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a b s t r a c t

Every binary relation ρ on a set H, (card(H) > 1) can define a
hypercomposition and thus endow H with a hypercompositional
structure. In this paper, binary relations are represented by Boolean
matrices. With their help, the hypercompositional structures (hy-
pergroupoids, hypergroups, join hypergroups) that emerge with
the use of the Rosenberg’s hyperoperation are characterized, con-
structed and enumerated using symbolic manipulation packages.
Moreover, the hyperoperation given by x◦ x = {z ∈ H| (z, x) ∈ ρ}

and x◦ y = x◦ x∪ y◦ y is introduced and connected to Rosenberg’s
hyperoperation, which assigns to every (x, y) the set of all z such
that either (x, z) ∈ ρ or (y, z) ∈ ρ.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A hypercomposition in a non-empty setH is a function from H ×H to the powerset P(H) of H . This
notion was introduced in mathematics, alongside the notion of the hypergroup, by Marty in 1934,
during the 8th Congress of the Scandinavian Mathematicians held in Stockholm [11].

The axioms that endow the pair (H, ·) with the hypergroup structure, where H is a non-empty set
and ‘‘·’’ is a hypercomposition on H , are:

(i) a(bc) = (ab)c for all a, b, c ∈ H (associativity);
(ii) aH = Ha = H for all a ∈ H (reproductivity).

If only (i) is valid, then (H, ·) is called a semihypergroup, while it is called a quasihypergroup if
only (ii) holds. In a hypergroup, the result of the hypercomposition is always a non-empty set. Indeed,
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suppose that for two elements a, b in H it holds that ab = ∅. Then H = aH = a(bH) = (ab)H =

∅H = ∅, which is absurd. Thus if (H, ·) is non-associative and reproductive, then the empty set can
be among the results of the hypercomposition. (H, ·) is called a hypergroupoid if xy ≠ ∅ for all x, y in
H; otherwise it is called a partial hypergroupoid.

FurthermoreMarty [11] defined the two induced hypercompositions (the left and the right division)
that result from the hypercomposition, i.e.

a/b = {x ∈ H|a ∈ xb} and b \ a = {y ∈ H|a ∈ by} .

When ‘‘·’’ is commutative, a/b = b \ a is valid. In a hypergroup, a/b and a \ b are non-empty for
all a, b in H and this is equivalent to the reproductive axiom [14]. A transposition hypergroup [10] is
a hypergroup (H, ·) that satisfies a postulated property of transposition, i.e. (b \ a) ∩ (c/d) ≠ ∅ ⇒

(ad) ∩ (bc) ≠ ∅. A join space or join hypergroup is a commutative transposition hypergroup. It is
worthmentioning here that the hypergroup, which is a very general structure, has been progressively
enriched with additional axioms, either more or less powerful, thus creating a significant number
of specific hypergroups such as the above mentioned transposition and join ones, their fortifications
[10,17,19], the canonical and quasicanonical ones [13], etc., with many widespread applications; see
e.g. [12,15,16].

Several papers have beenwritten on the construction of hypergroups, since hypergroups aremuch
more varied than groups. For example, for each prime number p, there is only one group, up to
isomorphism, with cardinality p, while there are a very large number of non-isomorphic hypergroups.
Specifically, there are 3999 non-isomorphic hypergroups with three elements [23].

Among others, Rosenberg [22], Corsini [1,2], Corsini and Leoreanu [3], Cristea [4], Cristea and
Stefanescu [6,7], and De Salvo and Lo Faro [8,9] studied hypercompositional structures defined in
terms of binary relations. Corsini constructed in [1] partial hypergroupoids by introducing into a non-
empty set H the hypercomposition

x · y = {z ∈ H|(x, z) ∈ ρ and (z, y) ∈ ρ} ,

where ρ is a binary relation on H . Obviously, such a partial hypergroupoid is a hypergroupoid if for
each pair of elements x, y inH there exists z inH such that (x, z) ∈ ρ and (z, y) ∈ ρ. In [20] it is proven
that this hypercomposition generates only one semihypergroup and only one quasihypergroupwhich
coincide with the total hypergroup. Also in [20], it is computed that this hypercomposition generates
2, 17, 304 and 20660 non-isomorphic hypergroupoids of order 2, 3, 4, 5 respectively.

De Salvo and Lo Faro introduced in a non-empty set H the hypercomposition
x · y = {z ∈ H|(x, z) ∈ ρ or (z, y) ∈ ρ} ,

where ρ is a binary relation on H . They characterized in [8] the relations ρ, which give
quasihypergroups, semihypergroups and hypergroups.

On the other hand, Rosenberg introduced in a non-empty set H the hypercomposition
x • x = {z ∈ H|(x, z) ∈ ρ} and x • y = x • x ∪ y • y,

where ρ is a binary relation onH , and studied the structure that emerged [22]. This structure is further
studied in the present paper and was also studied in [3] and [5].

This paper deals with the Rosenberg-type hypercompositional structures, the properties of their
generative binary relations and their representations using Boolean matrices. Some conclusions
from [22] are restated with the use of Boolean matrices, in order to develop Mathematica programs,
which enumerate the hypergroupoids, the hypergroups and the join hypergroupswith two, three, four
and five elements. During the preparation of this paper, the authors became familiar with [5], where
an extensive program written in C# computes the Rosenberg hypergroups with two, three and four
elements. As regards hypergroups with two, three and four elements (which both papers enumerate),
the results are the same, even though they are obtained (in software and size) through completely
different computational methods.

2. The Rosenberg-type hypercompositional structures

Let H be a non-empty set and ρ a binary relation on H . As usual,
ρ2

:= {(x, y) | (x, z), (z, y) ∈ ρ, for some z ∈ H}.
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An element x of H is called an outer element of ρ if (z, x) ∉ ρ2 for some z ∈ H; otherwise x is called
an inner element. The domain of ρ is the set

D = {x ∈ H|(x, z) ∈ ρ, for some z ∈ H}

and the range of ρ is the set

R = {x ∈ H|(z, x) ∈ ρ, for some z ∈ H} .

Rosenberg introduced in H the hypercomposition

x • x = {z ∈ H|(x, z) ∈ ρ} and x • y = x • x ∪ y • y

and he observed that Hρ = (H, •) is a hypergroupoid if and only if H is the domain of ρ and that Hρ

is a quasihypergroup if and only if H is the domain and the range of ρ. He also proved:

Proposition 1 ([22]). Hρ is a semihypergroup if and only if:

(i) H is the domain of ρ;
(ii) ρ ⊆ ρ2;
(iii) (a, x) ∈ ρ2

⇒ (a, x) ∈ ρ whenever x is an outer element of ρ .

From the last two elements of this proposition it follows that, whenever x is an outer element of
ρ for some a ∈ Hρ , then (a, y) is in ρ if and only if (a, y) is in ρ2. Thus, one can easily observe that
Proposition 1 is equivalent to:

Proposition 2. Hρ is a semihypergroup if and only if:

(i) H is the domain of ρ;
(ii) (y, x) ∈ ρ2

⇔ (y, x) ∈ ρ for all y ∈ H whenever x is an outer element of ρ .

Thus:

Proposition 3. Hρ is a hypergroup if and only if:

(i) H is the domain and the range of ρ;
(ii) (y, x) ∈ ρ2

⇔ (y, x) ∈ ρ for all y ∈ H whenever x is an outer element of ρ .

On the other hand, the binary relation ρ can define in H another hypercomposition, which is the
following:

x ◦ x = {z ∈ H|(z, x) ∈ ρ} and x ◦ y = x ◦ x ∪ y ◦ y.

Proposition 4. If ρ is symmetric, then the hypercompositional structures (H, •) and (H, ◦) coincide.

One can easily observe that (H, ◦) is a hypergroupoid if and only ifH is the range of ρ. For (a, b) ∈ ρ, a
is called a predecessor of b and b a successor of a [22]. Following Rosenberg’s terminology, an element
xwill be called a predecessor outer element of ρ if (x, z) ∉ ρ2 for some z ∈ H .

The following two propositions are proven in a similar way to Propositions 1 and 2.

Proposition 5. (H, ◦) is a semihypergroup if and only if:

(i) H is the range of ρ;
(ii) (x, y) ∈ ρ2

⇔ (x, y) ∈ ρ for all y ∈ H whenever x is a predecessor outer element of ρ .

Proposition 6. (H, ◦) is a hypergroup if and only if:

(i) H is the domain and the range of ρ;
(ii) (x, y) ∈ ρ2

⇔ (x, y) ∈ ρ for all y ∈ H whenever x is a predecessor outer element of ρ .

From the definitions of the two above hypercompositions it follows that the hypercompositional
structures constructed through them are always commutative. Since ‘‘•’’ is commutative, the two
induced hypercompositions ‘‘/’’ and ‘‘\’’ coincide. The same holds true for the hypercomposition ‘‘◦ ’’.
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Proposition 7. If Hρ = (H, •) is a hypergroup, then

x/y =


H, if (y, x) ∈ ρ

x ◦ x, if (y, x) ∉ ρ

for all x, y in H.

Proof.

x/y = {v ∈ H|x ∈ v • y} = {v ∈ H|x ∈ v • v ∪ y • y}
= {v ∈ H|(v, x) ∈ ρ or (y, x) ∈ ρ}

which is equal to H if (y, x) ∈ ρ or equal to x ◦ x if (y, x) ∉ ρ. �

Corollary 1. If ρ is reflexive, then x/x = H, for each x ∈ H.

The following is a direct result of Proposition 7:

Proposition 8. Let x, y, z, w be in H. If x/y ∩ w/z ≠ ∅, then there are three possible cases:

(i) x/y ∩ w/z = H when (y, x) ∈ ρ and (z, w) ∈ ρ;
(ii) x/y ∩ w/z = x ◦ x when (y, x) ∉ ρ and (z, w) ∈ ρ or

x/y ∩ w/z = w ◦ w when (y, x) ∈ ρ and (z, w) ∉ ρ;
(iii) x/y ∩ w/z = x ◦ x ∩ w ◦ w when (y, x) ∉ ρ and (z, w) ∉ ρ .

Lemma 1. If ρ is reflexive, then the transposition axiom is fulfilled in (i) and (ii) of Proposition 8.

Proof. (i) Consider the intersection x• z∩w•y. We have x• z∩w•y = (x•x∪ z • z)∩ (w•w∪y•y).
Since (y, x) ∈ ρ, it follows that x ∈ y • y. Also (x, x) ∈ ρ, because ρ is reflexive. Thus x ∈ x • x.
Consequently x • z ∩ w • y ≠ ∅. The proof of (ii) is similar. �

Lemma 2. If ρ2
= ρ , then the transposition axiom is fulfilled in cases (i) and (ii) of Proposition 8.

Proof. (i) Consider the intersection x•z∩w•y, which is equal to (x•x∪z•z)∩(w•w∪y•y). Suppose
that (z, w) ∈ ρ. Since H is the domain and the range of ρ, there exists t ∈ H such that (w, t) ∈ ρ.
Thus, t ∈ w • w. Next, (z, t) ∈ ρ2, because (z, w) ∈ ρ and (w, t) ∈ ρ. But ρ2

= ρ; hence (z, t) ∈ ρ
and therefore t ∈ z • z. Consequently, t ∈ x • z ∩ w • y, so the intersection is non-void. The proof of
(ii) is similar. �

Corollary 2. If ρ is transitive, then the transposition axiom is fulfilled in cases (i) and (ii) of Proposition 8.

Proof. Ifρ is transitive, thenρ2
⊆ ρ. SinceHρ is a hypergroup, it holds thatρ ⊆ ρ2. Thus,ρ2

= ρ. �

Proposition 9. If ρ is compatible (i.e. reflexive and symmetric), then the transposition axiom is valid
in Hρ .

Proof. Since ρ is reflexive, according to Lemma 1 the transposition axiom is valid in cases (i) and (ii)
of Proposition 8. Now, for case (iii), suppose that x/y ∩ w/z ≠ ∅. Since x/y ∩ w/z = x ◦ x ∩ w ◦ w, it
follows that the intersection x ◦ x ∩ w ◦ w is non-empty. But x ◦ x ∩ w ◦ w = x • x ∩ w • w, because
ρ is symmetric. Thus, x • x ∩ w • w ≠ ∅. Next, the inclusion x • x ∩ w • w ⊆ x • z ∩ w • y holds true.
Hence, x • z ∩ w • y ≠ ∅ and so the transposition axiom is valid. �

Also from the above lemmas, it follows that we have:

Proposition 10. If ρ is reflexive or transitive and the implication

x ◦ x ∩ w ◦ w ≠ ∅ ⇒ x • x ∩ w • w ≠ ∅

holds true for all x, w in H, then the transposition axiom is valid in Hρ .
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The implication x ◦ x ∩ w ◦ w ≠ ∅ ⇒ x • x ∩ w • w ≠ ∅ means that a pair of elements with a
common predecessor have a common successor.

Proposition 11. If (y, x) ∈ ρ and x • x contains an outer element, then

x/y ∩ w/z ≠ ∅ ⇒ x • z ∩ w • y ≠ ∅.

Proof. Let (y, x) ∈ ρ and let t be an outer element in x • x. Then, (x, t) ∈ ρ. Therefore, (y, t) ∈ ρ2.
But t is an outer element, so (y, t) ∈ ρ. Thus, t ∈ y • y. �

The two hypercompositions ‘‘•’’ and ‘‘◦’’ can be viewed as in graphs. A directed graph consists of
a finite set V whose members are called vertices and a subset A of V × V whose members are called
arcs. Thus, A is a binary relation in V and so, through A, the two hypercompositions ‘‘•’’ and ◦ can be
defined. Then, x • x consists of all vertices z for which an arrow exists pointing from x to z, while x ◦ x
consists of all vertices z for which an arrow exists pointing from z to x (see also [18]).

3. Boolean matrices and finite hypergroupoids

The Boolean domain B = {0, 1} becomes a semiring under the addition

0 + 1 = 1 + 0 = 1 + 1 = 1, 0 + 0 = 0

and the multiplication

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

This semiring is called a binary Boolean semiring. A Boolean matrix is a matrix with entries from the
binary Boolean semiring. Every binary relation ρ in a finite set H with cardH = n ≠ 0 can be
represented by a Boolean matrix Mρ and conversely every n × n square Boolean matrix defines on
H a binary relation. Indeed, let H be the set {a1, . . . , an}. Then, an n× n Boolean matrix is constructed
as follows: the element (i, j) of the matrix is 1 if (ai, aj) ∈ ρ and it is 0 if (ai, aj) ∉ ρ and vice versa.
Hence, in every set with n elements, 2n2 partial hypergroupoids can be defined. The element ak of H
is an outer element of ρ if the kth column of Mρ2 has a zero entry. If all the entries of the kth column
are 1, then ak is an inner element of ρ. Moreover, Mρ2 = (Mρ)2. A square Boolean matrix is called
total if all its entries are equal to 1. A Boolean matrix is called good if its square is the total matrix [1],
i.e. the good matrices are the square roots of the total matrix [21]. A basic Boolean matrix is a good
matrix which is converted to one that is not good through the replacement of any unit entry with
0 [21]. It is proven that all the goodmatrices are generated from the basic ones [21]. An n× n Boolean
matrix which has all the entries of its ith row and its ith column equal to 1, i = 1, . . . , n, is called the
minimum basic matrix [21].

Let Hρ denote the above mentioned partial hypergroupoid, which is defined by a binary relation ρ
through the hypercomposition ‘‘• ’’. Then, the propositions of the previous paragraph can be restated
using Boolean matrices. Thus:

Theorem 1. Hρ is a hypergroupoid if and only if Mρ has no zero rows.

Theorem 2. Hρ is a quasihypergroup if and only if Mρ has no zero rows and no zero columns.

From Proposition 2 it follows that:

Theorem 3. Hρ is a semihypergroup if and only if:
(i) Mρ consists only of non-zero rows;
(ii) if a column of the matrix Mρ2 has a zero entry, then it coincides with the same column of Mρ .

Also from Proposition 3, it follows that:

Theorem 4. Hρ is a hypergroup if and only if:
(i) Mρ consists only of non-zero rows and non-zero columns;
(ii) whenever a column of the matrix Mρ2 has a zero entry, it coincides with the same column of Mρ .
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Since the square roots of the total Boolean matrices consist only of non-zero rows and non-zero
columns [21], it follows that:

Theorem 5. The square roots of the total Boolean matrices produce Rosenberg hypergroups.

Moreover, from Proposition 10 it follows that:

Theorem 6. A hypergroup Hρ is a join one if:

(i) all the elements on the main diagonal of Mρ are equal to 1 or Mρ = Mρ2 ;
(ii) the entrywise product of two rows ai∗ and aj∗ of Mρ contains a non-zero entry whenever the entrywise

product of the corresponding columns a∗i and a∗j contains a non-zero entry.

More generally, if (ai∗)

aj∗

is the entrywise product of the two rows ai∗ and aj∗, then, from

Proposition 8, it follows that:

Theorem 7. A hypergroup Hρ is a join one if and only if

(i) whenever an entry (j, i) is 1 , then the row vector (ai∗ + al∗)

aj∗ + ak∗


is not the zero one, for all the

row vectors al∗, ak∗ of Mρ ;
(ii) the entrywise product of two rows ai∗ and aj∗ of Mρ contains a non-zero entry whenever the entrywise

product of the corresponding columns a∗i and a∗j contains a non-zero entry.

Corollary 3. The Rosenberg hypergroup which is produced from the minimum basic matrix is a join
one.

Relevant propositions hold true for the hypercompositional structures which are defined by a
binary relation ρ through the hypercomposition ‘‘◦ ’’; e.g., from Proposition 6 it follows that:

Theorem 8. (H, ◦) is a hypergroup if and only if:

(i) Mρ consists only of non-zero rows and non-zero columns;
(ii) whenever a row of the matrix Mρ2 has a zero entry, it coincides with the same row of Mρ .

Thus, a principle of duality holds between the two hypercompositions ‘‘•’’ and ‘‘◦’’:
Given a theorem, the dual statement resulting from the interchanging of one hypercomposition

with the other is also a theorem.
Hence:

Theorem 9. The hypergroup (H, ◦) is a join one, if and only if:

(i) whenever an entry (i, j) is 1 , then the column vector (a∗i + a∗l)(a∗j + a∗k) is not the zero one, for all
column vectors a∗l, a∗k of Mρ ;

(ii) the entrywise product of two columns a∗i and a∗j of Mρ contains a non-zero entry whenever the
entrywise product of the corresponding rows ai∗ and aj∗ contains a non-zero entry.

Next, we come to the question of whether two hypergroupoids generated by binary relations
are isomorphic or not. The answer has been given in [20] by the following proposition and
theorem:

Proposition 12. If, in the Boolean matrix Mρ , the ith and jth rows are interchanged and, at the same time,
the corresponding ith and jth columns are interchanged as well, then the resulting new matrix, like the
initial one, produces isomorphic hypergroupoids.

Theorem 10. If the Boolean matrix Mσ results from Mρ on interchanging rows and the corresponding
columns, then the hypergroupoids Hσ and Hρ are isomorphic.
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4. Mathematica packages

The Mathematica [24] packages follow below.

4.1. Counting all hypergroups

The function Good[di] returns the Boolean matrices that form a hypergroupoid:

Good[di_] :=
Module[{c, i1, z},

c = Tuples[Tuples[{0, 1}, di], di];
z = Table[Min[Flatten[

- c[[i1]] + Sign[c[[i1]].c[[i1]]]]]*2^(di*di)
+ Length[Position[c[[i1]], Table[0, {i2, 1, di}]]],

{i1, 1, 2^(di*di)}];
Return[c[[Flatten[Position[z, 0]]]]]

];

For example, the eight Boolean matrices of second order that give hypergroupoids are the following:

In[1]:=Good[2]
Out[1]:={{{0, 1}, {0, 1}}, {{0, 1}, {1, 1}},

{{1, 0}, {0, 1}}, {{1, 0}, {1, 0}},
{{1, 0}, {1, 1}}, {{1, 1}, {0, 1}},
{{1, 1}, {1, 0}}, {{1, 1}, {1, 1}}}

The results of the enumeration of hypergroupoids of order 2, 3, 4, 5 are as follows:

In[2]:= Length[Good[2]]
Out[2]= 8
In[3]:= Length[Good[3]]
Out[3]= 236
In[4]:= Length[Good[4]]
Out[4]= 28023
In[5]:= Length[Good[5]]
Out[5]= 13419636

The code that follows constructs a hypergroupoid from a Boolean matrix:

HyperGroupoid[a_List, order_] :=
Table[Table[Complement[

Union[Sign[a[[i1]] + a[[i2]]]*Table[j3,
{j3, 1, order}]

], {0}],
{i2, 1, order}],

{i1, 1, order}];

Example. The 99th Boolean matrix of third order that results in a hypergroupoid is the following:

In[6]:=Good[3][[99]] // MatrixForm

Out[6] =

1 0 0
1 1 0
1 0 1


.

The hypergroupoid resulting from the above matrix is the following:

In[7]:=HyperGroupoid[Good[3][[99]], 3] // MatrixForm

Out[7] =


{1} {1, 2} {1, 3}

{1, 2} {1, 2} {1, 2, 3}
{1, 3} {1, 2, 3} {1, 3}


.
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The function GoodH[di] returns the Boolean matrices that form a hypergroup:

GoodH[di_] :=
Module[{c, i1, z, h2, outer, indexes},

c = Tuples[Tuples[{0, 1}, di], di];
z = Table[ Min[Flatten[-c[[i1]]

+ Sign[c[[i1]].c[[i1]]]]]*2^(di*di)
+ Length[Position[c[[i1]], Table[0, {i2, 1, di}]]]
+ Length[Position[Transpose[c[[i1]]],

Table[0, {i2, 1, di}]]], {i1, 1, 2^(di*di)}];
h2 = c[[Flatten[Position[z, 0]]]];
outer = Table[Complement[

Sign[di - Total[Sign[h2[[j1]].h2[[j1]]]]]*
Table[j3, {j3, 1, di}], {0}], {j1, 1, Length[h2]}];

indexes = Complement[Range[1, Length[h2]],
Flatten[Position[

Table[Max[
Sign[h2[[j1]].h2[[j1]]][[All,outer[[j1]]]]

- h2[[j1]][[All, outer[[j1]]]]],
{j1, 1, Length[h2]}], 1]]

];
Return[h2[[indexes]]]
];

For example we get the six Boolean matrices of second order that form a hypergroup:

In[8]:=GoodH[2]
Out[8]:={{{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}},

{{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}, {{1, 1}, {1, 1}}}

Enumeration of hypergroups:

In[9]:= Length[GoodH[2]]
Out[9]= 6
In[10]:= Length[GoodH[3]]
Out[10]= 149
In[11]:= Length[GoodH[4]]
Out[11]= 9729
In[12]:= Length[GoodH[5]]
Out[12]= 2921442

These are the only hypergroups resulting from the hypercompositions which are defined from binary
relations.

With a small modification of the above codes we found the join hypergroups of orders 2, 3, 4, and
5 to be 5, 106, 6979 and 2122681 respectively.

4.2. Counting non-isomorphic hypergroups

The packages that enumerate the non-isomorphic classes follow below. IsomorphTest1 returns
all isomorphisms of a matrix.

IsomorphTest1[a_List] :=
Module[{p, a1},

p = Permutations[Range[1, Length[a]]];
Return[Table[a1 = a;

a1 = ReplaceAll[a1, a1[[All, Table[j2,
{j2, 1, Length[a1]}]]] ->

a1[[All, p[[j1]]]]];
ReplaceAll[a1, a1[[Table[j2,

{j2, 1, Length[a]}]]] ->
a1[[p[[j1]]]]],

{j1, 1, Length[p]}]
]]
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Let us examine the six permutations of the matrix

Mρ =

1 0 1
1 1 0
0 1 1


which are defined by corresponding binary relations producing isomorphic hypergroupoids:

In[13]:= IsomorphTest1[{{1, 0, 1}, {1, 1, 0}, {0, 1, 1}}]
Out[13]:= {{{1,0,1}, {1,1,0}, {0,1,1}}, {{1,1,0}, {0,1,1}, {1,0,1}},

{{1,1,0}, {0,1,1}, {1,0,1}}, {{1,0,1}, {1,1,0}, {0,1,1}},
{{1,0,1}, {1,1,0}, {0,1,1}}, {{1,1,0}, {0,1,1}, {1,0,1}}}

We now count the isomorphic classes of the hypergroupoids:

Cardin[d_] :=
Module[{h2, cardinalities, len, temp1, temp},

h2 = Good[d];
cardinalities = Table[0, {j1, 1, Factorial[d]}];
While[Length[h2] > 0,

temp = Union[IsomorphTest1[h2[[1]]]];
len = Length[Union[temp]];
cardinalities[[len]] = cardinalities[[len]] + 1;
h2 = Complement[h2, temp]

];
Return[cardinalities]]

We then get the following:

In[14]:= Cardin[2]
Out[14]:= {2, 3}
In[15]:= Total[%]
Out[15]:= 5
In[16]:= Cardin[3]
Out[16]:= {3, 1, 13, 0, 0, 32}
In[17]:= Total[%]
Out[17]:= 49
In[18]:= Cardin[4]
Out[18]:= {3, 0, 2, 17, 0, 15, 0, 8, 0, 0, 0, 238,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1039}
In[19]:= Total[%]
Out[19]:= 1322
In[20]:= Cardin[5]
Out[20]= ...
In[21]:= Total[%]
Out[21]= 117534

By substituting line h2=Good[di] in the above function Cardin[] with line h2=GoodH[di],
we get the isomorphic classes of the hypergroups:

In[22]:= Cardin[2]
Out[22]= {2, 2}
In[23]:= Total[%]
Out[23]= 4
In[24]:= Cardin[3]
Out[24]= {3, 1, 10, 0, 0, 19}
In[25]:= Total[%]
Out[25]= 33
In[26]:= Cardin[4]
Out[26]= {3, 0, 2, 11, 0, 12, 0, 5, 0, 0, 0, 139,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 329}
In[27]:= Total[%]
Out[27]= 501
In[28]:= Cardin[5]
Out[28]= ...
In[29]:= Total[%]
Out[29]= 26409
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Table 1
Cumulative results.

Order → 2 3 4 5

Boolean matrices (BM) 16 512 65536 33554432
BM forming hypergroupoids 8 236 28023 13419636
Non-isomorphic BM forming hypergroupoids 5 49 1322 117534

BM forming hypergroups 6 149 9729 2921442
Non-isomorphic BM forming hypergroups 4 33 501 26409
BM forming join hypergroups 5 106 6979 2122681

5. Conclusion

It is proven herein that there exist numerous Rosenberg-type hypercompositional structures, the
number of which is calculated with the use of Mathematica packages that are constructed for this
purpose. The results of these calculations are given in the cumulative Table 1 for orders 2, 3, 4 and
5. Because of the principle of duality enunciated above, the same number of hypercompositional
structures exist for the dual hypercomposition.
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