
International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 1 IJCTT

Reprogramming wireless sensor nodes
Helen C. Leligou, Christos Massouros, Eleftherios Tsampasis, Theodore Zahariadis, Dimitrios Bargiotas,

Konstantinos Papadopoulos, Stamatis Voliotis
Dept. of Electrical Engineering, Technological Educational Institute of Chalkis, Psahna, Greece

Abstract— As the applications of Wireless Sensor Networks
increase rapidly, the number of deployed sensor devices
proliferates, which prompts the research community to work
towards their integration in the so-called “Internet of Things” to
gather real time information and make the maximum out of their
use towards enhancing the user experience. The capability to
reconfigure/reprogram them remotely not only enables easy
maintenance and code updates, which is mandatory in large
sensor network deployments, but also provides an unprecedented
flexibility regarding the use of all available resources of different
types. However, the design of a reliable dissemination protocol is
a real challenge and the reason is threefold: the desired
reprogramming requirements differ from use case to use case
(e.g. tolerated reprogramming time, affordable overhead), the
wireless medium is characterized by low reliability, and the
devices are severely resource constrained. For this reason, in this
paper we first explore the reprogramming requirements and the
intricacies of WSNs and then review the already proposed
network protocols for reprogramming wireless sensor networks
placing emphasis on the their features to guide both prospect
users and designers efforts.

Keywords— Wireless sensor networks, reprogramming, data
dissemination protocols.

I. INTRODUCTION
As the applications of Wireless Sensor Networks (WSNs)

proliferate, the population of sensor nodes increases and the
need to manage them remotely becomes more prominent. The
need for reprogramming the nodes stems from the fact that
such systems must often operate for extended periods of time
unattended, while adjustments to the environment after
deployment as well as code maintenance and update are
needed (e.g. to improve security or robustness). Remote
management is also required to fulfill the application
requirements which may change in time and space [1]. In
emerging WSNs which consist of hundreds or even thousands
of nodes, reprogramming them one-by-one requires both
physical access to each of them (which is not always feasible)
and consists an extremely time-consuming procedure,
impeding any real-time reprogramming without human
intervention. The ability to add new functionality or perform
software maintenance without having to physically reach each
individual node is already an essential service.

Although solutions for remotely programming
communication devices attached to specific infrastructure
exist, programming resource constrained nodes over the
wireless medium imposes different challenges than traditional
network programming approaches. Transmitting the code that
the node will execute over the air represents a real challenge
due to the enhanced reliability required (since in this case the

complete image must reach all the nodes) while the wireless
medium is inherently unreliable. Moreover, due to limited
memory, the involved nodes cannot store large files of
programming code and due to limited processing resources the
complexity of the employed code dissemination schemes has
to be carefully assessed to ensure feasibility. If the image
cannot fit into a single packet, it must be placed in stable
storage until the transfer is complete, at which point the node
can be safely reprogrammed. Another concern is the low
throughput of WSNs: while the broadcast nature of the
wireless medium can be exploited to compensate for the low
communication throughput, special actions need to be taken in
case of lost segments (e.g. due to collisions or errors) either
when all or just one of the receiving nodes has not
successfully received a packet. Hence, the design of a reliable
data dissemination protocol for propagating large data objects
from one or more source nodes to many other nodes over a
multi-hop, wireless sensor network is a real challenge.

Unlike the unicast case where requirements for reliable,
sequenced data delivery are fairly general, different multicast
applications have widely different requirements for reliability.
For example, some applications require that delivery obey a
total ordering while many others do not. Some applications
have many or all the members sending data while others have
only one data source. Some deployments have all the network
nodes executing the same applications and hence code
dissemination is relevant to all nodes, while other consist of
groups of nodes supporting different applications. Mission
critical applications impose severe time-constrains while in
other applications prolonged network lifetime is a top priority
requirement. In any case, the dissemination process should
ensure that no service interruptions to a deployed application
and the debugging and testing cycle will occur. Another great
challenge is imposed by the dynamic network membership
and thus it must be ensured that all nodes receive the newest
code since network membership is not static: nodes come and
go. And while handling all these intricacies, the dissemination
protocol designer should keep in mind that the dissemination
must tolerate node densities which can vary by factors of a
thousand or more. Such differences affect the design of a
reliable multicast protocol with respect to the considered
optimization metric and desired functionality. Given also the
limited processing and memory requirement it becomes clear
that it is very difficult (if possible at all) to design a reliable
multicast delivery scheme that optimally meets the
functionality, scalability, and efficiency requirements of all
applications.

For this reason, this paper aims to define the functionality
that any such protocol needs to fulfill and to explore the

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 2 IJCTT

implications of the available design choices based on state-of-
the-art network protocols for reprogramming purposes. We
anticipate that this work will help both protocol designers
providing them guidelines and prosper system
designers/administrators to choose the appropriate solution.
The procedure of node reprogramming / re-tasking can be
split in two steps: first, decide when reprogramming is needed
and second, disseminate the program. The schemes addressing
the former are usually referred to as Code Consistency
Maintenance Protocols (CCMP) and the latter are usually
referred to as data dissemination protocols. (Integrated
solutions addressing both issues have also been proposed.)
Thus, the rest of the paper is organized as follows: in section
II code consistency protocols are discussed while section III is
devoted to dissemination protocols. Finally in section IV, an
assessment and designer guidelines conclude the paper.

II. CODE CONSISTENCY MAINTENANCE PROTOCOLS
The first step in reprogramming a sensor node is to decide

when reprogramming is needed and which part of the code
needs update (if partial reprogramming is supported).
Depending on the application, this can be decided and
initiated by the system user, or automatically (in a distributed
manner) by the nodes themselves. In the former case, the
system user issues a reprogram command along with a set of
attributes and the nodes operate in a slave-like mode. In the
latter, the nodes should realize whether a code update is
needed on their own.

An interesting solution for the first case is presented in [2].
The main goal of the Sensor Network Management System
(SNMS) is the monitoring and control of the node and
network status by humans. SNMS provides two core services:
a query system to enable rapid, user-initiated acquisition of
network health and performance data and a logging system to
enable recording and retrieval of system-generated events. For
this reason, a logical tree-topology for reporting the status of
the nodes and the network is constructed and each time the
system operator decides to check the health of the network, it
issues several queries. In response to these queries the nodes
provide status information and if a new code version needs to
be downloaded, DRIP is used as the dissemination protocol.
The command to switch over the new code uses (a different)
named dissemination scheme. SNMS provides also naming
instructions for the attributes that may need to be reported.
The first contribution of the SNMS networking stack is a
collection tree construction protocol that minimizes state
requirements by not requiring a neighbor table, and minimizes
network traffic by requiring explicit initiation of tree
construction. However, the cost of maintaining a tree
construction can only be afforded in static or semi-static
sensor networks. If high mobility has to be supported, the cost
of maintaining a tree just for checking the network status
becomes high.

Coming to the second case, a straight forward solution
would be to periodically announce a profile of the code they
run, so that their neighbours can compare the received
information with the version of the code they run to figure out

whether a code update is needed. As this way overhead is
introduced, multiple schemes trying to reduce it have been
proposed.

A first attempt in this direction was proposed in 2004 and is
widely cited. Trickle [3] is an algorithm for propagating and
maintaining code updates in wireless sensor networks.
Borrowing techniques from the epidemic/gossip, scalable
multicast, and wireless broadcast literature, Trickle uses a
“polite gossip” policy, where motes periodically broadcast a
code summary to local neighbors but stay quiet if they have
recently heard a summary identical to theirs. When a mote
hears an older summary than its own, it broadcasts an update.
Instead of flooding a network with packets, the algorithm
controls the send rate so each mote hears a small trickle of
packets, just enough to stay up to date. This simple
mechanism can scale to thousand-fold changes in network
density, propagate new code in the order of seconds, and
impose a maintenance cost on the order of a few sends an hour.

The data discovery and Dissemination Protocol (DIP)
proposed in [4] places emphasis on the search of new items
that need to be exchanged among nodes. The rationale behind
its design is that dissemination protocols have two main
performance metrics: detection latency and maintenance cost.
Maintenance cost is the rate at which packets to announce the
current code version are sent when a network is up-to-date.
Traditionally, these two metrics have been tightly coupled. A
smaller interval lowers latency but increases the packet
transmission rate. A larger interval reduces the transmission
rate but increases latency. Trickle addresses part of this
tension by dynamically scaling the interval size, so it is
smaller when there are updates and larger when the network is
stable. While this enables fast dissemination once an update is
detected, it does not help with detection itself. DIP uses a
hybrid approach of randomized scanning and tree-based
directed searches. The result is that for T items, DIP can
identify new items with O(log(T)) packets while maintaining a
O(1) detection latency. By dynamically selecting which of the
two algorithms to use, DIP achieves high performance both in
terms of transmissions and speed.

Based on the observations that when nodes have different
code versions, the network may not behave as intended,
wasting time and energy, DHV has been proposed [5] as an
efficient code consistency maintenance protocol to ensure that
every node in a network will eventually have the same code.
DHV is based on the simple observation that if two code
versions are different, their corresponding version numbers
often differ in only a few least significant bits of their binary
representation. DHV allows nodes to carefully select and
transmit only necessary bit level information to detect a newer
code version in the network. The name DHV comes from the
three steps in the protocol:

• Difference detection: each node broadcasts a hash of
all its versions called a SUMMARY message. Upon receiving
a hash from a neighbour, a node compares it to its own hash.
If they differ, there is at least one code item with a different
version number. The next step is identification which is

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 3 IJCTT

achieved thourgh the horizontal search and vertical search
steps.

• Horizontal search: a node broadcasts a checksum of
all versions, called a HSUM message. Upon receiving a
checksum from a neighbour, the node compares it to its own
checksum to identify which bit indices differ and proceeds to
the next step.

• Vertical search. In vertical search, the node
broadcasts a bit slice, starting at the least significant bit of all
versions, called a VBIT message. If the bit indices are similar,
but the hashes differ, the node broadcasts a bit slice of index 0
and increases the bit index to find the different locations until
the hashes are the same. Upon receiving a VBIT message, a
node compares it to its own VBIT. After identifying which
(key, version) tuples differ, the node broadcasts these (key,
version) tuples in a VECTOR message.

Upon receiving a VECTOR message, a node compares it to
its own (key, version) tuple to decide who has the newer
version and if it should broadcast its DATA. A node with a
newer version broadcasts its DATA to nodes with an older
version. DHV can detect and identify version differences in
O(1) messages and latency compared to the logarithmic scale
of other protocols while in [5] DHV is shown to outperform
DIP.

Multicast-based Code redistribution Protocol (MCP) is a
stateful protocol for code maintenance that places emphasis on
energy efficiency [6] designed to support also the case where
nodes implementing different applications may exist in the
same sensor networks. Each node in MCP maintains a small
table to record the interesting information of known
applications. The table enables sending out multicast-based
code dissemination requests. MCP employs a gossip-based
source node discovery strategy. Each sensor summarizes the
application information from overheard advertisement
messages and periodically sends out this information. To
reprogram a subset of sensors, the sink floods a dissemination
command that guides which sensors should switch to run
application A. After receiving the command from the sink,
each sensor identifies its dissemination role as a) source, if the
sensor has the binary of application A; b)requester, if the
sensor does not have the binary of A but needs to switch to
run A; or c)forwarder, if the sensor is neither a source nor a
requester.

A requester periodically sends out requests to its closest
source, until it acquires all the pages of application A. Instead
of broadcast, the request message is sent to the source via
multicast. A requester resends the message until it timeouts. It
tries to request data from each source node several times
before marking the node as a temporary non-available source.
A source node responds with the data (i.e., Data messages)
that contain code fragments while a forwarder forwards both
request and data packets. Thus, dissemination requests are
forwarded to nearby source nodes rather than flooding the
network. Compared to broadcasting based schemes, MCP
greatly reduces signal collision, saves both the dissemination
time and reduces the number of dissemination messages.

III. DATA DISSEMINATION PROTOCOLS

A. The design options
Once one or more nodes have recognized the need for code

update, the dissemination protocol is triggered. The design
space for data dissemination protocols is large and includes:
 selection of nodes to transmit data. (For example,

having multiple nodes transmitting the same data in the
same transmission range area is not a wise option in
the energy and throughput constrained environment of
sensor networks.)

 segment management, to alleviate the limited memory
resources problem.

 reliability assurance scheme which should define how
lost segments are identified, who is responsible for
repairs.

To decide which node will provide the updated program,
acting as the source of the updated program different options
arise. Even if initially only one node has the updated code, if it
broadcasts it, the set of neighbours in its transmission range
can become the transmitting nodes in the sequence. (An
example is shown in fig. 1a, where nodes 2, 3 and 4 receive all
pages of a program image.)

Fig. 1 Code dissemination in a neighbourhood-per neighbourhood manner

In this case where multiple nodes can transmit the code, a
specific protocol to choose the source for each neighbour has
to be defined. (In fig. 1, it is obvious that node 4 may save
energy since node 8 can receive the updated code from node 3
and the same holds for node 7.) Solutions ranging from
choosing the latest node that advertised the program to more
sophisticated publish-subscribe schemes have been proposed.
The source selection scheme is tightly coupled with the way
the program is disseminated (e.g. fragmented or not) and with
the way that lost segments are retrieved. For example,
fragmentation allows for spatial multiplexing which results in
reduced time required for the dissemination of the program, as
shown in fig. 2, where node 6 disseminates page 1, when node
1 disseminates page 2, assuming that the code has been split in

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 4 IJCTT

pages. As regards lost segments retrieval, the use of negative
acknowledgements is usually most suited to resource
constrained WSNs. If one node has lost a certain packet, it can
either request the retransmission of the packet, or wait to hear
it again as part of the dissemination of the code to a next
round. In the former case, the request can be unicasted to the
source, multi-casted to improve the probability of receiving
back the packet or even broadcasted, to make sure the packet
will be received at the cost of energy waste from multiple
nodes and increased congestion probability. Other ways to
enhance reliability include the adoption of forward error
correction (FEC) to avoid (to the extent possible)
retransmissions or use link quality estimates to improve
decisions or even use fountain codes to transmit data.

Fig. 2 spatial multiplexing: when node 6 disseminates page 1, node 1
disseminates page 2, reducing the total code dissemination time

The performance metrics reflecting the target of the
dissemination protocols [7] include efficiency in terms of
overhead (its reduction directly translates to better utilization
of the low available throughput) and of energy (which affects
the network lifetime, an important parameter in this mainly
battery operated environment) as well the time required to
detect that an update is needed and the time required to
disseminate the update throughout the network.

.

B. Dissemination protocol examples
As the core service is the multicast dissemination of the

code, the roots of such protocols lie back in 1997, when the
Scalable Reliable Multicast protocol was proposed [8]. It was
the first attempt to design a reliable transport protocol suitable
for multicasting cases and cases where single/multiple sources
initiate sessions with multiple destinations. SRM was
designed to meet only the minimal definition of reliable
multicast, i.e., eventual delivery of all the data to all the group
members, without enforcing any particular delivery order. Its
inventors state that if the need arises, machinery to enforce a
particular delivery order can be easily added on top of this

reliable delivery service. SRM is also heavily based on the
group delivery model that is the centerpiece of the IP
multicast protocol where data sources simply send to the
group' s multicast address (a normal IP address chosen from a
reserved range of addresses) without needing any advance
knowledge of the group membership. To receive any data sent
to the group, receivers simply announce that they are
interested (via a “join” message multicast on the local subnet);
no knowledge of the group membership or active senders is
required. Each receiver joins and leaves the group individually,
without affecting the data transmission to any other member.
SRM further enhances the multicast group concept by
maximizing information and data sharing among all the
members, and strengthens the individuality of membership by
making each member responsible for its own correct reception
of all the data. SRM attempts to follow the core design
principles of TCP/IP requiring only the basic IP best effort
delivery model and builds reliability on an end-to-end basis.
No change or special support is required from the underlying
IP network. In a fashion similar to TCP adaptively setting
timers or congestion control windows, the algorithms in SRM
dynamically adjust their control parameters based on the
observed performance within a session. This allows
applications using the SRM framework to adapt to a wide
range of group sizes, topologies and link bandwidths while
maintaining robust and high performance.

However, keeping state information per session and
executing the TCP/IP functionality is extremely demanding
for sensor nodes. Additionally, when a new code has to be
disseminated to all nodes in the network, SRM does not
exploit the fact that broadcast costs less in wireless sensor
networks.

Another approach to the dissemination problem answering
these issues is to transfer the data in a neighborhood-by-
neighborhood basis. This implies a single-hop mechanism that
can be recursively extended to multi-hop. Each node that
receives the code can then start transmitting (broadcasting) it
thus becoming the source node. In this case, it is the number
of source nodes that need to be handled, since there is no need
for two one-hop neighbours to both behave as sources using
for example a publish-subscribe interface. Sources with no
subscribers should remain silent.

In an attempt to reduce the time required for the code to
reach all the network nodes, Multi-hop, Over-the-Air code
distribution Protocol- MOAP [9] uses the store-and-forward
approach, providing a ‘ripple’ pattern of updates. While it
adopts the previous approach of broadcasting the code in a
neighbour-per-neighbour way, it allows each node having
received the code to start further disseminating it (announcing
the version of the code it has) thus reducing the latency. A
link-statistics mechanism is used to try to avoid unreliable
links. After waiting a period to receive all subscriptions, the
sender then starts the data transfer. As regards lost segments,
to alleviate the sender from monitoring multiple sessions with
the recipients of the code, in MOAP the receivers are
responsible for identifying any lost segments. Once this
happens, the request for the segment is not broadcasted, to

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 5 IJCTT

avoid duplications, but instead is requested by a single node; a
keep-alive timer is used to recover from unanswered unicast
retransmission requests – when it expires a broadcast request
is sent.

While further optimizations are possible, MOAP is a
dissemination protocol that was feasible to implement in
motes (as reported in [9]) and has been shown to reduce the
overhead by 60% compared to the simple flooding case.

Just one year later, Deluge a widely used and recognized
protocol has been proposed [10]. It builds on prior work in
density-aware, epidemic maintenance protocols and includes
several optimisations. Firstly, it adopts Trickle for the
advertisement of code versions which reduces the messages
needed for the nodes to realize a new code version is available
and should be propagated. A second contribution of Deluge is
that it splits the code into a set of fixed-size pages thus it
provides a manageable unit of transfer which allows for
spatial multiplexing, i.e. pages are dealt with as independent
transfer objects. This way the time required for the
propagation of a large program is reduced and at the same
time incremental upgrades are supported.

Based on Trickle, each node occasionally advertises (ADV)
its most recent object profile to whatever nodes that can hear
its local broadcast. From the object profile, the receiving node
R determines which portions of the data need updating and
requests (REQ) them from any neighbour that advertises the
availability of the needed data, and finally this node provides
the data (three way handshake). Deluge simply requests data
from the node which most recently advertised the needed page,
which is an easy-to-implement scheme and ensures no
duplication of pages. Nodes receiving requests then broadcast
any requested data. A node requests from a single node
(neighbour) updated code or exploits a request issued by
another neighbour. Nodes then advertise newly received data
in order to propagate it further.

The major advantages of Deluge include: a) Deluge’s three-
phase handshaking protocol helps ensure that a bi-directional
link exists before transferring data, b)Representing the data
object as a set of fixed-size pages provides a manageable unit
of transfer which allows for spatial multiplexing, c) Deluge
advertises the availability of complete pages even before all
pages in the object are complete allowing the further
propagation of newly received pages, d)supports efficient
incremental upgrades, e)Deluge attempts to minimize the set
of nodes concurrently broadcasting data within a given cell
and f) it adopts lost segment recovery based on negative
acknowledgement which reduces the exchanged overhead.

Using both a real-world deployment and simulation,
Deluge has been shown to reliably disseminate data to all
nodes and characterize its overall performance. On Mica2-dot
nodes, Deluge can push nearly 90 bytes/second, one ninth the
maximum transmission rate of the radio supported under
TinyOS. Control messages are limited to 18% of all
transmissions. At scale, the protocol exposes interesting
propagation dynamics only hinted at by previous
dissemination work. On average a node receives about 3.35

times the minimum number of required data packets, due to
the single-channel, broadcast network.

Stream [11] builds on Deluge and optimizes what is
actually sent over the channel. Common intuition would be to
transfer only what actually needed, i.e., the program image.
However, Deluge disseminates the image of the programming
protocol together with that of the program to be transferred.
This considerably inflates the amount of data to be
disseminated (up to 20 folds for the transmission of a program
image consisting of a single page). Stream obviates this
problem by pre-installing in each sensor node, before its
actual deployment, the re-programming application. This is
done through the segmentation of the flash memory into
multiple partitions so that the re-programming protocol and
the program to be transferred are stored in different image
areas. Hence, at dissemination time Stream transmits over the
channel the minimal support (about one page) needed for the
activation of the re-programming image together with the
actual program image.

DRIP [2] is the unnamed reliable dissemination protocol of
Sensor Network Management System (SNMS).The SNMS
dissemination protocol, named Drip, provides a transport layer
interface to multiple channels of reliable message
dissemination. Implemented as a TinyOS component, Drip
provides a standard message reception interface. Each
component wishing to use Drip, registers a specific identifier,
which represents a reliable dissemination channel. Messages
received on that channel will be delivered directly to the
component. Each node is responsible for caching the data
extracted from the most recent message received on each
channel to which it subscribes, and returning it in response to
periodic rebroadcast requests. In the implementation reported
in [2], space for this cache is allocated by the subscribing
component, and data is retrieved from the cache in response to
an upcall. The Drip protocol uses a sequence number with
half-space wraparound to determine whether a received
message is new, and upon receipt of a new message, the data
is delivered to the subscribing component for required caching
and optional action.

The Drip protocol uses the message as the unit of reliability,
and the component as the unit of caching. This design allows
Drip to function as a standard transport layer protocol. But, it
does introduce extra complexity for a component that has
several independent variables which must be reliably
synchronized among all nodes in the network. To solve this
problem, the component must collect the current value of each
variable into a single reliably disseminated message. This
method will produce independent reliability for each variable,
as long as every node stores the same value of every variable.
This problem could also be solved by selecting the variable as
the unit of reliability and caching, and by associating a unique
key with each variable instead of associating a channel with
each message. However, this approach would require a
significantly larger key-space, and would blur the boundary
between protocol and data storage.

SYNAPSE [12] is an original reprogramming system for
WSNs designed to improve the efficiency of the error

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 6 IJCTT

recovery phase. Synapse implements a hop-by-hop data
dissemination protocol in which data blocks are sent during
so-called dissemination rounds and one node at a time is
allowed to send. SYNAPSE features a Hybrid Automatic
Repeat reQuest (HARQ) solution where data are encoded
prior to transmission and incremental redundancy is used to
recover from losses, thus considerably reducing the
transmission overhead. For the coding, digital Fountain Codes
(FCs) were selected as they are rate-less and allow for
lightweight implementations. Special Fountain Codes were
used at the heart of SYNAPSE to provide high performance
while meeting the requirements of WSNs. FCs are rateless and
have a low computational complexity, as encoding and
decoding are performed efficiently through XOR operations.
While others approaches mainly concentrated their study upon
devising smart algorithms (i.e., modified epidemic schemes)
for sender selection, sleeping modes etc., SYNAPSE’s focus
is on extremely efficient solutions for the local delivery of the
data (i.e., between the senders and their neighbors), as well as
their proper integration with previous techniques. It uses three
way handshakes as the paradigm introduced for Deluge above.
It implements randomization when sending advertisements. It
exploits broadcast transmissions for the code and Negative
Acknowledgments (NACK) to request missing data and it
implements the method proposed in Stream.

Considering that resource-awareness, time-efficiency, and
the integration of appropriate security solutions are keys to the
success and acceptance of a code update mechanism, a
dependable data dissemination protocol for time-efficient and
secure code updates in large-scale wireless sensor networks
has been proposed in [13]. The multi-hop propagation scheme
is based on security-enhanced fountain codes and means from
fuzzy control theory. The basic idea of a digital fountain is the
following: the fountain, i.e. the sender, generates a stream of
water drops, the encoded packets. Every receiver, in turn,
holds a bucket under the fountain until a sufficiently high
number of drops could be collected. The receiver can recover
the source data from any subset of encoded packets in which
the number of packets is equal to or only slightly higher than
the number of source packets. If some fraction of the initial
encoded packets is erased, it is not necessary to retransmit the
very same packets but rather yet another random linear
combination is sent. That is why fountain codes improve the
efficiency of wireless broadcast channels, i.e. one and the
same packet allows different receivers to extract
complementary information that is relevant to them.
Furthermore, a digital fountain supersedes the need for the
sender to guess the quality of the channel and therefore
enables the design of scalable transmission of data in a
broadcast and multicast setting over arbitrary channels.

To decrease the number of packet collisions and mitigate
the hidden terminal problem, means from fuzzy control were
used to dynamically adapt the send rates of sending nodes in
accordance with the local congestion of the radio channel.
Fuzzy control theory was recognized as a promising approach
to control the level of channel utilization as it is well suited for
resource constrained sensors. Furthermore, fuzzy control

systems were reported to be effective in making real time
decisions from incomplete information. The congestion level
of the channel and the demand of neighboring nodes for
missing data packets are characterized by the numbers of
overheard encoded and NACK packets. To reduce data
overhead, the output of the fuzzy controller is used to define a
time interval during which the next packet will be sent
randomly.

The use of fountain codes or random linear codes has been
also adopted in ReXOR [14], which is a light-weight and
density-aware reprogramming protocol for wireless sensor
networks that employs XOR encoding in the retransmission
phase to reduce the communication cost. ReXOR places
emphasis on the lightweight implementation as well as on
ability to adapt on the network density. Regarding the
lightweight implementation, results for the TinyOS platform
show that it requires less resources than other coding-based
schemes. As regards the adaptation of the network density,
this is achieved by adapting the inter-page waiting time.

MELETE [15] is a code dissemination protocol designed to
support multiple concurrent applications in a WSN, and thus
assumes that the network is split in groups of nodes executing
different tasks. MELETE employs a group-keyed method to
selectively distribute application code to only interested
sensor nodes, and reactively distribute code only when it is
required. This way only interested node receive the code
update while the second design choice delays the time of code
transportation until the exact moment the code is required at
the cost of higher delay in code transportation. A passive code
dissemination policy is proposed with active advertisements.
Specifically, version information of all groups is disseminated
throughout the network and maintained by all sensor nodes,
while code is passively disseminated only when it is requested
by certain nodes. Since version packets are usually smaller
than code packets, this policy aims to minimize network
traffic overhead while keeping all sensor nodes up to date
without large delay. Specifically, each node maintains the
version information of all applications that it has heard of.
Each node advertises its version information for all groups in
a round-robin fashion. Whenever a node receives newer
version information about a group, it updates its local data,
and sets its version timer to the highest rate, similarly to
Trickle. If the received information is for an associated group,
the node switches to the REQUEST state, and advertises its
request for the new code. The key difference between Melete
and Trickle is that Trickle allows nodes to advertise version
information only after receiving the code, while Melete allows
the propagation of version information without sending the
actual code. MELETE constructs a multi-hop region between
the requesting node (or requester) and potential responding
nodes (or responders) so that both requests and responses can
be transmitted across the region, referred to as a forwarding
region. To do so, one more state, FORWARD, is added into
Trickle, as also happens in MCP protocol. A sensor node
switches to the FORWARD state if it “believes” that its
neighbors need help to get their code, and stays in the
FORWARD state until one of the following three events:

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 7 IJCTT

timeout, the requests are fulfilled, or there is a need to switch
to the REQUEST or RESPOND states. This code chunk in its
forwarding cache. A forwarder broadcasts the cached request
using the Trickle protocol, as if it is a normal requester. When
the forwarding region expands to a responder, the responses
are transmitted throughout the forwarding region. Each
forwarder caches the most recently received chunk and
forwards it using Trickle, as if it is a normal responder. Nodes
outside the forwarding region discard any received responses.
To reduce traffic, the bitmap of a node is also updated upon
reception of forwarded responses in the neighborhood. When
the bitmap indicates no more chunks to forward, the forwarder
switches to the MAINTAIN state. However, neighbors of a
requester may blindly start forwarding even though some
other neighbors of the requester can resolve the request and
the forwarding region can unnecessarily expand to the entire
network even though a nearby responder is discovered. To
solve these problems: lazy forwarding and progressive
flooding are adopted. From a prospective forwarder’s
perspective, it should offer help to the requester only when it
was truly needed (i.e., one hop neighbors of the requester did
not resolve the request).This is difficult because either the
requests or responses can be lost or corrupted over the
wireless channel. To handle this problem, lazy forwarding was
proposed. The main idea is to allow enough time for
neighbors of a requester to respond before starting a
forwarding process. Specifically, each time a node receives a
request, it switches to the FORWARD state with a certain
probability, Pf. Pf increases with the number of received
requests. It is similar to a human life scenario: after hearing
multiple shouts for help, a person is more assured that
someone is in real trouble. To prevent a forwarding region
from expanding to the entire network, a progressive flooding
technique is proposed, a special n-ring model tailored to the
periodic broadcasting of Trickle. Each forwarded request is
associated with a time-to live (TTL), in terms of hop counts.

IV. ASSESSMENT AND CONCLUDING REMARKS
The problem of reliable data dissemination has been

addressed with multiple diverse approaches from the research
community. The reason is that, while a common set of
performance metrics could be agreed upon, the priority
assigned to each of them depends on the specific use case.
Additionally, the limited node and network resources prohibit
the realization of a sophisticated, possibly even modular
scheme that would be activated on demand, i.e. activate the
most suitable component based on the realized application. So,
any system designer should firstly clearly define the top
performance metrics of interest and then choose the
appropriate code maintenance and dissemination protocol.

Time-critical applications: when a system to support time
critical applications is designed, it is absolutely necessary to
avoid any service disruption (during code updates) and to
switch to the new code in minimal time. In this case, it is the
completion time (the time required for all the nodes to
received the updated code correctly) that counts most, and
should guide the selection of the dissemination protocol.

Moreover, to cope with the rapid code updates, code
consistency maintenance protocols that minimize the time
required to identify a new version should be used. Such
applications could be met at military missions or terrorist
attack defense, where a sensor system may undertake the
responsibility for gunshot localization and thus rapid
dissemination of information to combatants is critical. To
achieve low completion times and low version detection times,
higher overhead is required which increases the energy
consumption and reduces the bandwidth utilization.

Frequent code updates: When reprogramming is used to
change the functionality of the sensor network in the day or
between the days of the week, then the latency and the
completion time no longer represent the top requirement.
Instead, the energy consumption is more important in this case,
since lower energy consumption means longer network
lifetime. For example, reprogramming a sensor network to
execute a stronger encryption scheme may change twice every
day or to change specific parameters of the application (how
often and what types of sensed data are sent to the sink) does
not impose latency constraints (e.g. in agricultural monitoring
where nodes operate in unattended node in wide areas and
may need to monitor the temperature once every 5 or ten
minutes in spring but more often in winter to prevent the fruit
freeze). To safeguard the network lifetime, the energy
consumption which is tightly coupled with the overhead of the
code consistency and dissemination protocols should be the
basic decision factor.

Lost segment recovery: The scheme employed to recover
from lost segments affects both the completion time and the
overhead produced by the dissemination protocol. As such, it
could be seen as a parameter already addressed previously.
However, the use of fountain codes or random linear codes
has been shown to require light-weight implementations and
to also reduce both completion time and overhead. The
research community seems to find a common direction on this
issue.

Support of multiple applications in the sensor network:
As emerging sensor networks comprise of nodes executing
multiple applications, the need to support their remote
reprogramming becomes essential. In this case, each node
should be able to differentiate its role with respect to the
different supported applications and become either
source/destination of an updated code of interest or just a
forwarder for other nodes. This need slightly increases the
processing requirements, and thus the implementation of such
a scheme should be restricted to systems where needed,
leaving more hardware resources for the execution of more
sophisticated application or security schemes. The evolution
of sensor node hardware platforms is expected to alleviate
such problems and enable the wide implementation of
dissemination protocols supporting multiple applications
concurrently.

To this end, with the current sensor platforms a code
consistency and dissemination protocol there is no one-fits-all
cases solutions. For this reason, the prospect protocol designer
or system implementer has to carefully consider and prioritize

International Journal of Computer Trends and Technology- May to June Issue 2011

ISSN:2231-2803 8 IJCTT

the requirements of the addressed use-case and then proceed
to the proper design choices.

ACKNOWLEDGMENT
The work presented in this paper was partially supported by

the ARTEMIS Project 100032 SMART.

REFERENCES
[1] E. Ladis, I. Papaefstathiou, R. Marchesani, K. Tuinenbreijer, P.

Langendörfer, T. Zahariadis, H. C. Leligou, L. Redondo, T. Riesgo, P.
Kannegiesser, M. Berekovic, C. J. M. van Rijn , “SMART: Secure,
Mobile visual sensor networks ArchiTecture”, IEEE SECON2009, 22-
26 June, 2009 Rome Italy

[2] G. Tolle, D. Culler, “Design of an application-cooperative management
system for wireless sensor networks”, European Workshop on Wireless
Sensor Networks, Feb. 2005

[3] P. Levis, N. Patel, D. Culler, S. Shenker “Trickle: a self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks” Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation - Volume 1 San
Francisco, California, 2004

[4] K. Lin, P. Levis, “Data discovery and dissemination with dip”,
International Conference on Information Processing in Sensor
Networks (IPSN 2008), Washington, DC, USA, IEEE Computer
Society (2008) 433–444

[5] T. Dang, N. Bulusu, W. Feng, S. Park, "DHV: A Code Consistency
Maintenance Protocol for Wireless Sensor Networks", In Proc. of the
6th European Conference on Wireless Sensor Networks (EWSN 2009),
Cork, Ireland, Feb 2009

[6] W. Li, Y. Zhang, and B. Childers, “MCP: an Energy-Efficient Code
Distribution Protocol for Multi-Application WSNs”, 5th IEEE
International Conference on Distributed Computing in Sensor Systems,

LNCS 5516, Springer-Verlag, pages 259-272, Marina Del Rey,
California, June 2009

[7] M. Horsman, M. Marin-Perianu, P.G. Jansen, and P.J.M. Havinga, “A
Simulation Framework for Evaluating Complete Reprogramming
Solutions in Wireless Sensor Networks”, 3rd International Symposium
on Wireless Pervasive Computing, 7-9 May 2008, Greece. pp. 6-10

[8] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang, “A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing”, IEEE/ACM Transactions on Networking, December 1997,
Volume 5, Number 6, pp. 784-803.

[9] T. Stathopoulos, J. Heidemann, D. Estrin, “A remote code update
mechanism for wireless sensor networks”, Technical Report CENS
Technical Report 30, 2003.

[10] J. W. Hui, D. Culler, “The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale”, Sensys 2004

[11] R.K. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead Wireless
Reprogramming for Sensor Networks,” IEEE Conference on Computer
Communications (Infocom), 2007.

[12] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. Harris III, and M.
Zorzi, “SYNAPSE: A Network Reprogramming Protocol for Wireless
Sensor Networks using Fountain Codes”, IEEE SECON 2008, San
Francisco, California, US. June 16-20, 2008

[13] K. Maier, A. Hessler, O. Ugus, J. Keller, D. Westhoff, “Multi-Hop
Over-The-Air Reprogramming of Wireless Sensor Networks using
Fuzzy Control and Fountain Codes” SOMSED'09, Self-Organising
Wireless Sensor and Communication Networks Hamburg, Germany 8 -
9. October 2009

[14] W. Dong, C. Chen, X. Liu, J. Bu, Y. Gao, “A Light-Weight and
Density-Aware Reprogramming Protocol for Wireless Sensor
Networks”, IEEE Transactions on Mobile Computing, Dec. 2010

[15] Y. Yu, L. J. Rittle, V. Bhandari, J. B. Lebrun, “Supporting concurrent
applications in wireless sensor networks”. 4th int. conference on
Embedded Networked Sensor systems, SenSys 2006 , pp. 139-152.

