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Abstract. Linear transformations (LTs) are essential for the development of Rel-
ativity Theory. Special Relativity is based on Lorentz Boost (LB). This cancels the
transitive attribute in parallelism (which is equivalent to the 5th Euclidean Postulate),
when three observers are related (successive transformations), because LB is not closed
LT. So, LB is combined with Euclidean spatial rotation, in order to obtain Lorentz trans-
formation (which is closed LT) and the corresponding Lorentz group. In this paper, a
new closed isometric LT in spaces (V 4) of dimension four (n = 4), with Euclidean or
Lorentz metric (Minkowski Space), is presented (correlating frames with parallel spatial
axes). This LT is represented by a matrix (ΛB) containing real and imaginary numbers.
Thus, V 4 is based on the field of complex numbers (C), by using real 0-(temporal) and
complex 1, 2, 3 - (spatial) coordinates.
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Abbreviations and annotations

E3 I three-dimensional Euclidean M4I Minkowski Space
E3 I four-dimensional Euclidean Space RTI Relativity Theory
LBI Lorentz Boost SR I Special Relativity
LTI Linear Transformation V 4 I Four-dimensional

Space

1. Introduction

Linear transformations (LTs) are essential for the development of Relativity
Theory (RT), Quantum Mechanics (QMs) and generally in Modern Physics. In



1034 E. VOSSOS, S. VOSSOS and CH. G. MASSOUROS

Special Relativity (SR), Hermann Minkowski combined [1] (pp. 39-53) the one-
dimensional time (T) with the Three-dimensional Euclidean space (E3) endowed
with Euclidean metric [2] (p. 14):

gE3 = diag(1, 1, 1)(1.1)

and he produced a four-dimensional space M4 (since known as Minkowski space-
time), endowed with Lorentz metric [2] (p. 8):

gL = diag(−1, 1, 1, 1).(1.2)

In this space, the position four-vector is written as

X⃗ = x0e⃗0 + x1e⃗1 + x2e⃗2 + x3e⃗3 = e⃗µx
µ,(1.3)

where

[e⃗ µ] = [e⃗0 e⃗1 e⃗2 e⃗3]; X =


x0

x1

x2

x3

(1.4)

are the basis of M4 and the coordinates of the position four-vector, respectively.
The Einstein’s summation convention [2] (p. 3) has been used in (1.3ii) and the
following equations. Besides the Lorentz length |X⃗| of the position four-vector
is defined [2] (p. 17):

|X⃗|2 = xµgLµνx
ν = −(x0)2 + (x1)2 + (x2)2 + (x3)2.(1.5)

Correspondingly in E3, we have

X⃗ = xe⃗1 + ye⃗2 + ze⃗3 = x1e⃗1 + x2e⃗2 + x3e⃗3 = e⃗ix
i.(1.6)

The common choice is the usage of real coordinates

x1, x2, x3 ∈ R,(1.7)

in order to be easily perceived by human senses.

We shall see that this field is not enough, in case that we wish to produce
closed isometric LTs in Four-dimensional Spaces (V 4). So, we prefer complex
coordinates

x1, x2, x3 ∈ C.(1.8)

For simplicity reasons, wherever we write i (the imaginary unit), we mean ±i:

i → ± i ; -i → ∓ i.(1.9)
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Besides, V 4 endowed with Euclidean metric [2] (p. 8):

gE4 = diag(1, 1, 1, 1),(1.10)

is called Euclidean Four-dimensional Space (E4). In this space, the position
four-vector is written as

X⃗ = X0E⃗0 + x1e⃗1 + x2e⃗2 + x3e⃗3 = e⃗µx
µ,(1.11)

where

[e⃗ µ] = [E⃗0 e⃗1 e⃗2 e⃗3] ; X =


X0

x1

x2

x3

(1.12)

are the basis of E4 and the coordinates of the position four-vector, respectively.
Moreover, the Euclidean length of the position four-vector is

|X⃗|2 = xµgE4µνx
ν = (X0)2 + (x1)2 + (x2)2 + (x3)2.(1.13)

2. Connection between spaces endowed with Euclidean and Lorentz
metric and their transformations

From (1.2) and (1.10), we respectively have

e⃗0 · e⃗0 = −1 ; E⃗0 · E⃗0 = 1,(2.1)

where dot “·” is Euclidean inner product [2] (p. 7).
Thus, we understand that

E⃗0 = ie⃗0.(2.2)

After replacing the above to (1.11), we have

X⃗ = iX0e⃗0 + x1e⃗1 + x2e⃗2 + x3e⃗3 = e⃗µx
µ.(2.3)

Comparing this to (1.3), we obtain

X0 =
1

i
x0.(2.4)

The above procedure shows that the difference between Euclidean and Lorentz
metric is caused by the different 0-four-vector of the used basis: E⃗0 and e⃗0,
respectively. So, E4 and M4 are related via (2.2) and (2.4).

The corresponding LTs are also easily related. For instance, the active in-
terpretation of LT [2] (p. 6) is

X ′ = Λ(β)X,(2.5)
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where

β =

 β1

β2

β3

 ; βi =
dxi

dx0
; i = 1, 2, 3,(2.6)

is called β-factor. Eqn (2.5) expresses proper Lorentz Boost (LB) in M4 [2] (p.
30) and E4, correspondingly:

ΛL(β) =

[
γ(β) −γ(β)βT

−γ(β)β I3 +
γ(β)−1

βT β
ββT

]
; X =


x0

x1

x2

x3

 ,(2.7)

ΛEL(β) =

[
γ(β) iγ(β)β

T

−iγ(β)β I3 +
γ(β)−1

βT β
ββT

]
; X =


X0

x1

x2

x3

 =


1
i x

0

x1

x2

x3

 ,(2.8)

where I3 is the unitary 3× 3 matrix and Lorentz γ-factor is

γ(β) =
1√

1− βTβ
.(2.9)

The typical proper LB along x-axis in M4 [2] (p. 21) and E4 has, correspond-
ingly:

ΛL(x)(β) =


γ(β) −γ(β)β 0 0

−γ(β)β γ(β) 0 0

0 0 1 0
0 0 0 1

 ; X =


x0

x1

x2

x3

 ,(2.10)

(2.11) ΛEL(x)(β) =


γ(β) iγ(β)β 0 0

−iγ(β)β γ(β) 0 0

0 0 1 0
0 0 0 1

 ; X =


X0

x1

x2

x3

 =


1
i x

0

x1

x2

x3

 .
It is noted that transformation matrices (2.8) and (2.11) are rotation matrices.
So, LB in M4 becomes rotation in E4 (Wick Rotation) [3].

The physical content of the four-dimensional space is obtained by the re-
placement

x0 = ct,(2.12)

where

c = 299, 792, 458ms−1(2.13)

is the speed of light in vacuum. Then β-factor is called velocity factor

βi =
1

c

dxi

dt
=
υi

c
.(2.14)
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3. Derivation of the proper closed isometric linear transformation in
four-dimensional space endowed with Euclidean or Lorentz metric

3.1 Motion in x-direction

We consider one unmoved observer (frame) Oxyz, who measures real space-
time and another observer (frame) O′x′y′z′ with parallel spatial axes, moving
to the right, along x-axis with velocity

υ = βc(3.1.1)

wrt the observer (frame) Oxyz (Figure 1).

Figure 1. Two frames Oxyz and O′x′y′z′, which initially coincide. The second
is moving with velocity (βc.0.0) wrt to Oxyz.

Supposing the next linear transformation:

(3.1.2) ct′ = bct+ ax+ ky + νz

(3.1.3) x′ = gct+ fx+ δy + θz

(3.1.4) y′ = g1ct+ f1x+ hy + λz

(3.1.5) z′ = g2ct+ f2x+ ξy + µz,

we determine the coefficients with the following conditions:

(i) Isotropy: We postulate the transformation to be invariant to the spatial
rotation. Rotating the frame about x-axis, through one right angle (Figure
1), we correspond the new axes to the initial axes:

ct → ct ; ct′ → ct′ ; x → x ; x′ → x′ ; y →−z ;

y′ →−z′ ; z → y ; z′ → y′.(3.1.6)

Thus, from (3.1.2), we have

ct′ = bct+ ax− kz + νy.(3.1.7)
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Comparing (3.1.2) and (3.1.7), it emerges k = ν = 0. Besides, from (3.1.3) we
have

x′ = gct+ fx− δx+ θy.(3.1.8)

Comparing (3.1.3) and (3.1.8), it emerges δ = θ = 0. Besides, from (3.1.4) we
have

−z′ = g1ct+ f1x− hz + λy.(3.1.9)

Comparing (3.1.5) and (3.1.9), it emerges g2 = −g1, f2 = −f1, ξ = −λ and
µ = h. Besides, from (3.1.5), we have

y′ = g2ct+ f2x− ξz + µy.(3.1.10)

Comparing (3.1.4) and (3.1.10), it emerges g2 = g1, f2 = f1, ξ = −λ and µ = h.
So, k = ν = δ = θ = g1 = g2 = f1 = f2 = 0; ξ = −λ; µ = h and the
transformation becomes:

ct′ = bct+ ax(3.1.11)

x′ = gct+ fx(3.1.12)

y′ = hy + λz(3.1.13)

z′ = −λy + hz.(3.1.14)

(ii) The frame O′x′y′z′ is moving with velocity (βc, 0, 0) wrt to Oxyz: for
x′ = 0, it is x = βct. Replacing these to (3.1.12), we obtain

0 = gct+ fβct,(3.1.15)

for any value of t. This emerges

g = −βf(3.1.16)

and the transformation becomes:

ct′ = bct+ ax(3.1.17)

x′ = −βfct+ fx(3.1.18)

y′ = hy + λz(3.1.19)

z′ = −λy + hz.(3.1.20)
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(iii) Maintenance of Lorentz length (spacetime interval) |X⃗| = S : S′2 = S2.
Thus,

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2,(3.1.21)

or equivalently,

(−βcft+ fx)2 + (hy + λz)2 + (−λy + hz)2 − (bct+ ax)2

= x2 + y2 + z2 − c2t2.(3.1.22)

From the terms x2; y2; z2; c2t2; ctx, we obtain:

f2 − a2 = 1(3.1.23)

h2 + λ2 = 1(3.1.24)

β2f2 − b2 = −1(3.1.25)

−βf2 − ab = 0.(3.1.26)

Combining (3.1.26) with (3.1.23), we have

b =
−βa2 − β

a
.(3.1.27)

The Combination of (3.1.25) with (3.1.23) and (3.1.27) gives

a = ± β√
1− β2

= ±βγ.(3.1.28)

Replacing the above to (3.1.27), we obtain

b = ∓ 1√
1− β2

= ∓γ.(3.1.29)

Now, we must choose the sign in the above equations. We observe that for β = 0
the upper sign (↑) gives a = 0 and b = −1. This transforms (3.1.11) to t′ = −t,
producing time inversion. The lower sign (↓) gives t′ = t, corresponding to the
proper transformation and we have:

a = − β√
1− β2

= −βγ ; b =
1√

1− β2
= γ.(3.1.30)

The replacement of the above to (3.1.23) gives

f = ± 1√
1− β2

= ±γ.(3.1.31)
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We also observe that for β = 0 the upper sign (↑) gives f = 1. This transforms
(3.1.18) to x′ = x. Thus, the proper transformation has

f =
1√

1− β2
= γ.(3.1.32)

On the other hand the lower sign (↓) for β = 0, gives f = −1 and (3.1.18) is
transformed to x′ = −x, producing space inversion. So, the proper transforma-
tion (↑↓) becomes:

ct′ = γ(ct− βx)(3.1.33)

x′ = γ(−βct+ x)(3.1.34)

y′ = hy + λz(3.1.35)

z′ = −λy + hz,(3.1.36)

with condition (3.1.24). Using matrices, LT (2.5) has

ΛB(x) =


γ −βγ 0 0
−βγ γ 0 0

0 0 h λ
0 0 −λ h

 .(3.1.37)

Besides, the differential form of the transformation is

cdt′ = γ(cdt− βdx)(3.1.38)

dx′ = γ(−βcdt+ dx)(3.1.39)

dy′ = hdy + λdz(3.1.40)

dz′ = −λdy + hdz.(3.1.41)

Thus, the velocities are related as following:

υ′x =
−βc+ ux
c− βux

c, υ′y =
huy + λuz
γ(c− βux)

c, υ′z =
−λuy + huz
γ(c− βux)

c.(3.1.42)
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3.2 General linear transformation (motion in random direction)

We consider an unmoved observer (frame)Oxyz and another observer (frame)
O′x′y′z′ with parallel spatial axes, moving with velocity (υx, υy, υz) wrt the ob-
server (frame) Oxyz (Figure 2).

Figure 2. Two frames Oxyz and O′x′y′z′, which initially coincide. The second
is moving with random velocity (υx, υy, υz) wrt to Oxyz.

We rotate the initial frame Oxyz, in order to parallelize the unitary vector x̂
to the velocity vector υ⃗ of the observer O′x′y′z′. This is sequentially achieved as
following: We firstly rotate the coordinate system Oxyz about z-axis, through
an angle θ [O(x̂, ŷ, ẑ) → O(̂i, ĵ, k̂)]. We then rotate the coordinate system
O(̂i, ĵ, k̂) about ĵ through an angle ω [O(̂i, ĵ, k̂) → O(î′, ĵ′, k̂′)] (Figure 3). The
corresponding matrices are:

(3.2.1) Rxy(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ; Rxz(ω) =

 cosω 0 sinω
0 1 0

− sinω 0 cosω

 .

Figure 3. Rotation of the initial frame Oxyz, in order to achieve parallelization
of vector x̂ to the velocity vector υ⃗ of the moving observer O′x′y′z′ [O(x̂, ŷ, ẑ) →
O(̂i, ĵ, k̂) → O(î′, ĵ′, k̂′)].
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Thus, we have the transformation: xR
yR
zR

 =

 cosω cos θ cosω sin θ sinω
− sin θ cos θ 0

− sinω cos θ − sinω sin θ cosω

 ·
 x
y
z

 ,(3.2.2)

where (xR, yR, zR) are the coordinates wrt the frame O(î′, ĵ′, k̂′) and

sin θ =
υy√
υ2x + υ2y

; cos θ =
υx√
υ2x + υ2y

,(3.2.3)

sinω =
υz
|υ|

; cosω =

√
υ2x + υ2y

|υ|
.(3.2.4)

As a result, the above 3× 3 matrix becomes

R =


βx
|β|

βy
|β|

βz
|β|

− βy√
β2
x+β

2
y

βx√
β2
x+β

2
y

0

− βxβz
|β|
√
β2
x+β

2
y

− βyβz

|β|
√
β2
x+β

2
y

√
β2
x+β

2
y

|β|

(3.2.5)

and we define

R̃ =

[
1 0
0 R

]
.(3.2.6)

The unit means that time is not affected by the spatial rotation.

Moreover, the transformation O(x̂, ŷ, ẑ) → O′(x̂, ŷ, ẑ) is analyzed to the
following sequence of successive transformations:
O(x̂, ŷ, ẑ) → O(î′, ĵ′, k̂′); O(î′, ĵ′, k̂′) → O′(î′, ĵ′, k̂′); O′(î′, ĵ′, k̂′) → O′(x̂, ŷ, ẑ).
The above simple transformations have active interpretations, respectively:

XR = R̃X ; X ′
R = ΛB(x)XR ; X ′ = R̃TX ′

R,(3.2.7)

where R̃T is the transpose matrix of R̃.
Thus, the transformation O(x̂, ŷ, ẑ) → O′(x̂, ŷ, ẑ) is actively interpreted:

X ′ = R̃TΛB(x)(β)R̃X,(3.2.8)

and LT (2.5) has

ΛB(β) = R̃TΛB(x)(β)R̃.(3.2.9)
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It is β > 0. So, β = |β⃗| and we calculate:

ΛB(β) = R̃T


γ −|β|γ 0 0
−|β|γ γ 0 0

0 0 h λ
0 0 −λ h

 ·


1 0 0 0

0 βx
|β|

βy
|β|

βz
|β|

0 − βy√
β2
x+β

2
y

βx√
β2
x+β

2
y

0

0 − βxβz
|β|
√
β2
x+β

2
y

− βyβz

|β|
√
β2
x+β

2
y

√
β2
x+β

2
y

|β|

 ,(3.2.10)

or equivalently,

ΛB(β) = R̃T

·


γ −γβx −γβy −γβz
−γ|β| γ βx|β| γ

βy
|β| γ βz|β|

0 − βyh√
β2
x+β

2
y

− βxβzλ

|β|
√
β2
x+β

2
y

βxh√
β2
x+β

2
y

− βyβzλ

|β|
√
β2
x+β

2
y

λ
√
β2
x+β

2
y

|β|

0
βyλ√
β2
x+β

2
y

− βxβzh

|β|
√
β2
x+β

2
y

− βxλ√
β2
x+β

2
y

− βyβzh

|β|
√
β2
x+β

2
y

h
√
β2
x+β

2
y

|β|

 .
(3.2.11)

Furthermore, we have

(3.2.12)

ΛB(β) =


1 0 0 0

0 βx
|β| −

βy√
β2
x+β

2
y

− βxβz
|β|
√
β2
x+β

2
y

0
βy
|β|

βx√
β2
x+β

2
y

− βyβz

|β|
√
β2
x+β

2
y

0 βz
|β| 0

√
β2
x+β

2
y

|β|

 ·

·


γ −γβx −γβy −γβz
−γ|β| γ βx|β| γ

βy
|β| γ βz|β|

0 − βyh√
β2
x+β

2
y

− βxβzλ

|β|
√
β2
x+β

2
y

βxh√
β2
x+β

2
y

− βyβzλ

|β|
√
β2
x+β

2
y

λ
√
β2
x+β

2
y

|β|

0
βyλ√
β2
x+β

2
y

− βxβzh

|β|
√
β2
x+β

2
y

− βxλ√
β2
x+β

2
y

− βyβzh

|β|
√
β2
x+β

2
y

h
√
β2
x+β

2
y

|β|

 .

So, we obtain
(3.2.13)

ΛB(β) =


γ −γβx −γβy −γβz
−γβx (γ − h) β2

x
|β|2 + h (γ − h)

βxβy
|β|2 + βzλ

|β| (γ − h)βxβz|β|2 −
βyλ
|β|

−γβy (γ − h)
βxβy
|β|2 −

βzλ
|β| (γ − h)

β2
y

|β|2 + h (γ − h)
βyβz
|β|2 + βxλ

|β|

−γβz (γ − h)βxβz|β|2 +
βyλ
|β| (γ − h)

βyβz
|β|2 −

βxλ
|β| (γ − h) β2

z
|β|2 + h
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and we have the transformation

(3.2.14)
ct′

x′

y′

z′

=


γ −γβx −γβy −γβz
−γβx (γ − h) β2

x
|β|2 + h (γ − h)

βxβy
|β|2 + βzλ

|β| (γ − h)βxβz|β|2 −
βyλ
|β|

−γβy (γ − h)
βxβy
|β|2 −

βzλ
|β| (γ − h)

β2
y

|β|2 + h (γ − h)
βyβz
|β|2 + βxλ

|β|

−γβz (γ − h)βxβz|β|2 +
βyλ
|β| (γ − h)

βyβz
|β|2 −

βxλ
|β| (γ − h) β2

z
|β|2 + h

·

ct
x
y
z

 .

3.3 The solution of proper closed isometric linear transformation
(correlation of two perpendicular moving observers)

We consider one unmoved observer (frame Oxyz, another observer (frame
O′x′y′z′ with parallel spatial axes, moving to the right, along x-axis with velocity
(βc, 0, 0) wrt Oxyz and also a third observer (frame) O′′x′′y′′z′′ with parallel
spatial axes, moving upward, along y-axis with velocity (0, βc, 0) wrt Oxyz
(Figure 4).

Figure 4. Two frames O′x′y′z′ and O′′x′′y′′z′′ moving with corresponding ve-
locities (βc, 0, 0) and (0, βc, 0) wrt Oxyz.

Now, the transformation O′(x̂, ŷ, ẑ) → O′′(x̂, ŷ, ẑ) is analyzed to the follow-
ing sequence: O′(x̂, ŷ, ẑ) → O(x̂, ŷ, ẑ); O(x̂, ŷ, ẑ) → O′′(x̂, ŷ, ẑ). The above
simple transformations have active interpretations, respectively:

X = Λ−1
B(x)(β)X

′ ; X ′′ = ΛB(y)(β)X.(3.3.1)

Thus, the transformation O′(x̂, ŷ, ẑ) → O′′(x̂, ŷ, ẑ) is actively interpreted:

X ′′ = ΛB(y)(β)Λ
−1
B(x)(β)X

′(3.3.2)

and LT (2.5) has

Λ3 = ΛB(y)(β)Λ
−1
B(x)(β).(3.3.3)
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According to (3.2.13), it is
(3.3.4)

ΛB(x)(β) =


γ −βγ 0 0
−βγ γ 0 0

0 0 h λ
0 0 −λ h

 ; ΛB(y)(β) =


γ 0 −βγ 0
0 h 0 −λ
−βγ 0 γ 0

0 λ 0 h

 .
Besides, the inverse of matrix ΛB(x)(β) is

Λ−1
B(x)(β) =


γ βγ 0 0
βγ γ 0 0
0 0 h −λ
0 0 λ h

 .(3.3.5)

With that

(3.3.6)

Λ3=


γ 0 −βγ 0
0 h 0 −λ
−βγ 0 γ 0

0 λ 0 h

·

γ βγ 0 0
βγ γ 0 0
0 0 h −λ
0 0 λ h

=


γ2 βγ2 −βγh βγλ
βγh γh −λ2 −hλ
−βγ2 −β2γ2 γh −γλ
βγλ γλ hλ h2

 .

Now, we calculate velocity factor β⃗′4 of observer O′′x′′y′′z′′ wrt observer
(frame) O′x′y′x′. Eqn (3.1.41) can be applied, because observer O′x′y′z′ is
moving in x-direction and observer O′′ can be considered as observed body:

β′4x =
−βc+ 0

c− 0
= −β(3.3.7)

β′4y =
hβc+ λ · 0
γ(c− 0)

=
hβ

γ
(3.3.8)

β′4z =
−λβc+ 0

γ(c− 0)
=
−λβ
γ

.(3.3.9)

As a result, it is

|β⃗′4|2 = β2 + β2h2
1

γ2
+
β2λ2

γ2
=
β2γ2 + β2h2 + β2λ2

γ2
,(3.3.10)

or equivalently,

|β⃗′4|2 = β2
γ2 + h2 + λ2

γ2
= β2

γ2 + 1

γ2
.(3.3.11)
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Thus, it emerges

|β⃗′4| = β

√
γ2 + 1

γ
; γ

(β⃗′
4)

= γ2.(3.3.12)

According to (3.2.13), the matrix corresponding to the velocity factor β⃗′4 is

Λ4 = Λ
B(β⃗′

4)
=


γ2 βγ2 −βγh βγλ
βγ2 · · ·
−βγh · · ·
βγλ · · ·

(3.3.13)

We postulate the transformation to be closed:

Λ3 = ΛB(y)(β)Λ
−1
B(x)(β) = Λ

(β⃗′
4)

= Λ4.(3.3.14)

Comparing the matrices, element by element, we have:

(Λ3)10 = (Λ4)10,(3.3.15)

or equivalently,

h = γ.(3.3.16)

Applying the foregoing equation in (3.1.24), we obtain

λ2 = −β2γ2 ; λ = iβγ = i|β⃗|γ.(3.3.17)

Thus, (3.3.16), (3.3.12ii), (3.3.17ii) and (3.3.12i) emerge

h
(β⃗′

4)
= γ(β′

4)
= γ2(3.3.18)

and

λ
(β⃗′

4)
= i|β⃗′4|γ(β⃗′

4)
= iβ

√
γ2 + 1

γ
γ2 = iβγ

√
γ2 + 1 = λ

√
γ2 + 1.(3.3.19)

Thus, the matrix (3.2.13) for the velocity factor β⃗′4 [see also (3.3.13)] is written:

(3.3.20) Λ4 =



γ2 βγ2 −βγ2 βγλ

βγ2 h
(β⃗′

4)

β′
4zλ(β⃗′4)

|β⃗′
4|

−
β′
4yλ(β⃗′4)

|β⃗′
4|

−βγ2 −
β′
4zλ(β⃗′4)

|β⃗′
4|

h
(β⃗′

4)
+
β′
4xλ(β⃗′4)

|β⃗′
4|

βγλ
β′
4yλ(β⃗′4)

|β⃗′
4|

−
β′
4xλ(β⃗′4)

|β⃗′
4|

h
(β⃗′

4)


.

Replacing only (3.3.16) to (3.3.8), we rewrite the velocity factor components

β′4x = −β ; β′4y = β ; β′4z = −λβ
γ
.(3.3.21)
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Now, we calculate the following quotients contained in matrix Λ4, by using the
above and also (3.3.12):

(3.3.22)
β′4x

|β⃗′4|
= − γ√

γ2 + 1
;
β′4y

|β⃗′4|
=

γ√
γ2 + 1

;
β′4z

|β⃗′4|
= − λ√

γ2 + 1
.

The replacement of the above, (3.3.18) and (3.3.19) to (3.3.20) gives

(3.3.23) Λ4 =


γ2 βγ2 −βγ2 βγλ
βγ2 γ2 −λ2 −γλ
−βγ2 λ2 γ2 −γλ
βγλ γλ γλ γ2

 ,
while from (3.3.6) it is

Λ3 =


γ2 βγ2 −βγh βγλ
βγh γh −λ2 −hλ
−βγ2 −β2γ2 γh −γλ
βγλ γλ hλ h2

 .(3.3.24)

We validate the equation of the matrices: Λ3 = Λ4, because of (3.3.16) and
(3.3.17i).

Finally, we replace (3.3.16) and (3.3.17ii) to (3.2.14) and (3.2.13) and we
obtain the proper closed isometric LT:

(3.3.25)


ct′

x′

y′

z′

 = γ(β)


1 −βx −βy −βz
−βx 1 iβz −iβy
−βy −iβz 1 iβx
−βz iβy −iβx 1

 ·

ct
x
y
z


and the corresponding matrix

ΛB(β) = γ(β)


1 −βx −βy −βz
−βx 1 iβz −iβy
−βy −iβz 1 iβx
−βz iβy −iβx 1

 .(3.3.26)

We have preferred the physical approach (spacetime) for the derivation of
the proper isometric LT in M4, because SR is the main application [4]. The pure
mathematical approach is simply obtained, by replacing ct → x0, according to
(2.11):

(3.3.27)


x′0

x′1

x′2

x′3

 = γ(β)


1 −β1 −β2 −β3
−β1 1 iβ3 −iβ2
−β2 −iβ3 1 iβ1

−β3 iβ2 −iβ1 1

 ·

x0

x1

x2

x3
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and the corresponding matrix is
(3.3.28)

ΛB(β) = γ(β)


1 −β1 −β2 −β3
−β1 1 iβ3 −iβ2
−β2 −iβ3 1 iβ1

−β3 iβ2 −iβ1 1

 = γ(β)

[
1 −βT
−β I3 + iA(β)

]
,

where

β =

 β1

β2

β3

 ; A(β) =

 0 β3 −β2
−β3 0 β1

β2 −β1 0

 .(3.3.29)

The matrix (ΛB) of the proper isometric LT has determinant equal to the unit
(detΛB = 1). Besides, the typical transformation along x-axis, has

ΛB(x)(β) = γ(β)


1 −β 0 0
−β 1 0 0
0 0 1 iβ
0 0 −iβ 1

(3.3.30)

It is noted that antisymmetric matrix A(β) is related to the cross product
(external product) because:

A(e⃗1,e⃗2,e⃗3) = [e⃗i × e⃗j ]=

 e⃗1 × e⃗1 e⃗1 × e⃗2 e⃗1 × e⃗3
e⃗2 × e⃗1 e⃗2 × e⃗2 e⃗2 × e⃗3
e⃗3 × e⃗1 e⃗3 × e⃗2 e⃗3 × e⃗3


=

 0⃗ e⃗3 −e⃗2
−e⃗3 0⃗ e⃗1
e⃗2 −e⃗1 0⃗

 .(3.3.31)

So,

x⃗× y⃗=(x1e⃗1 + x2e⃗2 + x3e⃗3)× (y1e⃗1 + y2e⃗2 + y3e⃗3)

= [e⃗1 e⃗2 e⃗3] ·

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 ·
 y1

y2

y3

 ,(3.3.32)

written in compact form:

(3.3.33) x⃗× y⃗ = [e⃗i] · ⌊A(−x⃗)ij⌋ · [yj ] = −[e⃗i] · ⌊A(x⃗)ij⌋ · [yj ].

On the other hand, the proper isometric transformation in E4 is obtained
as following: we initially divide (3.3.27) with i

(3.3.34)


x′0

i
x′1

i
x′2

i
x′3

i

 = γ(β)


1 −β1 −β2 −β3
−β1 1 iβ3 −iβ2
−β2 −iβ3 1 iβ1

−β3 iβ2 −iβ1 1

 ·


x0

i
x1

i
x2

i
x3

i

 .
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This is equivalent to

(3.3.35)


x′0

i
x′1

x′2

x′3

 = γ(β)


1 iβ1 iβ2 iβ3

−iβ1 1 iβ3 −iβ2
−iβ2 −iβ3 1 iβ1

−iβ3 iβ2 −iβ1 1

 ·


x0

i
x1

x2

x3

 .
The above is written by using (2.4):

(3.3.36)


X ′0

x′1

x′2

x′3

 = γ(β)


1 iβ1 iβ2 iβ3

−iβ1 1 iβ3 −iβ2
−iβ2 −iβ3 1 iβ1

−iβ3 iβ2 −iβ1 1

 ·

X0

x1

x2

x3

 .
So, the corresponding matrix in E4 is

ΛEB(β) =γ(β)


1 iβ1 iβ2 iβ3

−iβ1 1 iβ3 −iβ2
−iβ2 −iβ3 1 iβ1

−iβ3 iβ2 −iβ1 1


=γ(β)

[
1 iβT

−iβ I3 + iA(β)

]
.(3.3.37)

This is rotation matrix, because it is orthogonal (unitary) matrix with determi-
nant equal to the unit (detΛEB = 1). Besides, the typical transformation along
x-axis, has

ΛEB(x)(β)
= γ(β)


1 iβ 0 0
−iβ 1 0 0

0 0 1 iβ
0 0 −iβ 1

(3.3.38)

4. Improper isometric linear transformations in four-dimensional
space endowed with Euclidean or Lorentz metric

In the derivation of proper closed isometric Linear Transformation (↓↑), we
have chosen the lower sign (↓) in (3.1.28) and (3.1.29), but the upper (↑) in
(3.1.31). So, they have remained three (3) improper non-closed isometric Linear
Transformations (which does not contain the identity transformation):

(i) Space inversion non-closed isometric Linear Transformation (↓↓) [lower
sign (↓) in (3.1.28) and (3.1.29) as well as lower sign (↓) in (3.1.31)] in M4

and E4 with corresponding matrices (detΛB = detΛEB = −1):

(4.1) ΛB(β) = γ(β)

[
1 −βT
β −I3 − iA(β)

]
; ΛEB(β) = γ(β)

[
1 iβT

iβ −I3 − iA(β)

]
.
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The respective typical transformations along x-axis, have
(4.2)

ΛB(x)(β)=γ(β)


1 −β 0 0
β −1 0 0
0 0 −1 −iβ
0 0 iβ −1

 ;ΛEB(β)=γ(β)


1 iβ 0 0
iβ −1 0 0
0 0 −1 −iβ
0 0 iβ −1

 .
(ii) Time inversion non-closed isometric Linear Transformation (↑↑) [upper

sign (↑) in (3.1.28) and (3.1.29) as well as upper sign (↑) in (3.1.31)] in
M4 and E4 with corresponding matrices (detΛB = detΛEB = −1):

(4.3) ΛB(β) = γ(β)

[
−1 βT

−β I3 + iA(β)

]
; ΛEB(β) = γ(β)

[
−1 −iβT
−iβ I3 + iA(β)

]
.

The respective typical transformations along x-axis, have
(4.4)

ΛB(x)(β)=γ(β)


−1 β 0 0
−β 1 0 0
0 0 1 iβ
0 0 −iβ 1

 ;ΛEB(β)=γ(β)


−1 −iβ 0 0
−iβ 1 0 0

0 0 1 iβ
0 0 −iβ 1

 .
(iii) Spacetime inversion closed isometric Linear Transformation (↑↓)

[upper sign (↑) in (3.1.28) and (3.1.29), but lower sign (↓) in (3.1.31)]
in M4 and E4 with corresponding matrices (detΛB = detΛEB = 1):

(4.5)

ΛB(β) = γ(β)

[
−1 βT

β −I3 − iA(β)

]
; ΛEB(β) = γ(β)

[
−1 −iβT
iβ −I3 − iA(β)

]
.

The respective typical transformations along x-axis, have
(4.6)

ΛB(x)(β)=γ(β)


−1 β 0 0
β −1 0 0
0 0 −1 −iβ
0 0 iβ 1

 ; ΛEB(β)=γ(β)


−1 −iβ 0 0
iβ −1 0 0
0 0 −1 −iβ
0 0 iβ −1

 .
These matrices are exactly the opposite of the corresponding proper closed iso-
metric LT.

In case of Lorentz Boost, we have [2] (pp. 30-31):

(i) Space inversion Lorentz Boost in M4 and E4 with corresponding matrices
(detΛL = detΛEL = −1):

(4.7)

ΛL(β)=

[
γ(β) γ(β)β

T

−γ(β)β −I3 −
γ(β)−1

βT β
ββT

]
; ΛEL(β)=

[
γ(β) −iγ(β)βT

−iγ(β)β −I3 −
γ(β)−1

βT β
ββT

]
.
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The respective typical transformations along x-axis, have

ΛL(x)(β)=


γ(β) γ(β)β 0 0

−γ(β)β −γ(β) 0 0

0 0 −1 0
0 0 0 −1

 ;

 LEL(x)(β) =


γ(β) −iγ(β)β 0 0

−iγ(β)β −γ(β) 0 0

0 0 −1 0
0 0 0 −1

 .(4.8)

(ii) Time inversion Lorentz Boost in M4 and E4 with corresponding matrices
(detΛL = detΛEL = 1):

ΛL(β)=

[
−γ(β) γ(β)β

T

γ(β)β I3 −
γ(β)+1

βT β
ββT

]
;

ΛEL(β)=

[
−γ(β) −iγ(β)βT

iγ(β)β I3 −
γ(β)+1

βT β
ββT

]
.(4.9)

The respective typical transformations along x-axis, have

ΛL(x)(β)=


−γ(β) γ(β)β 0 0

γ(β)β −γ(β) 0 0

0 0 1 0
0 0 0 1

 ;

LEL(x)(β)=


−γ(β) −iγ(β)β 0 0

iγ(β)β −γ(β) 0 0

0 0 1 0
0 0 0 1

 .(4.10)

(iii) Spacetime inversion Lorentz Boost in M4 and E4 with corresponding ma-
trices (detΛL = detΛEL = −1):

ΛL(β)=

[
−γ(β) −γ(β)βT

γ(β)β −I3 +
γ(β)+1

βT β
ββT

]
;

ΛEL(β)=

[
−γ(β) iγ(β)β

T

iγ(β)β −I3 +
γ(β)+1

βT β
ββT

]
.(4.11)
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The respective typical transformations along x-axis, have

ΛL(x)(β)=


−γ(β) −γ(β)β 0 0

γ(β)β γ(β) 0 0

0 0 −1 0
0 0 0 −1

 ;

 LEL(x)(β)=


−γ(β) iγ(β)β 0 0

iγ(β)β γ(β) 0 0

0 0 −1 0
0 0 0 −1

 .(4.12)

Figure 5. Correlation of three successive observers (frames), by using Lorentz
Boost. The frame O′x′y′z′ has parallel axes to the corresponding of frame Oxyz,
moving with velocity (β1c, 0, 0) wrt Oxyz. The frame O′′x′′y′′z′′ has parallel
axes to the corresponding of frame O′x′y′z′, moving with velocity (0, β2c, 0) wrt
O′x′y′z′. The correlation of the observers, by using Lorentz Boost, cancels the
absolute character of parallelism. Thus, the axes of frame O′′x′′y′′z′′ are not
parallel to the corresponding of frame Oxyz (Thomas Rotation).

5. Conclusions

The closed isometric linear transformation which maintains Lorentz length (S2)
is represented by a matrix (ΛB) containing real and imaginary numbers. Under
this transformation, the real spacetime of the initial rest observer (frame) is
transformed to real time and complex space for one moving observer (frame)
(R4 → R × C3). Subsequently, the axes rotation (Thomas Rotation [5]) that
happens from the correlation of three observers related by using Lorentz Boost
(Figure 5) [2] (pp. 177-183), in this approach is avoided. Thus, the validation of
the transitive attribute in parallelism of unmoved straight lines (which is equiv-
alent to the 5th Euclidean postulate), is extended to the case moving straight
lines (for any observer). This is achieved, by working in the domain of complex
numbers, validating one more time, the words of J. Hadamard: “It has been
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written that the shortest and best way between two truths of the real domain
often passes through the imaginary one” [6] (p. 123).
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