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Abstract— As the applications of Wireless Sensor Networks 
increase rapidly, the number of deployed sensor devices 
proliferates, which prompts the research community to work 
towards their integration in the so-called “Internet of Things” to 
gather real time information and make the maximum out of their 
use towards enhancing the user experience. The capability to 
reconfigure/reprogram them remotely not only enables easy 
maintenance and code updates, which is mandatory in large 
sensor network deployments, but also provides an unprecedented 
flexibility regarding the use of all available resources of different 
types. However, the design of a reliable dissemination protocol is 
a real challenge and the reason is threefold: the desired 
reprogramming requirements differ from use case to use case 
(e.g. tolerated reprogramming time, affordable overhead), the 
wireless medium is characterized by low reliability, and the 
devices are severely resource constrained. For this reason, in this 
paper we first explore the reprogramming requirements and the 
intricacies of WSNs and then review the already proposed 
network protocols for reprogramming wireless sensor networks 
placing emphasis on the their features to guide both prospect 
users and designers efforts.  
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I. INTRODUCTION 
As the applications of Wireless Sensor Networks (WSNs) 

proliferate, the population of sensor nodes increases and the 
need to manage them remotely becomes more prominent. The 
need for reprogramming the nodes stems from the fact that 
such systems must often operate for extended periods of time 
unattended, while adjustments to the environment after 
deployment as well as code maintenance and update are 
needed (e.g. to improve security or robustness). Remote 
management is also required to fulfill the application 
requirements which may change in time and space [1]. In 
emerging WSNs which consist of hundreds or even thousands 
of nodes, reprogramming them one-by-one requires both 
physical access to each of them (which is not always feasible) 
and consists an extremely time-consuming procedure, 
impeding any real-time reprogramming without human 
intervention. The ability to add new functionality or perform 
software maintenance without having to physically reach each 
individual node is already an essential service. 

Although solutions for remotely programming 
communication devices attached to specific infrastructure 
exist, programming resource constrained nodes over the 
wireless medium imposes different challenges than traditional 
network programming approaches. Transmitting the code that 
the node will execute over the air represents a real challenge 
due to the enhanced reliability required (since in this case the 

complete image must reach all the nodes) while the wireless 
medium is inherently unreliable. Moreover, due to limited 
memory, the involved nodes cannot store large files of 
programming code and due to limited processing resources the 
complexity of the employed code dissemination schemes has 
to be carefully assessed to ensure feasibility. If the image 
cannot fit into a single packet, it must be placed in stable 
storage until the transfer is complete, at which point the node 
can be safely reprogrammed. Another concern is the low 
throughput of WSNs: while the broadcast nature of the 
wireless medium can be exploited to compensate for the low 
communication throughput, special actions need to be taken in 
case of lost segments (e.g. due to collisions or errors) either 
when all or just one of the receiving nodes has not 
successfully received a packet. Hence, the design of a reliable 
data dissemination protocol for propagating large data objects 
from one or more source nodes to many other nodes over a 
multi-hop, wireless sensor network is a real challenge. 

Unlike the unicast case where requirements for reliable, 
sequenced data delivery are fairly general, different multicast 
applications have widely different requirements for reliability. 
For example, some applications require that delivery obey a 
total ordering while many others do not. Some applications 
have many or all the members sending data while others have 
only one data source. Some deployments have all the network 
nodes executing the same applications and hence code 
dissemination is relevant to all nodes, while other consist of 
groups of nodes supporting different applications. Mission 
critical applications impose severe time-constrains while in 
other applications prolonged network lifetime is a top priority 
requirement. In any case, the dissemination process should 
ensure that no service interruptions to a deployed application 
and the debugging and testing cycle will occur. Another great 
challenge is imposed by the dynamic network membership 
and thus it must be ensured that all nodes receive the newest 
code since network membership is not static: nodes come and 
go. And while handling all these intricacies, the dissemination 
protocol designer should keep in mind that the dissemination 
must tolerate node densities which can vary by factors of a 
thousand or more. Such differences affect the design of a 
reliable multicast protocol with respect to the considered 
optimization metric and desired functionality. Given also the 
limited processing and memory requirement it becomes clear 
that it is very difficult (if possible at all) to design a reliable 
multicast delivery scheme that optimally meets the 
functionality, scalability, and efficiency requirements of all 
applications.  

For this reason, this paper aims to define the functionality 
that any such protocol needs to fulfill and to explore the 



International Journal of Computer Trends and Technology- May to June Issue 2011 
 

ISSN:2231-2803  2  IJCTT 
 

implications of the available design choices based on state-of-
the-art network protocols for reprogramming purposes. We 
anticipate that this work will help both protocol designers 
providing them guidelines and prosper system 
designers/administrators to choose the appropriate solution. 
The procedure of node reprogramming / re-tasking can be 
split in two steps: first, decide when reprogramming is needed 
and second, disseminate the program. The schemes addressing 
the former are usually referred to as Code Consistency 
Maintenance Protocols (CCMP) and the latter are usually 
referred to as data dissemination protocols. (Integrated 
solutions addressing both issues have also been proposed.) 
Thus, the rest of the paper is organized as follows: in section 
II code consistency protocols are discussed while section III is 
devoted to dissemination protocols. Finally in section IV, an 
assessment and designer guidelines conclude the paper. 

II. CODE CONSISTENCY MAINTENANCE PROTOCOLS  
The first step in reprogramming a sensor node is to decide 

when reprogramming is needed and which part of the code 
needs update (if partial reprogramming is supported). 
Depending on the application, this can be decided and 
initiated by the system user, or automatically (in a distributed 
manner) by the nodes themselves. In the former case, the 
system user issues a reprogram command along with a set of 
attributes and the nodes operate in a slave-like mode. In the 
latter, the nodes should realize whether a code update is 
needed on their own.  

An interesting solution for the first case is presented in [2]. 
The main goal of the Sensor Network Management System 
(SNMS) is the monitoring and control of the node and 
network status by humans. SNMS provides two core services: 
a query system to enable rapid, user-initiated acquisition of 
network health and performance data and a logging system to 
enable recording and retrieval of system-generated events. For 
this reason, a logical tree-topology for reporting the status of 
the nodes and the network is constructed and each time the 
system operator decides to check the health of the network, it 
issues several queries. In response to these queries the nodes 
provide status information and if a new code version needs to 
be downloaded, DRIP is used as the dissemination protocol. 
The command to switch over the new code uses (a different) 
named dissemination scheme. SNMS provides also naming 
instructions for the attributes that may need to be reported. 
The first contribution of the SNMS networking stack is a 
collection tree construction protocol that minimizes state 
requirements by not requiring a neighbor table, and minimizes 
network traffic by requiring explicit initiation of tree 
construction. However, the cost of maintaining a tree 
construction can only be afforded in static or semi-static 
sensor networks. If high mobility has to be supported, the cost 
of maintaining a tree just for checking the network status 
becomes high. 

Coming to the second case, a straight forward solution 
would be to periodically announce a profile of the code they 
run, so that their neighbours can compare the received 
information with the version of the code they run to figure out 

whether a code update is needed. As this way overhead is 
introduced, multiple schemes trying to reduce it have been 
proposed.  

A first attempt in this direction was proposed in 2004 and is 
widely cited. Trickle [3] is an algorithm for propagating and 
maintaining code updates in wireless sensor networks. 
Borrowing techniques from the epidemic/gossip, scalable 
multicast, and wireless broadcast literature, Trickle uses a 
“polite gossip” policy, where motes periodically broadcast a 
code summary to local neighbors but stay quiet if they have 
recently heard a summary identical to theirs. When a mote 
hears an older summary than its own, it broadcasts an update. 
Instead of flooding a network with packets, the algorithm 
controls the send rate so each mote hears a small trickle of 
packets, just enough to stay up to date. This simple 
mechanism can scale to thousand-fold changes in network 
density, propagate new code in the order of seconds, and 
impose a maintenance cost on the order of a few sends an hour. 

The data discovery and Dissemination Protocol (DIP) 
proposed in [4] places emphasis on the search of new items 
that need to be exchanged among nodes. The rationale behind 
its design is that dissemination protocols have two main 
performance metrics: detection latency and maintenance cost. 
Maintenance cost is the rate at which packets to announce the 
current code version are sent when a network is up-to-date. 
Traditionally, these two metrics have been tightly coupled. A 
smaller interval lowers latency but increases the packet 
transmission rate. A larger interval reduces the transmission 
rate but increases latency. Trickle addresses part of this 
tension by dynamically scaling the interval size, so it is 
smaller when there are updates and larger when the network is 
stable. While this enables fast dissemination once an update is 
detected, it does not help with detection itself. DIP uses a 
hybrid approach of randomized scanning and tree-based 
directed searches. The result is that for T items, DIP can 
identify new items with O(log(T)) packets while maintaining a 
O(1) detection latency. By dynamically selecting which of the 
two algorithms to use, DIP achieves high performance both in 
terms of transmissions and speed. 

Based on the observations that when nodes have different 
code versions, the network may not behave as intended, 
wasting time and energy, DHV has been proposed [5] as an 
efficient code consistency maintenance protocol to ensure that 
every node in a network will eventually have the same code. 
DHV is based on the simple observation that if two code 
versions are different, their corresponding version numbers 
often differ in only a few least significant bits of their binary 
representation. DHV allows nodes to carefully select and 
transmit only necessary bit level information to detect a newer 
code version in the network. The name DHV comes from the 
three steps in the protocol:  

• Difference detection: each node broadcasts a hash of 
all its versions called a SUMMARY message. Upon receiving 
a hash from a neighbour, a node compares it to its own hash. 
If they differ, there is at least one code item with a different 
version number. The next step is identification which is 
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achieved thourgh the horizontal search and vertical search 
steps. 

• Horizontal search: a node broadcasts a checksum of 
all versions, called a HSUM message. Upon receiving a 
checksum from a neighbour, the node compares it to its own 
checksum to identify which bit indices differ and proceeds to 
the next step.  

• Vertical search. In vertical search, the node 
broadcasts a bit slice, starting at the least significant bit of all 
versions, called a VBIT message. If the bit indices are similar, 
but the hashes differ, the node broadcasts a bit slice of index 0 
and increases the bit index to find the different locations until 
the hashes are the same. Upon receiving a VBIT message, a 
node compares it to its own VBIT. After identifying which 
(key, version) tuples differ, the node broadcasts these (key, 
version) tuples in a VECTOR message.  

Upon receiving a VECTOR message, a node compares it to 
its own (key, version) tuple to decide who has the newer 
version and if it should broadcast its DATA. A node with a 
newer version broadcasts its DATA to nodes with an older 
version. DHV can detect and identify version differences in 
O(1) messages and latency compared to the logarithmic scale 
of other protocols while in [5] DHV is shown to outperform 
DIP. 

Multicast-based Code redistribution Protocol (MCP) is a 
stateful protocol for code maintenance that places emphasis on 
energy efficiency [6] designed to support also the case where 
nodes implementing different applications may exist in the 
same sensor networks. Each node in MCP maintains a small 
table to record the interesting information of known 
applications. The table enables sending out multicast-based 
code dissemination requests. MCP employs a gossip-based 
source node discovery strategy. Each sensor summarizes the 
application information from overheard advertisement 
messages and periodically sends out this information. To 
reprogram a subset of sensors, the sink floods a dissemination 
command that guides which sensors should switch to run 
application A. After receiving the command from the sink, 
each sensor identifies its dissemination role as a) source, if the 
sensor has the binary of application A; b)requester, if the 
sensor does not have the binary of A but needs to switch to 
run A; or c)forwarder, if the sensor is neither a source nor a 
requester. 

A requester periodically sends out requests to its closest 
source, until it acquires all the pages of application A. Instead 
of broadcast, the request message is sent to the source via 
multicast. A requester resends the message until it timeouts. It 
tries to request data from each source node several times 
before marking the node as a temporary non-available source. 
A source node responds with the data (i.e., Data messages) 
that contain code fragments while a forwarder forwards both 
request and data packets. Thus, dissemination requests are 
forwarded to nearby source nodes rather than flooding the 
network. Compared to broadcasting based schemes, MCP 
greatly reduces signal collision, saves both the dissemination 
time and reduces the number of dissemination messages. 

III. DATA DISSEMINATION PROTOCOLS 

A. The design options 
Once one or more nodes have recognized the need for code 

update, the dissemination protocol is triggered. The design 
space for data dissemination protocols is large and includes:  
 selection of nodes to transmit data. (For example, 

having multiple nodes transmitting the same data in the 
same transmission range area is not a wise option in 
the energy and throughput constrained environment of 
sensor networks.)   

 segment management, to alleviate the limited memory 
resources problem.   

 reliability assurance scheme which should define how 
lost segments are identified, who is responsible for 
repairs.   

To decide which node will provide the updated program, 
acting as the source of the updated program different options 
arise. Even if initially only one node has the updated code, if it 
broadcasts it, the set of neighbours in its transmission range 
can become the transmitting nodes in the sequence. (An 
example is shown in fig. 1a, where nodes 2, 3 and 4 receive all 
pages of a program image.)  

 
Fig. 1 Code dissemination in a neighbourhood-per neighbourhood manner  

In this case where multiple nodes can transmit the code, a 
specific protocol to choose the source for each neighbour has 
to be defined. (In fig. 1, it is obvious that node 4 may save 
energy since node 8 can receive the updated code from node 3 
and the same holds for node 7.)  Solutions ranging from 
choosing the latest node that advertised the program to more 
sophisticated publish-subscribe schemes have been proposed. 
The source selection scheme is tightly coupled with the way 
the program is disseminated (e.g. fragmented or not) and with 
the way that lost segments are retrieved. For example, 
fragmentation allows for spatial multiplexing which results in 
reduced time required for the dissemination of the program, as 
shown in fig. 2, where node 6 disseminates page 1, when node 
1 disseminates page 2, assuming that the code has been split in 
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pages. As regards lost segments retrieval, the use of negative 
acknowledgements is usually most suited to resource 
constrained WSNs. If one node has lost a certain packet, it can 
either request the retransmission of the packet, or wait to hear 
it again as part of the dissemination of the code to a next 
round. In the former case, the request can be unicasted to the 
source, multi-casted to improve the probability of receiving 
back the packet or even broadcasted, to make sure the packet 
will be received at the cost of energy waste from multiple 
nodes and increased congestion probability. Other ways to 
enhance reliability include the adoption of forward error 
correction (FEC) to avoid (to the extent possible) 
retransmissions or use link quality estimates to improve 
decisions or even use fountain codes to transmit data.  

 
Fig. 2 spatial multiplexing: when node 6 disseminates page 1, node 1 
disseminates page 2, reducing the total code dissemination time 

The performance metrics reflecting the target of the 
dissemination protocols [7] include efficiency in terms of 
overhead (its reduction directly translates to better utilization 
of the low available throughput) and of energy (which affects 
the network lifetime, an important parameter in this mainly 
battery operated environment) as well the time required to 
detect that an update is needed and the time required to 
disseminate the update throughout the network. 

. 

B. Dissemination protocol examples 
As the core service is the multicast dissemination of the 

code, the roots of such protocols lie back in 1997, when the 
Scalable Reliable Multicast protocol was proposed [8]. It was 
the first attempt to design a reliable transport protocol suitable 
for multicasting cases and cases where single/multiple sources 
initiate sessions with multiple destinations. SRM was 
designed to meet only the minimal definition of reliable 
multicast, i.e., eventual delivery of all the data to all the group 
members, without enforcing any particular delivery order. Its 
inventors state that if the need arises, machinery to enforce a 
particular delivery order can be easily added on top of this 

reliable delivery service. SRM is also heavily based on the 
group delivery model that is the centerpiece of the IP 
multicast protocol where data sources simply send to the 
group' s multicast address (a normal IP address chosen from a 
reserved range of addresses) without needing any advance 
knowledge of the group membership. To receive any data sent 
to the group, receivers simply announce that they are 
interested (via a “join” message multicast on the local subnet); 
no knowledge of the group membership or active senders is 
required. Each receiver joins and leaves the group individually, 
without affecting the data transmission to any other member. 
SRM further enhances the multicast group concept by 
maximizing information and data sharing among all the 
members, and strengthens the individuality of membership by 
making each member responsible for its own correct reception 
of all the data. SRM attempts to follow the core design 
principles of TCP/IP requiring only the basic IP best effort 
delivery model and builds reliability on an end-to-end basis. 
No change or special support is required from the underlying 
IP network. In a fashion similar to TCP adaptively setting 
timers or congestion control windows, the algorithms in SRM 
dynamically adjust their control parameters based on the 
observed performance within a session. This allows 
applications using the SRM framework to adapt to a wide 
range of group sizes, topologies and link bandwidths while 
maintaining robust and high performance. 

However, keeping state information per session and 
executing the TCP/IP functionality is extremely demanding 
for sensor nodes. Additionally, when a new code has to be 
disseminated to all nodes in the network, SRM does not 
exploit the fact that broadcast costs less in wireless sensor 
networks. 

Another approach to the dissemination problem answering 
these issues is to transfer the data in a neighborhood-by-
neighborhood basis. This implies a single-hop mechanism that 
can be recursively extended to multi-hop. Each node that 
receives the code can then start transmitting (broadcasting) it 
thus becoming the source node.  In this case, it is the number 
of source nodes that need to be handled, since there is no need 
for two one-hop neighbours to both behave as sources using 
for example a publish-subscribe interface. Sources with no 
subscribers should remain silent.  

In an attempt to reduce the time required for the code to 
reach all the network nodes, Multi-hop, Over-the-Air code 
distribution Protocol- MOAP [9] uses the store-and-forward 
approach, providing a ‘ripple’ pattern of updates. While it 
adopts the previous approach of broadcasting the code in a 
neighbour-per-neighbour way, it allows each node having 
received the code to start further disseminating it (announcing 
the version of the code it has) thus reducing the latency. A 
link-statistics mechanism is used to try to avoid unreliable 
links. After waiting a period to receive all subscriptions, the 
sender then starts the data transfer. As regards lost segments, 
to alleviate the sender from monitoring multiple sessions with 
the recipients of the code, in MOAP the receivers are 
responsible for identifying any lost segments. Once this 
happens, the request for the segment is not broadcasted, to 



International Journal of Computer Trends and Technology- May to June Issue 2011 
 

ISSN:2231-2803  5  IJCTT 
 

avoid duplications, but instead is requested by a single node; a 
keep-alive timer is used to recover from unanswered unicast 
retransmission requests – when it expires a broadcast request 
is sent.  

While further optimizations are possible, MOAP is a 
dissemination protocol that was feasible to implement in 
motes (as reported in [9]) and has been shown to reduce the 
overhead by 60% compared to the simple flooding case.  

Just one year later, Deluge a widely used and recognized 
protocol has been proposed [10]. It builds on prior work in 
density-aware, epidemic maintenance protocols and includes 
several optimisations.  Firstly, it adopts Trickle for the 
advertisement of code versions which reduces the messages 
needed for the nodes to realize a new code version is available 
and should be propagated. A second contribution of Deluge is 
that it splits the code into a set of fixed-size pages thus it 
provides a manageable unit of transfer which allows for 
spatial multiplexing, i.e. pages are dealt with as independent 
transfer objects. This way the time required for the 
propagation of a large program is reduced and at the same 
time incremental upgrades are supported.  

Based on Trickle, each node occasionally advertises (ADV) 
its most recent object profile to whatever nodes that can hear 
its local broadcast. From the object profile, the receiving node 
R determines which portions of the data need updating and 
requests (REQ) them from any neighbour that advertises the 
availability of the needed data, and finally this node provides 
the data (three way handshake). Deluge simply requests data 
from the node which most recently advertised the needed page, 
which is an easy-to-implement scheme and ensures no 
duplication of pages. Nodes receiving requests then broadcast 
any requested data. A node requests from a single node 
(neighbour) updated code or exploits a request issued by 
another neighbour. Nodes then advertise newly received data 
in order to propagate it further.  

The major advantages of Deluge include: a) Deluge’s three-
phase handshaking protocol helps ensure that a bi-directional 
link exists before transferring data, b)Representing the data 
object as a set of fixed-size pages provides a manageable unit 
of transfer which allows for spatial multiplexing, c) Deluge 
advertises the availability of complete pages even before all 
pages in the object are complete allowing the further 
propagation of newly received pages, d)supports efficient 
incremental upgrades, e)Deluge attempts to minimize the set 
of nodes concurrently broadcasting data within a given cell 
and f) it adopts lost segment recovery based on negative 
acknowledgement which reduces the exchanged overhead. 

Using both a real-world deployment and simulation, 
Deluge has been shown to reliably disseminate data to all 
nodes and characterize its overall performance. On Mica2-dot 
nodes, Deluge can push nearly 90 bytes/second, one ninth the 
maximum transmission rate of the radio supported under 
TinyOS. Control messages are limited to 18% of all 
transmissions. At scale, the protocol exposes interesting 
propagation dynamics only hinted at by previous 
dissemination work. On average a node receives about 3.35 

times the minimum number of required data packets, due to 
the single-channel, broadcast network. 

Stream [11] builds on Deluge and optimizes what is 
actually sent over the channel. Common intuition would be to 
transfer only what actually needed, i.e., the program image. 
However, Deluge disseminates the image of the programming 
protocol together with that of the program to be transferred. 
This considerably inflates the amount of data to be 
disseminated (up to 20 folds for the transmission of a program 
image consisting of a single page). Stream obviates this 
problem by pre-installing in each sensor node, before its 
actual deployment, the re-programming application. This is 
done through the segmentation of the flash memory into 
multiple partitions so that the re-programming protocol and 
the program to be transferred are stored in different image 
areas. Hence, at dissemination time Stream transmits over the 
channel the minimal support (about one page) needed for the 
activation of the re-programming image together with the 
actual program image. 

DRIP [2] is the unnamed reliable dissemination protocol of 
Sensor Network Management System (SNMS).The SNMS 
dissemination protocol, named Drip, provides a transport layer 
interface to multiple channels of reliable message 
dissemination. Implemented as a TinyOS component, Drip 
provides a standard message reception interface. Each 
component wishing to use Drip, registers a specific identifier, 
which represents a reliable dissemination channel. Messages 
received on that channel will be delivered directly to the 
component. Each node is responsible for caching the data 
extracted from the most recent message received on each 
channel to which it subscribes, and returning it in response to 
periodic rebroadcast requests. In the implementation reported 
in [2], space for this cache is allocated by the subscribing 
component, and data is retrieved from the cache in response to 
an upcall. The Drip protocol uses a sequence number with 
half-space wraparound to determine whether a received 
message is new, and upon receipt of a new message, the data 
is delivered to the subscribing component for required caching 
and optional action. 

The Drip protocol uses the message as the unit of reliability, 
and the component as the unit of caching. This design allows 
Drip to function as a standard transport layer protocol. But, it 
does introduce extra complexity for a component that has 
several independent variables which must be reliably 
synchronized among all nodes in the network. To solve this 
problem, the component must collect the current value of each 
variable into a single reliably disseminated message. This 
method will produce independent reliability for each variable, 
as long as every node stores the same value of every variable. 
This problem could also be solved by selecting the variable as 
the unit of reliability and caching, and by associating a unique 
key with each variable instead of associating a channel with 
each message. However, this approach would require a 
significantly larger key-space, and would blur the boundary 
between protocol and data storage. 

SYNAPSE [12] is an original reprogramming system for 
WSNs designed to improve the efficiency of the error 
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recovery phase. Synapse implements a hop-by-hop data 
dissemination protocol in which data blocks are sent during 
so-called dissemination rounds and one node at a time is 
allowed to send. SYNAPSE features a Hybrid Automatic 
Repeat reQuest (HARQ) solution where data are encoded 
prior to transmission and incremental redundancy is used to 
recover from losses, thus considerably reducing the 
transmission overhead. For the coding, digital Fountain Codes 
(FCs) were selected as they are rate-less and allow for 
lightweight implementations. Special Fountain Codes were 
used at the heart of SYNAPSE to provide high performance 
while meeting the requirements of WSNs. FCs are rateless and 
have a low computational complexity, as encoding and 
decoding are performed efficiently through XOR operations. 
While others approaches mainly concentrated their study upon 
devising smart algorithms (i.e., modified epidemic schemes) 
for sender selection, sleeping modes etc., SYNAPSE’s focus 
is on extremely efficient solutions for the local delivery of the 
data (i.e., between the senders and their neighbors), as well as 
their proper integration with previous techniques. It uses three 
way handshakes as the paradigm introduced for Deluge above. 
It implements randomization when sending advertisements. It 
exploits broadcast transmissions for the code and Negative 
Acknowledgments (NACK) to request missing data and it 
implements the method proposed in Stream. 

Considering that resource-awareness, time-efficiency, and 
the integration of appropriate security solutions are keys to the 
success and acceptance of a code update mechanism, a 
dependable data dissemination protocol for time-efficient and 
secure code updates in large-scale wireless sensor networks 
has been proposed in [13]. The multi-hop propagation scheme 
is based on security-enhanced fountain codes and means from 
fuzzy control theory. The basic idea of a digital fountain is the 
following: the fountain, i.e. the sender, generates a stream of 
water drops, the encoded packets. Every receiver, in turn, 
holds a bucket under the fountain until a sufficiently high 
number of drops could be collected. The receiver can recover 
the source data from any subset of encoded packets in which 
the number of packets is equal to or only slightly higher than 
the number of source packets. If some fraction of the initial 
encoded packets is erased, it is not necessary to retransmit the 
very same packets but rather yet another random linear 
combination is sent. That is why fountain codes improve the 
efficiency of wireless broadcast channels, i.e. one and the 
same packet allows different receivers to extract 
complementary information that is relevant to them. 
Furthermore, a digital fountain supersedes the need for the 
sender to guess the quality of the channel and therefore 
enables the design of scalable transmission of data in a 
broadcast and multicast setting over arbitrary channels. 

To decrease the number of packet collisions and mitigate 
the hidden terminal problem, means from fuzzy control were 
used to dynamically adapt the send rates of sending nodes in 
accordance with the local congestion of the radio channel. 
Fuzzy control theory was recognized as a promising approach 
to control the level of channel utilization as it is well suited for 
resource constrained sensors. Furthermore, fuzzy control 

systems were reported to be effective in making real time 
decisions from incomplete information. The congestion level 
of the channel and the demand of neighboring nodes for 
missing data packets are characterized by the numbers of 
overheard encoded and NACK packets. To reduce data 
overhead, the output of the fuzzy controller is used to define a 
time interval during which the next packet will be sent 
randomly. 

The use of fountain codes or random linear codes has been 
also adopted in ReXOR [14], which is a light-weight and 
density-aware reprogramming protocol for wireless sensor 
networks that employs XOR encoding in the retransmission 
phase to reduce the communication cost. ReXOR places 
emphasis on the lightweight implementation as well as on 
ability to adapt on the network density. Regarding the 
lightweight implementation, results for the TinyOS platform 
show that it requires less resources than other coding-based 
schemes. As regards the adaptation of the network density, 
this is achieved by adapting the inter-page waiting time.  

MELETE [15] is a code dissemination protocol designed to 
support multiple concurrent applications in a WSN, and thus 
assumes that the network is split in groups of nodes executing 
different tasks. MELETE employs a group-keyed method to 
selectively distribute application code to only interested 
sensor nodes, and reactively distribute code only when it is 
required. This way only interested node receive the code 
update while the second design choice delays the time of code 
transportation until the exact moment the code is required at 
the cost of higher delay in code transportation. A passive code 
dissemination policy is proposed with active advertisements. 
Specifically, version information of all groups is disseminated 
throughout the network and maintained by all sensor nodes, 
while code is passively disseminated only when it is requested 
by certain nodes. Since version packets are usually smaller 
than code packets, this policy aims to minimize network 
traffic overhead while keeping all sensor nodes up to date 
without large delay. Specifically, each node maintains the 
version information of all applications that it has heard of. 
Each node advertises its version information for all groups in 
a round-robin fashion. Whenever a node receives newer 
version information about a group, it updates its local data, 
and sets its version timer to the highest rate, similarly to 
Trickle. If the received information is for an associated group, 
the node switches to the REQUEST state, and advertises its 
request for the new code. The key difference between Melete 
and Trickle is that Trickle allows nodes to advertise version 
information only after receiving the code, while Melete allows 
the propagation of version information without sending the 
actual code. MELETE constructs a multi-hop region between 
the requesting node (or requester) and potential responding 
nodes (or responders) so that both requests and responses can 
be transmitted across the region, referred to as a forwarding 
region. To do so, one more state, FORWARD, is added into 
Trickle, as also happens in MCP protocol. A sensor node 
switches to the FORWARD state if it “believes” that its 
neighbors need help to get their code, and stays in the 
FORWARD state until one of the following three events: 
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timeout, the requests are fulfilled, or there is a need to switch 
to the REQUEST or RESPOND states. This code chunk in its 
forwarding cache. A forwarder broadcasts the cached request 
using the Trickle protocol, as if it is a normal requester. When 
the forwarding region expands to a responder, the responses 
are transmitted throughout the forwarding region. Each 
forwarder caches the most recently received chunk and 
forwards it using Trickle, as if it is a normal responder. Nodes 
outside the forwarding region discard any received responses. 
To reduce traffic, the bitmap of a node is also updated upon 
reception of forwarded responses in the neighborhood. When 
the bitmap indicates no more chunks to forward, the forwarder 
switches to the MAINTAIN state. However, neighbors of a 
requester may blindly start forwarding even though some 
other neighbors of the requester can resolve the request and 
the forwarding region can unnecessarily expand to the entire 
network even though a nearby responder is discovered. To 
solve these problems: lazy forwarding and progressive 
flooding are adopted.  From a prospective forwarder’s 
perspective, it should offer help to the requester only when it 
was truly needed (i.e., one hop neighbors of the requester did 
not resolve the request).This is difficult because either the 
requests or responses can be lost or corrupted over the 
wireless channel. To handle this problem, lazy forwarding was 
proposed. The main idea is to allow enough time for 
neighbors of a requester to respond before starting a 
forwarding process. Specifically, each time a node receives a 
request, it switches to the FORWARD state with a certain 
probability, Pf. Pf increases with the number of received 
requests. It is similar to a human life scenario: after hearing 
multiple shouts for help, a person is more assured that 
someone is in real trouble. To prevent a forwarding region 
from expanding to the entire network, a progressive flooding 
technique is proposed, a special n-ring model tailored to the 
periodic broadcasting of Trickle. Each forwarded request is 
associated with a time-to live (TTL), in terms of hop counts.  

IV. ASSESSMENT AND CONCLUDING REMARKS 
The problem of reliable data dissemination has been 

addressed with multiple diverse approaches from the research 
community. The reason is that, while a common set of 
performance metrics could be agreed upon, the priority 
assigned to each of them depends on the specific use case. 
Additionally, the limited node and network resources prohibit 
the realization of a sophisticated, possibly even modular 
scheme that would be activated on demand, i.e. activate the 
most suitable component based on the realized application. So, 
any system designer should firstly clearly define the top 
performance metrics of interest and then choose the 
appropriate code maintenance and dissemination protocol.  

Time-critical applications: when a system to support time 
critical applications is designed, it is absolutely necessary to 
avoid any service disruption (during code updates) and to 
switch to the new code in minimal time. In this case, it is the 
completion time (the time required for all the nodes to 
received the updated code correctly) that counts most, and 
should guide the selection of the dissemination protocol. 

Moreover, to cope with the rapid code updates, code 
consistency maintenance protocols that minimize the time 
required to identify a new version should be used. Such 
applications could be met at military missions or terrorist 
attack defense, where a sensor system may undertake the 
responsibility for gunshot localization and thus rapid 
dissemination of information to combatants is critical. To 
achieve low completion times and low version detection times, 
higher overhead is required which increases the energy 
consumption and reduces the bandwidth utilization. 

Frequent code updates: When reprogramming is used to 
change the functionality of the sensor network in the day or 
between the days of the week, then the latency and the 
completion time no longer represent the top requirement. 
Instead, the energy consumption is more important in this case, 
since lower energy consumption means longer network 
lifetime. For example, reprogramming a sensor network to 
execute a stronger encryption scheme may change twice every 
day or to change specific parameters of the application (how 
often and what types of sensed data are sent to the sink) does 
not impose latency constraints (e.g. in agricultural monitoring 
where nodes operate in unattended node in wide areas and 
may need to monitor the temperature once every 5 or ten 
minutes in spring but more often in winter to prevent the fruit 
freeze).  To safeguard the network lifetime, the energy 
consumption which is tightly coupled with the overhead of the 
code consistency and dissemination protocols should be the 
basic decision factor.  

Lost segment recovery: The scheme employed to recover 
from lost segments affects both the completion time and the 
overhead produced by the dissemination protocol. As such, it 
could be seen as a parameter already addressed previously.  
However, the use of fountain codes or random linear codes 
has been shown to require light-weight implementations and 
to also reduce both completion time and overhead. The 
research community seems to find a common direction on this 
issue.  

Support of multiple applications in the sensor network: 
As emerging sensor networks comprise of nodes executing 
multiple applications, the need to support their remote 
reprogramming becomes essential. In this case, each node 
should be able to differentiate its role with respect to the 
different supported applications and become either 
source/destination of an updated code of interest or just a 
forwarder for other nodes. This need slightly increases the 
processing requirements, and thus the implementation of such 
a scheme should be restricted to systems where needed, 
leaving more hardware resources for the execution of more 
sophisticated application or security schemes. The evolution 
of sensor node hardware platforms is expected to alleviate 
such problems and enable the wide implementation of 
dissemination protocols supporting multiple applications 
concurrently.  

To this end, with the current sensor platforms a code 
consistency and dissemination protocol there is no one-fits-all 
cases solutions. For this reason, the prospect protocol designer 
or system implementer has to carefully consider and prioritize 
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the requirements of the addressed use-case and then proceed 
to the proper design choices.  
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