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Abstract. The structure of the hypergroup is much more complicated than that of the 
group.  Thus there exist various kinds of subhypergroups.  This paper deals with some 
of these subhypergroups and presents certain properties of the closed, invertible and 
ultra-closed subhypergroups. 
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1. Introduction. 

In 1934 F. Marty, in order to study problems in non-commutative algebra, such as 
cosets determined by non-invariant subgroups, generalized the notion of the group, thus 
defining the hypergroup [11].  An operation or composition in a non-void set H is a 
function from H H×  to H, while a hyperoperation or hypercomposition is a function 
from H H×  to the powerset P(H) of H.  An algebraic structure that satisfies the axioms 

i.  ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅   for every  , ,a b c H∈   (associative axiom)   and 

ii.  a H H a H⋅ = ⋅ =   for every  a H∈         (reproductive axiom). 

is called group if « ⋅ » is a composition [16] and hypergroup if « ⋅ » is a 
hypercomposition [11]. When there is no likelihood of confusion « ⋅ » can be omitted.  If 
A  and B  are subsets of H , then AB  signifies the union

( , )a b A B

ab

∈ ×

∪ , in particular if 

A=∅ or B=∅ then AB=∅.  Ab  and aB  have the same meaning as { }A b  and { }a B .  In 

general, the singleton { }a  is identified with its member a .   

Proposition 1.1.  If a non-void set H  is endowed with a composition which 
satisfies the associative and the reproductive axioms, then H  has a bilateral neutral 

element and any element in H  has a bilateral symmetric.  

Proof.   Let x H∈ .  Per reproductive axiom x xH∈ .  Therefore there exists 
e H∈  such that xe x= .   Next, let y  be an arbitrary element in H .  Per reproductive 

axiom there exists z H∈  such that y zx= . Consequently ( ) ( )ye zx e z xe zx y= = = = .  

Hence e  is a right neutral element.  In an analogous way there exists a left neutral 
element e′ . Then the equality e e e e′ ′= =  is valid. Therefore e  is the bilateral neutral 
element of H .  Now, per reproductive axiom e xH∈ .   Thus there exists x H′∈ , such 



that e xx′= .  Hence any element in H  has a right symmetric. Similarly any element in 
H  has a left symmetric and it is easy to prove that these two symmetric elements 
coincide.   

Remark.  An analogous Proposition to Proposition 1.1 is not valid when H  is 
endowed with a hypercomposition.  In hypergroups there exist different types of neutral 
elements [15] (e.g. scalar [4], strong [8,17] ect). There also exist special types of 
hypergroups which have a neutral element and each one of their elements has one or 
more symmetric.   Such hypergroups are for example the canonical hypergroups [21], 
the quasicanonical hypergroups [12], the fortified join hypergroups [17], the fortified 
transposition hypergroups [8], the transposition polysymmetrical hypergroups [19], the 
canonical polysymmetrical hypergroups [14], etc.  

Proposition 1.2.  If  H  is a hypergroup, then ab ≠ ∅  is valid for all the elements 

,a b  of H . 

Proof. Suppose that ab = ∅  for some ,a b H∈ . Per reproductive axiom, aH H=  

and bH H= . Hence, ( ) ( )H aH a bH ab H H= = = =∅ =∅  ,  which is absurd. 

In [11], F. Marty also defined the two induced hypercompositions (right and left 
division) that result from the hypercomposition of the hypergroup, i.e. 

{ }
a

x H | a xb
b

= ∈ ∈

 

   and   { }
a

x H | a bx
b

= ∈ ∈

 

. 

It is obvious that the two induced hypercompositions coincide, if the hypergroup is 
commutative.  For the sake of notational simplicity, /a b  or :a b  is used for right 
division and \b a  or ..a b  for left division [7, 13].   

Proposition 1.3.  If  H  is a hypergroup, then /  a b ≠ ∅  and  \  b a ≠ ∅  for all the 

elements ,a b  of H . 

Proof.  Per reproductive axiom, Hb H=  for all b H∈  .  Hence, for every 
a H∈ there exists x H∈ , such that  a xb∈  .  Thus, /x a b∈  and, therefore, /a b ≠ ∅  .  
Dually, \b a ≠ ∅  .    

In Proposition 2.3 of [13] the following properties were proved for any hypergroup 
H  (see also Proposition 1 in [7]) 

Proposition 1.4.   

(i)  ( )/ / / ( )a b c a cb=   and  \ ( \ ) ( ) \c b a bc a= ,   for all , ,a b c H∈ .  

(ii) ( )/ \b a b a∈   and  ( )/ \b a b a∈ ,   for all ,a b H∈ . 

In [7] and then in [8] a principle of duality is established in the theory of 
hypergroups and in the theory of transposition hypergroups as follows:    

Given a theorem, the dual statement which results from the interchanging 

of the order of the hypercomposition «⋅» (and necessarily interchanging of 

the left and the right division), is also a theorem.    

This principle is used throughout this paper. 
 

2. Closed, invertible and ultra-closed subhypergoups 

The structure of the hypergroup is much more complicated than that of the group.  
There are various kinds of subhypergroups.  In particular a non-empty subset K  of H  



is called semi-subhypergroup when it is stable under the hypercomposition, i.e. it has 
the property xy K⊆  for all ,x y K∈ .  K  is a subhypergroup of H  if it satisfies the 
reproductive axiom, i.e. if the equality xK Kx K= =  is valid for all x K∈ (for the fuzzy 
case see e.g [3]).  This means that when K  is a subhypergroup and ,a b K∈ , the 
relations a bx∈  and a yb∈  always have solutions in K .  Although the non-void 
intersection of two subhypergroups is stable under the hypercomposition, it usually is 
not a subhypergroup since the reproductive axiom fails to be valid for it.  This led, from 
the very early steps of hypergroup theory, to the consideration of more special types of 
subhypergroups.  One of them is the closed subhypergroup (e.g. see [5], [9]).  A 
subhypergroup K  of H  is called left closed with respect to H  if for any two elements 
a  and b  in K , all the solutions of the relation a yb∈  lie in K .  This means that K  is 
left closed if and only if /a b K⊆ , for all ,a b K∈  (see [13]).  Similarly K  is right 
closed when all the solutions of the relation a bx∈  lie in K  or equivalently if 
\b a K⊆ , for all ,a b K∈  [13].  Finally K  is closed when it is both right and left 

closed.  In the case of the closed subhypergroups, the non-void intersection of any 
family of closed subhypergroups is a closed subhypergroup.  It must be mentioned 
though that a hypergroup may have subhypergroups, but no proper closed ones.  For 
example if Q  is a quasi-order hypergroup [6], 2

a  is a subhypergroup of Q , for each 
a Q∈ , but / \a a a a Q= =  for all a Q∈ .  Also fortified transposition hypergroups [8, 
17] consisting only of attractive elements have no proper closed subhypergroups [18]. 

Proposition 2.1. If K  is a subset of a hypergroup H  such that /a b K⊆  and 

\b a K⊆ , for all ,a b K∈ , then K  is a subhypergroup of H . 

Proof.  Let a  be an element of K .  It must be shown that aK Ka K= = .  Suppose 
that x K∈ .  Then \a x K⊆ , therefore x aK∈ , hence K aK⊆ .  For the reverse 

inclusion now suppose that  y aK∈ .  Then / /K y K aK⊆ .  So ( )/K K aK y∩ ≠∅ .  

Thus, ( )/ \y K aK K∈ .  Per Proposition 1.4 (i) the equality ( )/ / /K aK K K a=  is 

valid.  Thus   ( ) ( )( ) ( ) ( )/ \ / / \ / \ / \ \K aK K K K a K K a K K K K K K K= ⊆ ⊆ ⊆ ⊆ .  

Hence  y K∈  and so aK K⊆ .  Therefore  aK K= .  The equality  Ka K=  follows by 
duality. 

In [13] it is also proved that the equalities  

/ / \ \K K a a K a K K a= = = =  

are valid for every element a  of a closed subhypergroup K .   

Next some properties of these subhypergroups will be presented. 

Proposition 2.2. If K  is a subhypergroup of H , then ( )H K H K s− ⊆ −  and 

( )H K s H K− ⊆ − , for all s K∈ . 

Proof.  Let r  be an element in H K−  which does not belong to ( )H K s− .  

Because of the reproductive axiom, r Hs∈  and since ( )r H K s∉ − , r  must be a 

member of Ks .  Thus, r Ks KK K∈ ⊆ = . This contradicts the assumption and so 

( )H K H K s− ⊆ − .  The second inclusion follows by duality. 

Proposition 2.3.    (i)  A subhypergroup K  of H  is left closed in H, if and only if  

( )H K s H K− = −  for all s K∈ . 



 (ii)  A subhypergroup K  of H  is right closed in H, if and only if  ( )s H K H K− = −  

for all s K∈ . 

(iii) A subhypergroup K  of H  is closed in H, if and only if  

( ) ( )s H K H K s H K− = − = −  for all s K∈ . 

Proof.  (i) Let K  be left closed in H . Suppose that z  lies in H K−  and assume 
that zs K∩ ≠∅ .  Then, there exists an element y  in K  such that y zs∈ ,  or 

equivalently, /z y s∈ .  Therefore z K∈ , which is absurd.  Hence ( )H K s H K− ⊆ − .  

Next, because of Proposition 1, ( )H K H K s− ⊆ −  and therefore ( )H K H K s− = − .  

Conversely now.  Suppose that ( )H K s H K− = −  for all s K∈ .  Then 

( )H K s K− ∩ =∅  for all s K∈ . Hence x rs∉  and so /r x s∉  for all ,x s K∈  and 

r H K∈ − . Therefore ( )/x s H K∩ − =∅  which implies that /x s K⊆ .  Thus K  is 

closed in H .  (ii) follows by duality and (iii) is an obvious consequence of (i) and (ii). 

Corollary 2.1.  (i) If K is a left closed subhypergroup in H, then xK K∩ =∅ , for 
all x H K∈ − . 

 (ii)  If K is a right closed subhypergroup in H, then Kx K∩ =∅ , for all x H K∈ − . 

(iii)   If K is a closed subhypergroup in H, then xK K∩ =∅  and Kx K∩ =∅ , for all 
x H K∈ − . 

Proposition 2.4.  If K is a subhypergroup of H, A K⊆  and B H⊆ , then  

(i) ( )A B K AB K∩ ⊆ ∩  and  (ii) ( )B K A BA K∩ ⊆ ∩ . 

Proof.  Let ( )t A B K∈ ∩ .  Then t ax∈ , with a A∈  and x B K∈ ∩ .  Since x  lies 

in B K∩ , it derives that x B∈   and x K∈ . Hence ax aB⊆  and ax aK K⊆ = .  Thus 
ax AB K⊆ ∩  and therefore t AB K∈ ∩ .  Duality gives (ii) and so the Proposition. 

 Proposition 2.5. (i) If K is a left closed subhypergroup in H, A K⊆  and B H⊆ , 

then ( )B K A BA K∩ = ∩ . 

(ii) If K is a right closed subhypergroup in H, A K⊆  and B H⊆ , then 

( )A B K AB K∩ = ∩ . 

Proof.  (i) Let t BA K∈ ∩ .   Since K  is right closed, for any element y  in B K− ,  

it is valid that yA K yK K∩ ⊆ ∩ =∅ .  Hence ( )t B K A K∈ ∩ ∩ . But 

( )B K A KK K∩ ⊆ = .  Thus ( )t B K A∈ ∩ .  Therefore  ( )BA K B K A∩ ⊆ ∩ .  Next 

the inclusion becomes equality because of Proposition 2.4.  (ii) derives from the duality.  

Proposition 2.6. (i) If K is a left closed subhypergroup in H, A K⊆  and B H⊆ , 

then ( ) ( )/ /B K A B A K∩ = ∩ . 

(ii) If K is a right closed subhypergroup in H, A K⊆  and B H⊆ , then 

( ) \ \B K A B A K∩ = ∩ . 

Proof.  (i) Since B K B∩ ⊆ , it derives that ( ) / /B K A B A∩ ⊆ .  Moreover 

A K⊆  and B K K∩ ⊆ , thus ( ) /B K A K∩ ⊆ .  Hence ( ) ( )/ /B K A B A K∩ ⊆ ∩ .  

For the reverse inclusion now suppose that ( )/x B A K∈ ∩ .  Then, there exist a A∈ , 

b B∈  such that /x b a∈  or equivalently b ax∈ .  Since ax K⊆  it derives that b K∈  



and so b B K∈ ∩ .  Therefore ( )/ /b a B K A⊆ ∩ .  Thus ( ) /x B K A∈ ∩ .  Hence 

( ) ( )/ /B A K B K A∩ ⊆ ∩ , QED.  Duality gives (ii) and so the Proposition. 

Krasner generalized the notion of the closed subhypergroups, considering closed 
subhypergroups in other subhypergroups [9].  Let us define the restriction of the right 
and left division in subset A  of a hypergroup H as follows: 

{ }/ |
A

a b x A a xb= ∈ ∈   and  { }\ |
A

b a x A a bx= ∈ ∈  

Thus, if K  is a subhypergroup of H and K A⊆ , then K  is right closed in A , if  
\
A

b a K⊆  for all ,a b K∈  and K  is left closed in A , if /
A

a b K⊆  for all ,a b K∈ .  

Proposition 2.7.  Let K , M  be two subhypergroups of a hypergroup H , such that 

K M⊆ . If K  is left (or right) closed in M  and M  is left (or right) closed in H , then 

K  is left (or right) closed in H .  

Proof.  Since K  is left closed in M , the inclusion /
M

a b K⊆  is valid, for all 

,a b K∈ .  This means that if x  is an element of M  such that a xb∈ , then x K∈ .  Next 
if there exists y H M∈ −  such that a yb∈ , then /a b  will not be a subset of M .  
Hence M  will not be left closed in H .  This contradicts the assumption, and so the 
Proposition. 

Corollary 2.2.  Let K , M  be two subhypergroups of a hypergroup H , such that 

K M⊆ .  If K  is closed in M  and M  is closed in H , then K  is closed in H .  

Proposition 2.8.  Let K , M  be two subhypergroups of a hypergroup H and 

suppose that K  is left (or right)  closed in H .  Then K M∩  is left (or right) closed in 

M . 

Proof.   Let ,a b K M∈ ∩ .  Then { }/ |a b x H a xb K= ∈ ∈ ⊆ .  Hence 

{ }|x M a xb K M∈ ∈ ⊆ ∩ .  Therefore /
M

a b K M⊆ ∩ .  Thus K M∩  is left closed in 

M .  

Corollary 2.3.  Let K , M  be two subhypergroups of a hypergroup H and suppose 

that K  is closed in H .  Then K M∩  is closed in M . 

Proposition 2.9.  If two subhypergroups ,  K M of a hypergroup H are left (or 

right)  closed in H and their intersection is not void, then K M∩  is left (or right) 

closed in M . 

Proof.  Let ,a b K M∈ ∩ .  Since ,  K M  are left closed in H , 

{ }/ |a b x H a xb= ∈ ∈  is a subset of both  K  and M .  Hence /a b K M⊆ ∩  and so the 

Proposition. 

Corollary 2.4.  The non-void intersection of two closed subhypergroups is a closed 

subhypergroup. 

The next type of hypergroups was introduced by Dresher and Ore in [5] and 
immediately after that, M. Krasner used them in [9].  In both [5] and [9] they are named 
reversible subhypergoups.  In our days these subhypergroups are called invertible.  The 
Definition that follows was given by Jantosciak in [7].  

Definition 2.1.  A subhypergroup K  of a hypergroup H  is right invertible if 
/a b K∩ ≠∅ , implies that /b a K∩ ≠∅ , ,a b H∈ .  K  is left invertible if 
\b a K∩ ≠∅ , implies that \a b K∩ ≠∅ , ,a b H∈ .  If K  is both right and left 

invertible, then it is called invertible.  



Theorem 4 in [1] gives an interesting example of an invertible subhypergroup in a 
join hypergroup of partial differential operators. Moreover the closed subhypergroups of 
the quasicanonical or of the canonical hypergroups are invertible [21]. 

Direct consequences of the above definition are the following propositions: 

Proposition 2.10.  (i) K  is right invertible in H , if and only if  the following 
implication is valid: b Ka a Kb∈ ⇒ ∈ , ,a b H∈ . 

(ii) K  is left invertible in H , if and only if  the following implication is valid: 
b aK a bK∈ ⇒ ∈ , ,a b H∈ . 

Proposition 2.11.  (i) K  is right invertible in H , if and only if  the following 
implication is valid:  Ka Kb Ka Kb≠ ⇒ ∩ =∅ , ,a b H∈ . 

(ii) K  is left invertible in H , if and only if  the following implication is valid: 
aK bK aK bK≠ ⇒ ∩ =∅ , ,a b H∈ . 

Proposition 2.12.  If K  is right (left) invertible in H , then  K  is right (left) closed  
in H . 

In [2] one can find examples of closed hypegroups that are not invertible. 

Definition 2.2.  A subhypergroup K  of a hypergroup H  is right ultra-closed if it 
is right closed and /a a K⊆  for each a H∈ .  K  is left ultra-closed if it is left closed 
and \a a K⊆  for each a H∈ .  If K  is both right and left ultra-closed, then it is called 
ultra-closed.  

Proposition 2.13.  (i) If K  is right ultra-closed in H , then either /a b K⊆  or 

/a b K∩ =∅ ,  for all  ,a b H∈ .  Moreover if /a b K⊆ , then /b a K⊆ .  

(ii) If K  is left ultra-closed in H , then either \b a K⊆  or \b a K∩ =∅ , for all  
,a b H∈ .  Moreover if \b a K⊆ , then \a b K⊆ . 

Proof.   Suppose that /a b K∩ ≠∅ , ,a b H∈ .  Then a kb∈ , for some k K∈ .  

Next assume that ( )/b a H K∩ − ≠∅ .  Then b ra∈ , r H K∈ − .  Thus 

( ) ( )a k ra kr a∈ = .  Since K  is right closed, per Proposition 2.3, kr H K⊆ − .  So 

a va∈ , for some v H K∈ − .  Therefore ( )/a a H K∩ − ≠∅ , which is absurd.  Hence  

/b a K⊆ .  Now let there be x  in K  such that b xa∈ .  If ( )/a b H K∩ − ≠∅ , there 

exists y H K∈ −  such that a yb∈ .  Therefore ( ) ( )b x yb xy b∈ = . Since K  is right 

closed, per Proposition 2.3, xy H K⊆ − .  So b zb∈ , for some z H K∈ − .  Therefore 

( )/b b H K∩ − ≠ ∅ , which is absurd.  Hence  /a b K⊆ .  Duality gives (ii). 

Corollary 2.5.  If K  is right (left) ultra-closed in H , then K  is right (left) 
invertible  in H . 

Ultra-closed subhypergroups were introduced by Y. Sureau [22] (see also [2, 20]).  
The following Proposition proves that the above given definition is equivalent to the 
definition used by Sureau: 

Proposition 2.14.  (i) K  is right ultra-closed in H , if and only if 

( )Ka H K a∩ − =∅   for all a H∈ . 

(ii) K  is left ultra-closed in H , if and only if ( )aK a H K∩ − =∅   for all 

a H∈ . 



Proof.   Suppose that K  is right ultra-closed in H .  Then /a a K⊆  for all a H∈ .  

Since K  is right closed, ( )/ /a a k K⊆  is valid, or equivalently ( )/a ak K⊆  for all 

k K∈ .  Proposition 2.13 yields ( ) /ak a K⊆  for all k K∈ .  If ( )Ka H K a∩ − ≠ ∅  , 

then there exist k K∈  and v H K∈ − , such that ka va∩ ≠∅ , which implies that 
/v ak a∈  .  But ( ) /ak a K⊆ , hence v K∈  which is absurd.  Conversely now:  Let  

( )Ka H K a∩ − =∅   for all a H∈ .  If a K∈ , then ( )K H K a∩ − =∅ .  Therefore 

k ra∉ , for each k K∈  and r H K∈ − .  Equivalently ( )/k a H K∩ − =∅ , for all 

k K∈ .  Hence /k a K⊆  for all k K∈  and a K∈ .  So K  is right closed.   Next 

suppose that ( )/a a H K∩ − ≠∅  for some a H∈ .  Then ( )a H K a∈ − ,  or   

( )Ka K H K a⊆ − .  Since K  is closed, per Proposition 2.3, ( )K H K H K− ⊆ −  is 

valid.  Thus ( )Ka H K a⊆ − , which contradicts the assumption.  Duality gives (ii). 
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