a magma, we say that the state transition function
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tion, then the associativity is of the form δb(δa(s)) = δab(s) or equivalently (sa)b = s(ab)
and it is named mixed associativity, while if the law of synthesis is a hypercomposition,
the associativity is fulfilled if (sa)b ∈ s(ab) and it is called generalized mixed associativ-
ity [26,29,68].
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Definition 10. A state machine M = (S, E, δ) is called quasi-automaton if E is a magma and the
state transition function satisfies the mixed associativity, i.e., (sa)b = s(ab) for any pair a, b ∈ E
and any state s ∈ S.

Definition 11. A state machine M = (S,E,δ) is called quasi-multiautomaton if E is a magma and
the state transition function satisfies the generalized mixed associativity, i.e., (sa)b ∈ s(ab) for any
pair a, b ∈ E and any state s ∈ S.

A detailed presentation of the terminology, based on the historical development of
the area, can be found in the well-written paper [29]. The above definitions are in line
with [29]. Obviously, every quasi-automaton is a quasi-multiautomaton. Apparently, quasi-
multiautomata which are not quasi-automata can only exist when E is a hypercompositional
magma. On the contrary, quasi-automata exist when either the magma is endowed with
a composition or when it is endowed with a hypercomposition. A special case of quasi-
automata occurs when E is a free semigroup or a free monoid instead of an arbitrary
magma. In this case, computer theory tends to use the term “word” for the elements of E,
the term “letter” for the elements of its generating set Σ and the term concatenation of words
for the law of synthesis in E. Moreover, the free semigroup generated by Σ is denoted by
Σ+ and the corresponding free monoid by Σ∗. Also, the quasi-automaton is denoted by
M = (S,E,δ).

Proposition 4. Let (S,E,δ) be a quasi-automaton and ∼ a binary relation on the magma, defined by

a ∼ b⇔ δa = δb, where a, b ∈ E

Then ∼ is a congruence relation on E and the magma E/∼ has the same algebraic structure as E.

Proof. This relation is easily seen to be an equivalence relation. Next, let a ∼ b and c ∼ d.
From a ∼ b, it follows that δa(s) = δb(s) for all s ∈ S. Next, since c ∼ d, the following
sequence of equivalent statements holds:

δc(δa(s)) = δc(δb(s)); δc(δa(s)) = δd(δb(s)); ∪y≈ca
δy(s) = ∪

z≈db
δz(s);

Therefore, ∼ is a congruence relation on E. Next, it is easy to see that the magma E/∼
is of the same type as E, that is, if E is a semigroup, semi-hypergroup, hypergroup, group,
etc., then E/∼ has the same algebraic structure, respectively. �

Now, if M = (S,E,δ) is a quasi-automaton, then the semigroup E = Σ+/∼ or the monoid
E = Σ∗/∼ can be constructed with the use of Proposition 4. In many cases, it is more
convenient to study this semigroup rather than the original machine M. However, if we
do not want to lose sight of the set of states, we consider the machine M = (S,E,δ). Each
element of E is an equivalence class of Σ+ or Σ∗, which acts on S as follows: s[a] = δa(s),
where s ∈ S and a ∈ Σ+ or a ∈ Σ∗.

4. The Magma of 2 Elements

In this section, we will proceed to a detailed study and classification of the two-element
magma, which is the binary state machines’ environment.

While there exists only one single element magma which is a group and also a LA/RA-
group, there exist 34 = 81 magmas with 2 elements. These magmas can be constructed, clas-
sified and enumerated, with the techniques and methods which are developed in [69–71]
and [63]. In the following propositions, these magmas are presented via their Cayley tables.
Note that, in a Cayley table, the entry in the row headed by x and the column headed by y
is the synthesis x·y.
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i. Associative Magmas

Proposition 5. There exist 6 semigroups which are classified into 2 classes with 2 isomorphic
semigroups each, and into 2 single-member classes, which are presented below via their Cayley tables.
Moreover, since SG1 and SG2 are commutative, they satisfy both the left and the right inverted
associativity.
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well-known operations of the Boolean algebra:
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Proposition 6. There exist 10 semihypergroups which are classified into 5 classes with 2 isomorphic
semihypergroups each. These are displayed below in the form of Cayley tables. Moreover, since SH1
is commutative, it satisfies both the left and the right inverted associativity.
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ii. Reproductive Magmas

Proposition 7. There exist 21 quasihypergroups which are classified into 9 two-member classes and
3 single-member classes, which are presented below via their Cayley tables.
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6H  is the two-element B-hypergroup. B(inary)-hypergroups came into being during 
the study of formal languages and automata with the use of hypercompositional algebra 
[5,13,16,17]. The free monoid of the words generated by an alphabet Σ can be endowed 
with the B-hypergroup structure, and so become a join hyperringoid [21,72–74], which is 
named linguistic hyperringoid [14,21,73,74]. If the B-hypergroup is fortified with a strong 
identity [31], which is necessary for the theory of formal languages and automata [14,21], 
then the join hyperring comes into being [72–74]. 7H  is the two-element total hypergroup. 

Proposition 10. All the two-element hypergroups are transposition hypergroups. 

Proof. The Cayley tables of the induced hypercompositions for the seven two-element 
hypergroups are presented below. For the classes with two elements, we chose the first 
hypergroup for the presentation of the induced hypercomposition. Observe that the hy-
pergroups 3 4 5 6, , ,  H H H H  and 7H  are commutative; therefore, the two induced hy-
percompositions coincide, and so there is only one Cayley table corresponding to each 
one of them. As mentioned above, in the Cayley tables, the entry in the row headed by x 
and the column headed by y is the synthesis x/y or y\x respectively. 

H6 is the two-element B-hypergroup. B(inary)-hypergroups came into being during
the study of formal languages and automata with the use of hypercompositional alge-
bra [5,13,16,17]. The free monoid of the words generated by an alphabet Σ can be endowed
with the B-hypergroup structure, and so become a join hyperringoid [21,72–74], which is
named linguistic hyperringoid [14,21,73,74]. If the B-hypergroup is fortified with a strong
identity [31], which is necessary for the theory of formal languages and automata [14,21],
then the join hyperring comes into being [72–74]. H7 is the two-element total hypergroup.

Proposition 10. All the two-element hypergroups are transposition hypergroups.

Proof. The Cayley tables of the induced hypercompositions for the seven two-element
hypergroups are presented below. For the classes with two elements, we chose the first
hypergroup for the presentation of the induced hypercomposition. Observe that the
hypergroups H3, H4, H5, H6 and H7 are commutative; therefore, the two induced hyper-
compositions coincide, and so there is only one Cayley table corresponding to each one of
them. As mentioned above, in the Cayley tables, the entry in the row headed by x and the
column headed by y is the synthesis x/y or y\x respectively.
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Example 2. The hypercomposition on hypergroup H6 can be written in the following two 
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{ }, ,
,

a b if a b
a b

a if a b

 ≠⋅ = 
=

 (1)

and 

,
,

H if a b
a b

a if a b
 ≠

⋅ =  =
 (2)

The verification of the transposition axiom gives the rest. �

So, according to Proposition 10, there do not exist non-transposition hypergroups
with cardinality 1 or 2. However, as shown in the following example, there exist non-
transposition hypergroups if their cardinality is greater than or equal to 3.

Example 2. The hypercomposition on hypergroup H6 can be written in the following two ways:

a·b =

{
{a, b}, i f a 6= b
a, i f a = b

(1)

and

a·b =

{
H, i f a 6= b
a, i f a = b

(2)
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If H = {a, b}, then the above two formulas give the same hypercomposition, but if cardH ≥ 3,
then they produce two different hypergroups. The first one, which is the B-hypergroup, satisfies
the transposition axiom (see [13] for the proof), while the second one does not. Indeed, the induced
hypercomposition of (2) is:

a·b =

{
H··{b}, i f a 6= b
a, i f a = b

Next, if a 6= b, we have:

a/b ∩ b/a = [H··{b}] ∩ [H··{a}] 6= ∅

while
aa ∩ bb = {a} ∩ {b} = ∅.

Moreover, the verification of the reverse transposition axiom for hypergroups H1–H7
leads to the following result:

Proposition 11. All the two-element hypergroups satisfy the strong reverse transposition axiom.

A consequence of Propositions 10 and 11 is the following Theorem:

Theorem 3. All the two-element hypergroups satisfy the bilateral transposition axiom.

In [9], following the observation that the quasicanonical hypergroups, the canonical
hypergroups, and of course, the groups and the abelian groups satisfy the bilateral trans-
position axiom, the question arose: Do there exist other hypergroups satisfying the bilateral
transposition axiom apart from the quasicanonical and the canonical ones? The above Theorem 3
gives the affirmative answer to this question.

iv. Magmas with inverted associativity

Proposition 12. There exists only one class with 2 isomorphic left almost-semihypergroups, as per
the following Cayley tables.
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Definition 12. A magma is called rigid if its group of automorphisms is of order 1. 

As it is shown in [75,76], there exist 21 rigid hypergroupoids whose classification is 
described in Theorem 4 of [76]. The following Theorem 4 applies to the two-element mag-
mas: 

Theorem 4. There exist 9 rigid magmas of two elements, classified as follows: 
i. 2 non-commutative groupoids, which do not satisfy the transposition axiom; 
ii. 2 non-commutative transposition semigroups; 
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Proposition 14. There exists only one class with 2 isomorphic right almost-semihypergroups, as
per the following Cayley tables.
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single-member class, as they are presented in the following Cayley tables.
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Definition 12. A magma is called rigid if its group of automorphisms is of order 1. 

As it is shown in [75,76], there exist 21 rigid hypergroupoids whose classification is 
described in Theorem 4 of [76]. The following Theorem 4 applies to the two-element mag-
mas: 

Theorem 4. There exist 9 rigid magmas of two elements, classified as follows: 
i. 2 non-commutative groupoids, which do not satisfy the transposition axiom; 
ii. 2 non-commutative transposition semigroups; 

v. Rigid Magmas

The remaining 26 magmas are classified into 12 two-member classes and into two
single-member classes. The law of synthesis on the 2 magmas of the single-member classes
is a composition. The same goes for the magmas in three of the twelve two-member classes.

Proposition 16. There exist only two non-isomorphic groupoids of two elements, which are
presented in the following Cayley tables.
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Definition 12. A magma is called rigid if its group of automorphisms is of order 1. 

As it is shown in [75,76], there exist 21 rigid hypergroupoids whose classification is 
described in Theorem 4 of [76]. The following Theorem 4 applies to the two-element mag-
mas: 

Theorem 4. There exist 9 rigid magmas of two elements, classified as follows: 
i. 2 non-commutative groupoids, which do not satisfy the transposition axiom; 
ii. 2 non-commutative transposition semigroups; 

Definition 12. A magma is called rigid if its group of automorphisms is of order 1.

As it is shown in [75,76], there exist 21 rigid hypergroupoids whose classification is de-
scribed in Theorem 4 of [76]. The following Theorem 4 applies to the two-element magmas:

Theorem 4. There exist 9 rigid magmas of two elements, classified as follows:

i. 2 non-commutative groupoids, which do not satisfy the transposition axiom;
ii. 2 non-commutative transposition semigroups;
iii. 1 commutative quasi-hypergroup, which does not satisfy the transposition axiom;
iv. 1 LA-hypergroup, which does not satisfy the transposition axiom;
v. 1 RA-hypergroup, which does not satisfy the transposition axiom;
vi. 2 hypergroups, which satisfy both the left and right invert associativity.
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Proof.

i. Let us consider the first groupoid of Proposition 15. Then, the two induced hypercom-
positions are given in the following Cayley tables:
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Next, we have that a/b ∩ b\a = {a, b} ∩ {b} 6= ∅, while ab ∩ ba = {a} ∩ {b} = ∅.
Therefore, the transposition axiom is not valid. Analogous is the proof for the second
groupoid.

ii. Let us consider the semigroup SG3. Then, the two induced hypercompositions are the
following ones:
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The verification of the transposition axiom, according to the above Cayley tables,
proves its validity. The same goes for the case of SG4.

iii. Since QH10 is commutative, the two induced hypercompositions coincide and so
we have:

a/b = b/a = {a, b}, a/a = b, b/b = a

Next, a/b ∩ b/a = {a, b} 6= ∅ but aa ∩ bb = ∅. Therefore, the transposition axiom is
not valid.

iv. The induced hypercompositions on the LA–H2 are:
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Since the implication

b/a ∩ a\b = {a} ∩ {a, b} 6= ∅ ⇒ ab ∩ ba = ∅

holds, the transposition axiom is not valid.
v. It is true as it is the dual of iv.
vi. The two hypergroups are H6 and H7. H6 is a B-hypergroup. As it is well known,

the B-hypergroups are join hypergroups (see [13] for the proof), that is, commutative
hypergroups which satisfy the transposition axiom. H7 is the two-element total
hypergroup and total hypergroups are join hypergroups as well [5,9,13]. �

5. Binary State Machines

Let M = (S,E,δ) be a state machine. Two states, s, t, are called connected if there exists a
sequence of inputs which causes S to leave state s and go into state t, that is, if there exists
a sequence a1, a2, . . . , an of elements of E such that (δa1 ◦ δa2 ◦ · · · ◦ δan)(s) = t. The states
s, t are called isolated to each other if neither s is connected to t, nor t to s. A state machine M
is called connected if its undirected graph is connected, while it is called strongly connected if
every ordered pair (s, t) of states in S is connected.

Proposition 17. Suppose that the connected state machine M = (S,E,δ) is a quasi-multiautomaton.
Then, for every pair (s, t) of states, there exists one element of E which connects them, i.e., δa(s) = t
for some a ∈ E.
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Proof. Let a1, a2, . . . , an be a sequence of elements of E such that (δa1 ◦ δa2 ◦ · · · ◦ δan)(s) = t.
If n = 1 the proposition is obvious. Let n > 1. Then

(δa1 ◦ δa2 ◦ · · · ◦ δan)(s) = δa1

(
δa2

(
· · · δan−1(δan(s))

))
∈

∈ ∪
a∈a1a2 ...an

δa(s) = {δ(s, a) | a ∈ a1a2 . . . an}

Hence, there exists a ∈ a1a2 . . . an such that t = δ(s, a). �

Theorem 5. If the magma E in a quasi-multiautomaton M = (S,E,δ) has n elements, then the set S
cannot have more than n + 1 states.

Proof. As per Proposition 17, for every pair of states (s, t), there exists one element of E
which connects them, i.e., there exists a ∈ E such that δ(s, a) = t. Therefore, if cardE = n
e.g., if E = {a1, a2, . . . , an}, then, for each state s ∈ S, there exist at most n states connected
with s, which are the si = δ(s, ai), 1 ≤ i ≤ n. Next, if some state sk ∈ S yields δ

(
sk, aj

)
= t,

then, since sk = δ(s, ak), it holds that

t = δ
(
δ(s, ak), aj

)
∈
{

δ(s, a)
∣∣ a ∈ akaj

}
⊆ S

Hence, S = {s, s1, s2, . . . , sn} and so the Theorem. �

Definition 13. If the magma E of a state machine M = (S,E,δ) has 2 elements, then M is called a
binary state machine.

Corollary 3. The set S of the states of a binary quasi-multiautomaton M = (S,E,δ) cannot have
more than 3 elements.

Theorem 6. There exists 1 binary state machine with 1 state, 16 binary state machines with 2 states
and 729 with 3 states.

Proof. The state transition table of a state machine with 1 state is:
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Definition 14. Two state machines M1 = (S1,E1,δ1) and M2 = (S2,E2,δ2) are isomorphic if E1 and
E2 are isomorphic and there exists a one-to-one mapping f from S1 onto S2 such that

f (δ1(s, a)) = δ2( f (s), a).

Theorem 7. There exist 10 isomorphic binary state machines with 2 states, which are classified into
6 two-element classes and into 4 single-element classes, as presented in Figure 3:

Mathematics 2022, 10, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 3. Binary state machines with two states. 

Next, we will find which state machines are quasi-multiautomata or quasi-automata 
when their magma is a group or a hypergroup. In the proofs of the following propositions, 
we use the first member of each state machine class as the representative of the entire 
class. Similarly, the representative of every class from the group or the hypergroups will 
be its first member. 

Figure 3. Binary state machines with two states.



Mathematics 2022, 10, 2427 20 of 25

Next, we will find which state machines are quasi-multiautomata or quasi-automata
when their magma is a group or a hypergroup. In the proofs of the following propositions,
we use the first member of each state machine class as the representative of the entire class.
Similarly, the representative of every class from the group or the hypergroups will be its
first member.

Proposition 18. If E is the group G1 (Proposition 8), then the state machines SM4, SM9, SM10 are
quasi-automata.

Proof. The verification of the axioms shows that SM4, SM9, SM10 are quasi-automata. The
rest state machines do not satisfy the mixed associativity. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2b = s1.
For SM2 it holds: (s1b)b = s1b = s1 while s1(bb) = s1a = s2.
For SM3 it holds: (s2b)a = s1a = s2 while s2(ba) = s2b = s1.
For SM5 it holds: (s2a)b = s1b = s1 while s2(ab) = s2b = s2.
For SM6 it holds: (s2b)b = s1b = s1 while s2(bb) = s2a = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1b)a = s1a = s2 while s1(ba) = s1b = s1. �

Proposition 19. If E is the hypergroup H1 (Proposition 9), then the state machines SM3, SM6,
SM9 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM3, SM6, SM9 satisfy the generalized mixed associativity and
hence they are quasi-multiautomata. Indicatively, for SM3 we have:

(s1b)a = s1a = s2 and s1(ba) = s1{a, b} = {s1a, s1b} = {s2, s1}, thus (s1b)a ∈ s1(ba)

The state machines SM4 and SM10 satisfy the mixed associativity and so they are
quasi-automata. Indicatively, for SM4 we have:

(s2b)a = s1a = s1 and s2(ba) = s2{a, b} = {s2a, s2b} = s1, thus (s2b)a = s2(ba)

The rest state machines do not satisfy any associativity condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2b = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM5 it holds: (s2a)b = s1b = s1 while s2(ab) = s2b = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1a)b = s2b = s2 while s1(ab) = s1b = s1. �

Proposition 20. If E is the hypergroup H2 (Proposition 9), then the state machines SM6, SM9 are
quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM6, SM9 satisfy the generalized mixed associativity, and
therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associativity
and so they are quasi-automata. The rest state machines do not satisfy any associativity
condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2{a, b} = {s2a, s2b} = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM3 it holds: (s2b)a = s1a = s2 while s2(ba) = s2b = s1.
For SM5 it holds: (s2b)a = s2a = s1 while s2(ba) = s2b = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2. �

Proposition 21. If E is the hypergroup H3 (Proposition 9), then the state machines SM6, SM9 are
quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.
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Proof. The state machines SM6, SM9 satisfy the generalized mixed associativity, and there-
fore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associativity and
therefore they are quasi-automata. The rest state machines do not satisfy any associativity
condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2b = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM3 it holds: (s2b)a = s1a = s2 while s2(ba) = s2b = s1.
For SM5 it holds: (s2a)b = s1b = s1 while s2(ab) = s2b = s2.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1b)a = s1a = s2 while s1(ba) = s1b = s1. �

Proposition 22. If E is the hypergroup H4 (Proposition 9), then the state machines SM3, SM5,
SM6, SM9 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM3, SM5, SM6, SM9 satisfy the generalized mixed associativity,
and therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associa-
tivity and therefore they are quasi-automata. The rest state machines do not satisfy any
associativity condition. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2{a, b} = {s2a, s2b} = s1.
For SM2 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM7 it holds: (s1a)b = s2b = s1 while s1(ab) = s1{a, b} = {s1a, s1b} = s2.
For SM8 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2. �

Proposition 23. If E is the hypergroup H5 (Proposition 9), then the state machine SM8 is a
quasi-multiautomaton and the state machines SM4, SM10 are quasi-automata.

Proof. The state machine SM8 satisfies the generalized mixed associativity, and therefore
it is a quasi-multiautomaton, while SM4 and SM10 satisfy the mixed associativity and
therefore they are quasi-automata. The rest state machines do not satisfy any associativity
condition. Indeed:

For SM1 it holds: (s1a)a = s1a = s1 while s1(aa) = s1b = s2.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2b = s1.
For SM3 it holds: (s1a)a = s2a = s2 while s1(aa) = s1b = s1.
For SM5 it holds: (s2a)a = s1a = s1 while s2(aa) = s2b = s2.
For SM6 it holds: (s2a)a = s2a = s2 while s2(aa) = s2b = s1.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1b = s2.
For SM9 it holds: (s1a)a = s1a = s1 while s1(aa) = s1b = s2. �

Proposition 24. If E is the hypergroup H6 (Proposition 9), then the state machines SM3, SM5,
SM6 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.

Proof. The state machines SM3, SM5, SM6 satisfy the generalized mixed associativity, and
therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed associativity
and therefore they are quasi-automata. For the rest state machines, observe that they satisfy
none of the associativity conditions. Indeed:

For SM1 it holds: (s2b)b = s1b = s2 while s2(bb) = s2b = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2a = s1.
For SM7 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM8 it holds: (s1a)a = s2a = s1 while s1(aa) = s1a = s2.
For SM9 it holds: (s1b)b = s1b = s2 while s2(bb) = s2b = s1. �

Proposition 25. If E is the hypergroup H7 (Proposition 9), then the state machines SM3, SM5,
SM6, SM8, SM9 are quasi-multiautomata and the state machines SM4, SM10 are quasi-automata.
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Proof. The state machines SM3, SM5, SM6, SM8, SM9 satisfy the generalized mixed associa-
tivity, and therefore they are quasi-multiautomata, while SM4 and SM10 satisfy the mixed
associativity and therefore they are quasi-automata. The remaining state machines satisfy
none of the associativity conditions. Indeed:

For SM1 it holds: (s2a)b = s1b = s2 while s2(ab) = s2{a, b} = {s2a, s2b} = s1.
For SM2 it holds: (s2a)a = s1a = s2 while s2(aa) = s2{a, b} = {s2a, s2b} = s1.
For SM7 it holds: (s2a)a = s1a = s2 while s1(aa) = s2{a, b} = {s2a, s2b} = s1. �

6. Conclusions and Open Problems

This paper approaches the state machines from within their environment in which they
can “survive”, i.e., exist and operate. They are given an extended definition which derives
from the consideration that the environment in which they can exist is an algebraic magma
in the sense of [9], where the initial definition of magma by N. Bourbaki [8] is generalized
for the purpose of incorporating algebraic structures endowed with hypercompositional
laws. Hence, a state machine M is defined as a triplet (S,E,δ), where S is the set of the states
of the machine, E is the set of the environmental inputs to the machine and δ is a mapping
of S × E to S, which describes the interaction between each state and its environment. Our
study focuses on the binary state machines, where E is a two-element magma and our
results can be summarized in Table 1:

Table 1. Classification of the magmas with two elements.

Total Number Isomorphism
Classes

Classes with
1 Member (Rigid)

Classes with
2 Members

binary magmas 81 45 9 36
binary magmas with composition 16 10 4 6

binary magmas with hypercomposition 65 35 5 30
non-reproductive semigroups 6 4 2 2

non-reproductive semihypergroups 10 5 5
non-reproductive LA-semihypergroups 2 1 1
non-reproductive RA-semihypergroups 2 1 1

non-associative quasihypergroups 21 11 3 9
groups 2 1 1

hypergroups/transposition hypergroups 12 7 2 5
LA-hypergroups 3 2 1 1
RA-hypergroups 3 2 1 1

With regard to the classification given in this table, we note that according to the above
Theorem 3, the two-element hypergroups are not just transposition hypergroups (row 10),
but bilateral transposition hypergroups. Hence, the hitherto open question which was
asked in [9] is answered affirmatively.

Of all the structures that appear in the above table, this paper presents the state
machines with two states whose environment is a two-element group or two-element
hypergroups. The results are presented in Table 2:

Table 2. Binary state machines with two states.

Group/Hypergroup Non-Isomorphic
Quasiautomata

Non-Isomorphic
Quasi-Multiautomata

G1 3
H1 2 3
H2 2 2
H3 2 2
H4 2 4
H5 2 1
H6 2 3
H7 2 5
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According to Corollary 3, only quasiautomata and quasi-multiautomata with up to
three states can operate in the environment of a two-element magma. The description of
the three state binary machines, as well as the investigation of the state machines which
correspond to algebraic structures of E that are other than groups or hypergroups, still
remain open problems. This question becomes more complicated in the instances when
E is enriched with two laws of synthesis, as it happens in a hyperringoid [74]. It is worth
mentioning here that E is a hyperringoid in specific state machines like the automata, where
the environment is defined via an alphabet [16,17,21].

All of the above refer to deterministic state machines. However, the state transition
function can be a mapping from S× E to the power set P(S) of S, defining thus the non-
deterministic state machines (see also [13,14,67]). This consideration broadens the margins
of the study as there can exist state transition functions for which δ(s, a) is not necessarily
just a single element. It can be more than one element and it can also be none, as it is
possible for δ(s, a) to be equal to the empty set.
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