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Abstract. Linear transformations (LTs) are essential for the development of Rel-
ativity Theory. Special Relativity is based on Lorentz Boost (LB). This cancels the
transitive attribute in parallelism (which is equivalent to the 5" Euclidean Postulate),
when three observers are related (successive transformations), because LB is not closed
LT. So, LB is combined with Euclidean spatial rotation, in order to obtain Lorentz trans-
formation (which is closed LT) and the corresponding Lorentz group. In this paper, a
new closed isometric LT in spaces (V*) of dimension four (n = 4), with Euclidean or
Lorentz metric (Minkowski Space), is presented (correlating frames with parallel spatial
axes). This LT is represented by a matrix (Ap) containing real and imaginary numbers.
Thus, V4 is based on the field of complex numbers (C), by using real 0-(temporal) and
complex 1, 2, 3- (spatial) coordinates.

Keywords: 5% Euclidean postulate, Euclidean metric, Euclidean space, linear trans-
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Abbreviations and annotations

E3 » three-dimensional Euclidean M*» Minkowski Space

E3 » four-dimensional Euclidean Space RT » Relativity Theory

LB » Lorentz Boost SR » Special Relativity

LT » Linear Transformation V4 » Four-dimensional
Space

1. Introduction

Linear transformations (LTs) are essential for the development of Relativity
Theory (RT), Quantum Mechanics (QMs) and generally in Modern Physics. In
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Special Relativity (SR), Hermann Minkowski combined [1] (pp. 39-53) the one-
dimensional time (T) with the Three-dimensional Euclidean space (E®) endowed
with Euclidean metric [2] (p. 14):

(1.1) gps = diag(1,1,1)

and he produced a four-dimensional space M* (since known as Minkowski space-
time), endowed with Lorentz metric [2] (p. 8):

(1.2) gr, = diag(—1,1,1,1).

In this space, the position four-vector is written as

(1.3) X = 2% + z'e) + 2’6 + 2d3 = e,
where

20
(1.4) [€u] =[ever1éeres]; X = i;

23

are the basis of M4 and the coordinates of the position four-vector, respectively.
The Einstein’s summation convention [2] (p. 3) has been used in (1.3ii) and the
following equations. Besides the Lorentz length |)Z | of the position four-vector
is defined [2] (p. 17):

(1.5) X = 2ugrmwe” = —(2°) + (@1)? + (%) + (7).
Correspondingly in E3, we have

(1.6) X = 26 + yéy + 283 = 1'&1 + 226 + 2363 = Ea’.

The common choice is the usage of real coordinates

(1.7) zt, 22 2% e R,

in order to be easily perceived by human senses.

We shall see that this field is not enough, in case that we wish to produce
closed isometric LTs in Four-dimensional Spaces (V). So, we prefer complex
coordinates

(1.8) ot a? ad e C.
For simplicity reasons, wherever we write ¢ (the imaginary unit), we mean =+i:

(1.9) i— £i; -1 — Fi
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Besides, V* endowed with Euclidean metric [2] (p. 8):
(1.10) g = diag(1, 1, 1, 1),

is called Fuclidean Four-dimensional Space (E*). In this space, the position
four-vector is written as

(111) X :X0E0+$1€1 +$2€2+I3€3 :€u$#,
where
XO
1
N =, L X
(1.12) [6“] = [Eo €1 €2 63] 5 X = 372
$3

are the basis of £* and the coordinates of the position four-vector, respectively.
Moreover, the Fuclidean length of the position four-vector is

(1.13) 1X)? = Tugpt” = (X924 (M2 + (222 + (%)
2. Connection between spaces endowed with Euclidean and Lorentz
metric and their transformations
From (1.2) and (1.10), we respectively have
(2.1) G0 €0 =—1 3 Ey-Eg=1,

where dot “” is Fuclidean inner product [2] (p. 7).
Thus, we understand that

(2.2) Ey = ie,.

After replacing the above to (1.11), we have

(2.3) X =iX% + z'é) + 226 + 23¢; = &2t
Comparing this to (1.3), we obtain

(2.4) XO:Tﬁ.
The above procedure shows that the difference between Fuclidean and Lorentz
metric is caused by the different 0-four-vector of the used basis: Ejy and €o,
respectively. So, E4 and M* are related via (2.2) and (2.4).

The corresponding LTs are also easily related. For instance, the active in-
terpretation of LT [2] (p. 6) is

(2.5) X' = Ay X,
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where
Bt ;
. dx®
(2.6) B=| | ; =2 i=1,23
,8 3 d.’L’ 0

is called j3-factor. Eqn (2.5) expresses proper Lorentz Boost (LB) in M* [2] (p.
30) and E*, correspondingly:

.%'O
_ T 1
V(8) V(88 x
27 A — —1 , X = s
S [ﬂ@ﬂh+$@mﬂ] 22
x3
X0 1,0
: T 1 '
V(8) ()8 x x
2.8) AP . = _ ) X = _ ,
( ) L(B) [ _I’Y(ﬁ)ﬁ Is + 'Yf;%ﬁ BIBT ] 2 72
133 5(33

where I3 is the unitary 3 x 3 matrix and Lorentz vy-factor is
1
o) = —F—=-
YV
The typical proper LB along x-axis in M* [2] (p. 21) and E* has, correspond-
ingly:

(2.9)

Yy B 00 fﬁf
v B Y 00  |=
(2100 A= | 'Y Lol X=12 |
0 0 0 1 a3
e TupB 00 X0 %wlo
g _ |8 e 00| |2 z
21) Mm@ =| 0o 1ol X7 2|7 2
0 0 0 1 a3 a3

It is noted that transformation matrices (2.8) and (2.11) are rotation matrices.
So, LB in M* becomes rotation in E* (Wick Rotation) [3].

The physical content of the four-dimensional space is obtained by the re-
placement

(2.12) z¥ = et,
where
(2.13) c = 299,792, 458ms !

is the speed of light in vacuum. Then [S-factor is called velocity factor

1 dzt v

(2.14) Bt =

cdt ¢
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3. Derivation of the proper closed isometric linear transformation in
four-dimensional space endowed with Euclidean or Lorentz metric

3.1 Motion in z-direction

We consider one unmoved observer (frame) Ozyz, who measures real space-
time and another observer (frame) O'z'y’z’ with parallel spatial axes, moving
to the right, along x-axis with velocity

(3.1.1) v = fc

wrt the observer (frame) Oxyz (Figure 1).

Z z°
¥ .
a (Be.0.0)
0O k 0 7

Figure 1. Two frames Oxyz and O'x’y’z’, which initially coincide. The second
is moving with velocity (£¢.0.0) wrt to Ozyz.

Supposing the next linear transformation:

(3.1.2) ct' = bet + ax + ky + vz
(3.1.3) 2 = gct + fr+ 0y + 0z
(3.1.4) y = gict + fix + hy + \z
(3.1.5) 2= goct + fox + Ey + pz,

we determine the coefficients with the following conditions:

(i) Isotropy: We postulate the transformation to be invariant to the spatial
rotation. Rotating the frame about z-axis, through one right angle (Figure
1), we correspond the new axes to the initial axes:

ct »ct;ct wct'ir— x>y — —2;
(3.1.6) vy =22y d =y

Thus, from (3.1.2), we have

(3.1.7) ct’ = bet + ax — kz + vy.
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Comparing (3.1.2) and (3.1.7), it emerges k = v = 0. Besides, from (3.1.3) we
have

(3.1.8) 7' = gct + fx — Sz + Oy.

Comparing (3.1.3) and (3.1.8), it emerges § = § = 0. Besides, from (3.1.4) we
have

(3.1.9) —7 = giet + fix — hz + \y.

Comparing (3.1.5) and (3.1.9), it emerges go = —¢g1, fo = —f1, £ = —\ and
i = h. Besides, from (3.1.5), we have

(3.1.10) y = gact + foxr — £z + py.

Comparing (3.1.4) and (3.1.10), it emerges g2 = g1, fo = f1, £ = —X and p = h.
So, k=v=0d=0=9g1 =g =/f1 = fo =0 & =—-X\; p=h and the

transformation becomes:

(3.1.11) ct’ = bet + ax
(3.1.12) ' =gct+ fx
(3.1.13) Y =hy+ Xz
(3.1.14) 7= -y +hz.

(ii) The frame O'z'y’z’ is moving with velocity (8¢, 0,0) wrt to Ozyz: for
2’ =0, it is x = Bct. Replacing these to (3.1.12), we obtain

(3.1.15) 0 = gct + fPct,
for any value of . This emerges

(3.1.16) g=-8f

and the transformation becomes:

(3.1.17) ct' = bet + ax
(3.1.18) ¥ = —Bfct+ fx
(3.1.19) Y =hy+ Az

(3.1.20) 2= -y + hz.
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(iii) Maintenance of Lorentz length (spacetime interval) |X| = S : §72 =

Thus,

(3.1.21) 2?4y 42— =2t 4y 4 R - A
or equivalently,

(=Beft + fr)? + (hy + X2)? + (= Ay + hz)? — (bt + ax)?
(3.1.22) =a2? +y* + 22 — Pt

From the terms z2;?; 22; ¢*t?; ctx, we obtain:

(3.1.23) fA-a’=1
(3.1.24) R+ X2 =1
(3.1.25) B2f—b? =1
(3.1.26) —Bf*—ab=0.

Combining (3.1.26) with (3.1.23), we have

(3.1.27) po P00

a

The Combination of (3.1.25) with (3.1.23) and (3.1.27) gives

(3.1.28) T +87.

V1i-p5
Replacing the above to (3.1.27), we obtain
1

isE

(3.1.29) b=

1039

S2.

Now, we must choose the sign in the above equations. We observe that for 3 =0
the upper sign (1) gives a = 0 and b = —1. This transforms (3.1.11) to ¢’ = —¢,
producing time inversion. The lower sign (|) gives t' = t, corresponding to the

proper transformation and we have:

(3.1.30) a:—L By ; b:#:m

VI-52 V1-p2
The replacement of the above to (3.1.23) gives
1

iig

(3.1.31) f=4
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We also observe that for 5 = 0 the upper sign (1) gives f = 1. This transforms
(3.1.18) to '’ = . Thus, the proper transformation has

1

3.1.32 = — =,

On the other hand the lower sign (]) for § = 0, gives f = —1 and (3.1.18) is
transformed to 2’ = —z, producing space inversion. So, the proper transforma-
tion (1)) becomes:

(3.1.33) ct' = ~y(ct — Bx)

(3.1.34) 7' = y(—Bct + z)

(3.1.35) y' = hy + Az

(3.1.36) 2= =Xy + hz,

with condition (3.1.24). Using matrices, LT (2.5) has

Yy =By 0 0

-8 0 0

(3.1.37) Mw=| "y o n
0 0 -\ h

Besides, the differential form of the transformation is

(3.1.38) cdt’ = ~y(cdt — Bdz)
(3.1.39) dx’ = y(—PBedt + dz)
(3.1.40) dy’ = hdy + \dz
(3.1.41) dz' = —\dy + hdz.

Thus, the velocities are related as following:

,  —Betug , huy + Au, , —Auy + hu,

(3.142) v, c— Bug © %= m& T v(c — Buy) ‘
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3.2 General linear transformation (motion in random direction)

We consider an unmoved observer (frame) Ozyz and another observer (frame)
O'z'y' 2" with parallel spatial axes, moving with velocity (vg, vy, v.) wrt the ob-
server (frame) Ozyz (Figure 2).

Zz

Figure 2. Two frames Oxyz and O’z’y’z’, which initially coincide. The second
is moving with random velocity (v, vy,v.) wrt to Ozyz.

We rotate the initial frame Oxyz, in order to parallelize the unitary vector &
to the velocity vector ¥ of the observer O’z'y’2’. This is sequentially achieved as
following: We firstly rotate the coordinate system Oxyz about z-axis, through
an angle 0 [O(&,9,2) — O(t,7,k)]. We then rotate the coordinate system
O(1,, k) about j through an angle w [0(i,],k) — O(#, ', k")] (Figure 3). The
corresponding matrices are:

cosf sinf O cosw 0 sinw
(32.1) Ry = | —sinf cosf® 0 | ; Rypyo) = 0 1 0
0 0 1 —sinw 0 cosw
yd Z
+ Ak
( Y Y
P ‘__,/ U
an I sz_f_../:/ |
AY -5 8 P
X X
O O UX

Figure 3. Rotation of the initial frame Oxyz, in order to achieve parallelization

of vector Z to the velocity vector ¢ of the moving observer O'z'y’ 2" [O(&,9,2) —

O(%7§.7 ]%) — 0(5/7‘]/:/7 ]%I):I'
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Thus, we have the transformation:

TR cosw cos 6 coswsinf  sinw T
(3.2.2) yr | = —sinf cos 0 |y,
ZR —sinwcosf —sinwsinf cosw z

A~

where (2g,yr, zr) are the coordinates wrt the frame O(#/, ', k') and

3.2.3 sinf = ——¥ ; cosf = U717
(
\/ V2 + vl \/ V2 + 2
/U2 + 2
(3.2.4) sinw = —= ; Cosw = vy 9
] ]

As a result, the above 3 x 3 matrix becomes

Bz By Bz

IEA EBB\ 18l

— Y z

(3.2.5) R= N \/B2+52 0

__ BsBe __ ByBs VBB
181\/B2+82  |BI\/B2+52 ]

and we define

(3.2.6) R= [(1) 2] .

The unit means that time is not affected by the spatial rotation.
Moreover, the transformation O(Z,3,%2) — O'(%,7,2) is analyzed to the
following sequence of successive transformations:

O(#,9.2) — O, j".k); O, j', k') — O'(,j,K); O'(i". j', k') — O'(#,§.2).
The above simple transformations have active interpretations, respectively:

(3.2.7) Xp=RX ; Xp=ApwXr ; X' =R'Xp,

where R7 is the transpose matrix of R.
Thus, the transformation O(#,9,2) — O'(&,9, 2) is actively interpreted:

(3.2.8) X' = R" Ay RX,
and LT (2.5) has

(3.2.9) Apsy = BT Ap(ys)R.
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Itis 8> 0. So, 8 = |5! and we calculate:
v =By 0 0
_mr -8By 0 0
Ape =R 0 h A
0 0 A h
1 0 0 0
0 Be By Bz
s ;M
L. _ Y x ,
) /B2+B2 \/B2+B2 0
O _ Bz Bz _ /Byﬁz Y B%+B§
L 18l\/B2+52 181\/B2+52 181
or equivalently,
nT
App) =1t
(3.2.11)
Y _V/Bz _’};By _%Bz
_ Bz By Bz
V18] gl 11 glE
0 _ ﬂyh _ ﬁxﬁz)\ B:ch o IByﬁz)\ A ﬁ%+:85
VB2HBZ 1BIN/B2HB2 \/B2+B2  |Bl\/B2+52 El
0 ByA  _ _ BepB:h _ Bad ByB:h hy/B2+5;
| VBEHBZ  |BIN/B2+BE VBEHBZ  |BIN/B2+BE EI
Furthermore, we have
(3.2.12)
[1 0 0 0 T
Bl /B2 453 |m\/52+52
Appy =0 L« : Byb-
Bl /BB B/EAR
0 & 0 i
L™ 18l 18] J
2 _'Yﬁﬁx _'Vﬁy _'Yﬁz
— ~zx 2y 62
V18I Vi e gl
0 _ ﬁyh _ /B:cﬁz)\ /Bzh _ ﬁyﬁz)\ \/ 62+B2
VBEEBZ  1BIN/B2HBZ \/B2HB2  |BI\/BE+B2 18]
0 ByA  _ _ BufB:h  BsA  ByB:h hy/B2+B32
L \/BE+B2 1B/ BE+BE BEHBE (Bl BEBE 18] ]
So, we obtain
(3.2.13)
¥ —Bs =By —7B:
T z TMzZ )\
A “B (=Mt (=R - -
B(B) = . 8 Ba » .
DT B G-nEE -G G-bgh+h  (-wE
2
B -WEEE 0-NEE-S - b
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and we have the transformation

(3.2.14)
ct’ v _’Yﬂg —7By 8, )
|| O MgEth -G (- -
yi B —vBy ('Y—h)%—% (’Y—h)é?‘g +h (V—h)% % . y
Tl o-wiEa Rl 0-mig - G-bgeen L7

3.3 The solution of proper closed isometric linear transformation
(correlation of two perpendicular moving observers)

We consider one unmoved observer (frame Oxyz, another observer (frame
O’y 2’ with parallel spatial axes, moving to the right, along z-axis with velocity
(B¢, 0,0) wrt Oxyz and also a third observer (frame) O”x"y"z" with parallel
spatial axes, moving upward, along y-axis with velocity (0,Sc,0) wrt Oxyz
(Figure 4).

¥
(0, pe, 0
0 X )
¥
(Pc,0,0
@] 0"

Figure 4. Two frames O'z'y/'2’ and O"2"y" 2" moving with corresponding ve-
locities (B¢, 0,0) and (0, Be, 0) wrt Ozyz.

Now, the transformation O'(Z,4,2) — O"(Z,9, 2) is analyzed to the follow-
ing sequence: O'(z,9,%2) — O(&,9,2); O(&,9,2) — O"(Z,4,%). The above
simple transformations have active interpretations, respectively:

_ 41
(3.3.1) X = A0

X'y X" = Apy) )X

Thus, the transformation O'(%,7,2) — O"(%,7, 2) is actively interpreted:
~1

(3.3.2) X" = AB(y)(B)AB(a:)(ﬁ)X,

and LT (2.5) has

—1
(3.3.3) As = Apy)(5) Ay ()
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According to (3.2.13), it is

(3.3.4)
Yy =By 0 0 vy 0 =By O
1 | =By 0 0 1 _ 0 h O =X
B(z)(8) — 0 0 hoox | TBWB T gy 0~ 0
0 0 A h 0O Xx 0 h
Besides, the inverse of matrix Apg,)g) is
v By 0 0
1 _ | By v 0 0
(3.3.5) Apiys) = 0 0 h -2
0O 0 X h
With that
(3.3.6)
v 0 =By O07[~ By 0 0 ¥ B =Byh By
o 0 h 0 =AfBy v 0 0 ]_ Bvh vh A2 —h)
LBy 0 0y 00 0 h =M | =B =B 4 -
0 X 0 RIl0 0 X h By YA hA h?

Now, we calculate velocity factor ) of observer O"z"y"z" wrt observer

1,0 1

(frame) O'2'y'x’. Eqn (3.1.41) can be applied, because observer O'z'y'z’ is
moving in z-direction and observer O” can be considered as observed body:

—fc+0

(3:3.7) Blo = o= = =P
,  hBc+X-0 %
(3.3.8) By = =0 "
, —ABe+0  —AB
(3.3.9) b=l —

As a result, it is

- 1 232 2.2 27,2 232
(3.3.10) 151112:/32+52h272+5 A B+ 8 / +B2X°
? oy

g
or equivalently,
2 2 2 2
> ¥+ ht 4+ A v +1
(3.3.11) 134 = B2 = =32 o
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Thus, it emerges

. 2
(3.3.12) 3 = B 2

; 'Y(g:l) =7

According to (3.2.13), the matrix corresponding to the velocity factor Bz is

v: ByE —Byh ByA

- | B
(3.3.13) A= Apgy = Lo
BYA

We postulate the transformation to be closed:
_ -1 _ _
(3314) /13 = AB(?!)(B)AB(I)(B) = A(Eﬁ) = A4.

Comparing the matrices, element by element, we have:
(3.3.15) (A3)10 = (A4)10,

or equivalently,

(3.3.16) h=~.

Applying the foregoing equation in (3.1.24), we obtain
(3.3.17) 22 =% A =ify =ilf]y.

Thus, (3.3.16), (3.3.12ii), (3.3.17ii) and (3.3.121) emerge

_ _ 2
(3.3.18) h(ﬁz) =) =7
and
- VyE+1
(3319 5 = ilBiy, 5. = iBY T2 gy /A2 T = AR T L
(CA) (B1) ~y
Thus, the matrix (3.2.13) for the velocity factor } [see also (3.3.13)] is written:
[ B —By? ByA
B, By g
> 3 Nap Py
b " EA 1Al
(3.3.20) Ay = —672 —B4zi(ﬁ‘i) b B4wi‘(5£1)
5 Uil /3/(%) A
4y (BY) 4z (BY)
)\ = = - = 4 h 3!
| A7 A Bl G

Replacing only (3.3.16) to (3.3.8), we rewrite the velocity factor components

(3.3.21) Bla=—B; By =08 ; Bi= —Af‘
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Now, we calculate the following quotients contained in matrix A4, by using the
above and also (3.3.12):

/ / /
(3.3.22) Biw _ v Py v B A

Bl VRERLIB VR EL B VAL
The replacement of the above, (3.3.18) and (3.3.19) to (3.3.20) gives

722 5722 —5722 BYA
| Bt A A

(3.3.23) Ay = B A2 42— |
BYA A A AP

while from (3.3.6) it is

v By =Byh ByA
Byh  vh —A2 —h)\
=By =B b —7A
ByA YA hA h?

(3.3.24) Ag =

We validate the equation of the matrices: A3 = A4, because of (3.3.16) and
(3.3.171).

Finally, we replace (3.3.16) and (3.3.17ii) to (3.2.14) and (3.2.13) and we
obtain the proper closed isometric LT:

ct' 1 B By B ct
! —B: 1 i, —if x

3.3.25 = ] Rt
( ) y/ ) _/By —if3; 1 iBs )
Z —B. By  —ifs 1 z

and the corresponding matrix

1 _Bx _ﬁy _Bz
_/Bx 1 Z/Bz _iﬁy
_51/ _iﬁz 1 ZB:E
_ﬁz i/By _iﬁx 1

We have preferred the physical approach (spacetime) for the derivation of
the proper isometric LT in M*, because SR is the main application [4]. The pure
mathematical approach is simply obtained, by replacing ¢t — z°, according to
(2.11):

2" 1 =gt - p? !
2! -8 1 gt —ip? z!
(3.3.27) 22| e g2 gy 1 gt a?
23 -3 g2 —ipt 1 a
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and the corresponding matrix is

(3.3.28)
1 _Bl _62 _53
_pl 1 203 202 1 7ﬁT
Aps) =) _gz —if® zf iZf 0| -8 Ltidg |
-3 g -t 1
where
g o p -p
(3.3.29) B=| 8| i Ag=| -8 0 p
,83 62 _/81 0

The matrix (Ap) of the proper isometric LT has determinant equal to the unit
(det Ap = 1). Besides, the typical transformation along x-axis, has

1 -8 0 O

5 1 0 0
(3.3.30) AB@)(8) = V(8) 0 0 1 B

0 0 —iB 1

It is noted that antisymmetric matrix Ag) is related to the cross product
(external product) because:

é’lXéE €1X€2 51)(53
A(é‘1’€27é‘3) = [a X é}]: 52 X 61 52 X 52 52 X 53
ggXéi €3X€2 53)((?3
0 & —é
(3.3.31) =| - 0 &
& —& 0
So,
T x g=(2'ey + 2?8 + 2°83) x (y'é) + y*er + y°&3)
0 —23 2? Yy
(3.3.32) =l éxes)- | 2 0 =t ||y |,
—z2 ! 0 y3
written in compact form:
(3.3.33) Exg=[a]- [Apil- W] =—&] [Agi;] - W]

On the other hand, the proper isometric transformation in E* is obtained
as following: we initially divide (3.3.27) with ¢

g s [T

_51 1 iﬂs _wz xT
=70 —,82 _2'53 1 Zﬂl 22

/0

8
=]

=

(3.3.34)

™)

—B% g —ipt 1 <

(2

@.‘&\NA‘&@.‘H\&‘
w %) -
w
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This is equivalent to

z 1 apt apr ips z
.CC/I — 1 1 163 _162 {El
(3335) 217/2 =) _iBQ _,L'IBS 1 ’L,Bl .’L'2
:C/3 —Zﬂs Zﬂ2 —Zﬂl 1 xg
The above is written by using (2.4):
X/O 1 Z'Bl i,82 iﬂS XO
.%'ll _iﬁl 1 153 _Z'IBZ I’l
(3.3.36) 22 = YB) —lﬂQ —i53 1 Z-Bl 22
:L,/3 _iﬁ?) ZBQ —’Lﬁl 1 ZE3
So, the corresponding matrix in E* is
M1 gt aip? ipd
B | st i i
| —ig® g2 —ipt 1
[ 1 iBT
(3.3.37) —")/(g) i —iﬁ I3 + ZA(/B) .

This is rotation matrix, because it is orthogonal (unitary) matrix with determi-
nant equal to the unit (det Ag = 1). Besides, the typical transformation along
r-axis, has

1 8 0 0

. B - 1 0 0
(3.3.38) Aoy =70 | o o 1 i3
0 0 —if 1

4. Improper isometric linear transformations in four-dimensional
space endowed with Euclidean or Lorentz metric

In the derivation of proper closed isometric Linear Transformation (1), we
have chosen the lower sign (J) in (3.1.28) and (3.1.29), but the upper (1) in
(3.1.31). So, they have remained three (3) improper non-closed isometric Linear
Transformations (which does not contain the identity transformation):

(i) Space inversion non-closed isometric Linear Transformation (1|) [lower
sign (1) in (3.1.28) and (3.1.29) as well as lower sign ({) in (3.1.31)] in M*

and E* with corresponding matrices (det Ap = det AL = —1):
B 1 —pT LB 1 i
@) Asey =0 | 5 _p, iy } s Aps) =) [ I8 —Iy—idg |
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The respective typical transformations along z-axis, have
(4.2)
1 -5 0 0 1 8 0 0
B -1 0 0 | .» i -1 0 0
AB@) B =Y®) 0 0 -1 —ig |’ AB(,B) =B 0 o -1 —iB
0o 0 8 -1 0 0 B -1
(ii) Time inversion non-closed isometric Linear Transformation (11) [upper

sign (1) in (3.1.28) and (3.1.29) as well as upper sign (1) in (3.1.31)] in
M* and E* with corresponding matrices (det Ap = det AE = —1):

(4.3) Apg) = -1 B o AL = -1 —ift
: BE) =6 | _p L+idg |+ TBG) =6 | i I+iAg |
The respective typical transformations along z-axis, have
(4.4)
-1 B8 0 0 -1 —i 0 0
-6 1 0 O B -5 1 0 0
Ap()(8)=(8) 0 0 1 3B ) AB(B) =7®) 0 0 1 i
0 0 —if 1 0 0 —ig 1

(iii) Spacetime inversion closed isometric Linear Transformation (1))
[upper sign (1) in (3.1.28) and (3.1.29), but lower sign (}) in (3.1.31)]
in M* and E* with corresponding matrices (det Ap = det AL = 1):

(4.5)
-1 g B -1 —ip"
A = . ;A = . . .
BB)TIB) | g Iy — iA ) BB T8 | g Iy — iA)
The respective typical transformations along z-axis, have
(4.6)
-1 5 0 0 -1 —ig 0 0

B -1 0 0 | g i -1 0 0
A@@»=10 | o o -1 —ig | BOTE| o o 1 —ig

0o o0 i 1 0 0 B -1
These matrices are exactly the opposite of the corresponding proper closed iso-

metric LT.
In case of Lorentz Boost, we have [2] (pp. 30-31):

(i) Space inversion Lorentz Boostin M* and E* with corresponding matrices
(det Af, = det A = —1):

(4.7)
Ayg—| @ )8 CE | ® —eF]
D= —y5B —Is - 77%3%5 peT | T T T iy B Iz — g B6T
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The respective typical transformations along z-axis, have

7(5)6 npp 00
— - 0 0],
Ame=| Y7 07 2 o b
0 0o 0 -1
Y e 00
E_|=@b v 00
(4.8) L@@ = 0 0 -1 0
0 0 0 -1

(ii) Time inversion Lorentz Boostin M* and E* with corresponding matrices

(det A, = det AF =1):

R et (O RO
PO v Is— g 88" |

. T

—Y(8) —iy(p) 8
4.9 AE = .
(4.9) L(#) !W(ﬁ)ﬁ 13—7(;%;15571]

The respective typical transformations along x-axis, have

[ —WB YB 0 0

Y —vp) 0 0,

0 0 0 1

[ =) —pB 0 0
E _| B s 00

0 0 0 1

(iii) Spacetime inversion Lorentz Boost in M* and E* with corresponding ma-
trices (det Ay, = det AF = —1):

Aya— | ® T |
D™ wef I+ 66T |
: T
8 ()P
4.11 AE = :
) Lo [im)ﬁ —13+”(;%;1/35T]
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The respective typical transformations along z-axis, have

'—’mﬁ) B 0 0
v y 0 0.
Mwe= 0" D o |
0 0 0 -1
[~ B 0 0
E _|"@h vy 0 0
0 0 0 -1
_yH’
S”
0" o ;
f 3
! b ! P
¥ Sy
/'/-
0 , /'/\,fﬂ 0 )
0 g : By = s’ * 0 g * g U s’ *

Figure 5. Correlation of three successive observers (frames), by using Lorentz
Boost. The frame O’z'y’2’ has parallel axes to the corresponding of frame Oxyz,
moving with velocity (S1¢,0,0) wrt Oxyz. The frame O"z"y"2" has parallel
axes to the corresponding of frame O'z’y’z’, moving with velocity (0, S2¢, 0) wrt
O'z'y'2’. The correlation of the observers, by using Lorentz Boost, cancels the
absolute character of parallelism. Thus, the axes of frame O”z"y”z"” are not

parallel to the corresponding of frame Ozyz (Thomas Rotation).

5. Conclusions

The closed isometric linear transformation which maintains Lorentz length (S?)
is represented by a matrix (Ap) containing real and imaginary numbers. Under
this transformation, the real spacetime of the initial rest observer (frame) is
transformed to real time and complex space for one moving observer (frame)
(R* — R x C3). Subsequently, the axes rotation (Thomas Rotation [5]) that
happens from the correlation of three observers related by using Lorentz Boost
(Figure 5) [2] (pp. 177-183), in this approach is avoided. Thus, the validation of
the transitive attribute in parallelism of unmoved straight lines (which is equiv-
alent to the 5™ Euclidean postulate), is extended to the case moving straight
lines (for any observer). This is achieved, by working in the domain of complex
numbers, validating one more time, the words of J. Hadamard: “It has been
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written that the shortest and best way between two truths of the real domain
often passes through the imaginary one” [6] (p. 123).
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