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Abstract. This paper deals with hyperoperations that derive from binary relations and

it studies the hypercompositional structures that are created by them. It is proved that

if ρ is a binary relation on a non-void set H, then the hypercomposition xy = {z ∈ H :

(x, z) ∈ ρ and (z, y) ∈ ρ} satisfies the associativity or the reproductivity only when it

is total. There also appear routines that calculate (with the use of small computing

power) the number of non isomorphic hypergroupoids, when the cardinality of H is

finite.
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1. Introduction

The theory of hypercompositional structures was born in 1934, when F. Marty
introduced the notion of the hypergroup [5]. A hypergroup is a pair (H, ·) where
H is a non empty set and ”·” a hypercomposition, i.e., a mapping from H ×H to
the power set P (H) of H, which satisfies the axioms:

(i) a(bc) = (ab)c for every a, b, c ∈ H (associativity)

(ii) aH = Ha = H for every a ∈ H (reproductivity)

In a hypergroup, the result of the hypercomposition is always a nonempty
set. Indeed, suppose that for two elements a, b ∈ H it holds that ab = ∅. Then
H = aH = a(bH) = (ab)H = ∅H = ∅, which is absurd. Thus, if a non empty
set H is endowed with a hypercomposition which does not satisfy the associative
and the reproductive low, then the void set can possibly be among its results.
A pair (H, ·) where H is a non empty set and ” · ” a hypercomposition, is called
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partial hypegroupoid, while it is called hypegroupoid if ab ̸= ∅, for all a, b ∈ H.
A hypergroupoid in which the associativity is valid, is called semi–hypergroup,
while it is called quasi–hypergroup if only the reproductivity holds.

Several papers dealing with the construction of hypergroupoids and hyper-
groups appear in the relevant bibliography, since hypergroups are much more
varied than groups, e.g. for each prime number p, there exists only one group, up
to isomorphism, with cardinality p, while the number of pairwise non isomorphic
hypergroups is very large. For example there exist 3999 non isomorphic hyper-
groups with 3 elements [12]. Nieminen [8] studied hypergroups associated with
graphs and G. G. Massouros studied hypergroups associated with automata [7].
Also Chvalina [1], Rosenberg [9], Corsini [2], De Salvo and Lo Faro [3] studied
hypergroupoids and hypergroups defined in terms of binary relations. This paper
deals with the hypergroupoids defined by Corsini, it proves that this family of
hypergroupoids contains only one semihypergroup and only one quasihypergroup,
the total hypergroup and enumerates the hypergroupoids with 2, 3, 4 and 5 ele-
ments. The order n of a finite hypergroupoid H is defined to be the number of
elements in the set H.

Let H be a non empty set and ρ a binary relation on H. Corsini introduced
in H the hypercomposition.

x · y = {z ∈ H : (x, z) ∈ ρ and (z, y) ∈ ρ}.(1.1)

With the above hypercomposition, (H, ·) becomes a partial hypergroupoid, while
it becomes a hypergroupoid if for each pair of elements x, y ∈ H, there exists
z ∈ H such that (x, z) ∈ ρ and (z, y) ∈ ρ. Since ρ2 = ρ ◦ ρ = {(x, y) ∈ H2 : (x, z),
(z, y) ∈ ρ for some z ∈ H}, it derives that (H, ·) is a hypegroupoid if ρ2 = H2.

2. The hypercompositional structures defined by ρ

Let Hρ denote the hypercompositional structure defined by (1.1) through the
binary relation ρ. One can observe that the reproductivity is valid in Hρ if and
only if (x, y) ∈ ρ, for all x, y ∈ Hρ. Indeed let x be an arbitrary element of Hρ.
For the reproductivity to be valid, it must hold: y ∈ xHρ, for all y ∈ Hρ. Hence,
for all x, y ∈ Hρ, the pair (x, y) must belong to ρ. Thus:

Proposition 2.1. Hρ is a quasihypergroup, if and only if (x, y)∈ρ for all x, y∈Hρ.

Next, suppose that Hρ is a hypergroupoid. Then:

Lemma 2.1. If Hρ is a semihypergroup and (z, z) /∈ ρ for some z ∈ Hρ, then
(s, z) ∈ ρ implies that (z, s) /∈ ρ.

Proof. Suppose that (s, z) ∈ ρ and (z, s) ∈ ρ. Then for zz and ss we have

zz = {x ∈ Hρ : (z, x) ∈ ρ and (x, z) ∈ ρ},

thus s ∈ zz and,

ss = {x ∈ Hρ : (s, x) ∈ ρ and (x, s) ∈ ρ}



enumeration of hypercompositional structures ... 45

thus z ∈ ss. Now z ∈ (zz)s since ss ⊆ (zz)s. But z /∈ z(zs), because:

z(zs)=z{x ∈ Hρ : (z, x) ∈ ρ and (x, s) ∈ ρ}={y ∈ Hρ : (z, y) ∈ ρ and (y, x) ∈ ρ}

and (z, z) /∈ ρ. Hence the associativity is not valid, which contradicts the assump-
tion that Hρ is a semihypergroup.

Corollary 2.1. If Hρ is a semihypergroup and ρ is not reflexive, then ρ is not
symmetric.

Lemma 2.2. If Hρ is a semihypergroup, then ρ is reflexive.

Proof. Suppose that (x, x) /∈ ρ, for some x ∈ Hρ. Then, according to Lemma
2.1, for every element t in Hρ such that (x, t) ∈ ρ, it derives that (t, x) /∈ ρ. But
xx = {y ∈ Hρ : (x, y) ∈ ρ and (y, x) ∈ ρ}. Therefore xx = ∅, which is absurd,
since Hρ is a semihypergroup.

Lemma 2.3. If any pair of elements of Hρ does not belong to ρ, then Hρ is not
a semihypergroup.

Proof. According to Lemma 2.2, if (x, x) /∈ ρ for some x ∈ Hρ, then Hρ is not a
semihypergroup. So, let t, z be two elements of Hρ such that t ̸= z and (t, z) /∈ ρ.
Then:

t(tz) = t{s ∈ H : (t, s) ∈ ρ and (s, z) ∈ ρ} = {y ∈ H : (t, y) ∈ ρ and (y, s) ∈ ρ}

According to Lemma 2.2, it holds (t, t) ∈ ρ. Also (t, s) ∈ ρ. Therefore t ∈ t(tz).
On the other hand:

(tt)z = {r ∈ H : (t, r) ∈ and (r, t) ∈ ρ}z = {w ∈ H : (r, w) ∈ and (w, z) ∈ ρ}

Thus (tt)z ⊆ {w ∈ H : (w, z) ∈ ρ}, therefore t /∈ (tt)z. Hence the associativity is
not valid.

From the above series of lemmas, it derives that:

Proposition 2.2. Hρ is a semihypergroup if and only if (x, y)∈ρ, for all x, y∈Hρ.

Now, if (x, y) ∈ ρ for all x, y ∈ Hρ, then the hypercomposition which is defined
through ρ is total, i.e. xy = Hρ, for all x, y ∈ Hρ. But if a hypercompositional
structure is endowed with the total hypercomposition, then it is a hypergroup.
Therefore, from Propositions 2.1 and 2.2, it derives that:

Theorem 2.1. The only semihypergroup and the only quasihypergroup defined by
the binary relation ρ is the total hypergroup.

3. Enumeration of the finite hypergroupoids

Every relation ρ in a finite set H with cardH = n, is represented by a Boolean
matrix Mρ and conversely every n × n Boolean matrix defines in H a binary
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relation. Indeed, let H be the set {a1, · · · , an}. Then a n × n Boolean matrix is
constructed as follows: the element (i, j) of the matrix is 1, if (ai, aj) ∈ ρ and it
is 0 if (ai, aj) /∈ ρ and vice versa. Hence, in every set with n elements, 2n

2
partial

hypergroupoids can be defined.
Recall that in Boolean algebra it holds: 0 + 1 = 1 + 0 = 1 + 1 = 1, while

0 + 0 = 0. Also 0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1. Let Hρ be the above
mentioned partial hypergroupoid, which is defined by a binary relation ρ. Then
Hρ is a hypergroupoid if and only if M2

ρ = T , where T = (tij) with tij = 1 for all
i, j [2]. The matrix Mρ is called good, if Hρ is a hypergroupoid. Since the element
cij of M2

ρ is equal to
∑n

s=1 xisysj, it derives that matrices having a column or a
row consisting only of 0 elements are not good.

Now, from Proposition 2.1 it derives:

Proposition 3.1. Hρ is quasihypergroup if and only if Mρ = T .

Also, Proposition 2.2 gives:

Proposition 3.2. Hρ is semihypergroup if and only if Mρ = T .

Hence, the theorem holds:

Theorem 3.1. The only relation ρ that gives a semihypergroup or a quasihyper-
group is the one which has Mρ = T , and so Hρ is the total hypergroup.

Spartalis and Mamaloukas [11] wrote, in Visual Basic code, a 190-lines long
program that enumerates the hypergroupoids associated with binary relations of
orders 2, 3 and 4. Though, the following few lines of a Mathematica [13] program
produces these results through a considerably shorter process. It simply collects in
variable c all the Boolean matrices of size n and computes their squares. Boolean
minimum entry of these squares is recorded in table z. In return, we count the
nonzero elements of z.

Good[n_] :=

Module[{c, i1, z},

c = Tuples[Tuples[{0, 1}, n], n];

z = Table[Min[Flatten[c[[i1]].c[[i1]]]]

,{i1, 1, 2^(n*n)}];

Return[Count[z, _?Positive]]

]

Which gives:

In[1]:= Good[2]

Out[1]= 3

In[2]:= Good[3]

Out[2]= 73

In[3]:= Good[4]

Out[3]= 6003

In[4]:= Good[5]

Out[4]= 2318521
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Thus, it is confirmed that there exist 3, 73 and 6003 binary relations that
form a hypergroupoid of orders 2, 3 and 4 respectively. It took the above program
only a few minutes to count 2318521 hypergroupoids of order 5. For n = 6, the
function Good fails due to memory restrictions of a small computer. One can
proceed with a more slow but reliable package and form one by one the various
Boolean matrices and their squares.

Remark. Notice that the above enumeration coincides with the enumeration of
square roots of the total Boolean matrix, i.e. the Boolean matrix with all entries
equal 1.

3.1. Isomorphisms

Naturally, the question arises: When two hypergroupoids, are isomorphic?

Proposition 3.3. If in the Boolean matrix Mρ the i and j rows are interchanged
and, at the same time, the corresponding i and j columns are interchanged as well,
then the deriving new matrix and the initial one, give isomorphic hypergroupoids.

Proof. Suppose that H = {a1, ..., an} is a finite set and let (Hρ1 , •ρ1) be the
hypergroupoid defined by a binary relation ρ1. Let Mρ1 be the Boolean matrix
defined by ρ1. Now suppose that the i and j rows and columns are interchanged
and let Mρ2 be the new Boolean matrix. Then a new binary relation ρ2 is defined
on H. Obviously for ρ1 and ρ2 it holds:

(ak, ai) ∈ ρ1⇐⇒(ak, aj) ∈ ρ2 (ai, ak) ∈ ρ1⇐⇒(aj, ak) ∈ ρ2 if k ̸= i, j
(ai, aj) ∈ ρ1⇐⇒(aj, ai) ∈ ρ2 (aj, ai) ∈ ρ1⇐⇒(ai, aj) ∈ ρ2
(ai, ai) ∈ ρ1⇐⇒(aj, aj) ∈ ρ2 (aj, aj) ∈ ρ1⇐⇒(ai, ai) ∈ ρ2

If (Hρ2 , •ρ2) is the hypercompositional structure defined by Mρ2 , then the
mapping ϕ : Hρ1 −→ Hρ2 with:

ϕ (x) =


x if x ̸= ai, aj
ai if x = aj
aj if x = ai

is an isomorphism. Obviously ϕ is 1− 1 and onto. Next we distinguish the cases:

1. ϕ(ai •ρ1 aj) = ϕ{x ∈ H : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}

(a) If ai •ρ1 aj ∩ {ai, aj} = ∅. Then
ϕ{x ∈ H : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}
= {ϕ(x) ∈ H : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}
= {x ∈ H : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}
= {x ∈ H : (aj, x) ∈ ρ2 and (x, ai) ∈ ρ2} = aj •ρ2 ai = ϕ(ai) •ρ2 ϕ(aj)

(b) If ai •ρ1 aj ∩{ai, aj} ̸= ∅. Assume e.g. that ai belongs to ai •ρ1 aj, then
ϕ{x ∈ H : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}
= {ϕ(x) ∈ H : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}
= {x ∈ H, x ̸= ai : (ai, x) ∈ ρ1 and (x, aj) ∈ ρ1}

∪
{aj}

= {x ∈ H : (aj, x) ∈ ρ2 and (x, ai) ∈ ρ2} = aj •ρ2 ai = ϕ(ai) •ρ2 ϕ(aj)
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Similar is the proof of the rest cases, i.e. ajto be in ai •ρ1 aj or both ai, aj
to be in ai •ρ1 aj. Also, since the principle of duality is valid [4], the dual
statement holds, i.e. ϕ(aj •ρ1 ai)=ϕ(aj) •ρ2 ϕ(ai).

2. If ak, aλ /∈ {ai, aj} then
ϕ(ak) •ρ1 ϕ(aλ) = ϕ{x ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1} =

(a) if neither ai nor aj belongs to ak •ρ1 aλ then
ϕ{x ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1}
= {ϕ(x) ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1}
= {x ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1}
= {x ∈ H : (ak, x) ∈ ρ2 and (x, aλ) ∈ ρ2} = ak •ρ2 aλ
= ϕ(ak) •ρ2 ϕ(aλ)

(b) if ak•ρ1aλ∩{ai, aj} ̸= ∅. Assume e.g. that both ai, aj belong to ak•ρ1aλ
then
ϕ{x ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1}
= {ϕ(x) ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1}
and since ϕ(ai) = aj, ϕ(aj) = ai this is equal to
{x ∈ H : (ak, x) ∈ ρ1 and (x, aλ) ∈ ρ1}
or {x ∈ H : (ak, x) ∈ ρ2 and (x, aλ) ∈ ρ2} which is
ak •ρ2 aλ or ϕ(ak) •ρ2 ϕ(aλ)

Similar is the proof for the cases ϕ(ak) •ρ1 ϕ(ai), ϕ(ak) •ρ2 ϕ(aj) and their duals.

From the above proposition, the following theorem derives.

Theorem 3.3. If the Boolean matrix Mσ derives from Mρ by interchanging rows
and the corresponding columns, then the hypergroupoids Hσ and Hρ are isomor-
phic.

The isomorphic classes of these hypergroupoids are not computed in [11].
These can be counted with a proper modification of the function Good[], which
will then return all the binary matrices that form a hypergroupoid. Thus, the
above function changes in one of its lines and can be found in the appendix as a
module of the package.

Check, for example, the three binary relations with matrices of size 2

In[4]:= h2 = Good1[2]

Out[4]= {{{0, 1}, {1, 1}}, {{1, 1}, {1, 0}}, {{1, 1}, {1, 1}}}

We are able now to give a function that forms all n! isomorphisms of a given
binary relation.

IsomorphTest1[a_List] :=

Module[{p, a1},

p = Permutations[Range[1, Length[a]]];

Return[Table[a1 = a;

a1 = ReplaceAll[a1, a1[[All, Table[j2,



enumeration of hypercompositional structures ... 49

{j2, 1, Length[a1]}]]] ->

a1[[All, p[[j1]]]]];

ReplaceAll[a1, a1[[Table[j2,

{j2, 1, Length[a]}]]] ->

a1[[p[[j1]]]]],

{j1, 1, Length[p]}]

]]

Let us see the six permutations of the matrix

Mρ =

 1 0 1
1 1 0
0 1 1


which are defined by corresponding binary relations, that give isomorphic hyper-
groupoids:

In[5]:= IsomorphTest1[{{1, 0, 1}, {1, 1, 0}, {0, 1, 1}}]

Out[5]:= {{{1,0,1}, {1,1,0}, {0,1,1}}, {{1,1,0}, {0,1,1}, {1,0,1}},

{{1,1,0}, {0,1,1}, {1,0,1}}, {{1,0,1}, {1,1,0}, {0,1,1}},

{{1,0,1}, {1,1,0}, {0,1,1}}, {{1,1,0}, {0,1,1}, {1,0,1}}}

In order to count the number of the different nonisomorphic classes of hy-
pergroupoids of order n, a n–digit array, called cardinalities, is used by the
program. Each time the routine encounters an isomorphic class, it drops it from
variable h2.

Cardin[d_] :=

Module[{h2, cardinalities, len, temp1, temp},

h2 = Good1[d];

cardinalities = Table[0, {j1, 1, Factorial[d]}];

While[Length[h2] > 0,

temp = Union[IsomorphTest1[h2[[1]]]];

len = Length[Union[temp]];

cardinalities[[len]] = cardinalities[[len]] + 1;

h2 = Complement[h2, temp]

];

Return[cardinalities]]

Then we get

In[6]:= Cardin[2]

Out[6]:= {1, 1}

In[7]:= Total[%]

Out[7]:= 2

In[8]:= Cardin[3]

Out[8]:= {2, 1, 5, 0, 0, 9}
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In[9]:= Total[%]

Out[9]:= 17

In[10]:= Cardin[4]

Out[10]:= {2, 0, 1, 5, 0, 7, 0, 4, 0, 0, 0, 78,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 207}

In[11]:= Total[%]

Out[11]:= 304

In[12]:= Cardin[5]

Out[12]= {2, 0, 0, 0, 5, 0, 0, 0, 0, 13, 0, 1, 0, 0, 8,

0, 0, 0, 0, 78, 0, 0, 0, 3, 0, 0, 0, 0, 0, 152,

0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2206, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18150}

In[13]:= Total[%]

Out[13]= 20660

So, there are 2, 17, 304 and 20660 isomorphic classes (I.C.) of orders 2, 3, 4
and 5 respectively. For example, for order 4 there are 2 I.C. of cardinality 1,
1 I.C. of cardinality 3, 5 I.C. of cardinality 4, 7 I.C. of cardinality 6, 4 I.C. of
cardinality 8, 78 I.C. of cardinality 12 and 207 I.C. of cardinality 24. These
2 + 1 + 5 + 7 + 4 + 78 + 207 = 304 I.C. form the

2 · 1 + 1 · 3 + 5 · 4 + 7 · 6 + 4 · 8 + 78 · 12 + 207 · 24 = 6003

non–isomorphic hypergroupoids of order 4.
We also mention that there are 2n×n binary matrices of size n. We may count

the non–isomorphic ones by simply changing the line

h2 = Good[n];

in the routine Cardin[] by the line

h2=Tuples[Tuples[0,1,n],n].

Then we get

In[14]:= Cardin[1]

Out[14]= {2}

In[15]:= Cardin[2]

Out[15]= {4, 6}

In[16]:= Total[%]

Out[16]= 10

In[17]:= Cardin[3]

Out[17]= {4, 2, 28, 0, 0, 70}
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In[18]:= Total[%]

Out[18]= 104

In[19]:= Cardin[4]

Out[19]= {4, 0, 4, 28, 0, 32, 0, 16, 0, 0, 0, 496,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2464}

In[20]:= Total[%]

Out[20]= 3044

The integer sequence 2, 10, 104, 3044 etc. coincides with the integer sequence
A000595, appeared in [10] and represents the number of non–isomorphic unlabeled
binary relations on n nodes.

3.2. Weak Associativity

As proved in Section 2 above, the total hypergroup is the only hypergroupoid that
fulfills the property of associativity. Thus, we checked a weaker property, which
is called Weak Associativity:

a(bc)
∩

(ab)c ̸= ∅ for all a, b, c ∈ H.(3.1)

Having, up to this point, constructed all the hypergroupoids of order 2, 3, 4
and 5, we check the validity of this property to all of them and we count the ones
that verify it. The package is given and explained in the appendix.

Its results are:

In[21]:= BinaryTest[2]

Out[21]= 3

In[22]:= BinaryTest[3]

Out[22]= 43

In[23]:= BinaryTest[4]

Out[23]= 2619

In[24]:= BinaryTest[5]

Out[24]= 602431

The counting of the hypergoupoids of orders n ≥ 6 is time consuming, so we
discontinued at n = 5.

4. Conclusions

This paper shows that the total hypergroup is the only hypergroup which can be
produced by hypercomposition (1.1). Since it is a hypergoup it is also a semi-
hypergroup and a quasihypergroup. No other semi- or quasi- hypergroups can be
produced by (1.1). On the other hand there exist lots of hypergoupoids that can
be produced by (1), the number of which is calculated with the use of Mathema-
tica packages that are constructed for this purpose and consist part of the contents
of this paper. The results of these calculations are given in the cumulative Table 1
below for the orders 2, 3, 4 and 5:



52 ch.g. massouros, ch. tsitouras

Table 1: Cumulative results

order → 2 3 4 5
Boolean matrices (BM) 16 512 65536 33554432
BM forming Hypergroupoids 3 73 6003 2318521
BM forming Weak-Associative Hypergroupoids 3 43 2619 602431
Nonisomorphic BM 10 104 3044 291968
Nonisomorphic BM forming Hypergroupoids 2 17 304 20660

5. The Mathematica package

The Mathematica package referred to in Section 3, is given bellow.

BeginPackage["BinaryTest‘"];

Clear["BinaryTest‘*"];

BinaryTest::usage = "BinaryTest[n] counts the binary

relations of dimension n that form a hypergroupoid.

It also counts the Weak-associative binary hypergroupoids"

Begin["‘Private‘"];

Clear["BinaryTest‘Private‘*"];

BinaryTest[n_] :=

Module[{c, ch},

c = Good1[n];

ch = Table[AssociativityWeakTest[HyperGroupoid[c[[j1]]]],

{j1, 1, Length[c]}];

Return[Count[ch, True]]];

Good1[n_] :=

Module[{c, i1, z},

c = Tuples[Tuples[{0, 1}, n], n];

z = Table[Min[Flatten[c[[i1]].c[[i1]]]]

,{i1, 1, 2^(n*n)}];

Return[Select[Transpose[{c, z}], #[[2]] > 0 &][[All, 1]]]

]

AssociativityWeakTest[a_List] :=

Module[{i, j, k, test},

i = 1; j = 1; k = 1; test = True;

While[test && i <= Length[a],

test = Intersection[
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Union[Flatten[Union[Extract[a,

Distribute[{a[[i, j]], {k}}, List]]]]],

Union[Flatten[Union[Extract[a,

Distribute[{{i}, a[[j, k]]}, List]]]]]

] != {};

k = k + 1;

If[k > Length[a], k = 1; j = j + 1;

If[j > Length[a], i = i + 1; j = 1];

];

];

Return[test]

];

HyperGroupoid[a_List] :=

Table[Table[Intersection[

Floor[(a[[j1, 1 ;; Length[a]]]

+ a[[1 ;; Length[a], j2]])/2

]*

Table[j3, {j3, 1, Length[a]}],

Table[j3, {j3, 1, Length[a]}]

],

{j1, 1, Length[a]}],

{j2, 1, Length[a]}];

End[];

EndPackage[];

The package consists of four functions. The three internal ones are:

Good1: that returns all the hypergroupoids associated to a binary relation of
order n.

HyperGroupoid: that constructs the hypergroupoid associated to a given Boolean
matrix of a binary relation.

AssociativityWeakTest: that tests property (3.1) by forming all n3 possible
products of all triplets of elements of H.

and the main one, which is:

BinaryTest: After calling Good, it constructs the table of the deriving hyper-
groupoids, using the function HyperGroupoid. Finally, it counts the number
of those, which satisfy the property of the weak associativity.
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