
 

Kalman filter [1]-[2] is the most well-known and 
widely used estimation algorithm, since it has been 
used to successfully solve real time  p roblems in 
various applications, such as in  [ 2] aerospace 
industry, chemical process, communication systems 
design, control, civil engineering, filtering noise 
from two dimensional images, pollution prediction 
and power systems. 

The estimation problem is associated with time 
varying systems described by the following state 
space equations: 
x(k + 1) = F(k)x(k) + w(k)                            (1) 
z(k) = H(k)x(k) + v(k)               (2) 
where x(k) is the n-dimensional state vector, z(k) is 
the m-dimensional measurement vector, F(k) is the 
transition matrix, H(k) is the output matrix, w(k) is 
the state noise and v(k) is the measurement noise at 
time k ≥ 0. 

The statistical model expresses the nature of the 
state and the measurements. The basic assumption is 
that the state noise and the measurement noise are 
zero mean Gaussian processes with known 
covariances Q(k) and R(k), respectively. The 
following assumptions hold: (a) the initial value of 
the state x(0) is a Gaussian random variable with 
known mean 𝑥0 and covariance P0; (b) the noise 
processes and the initial state are independent. 

Periodic linear systems arise from continuous 
linear systems, when multi-rate sampling is 
performed, with many interesting and practical 
applications as stated in [3]. In this paper we focus 
on the case of periodic models and especially on the 
periodic steady state Kalman filter [4]-[6]. Parallel 
Kalman Filter implementations are mentioned in 
[7]. Distributed implementations for the steady state 
Kalman filter are proposed in [8]. The problem of 
distributed state estimation is addressed in [9]. The 
problem of distributed state estimation has been 
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studied for a Linear Time Invariant (LTI) Gaussian 
system in [10] where distributed estimators are 
proposed and it is shown that the average of local 
estimates from all sensors coincides with the 
optimal Kalman estimate. The distributed Kalman 
filtering problem is studied for time-varying DSSs 
with Gaussian white noises in [11] where a locally 
optimal distributed estimator is designed in the 
linear minimum variance sense.  

In this paper a distributed implementation for the 
periodic steady state Kalman filter is proposed. The 
novelty of this paper concerns: (a) The derivation of 
a distributed algorithm with parallel structure during 
each period. The proposed algorithm can be 
implemented using processors in parallel without 
idle time. The number of processors is equal to the 
model period. (b) The derivation of a distributed 
algorithm for the Finite Impulse Response (FIR) 
form of the periodic steady state Kalman filter. 

The paper is organised as follows: In section 2 
the periodic steady sate Kalman filter is presented. 
In section 3 the parallel periodic steady sate Kalman 
filter is proposed. In section 4 t he speedup is 
discussed. In section 5 the FIR form of the periodic 
steady sate Kalman filter is developed. Finally, 
section 6 summarizes the conclusion. 

Kalman filter produces iteratively the state 
estimation x(k/k) and the corresponding estimation 
error covariance matrix P(k/k) as well as the state 
prediction x(k + 1/k) and the corresponding 
prediction error covariance matrix P(k + 1/k) using 
measurements till time k and the Kalman filter gain 
K(k). For the varying systems described by (1), the 
Time Varying Kalman Filter is summarized in the 
following, [2]: 
 
Time Varying Kalman Filter (TVKF) 
K(k) = P(k/k − 1)HT(k) 
               [H(k)P(k/k − 1)HT(k) + R(k)]−1  (3) 
x(𝑘/𝑘) = [I − K(k)H(k)]x(𝑘/𝑘 − 1) 
               +K(k)z(k)     (4) 
P(k/k) = [I − K(k)H(k)]P(k/k − 1)               (5) 
x(k + 1/k) = F(k)x(k/k)                (6) 
P(k + 1/k) = Q(k) + F(k)P(k/k)FT(k)  (7) 
for k = 0,1, …,  
with initial conditions  
x(0/−1) = x0 and P(0/−1) = P0. 
 
In the following, MT denotes the transpose matrix of 
matrix M and I is used for the identity matrix. 
 

It is known [4]-[6] that in the case of periodic 
model, the model parameters (matrices) are periodic 
with period p (p  is integer: p ≥ 2): 
F(k) = F(kmodp)                 (8) 
H(k) = H(kmodp)     (9) 
Q(k) = Q(kmodp)               (10) 
R(k) = R(kmodp)                           (11) 
for k = 0,1, … 

The corresponding discrete time periodic Riccati 
equation results from the Kalman filter equations 
(3), (5) and (7) and has as follows: 
P(k + 1/k) = Q(k) + F(k)P(k/k − 1)FT(k) 
−F(k)P(𝑘/𝑘 − 1)HT(k) 
[H(k)P(𝑘/𝑘 − 1)HT(k) + R(k)]−1 
H(k)P(k/k − 1)FT(k)                                       (12) 
It is known [4]-[6] for periodic systems that when 
steady state exists, then the steady state prediction 
error covariance is periodic with period p: 
P�(k + 1/k) = P�(kmodp + 1/kmodp)             (13) 
Then, the steady state Kalman filter gain becomes 
periodic with period p: 
K�(k) = K�(kmodp)               (14) 
and the steady state estimation error covariance is 
periodic with period p: 
P�(k/k) = P�(kmodp/kmodp)              (15) 
Thus, by solving the periodic Riccati equation [3], 
[12]-[13] the periodic steady state prediction error 
covariance is computed. Then the periodic steady 
state Kalman filter gain can be computed using 
K�(k) = P�(𝑘/𝑘 − 1)HT(k) 
               [H(k)P�(k/k − 1)HT(k) + R(k)]−1     (16) 
and the periodic estimation error covariance can be 
computed using 
P�(k/k) = [I − K�(k)H(k)]P�(k/k − 1)             (17) 
in a period time. 

Furthermore, from the Kalman filter equations 
(4) and (6) and for k = 1,2, …, the estimation is 
derived: 
𝑥(k/k) = A(k)x(k − 1/k − 1) + K(k)z(k)    (18) 
where 
A(k) = [I − K(k)H(k)]F(k − 1)              (19) 
with initial condition 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻(0)]𝑥(0/−1) 
               +K(0)z(0)                                             (20) 
and  
K(0) = P(0/−1)HT(0) 
               [H(0)P(0/−1)HT(0) + R(0)]−1          (21) 

 
Then the Periodic Steady State Kalman Filter is 

derived: 
 
Periodic Steady State Kalman Filter  
x(𝑘/𝑘) = A�(kmodp)x(𝑘 − 1/𝑘 − 1) 

II. PERIODIC STEADY STATE KALMAN 
FILTER 
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               +K�(kmodp)z(k)                       (22) 
for k = 1,2, …, with initial condition x(0/0) 
computed by (20) and (21). 
 

Obviously, the coefficients A�(kmodp) are 
periodic with period p 

A�(k) = �
A�(kmodp) k ≠ λp

A�(p) k = λp
�                           (23) 

for k = 1,2, …, λ = 1,2, …, 
and they are calculated off-line by first solving the 
corresponding discrete time periodic Riccati 
equation, then computing the periodic steady state 
Kalman filter gain using (14) and (16) we take 
A�(k) = [I − K�(k)H(k)]F(k − 1)              (24) 
in a period time. 

 

Parallel Kalman Filter implementations are 
mentioned in [7]-[8]. We are going to develop a 
parallel algorithm for the Periodic Steady State 
Kalman Filter, taking advantage of the system 
periodicity. We use the basic equation (22) and (14), 
(23) to rewrite the estimations in a period. 
 
For example, for period p = 3, we have: 
 
x(0/0) = [I − K(0)H(0)]x(0/−1) + K(0)z(0)  
 
x(1/1) = A�(1)x(0/0) + K�(1)z(1)  
 
x(2/2) = A�(2)x(1/1) + K�(2)z(2) 
= A�(2)A�(1)x(0/0) + A�(2)K�(1)z(1) + K�(2)z(2) 
 
x(3/3) = A�(3)x(2/2) + K�(3)z(3) 
= A�(3)A�(2)A�(1)x(0/0) 
+A�(3)A�(2)K�(1)z(1) + A�(3)K�(2)z(2) + K�(3)z(3)
  
Then, we derive: 
x(4/4) = A�(4)x(3/3) + K�(4)z(4) 
= A�(4)A�(3)A�(2)A�(1)x(0/0) 
+A�(4)A�(3)A�(2)K�(1)z(1) 
+A�(4)A�(3)K�(2)z(2) 
+A�(4)K�(3)z(3) + K�(4)z(4) 
= A�(4)A�(3)A�(2)x(1/1)  
+A�(4)A�(3)K�(2)z(2) + A�(4)K�(3)z(3) + K�(4)z(4)
  
x(5/5) = A�(5)x(4/4) + K�(5)z(5) 
= A�(5)A�(4)A�(3)A�(2)x(1/1) 
+A�(5)A�(4)A�(3)K�(2)z(2) 
+A�(5)A�(4)K�(3)z(3) + A�(5)K�(4)z(4) 

+K�(5)z(5) 
 
  
= A�(5)A�(4)A�(3)x(2/2) 
+A�(5)A�(4)K�(3)z(3) + A�(5)K�(4)z(4) + K�(5)z(5)
  
x(6/6) = A�(6)x(5/5) + K�(6)z(6) 
= A�(6)A�(5)A�(4)A�(3)x(2/2) 
+A�(6)A�(5)A�(4)K�(3)z(3) 
+A�(6)A�(5)K�(4)z(4) + A�(6)K�(5)z(5) + K�(6)z(6) 
= A�(6)A�(5)A�(4)x(3/3) 
+A�(6)A�(5)K�(4)z(4) + A�(6)K�(5)z(5) + K�(6)z(6) 
 
and 
 
x(7/7) = A�(7)A�(6)A�(5)x(4/4) 
+A�(7)A�(6)K�(5)z(5) + A�(7)K�(6)z(6) + K�(7)z(7) 
 
x(8/8) = A�(8)A�(7)A�(6)x(5/5) 
+A�(8)A�(7)K�(6)z(6) + A�(8)K�(7)z(7) + K�(8)z(8) 
 
x(9/9) = A�(9)A�(8)A�(7)x(6/6) 
+A�(9)A�(8)K�(7)z(7) + A�(9)K�(8)z(8) + K�(9)z(9) 
and so on. 
 
It is obvious that after the first period the structure 
of the equations remains constant per period due to 
periodicity of  K� (k) and A�(k). 

The Parallel Periodic Steady State Kalman Filter 
is then derived: 

 
Parallel Periodic Steady State Kalman Filter 
x(ip + j/ip + j) = αjx�(i − 1)p + j/(i − 1)p + j� 
+K�(ip + j)z(ip + j)               (25) 

+�βjℓK�((i − 1)p + j + ℓ)z((i − 1)p + j + ℓ)
p−1

ℓ=1

 

for i = 1,2, …  and   j = 1, … , p, 
with initial conditions x(1/1), … , x(p/p), 
where the coefficients αj,  βjℓ,   j = 1, … , p,  and 
ℓ = 1, … , p − 1  are defined 

αj = �A�(ip + j − ℓ + 1)
p

ℓ=1

 (26) 

and 

βjℓ = � A�(ip + j + ℓ + 1 − r)
p

r=ℓ+1

 (27) 

 
It is evident that the coefficients αj, K�(ip + j) and  
βjℓK�((i − 1)p + j + ℓ),  for  j = 1, … , p,  and  
ℓ = 1, … , p − 1, depend on the periodic coefficients 

III. PARALLEL PERIODIC STEADY STATE 
KALMAN FILTER 
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of the Periodic Steady State Kalman Filter and 
hence they are known and are calculated off-line.  

Due to the fact that the sequential and parallel 
Periodic Steady State Kalman Filter algorithms (22) 
and (25) are iterative, in order to compute their 
computational time, we have to derive their per-
iteration calculation burden required for the on-line 
calculations; the calculation burden of the off-line 
calculations is not taken into account. The 
implementation of the Periodic Steady State Kalman 
Filter algorithms requires matrix operations, which 
involve scalar additions and scalar multiplications. 
Let scalar multiplication = c ∙  scalar addition, 
where c ≥ 1. Depending on the application, but also 
on processor technology, c ≈ 1. For instance, [14] 
reports the same latency but different throughput for 
the two operations. Then Table 1 s ummarizes the 
calculation burden of matrix operations, which are 
needed for the implementation of the algorithms. 

 
 

Table 1. Calculation burden of matrix operations 
 
Operation 

and 
Dimensions 

scalar 
mults 

scalar 
adds 

Calculation 
Burden 

A + B 
(n × 1) + (n × 1)  n  n 

A ∙ x 
(n × n) ∙ (n × 1) n2  n2 − n  (c + 1)n2 − n 

B ∙ x 
(n × m) ∙ (m × 1) nm − n  nm − n  (c + 1)nm − n 

 
The Periodic Steady State Kalman Filter 

algorithm in (22) does not take advantage of the 
periodicity of the coefficients. Table 2 summarizes 
the per-iteration calculation burden of the Periodic 
Steady State Kalman Filter algorithm in (22). 
 

Table 2. Periodic Steady State Kalman Filter 
calculation burden 

 
Periodic Steady State Kalman Filter (eq. 22) 

Operation 
and  

Dimensions 

per iteration 
Calculation Burden 

W1 = A�(kmodp)x(k− 1/k − 1) 
(n × n) ∙ (n × 1) (c + 1)n2 − n 

W2 = K�(kmodp)z(k) 
(n × m) ∙ (m × 1) (c + 1)nm − n 

x(k/k) = W1 + W2 
(n × 1) + (n × 1) n 

total (c + 1)n2 + (c + 1)nm − n 
 

The Parallel Periodic Steady State Kalman Filter 
algorithm in (25) does take advantage of the 

periodicity of the coefficients. The basic idea is to 
compute p successive iterations in p  (p is integer: 
p ≥ 2) parallel processors, i.e. to use p processors in 
a period. Table 3 summarizes the per-iteration 
calculation burden of the Periodic Steady State 
Kalman Filter algorithm in (25). 
 
 

Table 3. Parallel Periodic Steady State Kalman 
Filter calculation burden 

 
Parallel Periodic Steady State Kalman Filter (eq. 25) 

Operation 
and  

Dimensions 
times per period 

Calculation Burden 

W1 = αjx(ξ − p/ξ − p) 
(n × n) ∙ (n × 1) 

1 (c + 1)n2 − n 

W2 = K�(ξ)z(ξ) 
(n × m) ∙ (m × 1) 1 �(c + 1)nm − n� 

Wℓ = βjℓK�(ξ − p + ℓ) 
 z(ξ − p + ℓ) 

(n × m) ∙ (m × 1) 
p − 1 �(c + 1)nm − n�(p− 1) 

x(ξ/ξ) = W1 + W2 +�Wℓ

p−1

ℓ=1

 

(n × 1) + (n × 1) 

p np 

where   ξ = ip + j total (c + 1)n2 + (c + 1)nmp− n 
 

The speedup is then computed for a period time: 

speedup =  
�(c + 1)n2 + (c + 1)nm − n�p

(c + 1)n2 + (c + 1)nmp − n
 

and 

speedup =
�(c + 1)n + (c + 1)m − 1�p

(c + 1)n + (c + 1)mp − 1
 (28) 

with 
1 < 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 < 𝑝                (29) 
(the proof is trivial). 
 
Remarks. 
1. The number of processors is equal to the period. 
2. No processor is idle: all the processors do the 
same work. 
3. The speedup increases as the period increases (the 
proof is trivial). In fact the speedup is an increasing 
function of the period  p. 
When p = 2, the minimum speedup is achieved: 

speedupmin =
2�(c + 1)n + (c + 1)m − 1�

(c + 1)n + 2(c + 1)m − 1

≈
2(n + m)
n + 2m

 
 
When p  tends to infinity, the maximum speedup is 
achieved: 

IV. SPEEDUP 
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speedupmax =
(c + 1)n + (c + 1)m − 1

(c + 1)m

= 1 +
(c + 1)n − 1

(c + 1)m

≈ 1 +
(c + 1)n
(c + 1)m

= 1 +
n
m

 

 
 
Example 1. 
This example is the Example in section 6 i n [15] 
with dimensions n = 2, m = 1 and period p = 3. 
Assuming c = 1, the speedup is speedup = 1.667. 
 
 
Example 2. 
This example is the Example 2 in [16] with 
dimensions n = 20, m = 1 and period p = 2. 
Assuming c = 1, the speedup is speedup = 1.907. 
 
Example 3. 
This example is the Example 8 in [6] with 
dimensions n = 3, m = 1 and period p = 3. 
Assuming c = 1, the speedup is speedup = 1.909.  
 
Example 4. 
This example is the Example 9 in [6] with 
dimensions n = 4, m = 1 and period p = 120. 
Assuming c = 1, the speedup is speedup = 4.372. 
 

 
 

We are going to derive the FIR form of the Periodic 
Steady State Kalman Filter. We use the basic 
equation (22) to rewrite the estimations: 
 
x(1/1) = A�(1)x(0/0) + K�(1)z(1)  
x(2/2) = A�(2)x(1/1) + K�(2)z(2) 
= A�(2)A�(1)x(0/0) + A�(2)K�(1)z(1) + K�(2)z(2) 
 
… 
 
x(p/p) = A�(p) ∙∙∙ A�(2)A�(1)x(0/0) 

+A�(p)A�(p − 1) ∙∙∙ A�(2)K�(1)z(1) 
+A�(p)A�(p − 1) ∙∙∙ A�(3)K�(2)z(2) 

               +. . . +A�(p)K�(p − 1)z(p − 1) + K�(p)z(p) 
 
… 
 
x(νp/νp) = A�(νp)A�(νp − 1) ∙∙∙ A�(2)A�(1)x(0/0) 

+A�(νp)A�(νp − 1) ∙∙∙ A�(2)K�(1)z(1) 

+A�(νp)A�(νp − 1) ∙∙∙ A�(3)K�(2)z(2) 
             +⋯+ A�(νp)K�(νp − 1)z(νp − 1) 
               +K�(νp)z(νp) 
              = �A�(p)A�(p − 1) ∙∙∙ A�(2)A�(1)�𝜈x(0/0) 

+ � A�(νp)A�(νp − 1) ∙∙∙ A�(ℓ+ 1)K�(ℓ)z(ℓ)
νp−1

ℓ=1

 

            +K�(νp)z(νp)                                             (30) 
 

Owing to the known property that “if all the 
eigenvalues of a matrix A is less than 1, then the 
computed powers of A can be expected to converge 
to zero”, [17]; considering that all eigenvalues of  
A�(p) ∙∙∙ A�(2)A�(1) lie inside the unit circle, the 
computed powers of A�(p) ∙∙∙ A�(2)A�(1) can be 
expected to converge to zero, whereby we conclude 
that, there exists ν: 
�A�(p)A�(p − 1) ∙∙∙ A�(2)A�(1)�ν−1 ≠ 0 
and  
�A�(p)A�(p − 1) ∙∙∙ A�(2)A�(1)�ν → 0              (31) 
 
Now, by (31) the equation (30) can been written  
 
x(νp/νp) = K�(νp)z(νp) 

+ � A�(νp)A�(νp − 1) ∙∙∙ A�(ℓ+ 1)K�(ℓ)z(ℓ)
νp−1

ℓ=1

 (32) 

 
and from (32) we have 
 
x(νp + i/νp + i) = K�(νp + i)z(νp + i)   

+ � A�(νp + i)A�(νp + i − 1) ∙∙∙ A�(ℓ+ 1)K�(ℓ)z(ℓ)
νp−1

ℓ=1

 

for i = 1,2, …, which is formulated as 
 
x(νp + i/νp + i) = K�(νp + i)z(νp + i)   

                    + � δiℓK�(ℓ)z(ℓ)
νp+i−1

ℓ=1

 (33) 

where 

δiℓ = � A�(νp + i + ℓ+ 1 − r)
νp+i

r=ℓ+1

 

 
for ℓ = 1,2, … , νp + i − 1. 
 

(34) 

 
Working as in [18], owing to the known property 
that “the eigenvalues of the matrix 𝐴 ∙ 𝐵 are the 
same as t hose of the matrix 𝐵 ∙ 𝐴”, [2], assuming 
that all the eigenvalues of ∏ A�(p + 1 − i)p

i=1 =
A�(p) ∙∙∙ A�(2)A�(1) lie inside the unit circle, we 
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conclude that all the eigenvalues of the derived 
matrices by permutation of A�(1), A�(2), … , A�(p) in 
the above matrix ∏ A�(p + 1 − i)p

i=1   lie inside the 
unit circle and due to (23), (31)  we have 
 
A�(1)�A�(p) ∙∙∙ A�(2)A�(1)�ν−1A�(p) ∙∙∙ A�(2) → 0 
A�(2)A�(1)�A�(p) ∙∙∙ A�(2)A�(1)�ν−1A�(p) ∙∙∙ A�(3) → 0 
… 
A�(p− 1) ∙∙∙ A�(1)�A�(p) ∙∙∙ A�(2)A�(1)�ν−1A�(p) → 0 
 
Hence, from (33) we obtain  
 
x(νp + i/νp + i) = K�(νp + i)z(νp + i)   

                    + � δiℓK�(ℓ)z(ℓ)
νp+i−1

ℓ=i+1

 (35) 

where δiℓ are given by (34) for i = 1,2, … and 
ℓ = (i + 1), (i + 2), … , (νp + i − 1). 
 

In (35) substituting µ = ℓ − i the FIR form of the 
Periodic Steady State Kalman Filter is derived: 
 
FIR Periodic Steady State Kalman Filter 

 x(νp + i/νp + i) = � diµK�(µ + i)z(µ+ i)
νp

µ=1

 (36) 

where diµ, i = 1,2, …, µ = 1,2, … , νp are given by  

diµ = �� A�(νp + i + 1 − τ), 1 ≤ µ ≤ νp − 1
νp−µ

τ=1
I,                         µ = νp

� (37) 

and the coefficients diµ depend on t he periodic 
coefficients of the Periodic Steady State Kalman 
Filter in (22) and hence they are known and are 
calculated off-line in a period, since they are 
periodic with period p. 
 
Remarks. 
1. The FIR Periodic Steady State Kalman 
coefficients are calculated a-priori.  
2. No previous estimations are needed. 
3. The estimation depends only on a well-defined 
set of measurements (νp measurements are needed). 
4. We are able to extend this result assuming that 
z(k) = 0, k < 0 and defining the model parameters 
periodicity for k < 0, in order to compute x(k/k) 
for k = 1,2, …. 
5. The FIR form of the periodic Steady State 
Kalman filter can be implemented in parallel, using 
the parallel addition algorithm with ⌈log2(νp)⌉ 
processors. 
 

 
We focused on t he case of periodic models and 
especially on the periodic steady state Kalman filter. 

We proposed a distributed implementation for 
the periodic steady state Kalman filter. We derived a 
distributed algorithm with parallel structure during 
each period. The proposed algorithm can be 
implemented using processors in parallel without 
idle time. The number of processors is equal to the 
model period. The resulting speedup increases as the 
period increases. 

The FIR form of the periodic steady sate Kalman 
filter is developed. The coefficients of the filter are 
calculated a-priori. No previous estimations are 
needed. The estimation depends only on a w ell-
defined set of measurements. The FIR form of the 
periodic steady sate Kalman filter can be 
implemented in parallel. 
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