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In this paper we present a symbolic manipulation package that enumerates the
hypergroups of order 3. It separates them into isomorphic classes and calculates their
cardinality.
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1. Introduction

1934 was the year that Frederic Marty defined the hypergroup [1] and so the time that the theory of hypercompositional
structures was born. Over the years hypercompositional structures have been used in algebra, geometry, convexity,
automata theory and even in some applied sciences. To make this paper self-contained, some definitions are recalled. Thus
a partial hypergroupoid is the pair (H, ·) where H is a nonempty set and ‘‘·’’ is a hypercomposition in H , i.e. a function from
H × H to the powerset P(H) of H . If the map is from H × H to the family of the nonempty subsets of H , then (H, ·) is called
a hypergroupoid. The axioms which endow (H, ·)with the hypergroup structure are:
i. a(bc) = (ab)c for every a, b, c ∈ H (associativity);
ii. aH = Ha = H for every a ∈ H (reproductivity).

In a hypergroup, the result of the hypercomposition is always a nonempty set. Indeed, let ab = ∅; then H = aH =
a(bH) = (ab)H = ∅ = ∅which is absurd (see Mittas [2]). If only (i) is valid then (H, ·) is called a semihypergroup, while it
is called a quasi-hypergroup if only (ii) holds.
Extend the hypercomposition ‘‘·’’ from H to P(H), by setting for all A, B ∈ P(H):

A · B =
⋃

(a,b)∈A×B

a · b

where A · b and a · B will have the same meaning as A · {b} and {a} · B respectively. Also, when nothing opposes it, there is
no distinction made between the elements and their corresponding singletons.
Hypergroups are much more flexible and varied than groups. For example if H is of prime cardinality p, there are a large

number of non-isomorphic hypergroups on H , while, up to isomorphism, there is only one group Zp. This becomes clear in
this paper, which enumerates the hypergroups of cardinality 3.

2. The method

A hypergroupoid is a set H 6= ∅ with a hypercomposition ‘‘·’’ which is not necessarily associative or reproductive.
As regards the notification of the elements of the hypergroupoids of order 3, it can be assumed that they share the set
H = {1, 2, 3}.
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The hypercompositions in H are defined through the following table:

· 1 2 3
1 a11 a12 a13
2 a21 a22 a23
3 a31 a32 a33

(1)

where aij ⊆ H, i, j = 1, 2, 3. The elements aij are chosen among the seven-element set

Λ = P(H) \ ∅ = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

IfH3 denotes the set of all hypergroupoids of third order, then for its cardinality there holds |H3| = 79 = 40 353 607.
Migliorato [3] found, by computer, the total numberN3 = 23 192 of hypergroups of order 3while Nordo [4] computed using
a program written in PASCAL the number S3 = 3999 of non-isomorphic hypergroups of the same order.
The Mathematica package given in the Appendix is based on two functions, namely ReproductivityTest[ ] and

AssociativityTest[ ], which check out the corresponding properties. Their argument is a set of hypergroupoids in a
list and their output is a True/False table. This package checks whether hypergroupoids of any order form a hypergroup.
The reproductivity of the hypercompositions defined in (1) can be checked, through the verification of validity of the

equivalent (to this axiom) equalities:

3⋃
j=1

aij = H, for i = 1, 2, 3 and
3⋃
i=1

aij = H, for j = 1, 2, 3. (2)

The cases that successfully pass this first test (i.e. the reproductivity validity test) are going through the associativity
validity test, which is checking all the 27 possible triples a(bc) = (ab)c.

2.1. Classes of isomorphism

A hypergroupoid of order 3 is isomorphic with another five hypergroupoids. This derives from interchanges among the
elements of the set H . More precisely

(i) keep 1 interchange 2, 3
(ii) keep 3 interchange 1, 2
(iii) change 1 by 2 change 2 by 3 change 3 by 1
(iv) change 1 by 3 change 2 by 1 change 3 by 2
(v) keep 2 interchange 1, 3

So for the above matrix of hypercomposition (1) there are derived the following five isomorphic hypercompositions:

(i) 1 2 3 (ii) 1 2 3 (iii) 1 2 3 (iv) 1 2 3 (v) 1 2 3
1 ã11 ã13 ã12 ã22 ã21 ã23 ã33 ã31 ã32 ã22 ã23 ã21 ã33 ã32 ã31
2 ã31 ã33 ã32 ã12 ã11 ã13 ã13 ã11 ã12 ã32 ã33 ã31 ã23 ã22 ã21
3 ã21 ã23 ã22 ã32 ã31 ã33 ã23 ã21 ã22 ã12 ã13 ã11 ã13 ã12 ã11

where ãij are the subsets that derive from the transposition of the corresponding aij’s of the original matrix and the proper
replacement of their elements. Analogously the same holds for higher orders and there exist n! isomorphisms for order n.

3. Examples and results

Let’s assume that it must be verified whether or not the following two hypergroupoids are hypergroups:

· 1 2 3
1 {1} {2} {1, 2, 3}
2 {2} {1, 2, 3} {1, 2, 3}
3 {1, 2, 3} {1, 2, 3} {1, 3}

· 1 2 3
1 {1, 3} {3} {2}
2 {2} {1, 2, 3} {2}
3 {2} {1} {1, 2, 3}

and we write
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In[1]:=<<HyperGroupTest.m
In[2]:=h1={{{1},{2},{1,2,3}},{{2},{1,2,3},{1,2,3}},

{{1,2,3},{1,2,3},{1,3}}};
h2={{{1,3},{3},{2}},{{2},{1,2,3},{2}},{{2},{1},{1,2,3}}};

In[3]:=HyperGroupTest[{h1,h2}]
Out[3]= {True,False}

From the last line (Out[3]) it derives that only the first hypercomposition defines a hypergroup in H . It is obvious though,
that the second hypercomposition satisfies the reproductivity axiom and so the corresponding hypergroupoid is a quasi-
hypergroup. We can verify this by using the ReproductivityTest function of the package in the Appendix.

In[4]:=ReproductivityTest[h2]
Out[4]= True

The package in the Appendix can handle hypergroupoids of arbitrary order. For H = {1, 2, 3, 4}we check the following
hypercomposition:

· 1 2 3 4
1 {1, 3, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
2 {1, 2, 4} {1, 2, 3, 4} {1, 2, 4} {1, 3, 4}
3 {1, 2, 4} {1, 2, 3} {3, 4} {1, 2, 4}
4 {2, 3, 4} {2, 3, 4} {1, 2, 3, 4} {1, 2, 3}

and we get

In[4]:=h3={{{1,3,4},{1,3,4},{2,3,4},{1,2,3,4}},
{{1,2,4},{1,2,3,4},{1,2,4},{1,3,4}},
{{1,2,4},{1,2,3},{3,4},{1,2,4}},
{{2,3,4},{2,3,4},{1,2,3,4},{1,2,3}}}

In[5]:=HyperGroupTest[{h3}]
Out[5]= {True}

In order to evaluate N3 all the 40-million hypergroupoids must be checked. FirstΛ is formed and then all the 73 = 343
triads (in variable a3) and 76 = 3432 hexads (in variable a6) with elements from this set. Their combinations in one
and two rows respectively form hypercomposition matrices of the form (1). Thus the memory requirements of a 79 length
list containing the description of hypercompositions can be overcome. This can be done by writing the lines below where
variable HyperGroups3 collects the hypergroups that we find.

In[6]:=lambda = Drop[Subsets[{1, 2, 3}], 1];
In[7]:=a6=Tuples[lambda, 6];
In[8]:=a3 = Tuples[lambda, 3];
In[9]:=HyperGroups3 = {};
In[10]:=Do[

temp={Partition[Join[a3[[j1]], a6[[j2]]], 3]};
If[HyperGroupTest[temp][[1]],HyperGroups3 = Join[HyperGroups3, temp]]
, {j1, 1, 343}, {j2, 1, {343}^{2}}];

In[11]:=Print[Length[HyperGroups3]]
Out[11]=23192

Interchanging in the above lines the function HyperGroupTestwith the function ReproductivityTest found in the
Appendix we counted 10323979 quasi-hypergroups of order 3. For order 2 we counted 35 quasi-hypergroups. Notice that
for order 2 there are 14 hypergroups in 8 isomorphic classes.
A function that gives the |H|! hypercompositions which form isomorphic hypergroupoids is given by counting the

observations in Section 2.1 for every order.

IsomorphTest[a_List] :=
Module[{p, a1, len},

len = Length[a]; p = Permutations[Range[1, len]];
Return[Table[a1 = a;

a1 = ReplaceAll[a1, a1[[All, Table[j2, {j2, 1, len}]]] ->
a1[[All, p[[j1]]]]];

a1 = ReplaceAll[a1, a1[[Table[j2, {j2, 1, len}]]] ->
a1[[p[[j1]]]]];

a1 = ReplaceAll[a1, Flatten[Table[{p[[j1, j2]] -> j2}, {j2, 1, len}]]];
a1 = Table[Table[a1[[k1, k2]] = Sort[a1[[k1, k2]]], {k2, 1, len}],
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{k1, 1, len}],
{j1, 1, len!}]]

]

In order to count the number of the different non-isomorphic classes of hypergroups of order 3, a six-digit array, called
cardinalities, is used by the program. Each time the routine encounters a non-isomorphic class, it drops it from
HyperGroups3.

In[12]:=cardinalities = {0, 0, 0, 0, 0, 0};
In[13]:=While[Length[HyperGroups3] > 0,

temp = Union[IsomorphTest[HyperGroups3[[1]]]];
len = Length[Union[temp]];
cardinalities[[len]] = cardinalities[[len]] + 1;
HyperGroups3 = Complement[HyperGroups3, temp]

];
In[14]:=Total[cardinalities];
Out[14]=3999
In[15]:=Print[cardinalities];
Out[15]={6, 10, 244, 0, 0, 3739}

So we found that S3 = 3999, and it is confirmed by the cardinalities of the isomorphic classes that 6 · 1+ 10 · 2+ 244 · 3+
3739 · 6 = N3.

4. Conclusion

Generally speaking, very few things are known about the construction of finite hypergroups. For example it is known
that if (H, ·) is a group or a hypergroup, then the (H,�) with a � b = a · b

⋃
{a, b} is a hypergroup [5]. Thus using Cayley’s

theorem a family of finite hypergroups can be constructed, based on finite groups. From the above analysis it is derived
that there are 79 = 40 353 607 hypergroupoids of order 3, 23 192 of these are hypergroups. The group of order 3 is among
them, as well as the corresponding hypergroup constructed as above. The set of 23192 hypergroups is partitioned into 3999
equivalence classes. 3739 of the above classes consist of 6 members, 244 consist of 3 members, 10 have 2 members and the
last 6 are one-member classes. The total hypergroup, that is the hypergroup in which the result of the hypercomposition
consists always of all the elements of the hypergroup, is in the set C1 of the six, one-member, classes. In the same set there
belongs the B-hypergroup, i.e. the hypergroup inwhich the result of the hypercomposition consists only of the two elements
which participate in the hypercomposition [6]. Relating to the B-hypergroup are two other non-isomorphic hypergroups in
which the hypercomposition is defined as follows (see [5]):

ab =
{
{a, b} if a 6= b
H if a = b and ab =

{
{a, b} if a 6= b
H \ {a} if a = b.

These hypergroups, when they have order 3, belong also to C1. Generally the following holds:
Proposition: Let H be an arbitrary set with more than two elements. Then the hypercompositions

ab =
{
H if a 6= b
a if a = b , ab =

{
{a, b} if a 6= b
H \ {a} if a = b , ab =

{
H if a 6= b

H \ {a} if a = b and ab =
{
{a, b} if a 6= b
H if a = b

define in H four non-isomorphic hypergroups.
It is worth mentioning that the number of the classes of hypergroups that can be constructed by the known propositions

and theorems is very small compared to the existing 3999 classes of hypergroups with three elements. Also one can
note that the ratio of hypergroups to hypergroupoids is exceptionally small since we meet a hypergroup in every 1740
hypergroupoids.

Appendix

TheMathematica package that implements the twobasic properties (associativity and reproductivity) for testingwhether
a hypergroupoid is indeed a hypergroup follows. It can be retrieved from the first author web pages.

BeginPackage["HyperGroupTest‘"]; Clear["HyperGroupTest‘*"];

HyperGroupTest::usage = "HyperGroupTest[LookUpTable] tests if
hypergroupoid operation given LookUpTable forms a HyperGroup"

Begin["‘Private‘"]; Clear["HyperGroupTest‘Private‘*"];



C. Tsitouras, C.G. Massouros / Computers and Mathematics with Applications 59 (2010) 519–523 523

HyperGroupTest[LookUpTable_List] :=
Table[If[ReproductivityTest[LookUpTable[[j]]],
If[AssociativityTest[LookUpTable[[j]]], True,

False],
False], {j,1,Length[LookUpTable]}];

AssociativityTest[LookUpTable1_List] :=
Module[{i,j,k,len,test},

i = 1; j = 1; k = 1; test = True;len = Length[LookUpTable1];
While[test && i<=len,

test = Union[Flatten[Union[Extract[LookUpTable1,
Distribute[{LookUpTable1[[i, j]], {k}}, List]]]]] ==

Union[Flatten[Union[Extract[LookUpTable1,
Distribute[{{i}, LookUpTable1[[j, k]]}, List]]]]];

k = k + 1; If[k > len,
k = 1; j = j + 1;
If[j > len, i = i + 1; j = 1];

];
];

Return[test]
];

ReproductivityTest[LookUpTable1_List] :=
Union[Apply[Union, LookUpTable1 , 1]] == {Range[1, Length[LookUpTable1]]} &&
Union[Apply[Union,Transpose[LookUpTable1], 1]] == {Range[1, Length[LookUpTable1]]};

End[];
EndPackage[];

In the package above the function AssociativityTest[ ] is implemented by using While. In the most of the tested
hypercompositions the property of associativity failed after the first two or three checks. Consequently it was not necessary
to go through all 27 cases for hypergroups of order 3. In contrast the function ReproductivityTest[ ] tested all rows
and columns simultaneously according to property (2), since this does not increase computational time.
The program above can be used in order to construct hypergroups of any order. A random hypergroup of sixth order can

be derived writing

In[16]:=Do[temp =
RandomChoice[

Complement[Subsets[{1, 2, 3, 4, 5, 6}, {3, 6}], {{}}], {6, 6}];
If[HyperGroupTest[{temp}][[1]], Print[temp]], {j1, 1, 30000000}]

And we get the following hypergroup:

1 2 3 4 5 6
1
2
3
4
5
6

{2, 3, 4} {1, 2, 3, 4, 5, 6} {2, 3, 4, 5, 6} {1, 3, 4, 6} {1, 4, 5, 6} {1, 2, 3, 4, 6}
{2, 3, 5, 6} {1, 3, 4, 5} {1, 3, 4} {1, 2, 3, 5, 6} {1, 2, 5} {1, 3, 4, 6}
{1, 3, 4, 6} {2, 3, 5, 6} {2, 3, 5, 6} {1, 2, 3, 4} {1, 2, 3, 4, 5, 6} {1, 3, 5, 6}
{1, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1, 2, 3} {2, 3, 4, 5} {1, 2, 3, 4} {1, 2, 3, 4, 5, 6}
{1, 2, 5, 6} {1, 3, 4, 6} {2, 3, 4, 5} {1, 2, 3, 4, 5, 6} {2, 3, 4, 5, 6} {1, 2, 3, 5}
{1, 2, 4, 5, 6} {2, 3, 4} {1, 2, 3, 4, 5, 6} {1, 2, 4} {1, 2, 4, 5, 6} {2, 3, 4, 5}
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