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ABSTRACT 

In this paper, properties of hypergroups pertaining to the relationship between the hypercomposition and 

induced hypercompositions with the empty set are presented. Analogous fuzzy hypergroup properties are also 

proven. Finally, the study of these properties leads to the introduction of the mimic fuzzy hypergroup (fuzzyM -

hypergroup). 
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1. INTRODUCTION 

Almost all fields of science desire to and attempt to utilize mathematical models in the 

process of not only describing the various phenomena under study, but in also predicting, 

wherever and whenever possible, the results generated through the influence of various 

causes. Several of the mathematical models thus utilized are non-deterministic, as several 

phenomena incorporate numerous uncertainties. Theory of probability, stochastic processes, 

fuzzy set theory, soft set theory, vague set theory, hypercompositional algebra, etc., are all 

different ways of expressing uncertainty.  The self-contained development, as well as the 

cross-linking of the above theories hold great attraction for mathematicians. For example, A. 

Maturo, in a series of articles of his, (e.g. [39, 40, 41, 42] delved into linking the theory of 

probability with hypercompositional algebra. On the other hand, several mathematicians 

worked on linking fuzzy set theory with hypercompositional algebra. 

One can distinguish three approaches, which were employed in order to connect these 

two topics. One approach is to consider a certain hyperoperation defined through a fuzzy set 

(P. Corsini [4], P. Corsini - V. Leoreanu, [6], I. Cristea e.g. [7, 8, 9], I. Cristea - S. Hoskova 

[10], M. Stefanescu - I. Cristea [49], K. Serafimidis et al. [48] etc.). Another is to consider 

fuzzy hyperstructures in a similar way as Rosenfeld did for fuzzy groups [46] (Zahedi, A. 
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Hasankhani [12, 54, 55], B. Davvaz [11] and others). The third approach is employed in the 

pioneering papers by P. Corsini - I. Tofan [5] and by I. Tofan - A. C. Volf [50, 51], which 

introduce fuzzy hyperoperations that induce fuzzy hypergroups.  This approach was further 

adopted by other researchers (Ath. Kehagias e.g. [15, 16, 17, 18], V. Leoreanu-Fotea e.g. [22, 

23] etc.).  M. K. Sen, R. Ameri and G. Chowdhury utilized this concept in defining fuzzy 

hypersemigroups [47]. 

This paper deals with the algebra of hypergroups and fuzzy hypergroups. In researching 

all relevant bibliography, we came to realize that there exists a certain amount of confusion in 

some fundamental matters. For example, in attempting to define the hypergroup, some authors 

view the hyperoperation on a non-void set H  as a function from HH to the power set P(H) 

of H, while others view it as a function from HH to P*(H), i.e. to the set of all non-empty 

subsets of H.  Certain fundamental properties of hypergroups and fuzzy hypergroups, which 

are proven herein, afford us a clearer view of such matters. 

 

2.  ON CRISP HYPERCOMPOSITIONS  

Hypercompositional algebra was born in 1934, when F. Marty, in order to study problems 

in non-commutative algebra, such as cosets determined by non-invariant subgroups, 

generalized the notion of the group, thus defining the hypergroup [24].  The hypergroup is an 

algebraic structure in which the result of the composition of two elements is not an element 

but a set of elements.  To make this paper self-contained, we begin by listing some definitions 

from the theory of hypercompositional structures (see also [35]).  A (crisp) hypercomposition 

or hyperoperation in a non-empty set H is a function from HH to the power set P(H) of H.  A 

non-void set H endowed with a hypercomposition “” is called hypergroupoid if ab   for 

any a,b  in H, otherwise it is called partial hypergroupoid.  Note that, if  A, B  are subsets of 

H , then AB  signifies the union 
 a,b A B

ab
 

.  Since AB=  A= or B=, one can 

observe that if A= or B=, then AB= and vice versa.  aA  and Aa  have the same meaning 

as  a A  and  A a  respectively. Generally, the singleton  a  is identified with its member 

a .   

A hypergroup is a non-void set H  endowed with a hypercomposition which satisfies the 

following axioms: 

i.    ab c a bc     for every  a,b,c H    (associativity) and 

ii. aH Ha H      for every  a H    (reproduction). 

If only (i) is valid, then the hypercompositional structure is called semi-hypergroup, while if 

only (ii) is valid, then it is called quasi-hypergroup.  The quasi-hypergroups in which the 

weak associativity is valid, i.e. (ab)ca(bc) for every a,b,cH, were named HV-groups 

[52].    

Remark.  If a non-void set H  is endowed with a composition which satisfies the 
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associative and the reproduction axioms, then H  is a group.  Indeed let x H .  Per 

reproduction x xH .  Therefore there exists e H  such that xe x .   Next let y  be an 

arbitrary element in H .  Per reproduction there exists z H  such that y zx . Consequently 

   ye zx e z xe zx y    .  Hence e  is a right neutral element.  Now, per reproduction 

e xH .   Thus there exists x H , such that e xx .  Hence any element in H  has a right 

inverse.  

Proposition 2.1.  The result of the hypercomposition of any two elements in a hypergroup 

is always non-void.   

Proof.  Let H be a hypergroup and suppose that ab=  for some a,bH . Per 

reproduction, aH=H  and bH=H . Hence, H=aH=a(bH)=(ab)H=H= ,  which is 

absurd. 

Proposition 2.2.  If the weak associativity is valid in a hypercompositional structure, then 

the result of the hypercomposition of any two elements is always non-void. 

Proof.   Let H  be a non-void set endowed with a hypercomposition satisfying the weak 

associativity.  Suppose that ab=  for some a,bH.  Then, (ab)c=   for any cH .  

Therefore, (ab)ca(bc)= , which is absurd.  Hence, ab is non-void. 

Corollary 2.1.  The result of the hypercomposition of any two elements in a HV-group is 

always a non-void set. 

F. Marty also defined in [24] the two induced hypercompositions (right and left division) 

resulting from the hypercomposition of the hypergroup, i.e.: 

 
a

x H | a xb
b
  


   and    

a
x H | a bx

b
  


. 

It is obvious that, if the hypergroup is commutative, then the two induced hypercompositions 

coincide.  For the sake of notational simplicity, a / b  or a : b  is used to denote the right 

division (as well as the division in commutative hypergroups) and b\ a  or a..b  is used to 

denote the left division. F. Marty's life was cut short, as he was killed during a military 

mission in World War II. [24, 25, 26] are the only works on hypergroups he left behind. 

However, several relevant papers by other authors began appearing shortly thereafter (e.g. 

Krasner [19, 20], Kuntzmann [21] etc).  Up to the present, a vast number of papers has been 

produced on this subject (e.g.: see [3, 6])     

In [13] and then in [14], a principle of duality is established in the theory of hypergroups.  

More precisely, two statements of the theory of hypergroups are dual, if each results from the 

other by interchanging the order of the hypercomposition, i.e. by interchanging any 

hypercomposition ab  with the hypercomposition ba . One can observe that the associativity 

axiom is self-dual. The left and right divisions have dual definitions, thus they must be 

interchanged in a construction of a dual statement.  Therefore, the following principle of 

duality holds true: 
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Given a theorem, the dual statement resulting from interchanging the order 

of hypercomposition “” (and, by necessity, interchanging of the left and the 

right divisions), is also a theorem.    

This principle is used throughout this paper. The following properties are direct consequences 

of the hypergroup axioms and the principle of duality is used in their proofs. 

Proposition 2.3.  a/b  and  b\a   for all the elements a,b of a quasi-hypergroup H. 

Proof.  Per reproduction, Hb=H  for every bH .  Hence, for every aH  there exists 

xH , such that  axb .  Thus, xa/b and, therefore, a/b .  Dually, b \a .    

Proposition 2.4.  In a quasi-hypergroup H, the non-empty result of the induced 

hypercompositions is equivalent to the reproduction axiom. 

Proof.  Suppose that x/a  for every a,xH .  Thus, there exists  yH , such that 

xya . Therefore, xHa  for every xH  and so HHa .  Next, since HaH  for every aH , 

it follows that H=Ha .  Per duality, H=aH .  Conversely now, per Proposition 2.3, the 

reproduction axiom implies that a/b   and that  a \b   for every a,b  in H. 

Based on Proposition 2.4, we are now in a position to give an equivalent definition of the 

hypergroup. 

Definition 2.1.  A hypergoup is a non-void (crisp) set H  endowed with a (crisp) 

hypercomposition, i.e. a function from H H  to the powerset  P H  of H , which satisfies 

the following axioms: 

i.    ab c a bc     for every a,b,c H   (associativity) and 

ii.  a/b   and  b\a   for every a,b H   . 

Proposition 2.5.  In a hypergroup H , equalities (i) H=H/a=a/H   and (ii) H=a \H=H \a   

are valid for every  a  in  H. 

Proof.  (i)  Per Proposition 2.1, the result of hypercomposition in H is always a non-

empty set.  Thus, for every xH  there exists yH , such that yxa , which implies that 

xy/a .  Hence, HH/a .  Moreover, H/aH .  Therefore, H=H/a .  Next, let xH .   Since 

H=xH , there exists yH  such that axy , which implies that  xa/y . Hence, /H a H . 

Moreover, /a H H .  Therefore, H a / H .   (ii) follows by duality.  

The hypergroup is a very general structure, which was progressively enriched with 

additional axioms, either more or less powerful. This created a significant number of specific 

hypergroups.  Moreover, some of these hypergroups constituted a constructive origin for the 

development of other new hypercompositional structures (e.g.: see [3, 6, 27, 28, 29, 32, 34, 

36, 43]).  Thus, W. Prenowitz enriched hypergroups with an axiom, in order to utilize them in 

the study of geometry [e.g.: see 44, 45]. More precisely, he introduced into the commutative 

hypergroup the transposition axiom 

a / b c / d    implies  ad bc      for every  a,b,c,d H  
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and named this new hypergroup join space [44]. For the sake of terminology unification, join 

spaces are also called join hypergroups [30]. It has been proven that these hypergroups also 

comprise a useful tool in the study of languages and automata [34, 37].  Later on, J. Jantosciak 

generalized the above axiom in an arbitrary hypergroup as follows: 

b\ a c / d    implies  ad bc      for every  a,b,c,d H . 

He named this particular hypergroup transposition hypergroup [13]. Clearly, if A,B,C  

and D  are subsets of H , then  B\ A C / D     implies that  AD BC  .  In [31, 38] 

specialized transposition hypergroups were studied and, in [33], the transposition axiom was 

introduced into ΗV-groups and the transposition ΗV-group was thus defined. 

 

3. ON FUZZY HYPERCOMPOSITIONS 

  Zadeh, in 1965, in order to provide «a natural way of dealing with problems in which 

the source of imprecision is the absence of sharply defined criteria of class membership, 

rather than the presence of random variables» [53] introduced the notion of fuzzy sets. If H is 

a non-void crisp set, then a fuzzy subset of H is a mapping from H to the interval of real 

numbers [0,1].  If A H , then the characteristic function A of A   

AX : H  [0,1],  
1

0

    

    
A

if x A
x X x

if x A


 


 

is a fuzzy subset of H . Thus, if A  , then its characteristic function is the identically zero 

function 0H , i.e.    0 0HX x x    for every x H .  Moreover, if A H , H  , then 

the characteristic function of the entire set H, is ( ) 1 ( ) 1H HX x x   for every x H .  Thus, 

we can consider crisp sets as special case of fuzzy sets and identify every set (crisp or fuzzy) 

with its membership function.  The collection of all fuzzy subsets of H is denoted by  F H .  

A fuzzy hypercomposition maps the pairs of elements of the Cartesian product H H  to fuzzy 

subsets of H, i.e.   : H H F H  .  Hence, if  is a fuzzy hyperoperartion, then a b  is a 

function and the notation   a b x  means the value of a b  at the element x.  The definition 

of the fuzzy hyperoperartion subsumes the relevant one of crisp hyperoperation as a special 

case, since the later results from the former using the characteristic function.  

Definition 3.1. [17, 18] If  : HH  F(H) is a fuzzy hypercomposition, then for every 

aH, BF(H), the fuzzy sets a B  and B a  are defined respectively  by 

        y Ha B z a y z B y       

        y HB a z y a z B y      . 

Per definition 3.1, if a,b,c H , then: 
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         y Ha b c z a y z b c y       

and                                 y Ha b c z y c z a b y       

Definition 3.2. [17, 18] If  : HH  F(H) is a fuzzy hypercomposition, then, for every 

A,BF(H), the fuzzy set A B  is defined by 

          x,y HA B z x y z A x B y       . 

As mentioned above, these definitions subsume the relevant ones of crisp hyperoperations as 

special cases.  For example, if AX  is the characteristic function of the crisp set A, then, per 

Definition 2.1:   

            A y H A Ay:z x y
x X z x y z X y X y 

       . 

Hence Ax X  is the characteristic function of the crisp set  y AxA xy  (see also [17]). 

Definition 3.3.  If  aH  and  A, BP(H), then Ba B a X , BB a X a  and 

A BA B X X . 

Definition 3.4. [5, 51] If : HH  F(H) is a fuzzy hypercomposition, then H is called 

fuzzy hypergroup, if the following two axioms are valid: 

i.    a b c a b c        for every a,b,c H   (associativity), 

ii. Ha H H a X          for every a H    (reproduction). 

If (i) is only valid, then H is called a fuzzy semi-hypergroup [47] while if (ii) is only valid, then 

H is called a fuzzy quasi-hypergroup.   

Lemma 3.1.  For every  a, b H  and  C F(H), the following is true:  

   a b C a b C   . 

Proof.             x,y Ha b C z y x z a b y C x           =  

       x H y H y x z a b y C x 
          =  

           x H x Ha b x z C x a b x z C x 
                  =  

       x H y H a y z b x y C x 
           

       x,y H a y z b x y C x         
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       y H x Ha y z b x y C x 
           

         y H a y z b C y a b C z           . 

Proposition 3.1. 0Ha b   is valid for any pair of elements a, b in a fuzzy hypergroup H. 

Proof.  Suppose that 0Ha b   for some a,bH .  Per reproduction, Ha H X    and 

Hb H X   .  Hence,  HX a H a b H  .  Per Lemma 3.1, the equality 

   a b H a b H  is valid.  Since 0Ha b  , we have:   0H Ha b H X .  But 

            0 0 0H H x,y H H H HX z x y z x X y z        . Therefore, 0H HX  , 

which is absurd because H  . 

The fuzzy HV-groups were defined in [15].  If  A, BF(H) and  0,1p , then we write 

pA B , if there exists x H  such that    A x B x p  .  The fuzzy quasi-hypergroups in 

which the weak associativity is valid, i.e.    pa b c a b c  for every a,b,cH, are named  

fuzzy HV-groups.   

Proposition 3.2.  If a fuzzy hypercompositional structure  ,H  is endowed with the weak 

associativity, then 0Ha b   is valid for every   ,a b H . 

Proof.  Suppose that 0Ha b   for some a,bH .  Then   0Ha b c c , for any 

cH .   Since         0 0 0H y H Hc z y c z y       , it follows that 0 0H Hc   and, 

therefore,   0Ha b c  .  Hence, the weak associativity is not valid in  ,H , which 

contradicts our supposition. 

Corollary 3.1.  The result of the hypercomposition of any two elements in a fuzzy HV-

group is always a non-zero function. 

 

4.  THE MIMIC FUZZY HYPERGROUP 

If H  is a non-void set endowed with a fuzzy hypercomposition , then two new induced 

fuzzy hypercompositions “/” and “\” can be defined as follows: 

     /a b x x b a   for every , ,a b x H  and 

     \b a x b x a   for every , ,a b x H . 

As in the case of crisp hypercompositions, the two induced fuzzy hypercompositions will 

be called fuzzy right division and fuzzy left division respectively (see also [2]). 

makis
Typewritten Text
~
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  Proposition 4.1.  For any pair of elements a,b  in a fuzzy hypergroup H, 0Ha / b   and  

0Ha\b   is valid.  

Proof.  Per reproduction, HH b X  is valid for every bH .   Thus, equality 

    HH b a X a  is true for any aH .   Since  

       y H HH b a y b a X y      , 

it follows that there exists yH  such that     1y b a   or, equivalently,    1a / b y  .  

Therefore, 0Ha / b  .  Dually, 0Ha\b  .    

It becomes obvious that a statement analogous to Proposition 2.4 is not valid in the case 

of fuzzy hypergroups.  Indeed: 

Example 4.1.  Let  H a,b  and suppose that  

                                   a a a a a b a b a b b a    

and                                   a a b a b b b a a b a b b b a b b b      

 Then,  H ,  is a fuzzy semi-hypergroup. Suppose that    0x y z   for every , ,x y z H .  

Then, in this fuzzy semi-hypergroup, 0Ha / b   and 0Ha\b   is valid for every ,a b H . 

Yet, if    1x y z   for any , ,x y z H , one can easily see that the reproduction is not 

verified.  

These ideas lead to the introduction of the following definition:   

Definition 4.1.  If  : HH  F(H) is a fuzzy hypercomposition, then H is called mimic 

fuzzy hypergroup (fuzzyM-hypergroup), if the following two axioms are valid: 

i.    a b c a b c      for every a,b,c H   (associativity), 

ii. 0Ha / b   and  0Ha\b      for every a,b H   . 

If (ii) is only valid, then H is called mimic fuzzy quasi-hypergroup (fuzzyM-quasi-hypergroup) 

while, if instead of (i) the weak associativity is valid, then H is called mimic fuzzy Hv- group 

(fuzzyM Hv-group).   

Proposition 4.2.  In a fuzzyM-hypergroup H , it holds that    0H a x   and 

   0a H x   for every a,xH. 

Proof.  Since 0Hx / a   for every a,x H , it follows that there exists yH such that 

   0x / a y  .  Hence, there exists yH such that    0y a x  , for any a,x H . Since 
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        y H HH a x y a x X y      , it follows that    0H a x   for every a,x H .  

Per duality,     0a H x   for every  a,x H . 

Proposition 4.3.  In a fuzzyM-hypergroup H , it holds that 0Ha b   for every a,bH. 

Proof.  Suppose that there are a,b H such that 0Ha b  .  Then   0Ha b H  .  Per 

Lemma 3.1,    a b H a b H   .  Hence   0Ha b H  .  But 

         y Ha b H z a y z b H y          

Per Proposition 4.2,    0b H y  , for every  b,yH.  Therefore    0a y z   for every  

z,yH.  Thus    0a\ z y    for every y H , which is absurd. 

It is obvious that if a fuzzyM-hypergroup H  is commutative, then a H H a  for any 

a H .  However, generally speaking, this equality is not valid.  Hence, we have the 

following definition: 

 Definition 4.2.  A fuzzyM-hypergroup H will be called commutable fuzzyM-hypergroup, if 

a H H a  for any a H . 

Example 4.2.  Let  H a,b  and suppose that:  

     

           

     

0 1 0 2

0 2 0 5

0 7 0 9

 

 

 

a a a , ; a a b ,

b a a a b b b a b , ; a b a ,

b b a , ; b b b ,

 

   

 

 

Then  H ,  is a non-commutative fuzzyM-hypergroup, since      a b a b a a .   

Furthermore  H , is non-commutable.  Next if we define: 

     

                 

0 1

0 9

a a b b a a ,

a a a b b a b b b a b a a b b b a b ,

 

     
 

then  H ,  is a non-commutative fuzzyM-hypergroup, since      a b a b a a .   

However  H , is commutable.  Moreover if we define: 

           

           

0 1

0 2

a a a b b a a b a b a a ,

a a b b b b a b b b a b ,

       

       
 

then  H ,  is a commutative fuzzyM-hypergroup. 

As in the case of fuzzy hypergroups [1, 2, 15, 16], the transposition axiom can be 
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introduced in fuzzyM-hypergroups as well.  Thus, we have the definition: 

Definition 4.3.  A fuzzyM-hypergroup H will be called transposition fuzzyM-hypergroup, if 

for any a, b, c, d  H for which there exists  0,1p  such that  pb\ a c / d , there exists 

also  0,1q  such that   qa d b c  .  If p q   for every a, b, c, d  H, then H will be 

called p-transposition fuzzyM-hypergroup.   
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