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TRANSPOSITION POLYSYMMETRICAL HYPERGROUPS WITH
STRONG IDENTITY

CH. G. MASSOUROS(1), G. G. MASSOUROS(2)

Abstract. Transposition Polysymmetrical Hypergroups appeared during the study of
the theory of Languages and Automata from the point of view of the hypercomposi-

tional structures theory. This paper presents examples and properties, of Transposition
Polysymmetrical Hypergroups that have a strong identity, i.e. an element e with the
property x ∈ ex = xe ⊆ {x, e}, for all the elements x of the hypergroup.

1. Introduction

A transposition hypergroup (see [2]) is a hypergroup which satisfies a postulated prop-
erty of transposition i.e. (b \ a)∩ (c/d) 6= ∅⇒ (ad)∩ (bc) 6= ∅ where a/b = {x ∈ H|a ∈ xb}
and b \ a = {x ∈ H|a ∈ bx} are the induced hypercompositions. A join space [15], also
join hypergroup, is a commutative transposition hypergroup (for some recent interesting
examples see [1]). A Fortified Transposition Hypergroup is a transposition hyper-
group H, having an identity or neutral element e such that ee = e, x ∈ ex = xe, for all
x ∈ H and also for every x ∈ H − {e} there exists a unique element x′ ∈ H − {e} such
that e ∈ xx′, and, furthermore, x′ satisfies e ∈ x′x [4]. If H is also commutative, then it is
a Fortified Join Hypergroup [12, 13]. This last hypergroup resulted from the theory of
Languages [9, 10, 11]. Moreover, from the theory of automata resulted the Transposition
Polysymmetrical Hypergroup (TPH) [9, 10, 11], i.e. a transposition hypergroup H,
having an identity or neutral element e such that ee = e, x ∈ ex = xe, for all x ∈ H and
also for every x ∈ H −{e} there exists at least one element x′ ∈ H −{e}, a symmetric (or
two sided inverse) of x, such that e ∈ xx′, and e ∈ x′x. The set of the symmetric elements
of x is denoted by S(x) and is called the symmetric set of x. A commutative transpo-
sition polysymmetrical hypergroup is called a Join Polysymmetrical Hypergroup. An
element e of a hypergroup H is a scalar identity if ex = xe = x for each x in H. If a
scalar identity exists in H, then it is unique. An element e of a hypergroup H is a strong
identity if

x ∈ ex = xe ⊆ {x, e}, for all x ∈ H.

Strong identity need not be unique [4]. The set E of the strong identities is a central
subhypergroup of H [4]. An element x of a transposition polysymmetrical hypergroup H,
will be called attractive if e ∈ xe, while a non identity element x will be called non
attractive if e /∈ xe. We denote by A the set of the attractive elements and by C the set
of non attractive elements. Then H = A ∪ C and A ∩ C = ∅.

In [4] it has been proved that identity of a fortified transposition hypergroup is strong and
unique. Yet the examples in [14] show that in polysymmetrical transposition hypergroups
identity need not be unique. But if a polysymmetrical transposition hypergroup has a
strong identity, then the Proposition holds:

Proposition 1.1. If a polysymmetrical transposition hypergroup has a strong identity e,
then it is unique.

Proof. Assume that u is identity distinct from e and let Su(e) be the set of the symmetric
elements of e with regard to u. Then, there would exist an element e′ ∈ Su(e), distinct
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from u, such that u ∈ ee′. But ee′ = {e, e′}. Thus, u ∈ {e, e′}, which contradicts the
assumption. �

2. Examples of TPH with strong identity

It is known, that in a transposition hypergroup with a scalar identity e, each element
has a unique inverse. However this does not happen in a transposition hypergroup with
a strong identity. The following example shows that in a transposition hypergroup with a
strong identity each element may have not a unique inverse.

Example 2.1. Let H be a totally ordered, and symmetric set around a center, denoted by
0 ∈ H. A hypercomposition is defined on H by

x + y = {x, y} if 0 /∈ [x, y]

x + y = {x, y, 0} if 0 ∈ [x, y].
Then (H,+) is a transposition hypergroup with strong identity being the element 0. Ob-
viously, if x belongs to the positive cone, then every element of the negative cone of H is
opposite of x and similarly, if x belongs to the negative cone, then S(x) is the positive cone.

In the next examples, starting from other hypergroups, two transposition polysymmet-
rical hypergroups with strong identity are constructed.

Example 2.2. Let the hypergroups (Ai, ·), i ∈ I. We consider the union T = ∪i∈IAi. In
this set we define the following hyperoperation:

a ◦ b = ab if a, b are elements of the same hypergroup Ai

a ◦ b = Ai ∪Aj if a ∈ Ai, b ∈ Aj and i 6= j

It is known [6] that (T, ◦) is a hypergroup and that, if Ai, i ∈ I are transposition hypergroups,
then (T, ◦) is also transposition. Now let Ai, i ∈ I be a family of fortified transposition hyper-
groups which consist only of attractive elements and assume that the hypergroups Ai, i ∈ I
have their identity e, common. Ithe hypercomposition is defined as follows:

a� b = ab if a, b are elements of the same hypergroup Ai

a� b = Ai ∪Aj if a ∈ Ai − {e}, b ∈ Aj − {e} and i 6= j

then (T,�) becomes a transposition polysymmetrical hypergroup, which has e as its strong
identity. Obviously if a ∈ Ai, then S(a) = (T − Ai) ∪ {a′}, where a′ is the inverse of a in
Ai.

Example 2.3. Let (Ai, ·), i ∈ I, be a family of hypergroups, which have the property that
the two elements which participate to the hypercomposition are always included in the result
of the hypercomposition i.e. {x, y} ⊆ xy for all x, y in Ai. Next the union T = ∪i∈IAi is
equipped with a hypercomposition ” • ” defined as follows:

a • b = ab if a, b are elements of the same hypergroup Ai

a • b = {a, b} if a ∈ Ai, b ∈ Aj and i 6= j

Then (T, •) is a hypergroup and moreover, if Ai, i ∈ I are transposition hypergroups, then
(T, •) is also transposition. Now let Ai, i ∈ I be a family of fortified transposition hyper-
groups which consist only of attractive elements and suppose that the hypergroups Ai, i ∈ I
have their identity e, common. Then (T, •) is also a fortified transposition hypergroup. Yet,
if the hypercompositions ” • ” is modified slightly in the following way:

a� b = ab if a, b are elements of the same hypergroup Ai

a� b = {a, e, b} if a ∈ Ai − {e}, b ∈ Aj − {e} and i 6= j
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then, (T, •) becomes a transposition polysymmetrical hypergroup, which has e as its strong
identity. In order to verify the axioms, the property of the fortified transposition hypergroups
must be used, according to which, in the result of the hypercomposition of two attractive
elements, these two elements are contained [4, 12]. Obviously, if a ∈ Ai, then S(a) =
(T − Ai) ∪ {a′}, where a′ is the inverse of a in Ai. Note that if Ai, i ∈ I are transposition
polysymmetrical hypergroups, then (T, •) is also a transposition polysymmetrical hypergroup.

From the above Examples, the following interesting remarks derive:
(i) the non existence of e in ab does not necessarily imply that e does not also belong

to S(a)S(b), or to S(b)S(a),
(ii) the non void intersection S(a) ∩ S(b) does not imply that S(a) is equal to S(b).

3. Some properties of TPH with strong identity

Jantosciak, in [2], shows that a principle of duality holds for both the theory of hyper-
groups and the theory of transposition hypergroups. This principle is condensed as follows:
Given a theorem, the dual statement, which results from the interchanging of the order of
the hypercomposition is also a theorem. Since we are working in transposition hypergroups
this principle is used throughout. Let H be a transposition polysymmetrical hypergroup
with strong identity e, and suppose that each element of H is attractive. Then:

Proposition 3.1. Let x 6= e be an element of H, then
(i) e/x = eS(x) = {e} ∪ S(x) = S(x)e = x \ e

(ii) x/e = e \ x = x.

Proof. (i) Since e is strong identity it is straight forward that the equalities eS(x) = {e} ∪
S(x) = S(x)e hold. Next, t ∈ e/x if and only if e ∈ tx, which means that either t equals to
e or t belongs to S(x) and so e/x = {e} ∪ S(x). Duality yields the rest.

(ii) t ∈ x/e if and only if x ∈ te ⊆ {t, e}. Since x 6= e, clearly t = x. So x/e = x. The
rest follows by duality. �

Corollary 3.2. If X is a non empty subset of H and e /∈ X, then

e/X = eS(X) = {e} ∪ S(X) = S(X)e = X \ e.

Since H is a transposition hypergroup with strong identity, the algebraic results of section
2.3, of [4], must hold. So:

Proposition 3.3. If x, y are elements of H, then
(i) {x, y} ⊆ xy,

(ii) x ∈ x/y and x ∈ y \ x,
(iii) x/x = x \ x = H.

Proposition 3.4. If e /∈ aS(b), then

aS(b) = a/b ∪ S(b) and S(b)a = b \ a ∪ S(b).

Proof. Since e ∈ bS(b) it derives that b ∈ e/S(b). Thus a/b ⊆ a/(e/S(b)). So we have

a/b ∪ S(b) ⊆ a/(e/S(b)) ∪ S(b) ⊆ aS(b)/e ∪ S(b) = aS(b) ∪ S(b) = aS(b).

On the other hand, since e/b = {e} ∪ S(b) we have:

aS(b) ⊆ a(e/b) ⊆ ae/b = {a, e}/b = a/b ∪ e/b = a/b ∪ {e} ∪ S(b).

Since e /∈ aS(b) it derives that aS(b) ⊆ a/b ∪ S(B). Thus aS(b) = a/b ∪ S(B). Dually,
S(b)a = b \ a ∪ S(b) �
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Corollary 3.5. If B1, B2 are non empty subsets of H and e /∈ B1S(B2), then

B1S(B2) = B1/B2 ∪ S(B2) and S(B2)B1 = B2 \B1 ∪ S(B2).

Proposition 3.6. If e /∈ ab, then eS(ab) = eS(b)S(a).

Proof. Because of Corollary 3.2 e/ab = S(ab) ∪ {e} = eS(ab). Also because of the mixed
associativity [3, 7] e/ab = (e/b)/a. Thus we have: S(ab) ∪ e = e/ab = (e/b)/a = [S(b) ∪
{e}]/a = S(b)/a∪e/a = S(b)/a∪S(a)∪{e} = S(b)S(a)∪{e}. If we assume that e /∈ S(b)S(a)
and since e /∈ ab implies that e /∈ S(ab), then from S(ab) ∪ {e} = S(b)S(a) ∪ {e} it derives
that S(ab) = S(b)S(a). �

Corollary 3.7. If e /∈ ab and e /∈ S(b)S(a), then S(ab) = S(b)S(a).

Remark 3.8. It has been proved (see [12]) that, in the case of fortified join hypergroups,
if b = a−1, then the equality (ab)−1 = b−1a−1 may not be valid. Since the fortified join
hypergroup is a partial case of the transposition polysymmertical hypergroup, it derives
that if e ∈ ab, then the equality S(ab) = S(b)S(a) may not be valid. Also, from the above
Examples 2.2 and 2.3, it becomes evident that this equality fails to hold when e ∈ S(b)S(a).

Corollary 3.9. Let B1, B2 be two non empty subsets of H, then
(i) eS(B1B2) = eS(B2)S(B1), if e /∈ B1B2,

(ii) S(B1B2) = S(B2)S(B1), if e /∈ B1B2 and e /∈ S(B2)S(B1).

Proposition 3.10. If x, y, z ∈ H and z ∈ xy, then:
(i) x′z ∩ ey 6= ∅ for every x′ ∈ S(x),

(ii) zy′ ∩ ex 6= ∅ for every y′ ∈ S(y)

Proof. z ∈ xy implies that x ∈ z/y and y ∈ x \ z. If x′, y′ are arbitrary elements of S(x)
and S(y) respectively, then e ∈ x′x and e ∈ yy′ yields that x ∈ x′ \ e and y ∈ e/y′. Thus
x′ \ e ∩ z/y 6= ∅ and x \ z ∩ e/y′ 6= ∅ , and the proposition follows by the property of
transposition. �

Proposition 3.11. Let x, y, z ∈ H − {e} and z ∈ xy:
(i) if S(x) ∩ S(z) = ∅, then y ∈ x′z for every x′ ∈ S(x),

(ii) if S(y) ∩ S(z) = ∅, then x ∈ zy′ for every y′ ∈ S(y).

Proof. By the previous proposition z ∈ xy implies that x′z∩ey 6= ∅ for every x′ ∈ S(x). So
x′z ∩{e, y} 6= ∅. Thus, since S(x)∩S(z) = ∅ is given, it follows that e /∈ x′z and therefore
y ∈ x′z. Similarly (ii) is established. �

Remark 3.12. e ∈ xx′ implies x ∈ ex and x′ ∈ ex′. Also e ∈ ex implies e ∈ ex′ while
x /∈ ee. Thus, from these observations and Proposition 3.11, it is clear that in transposition
polysymmetrical hypergroups with strong identity the property of reversibility is valid under
conditions.

Next a few Propositions regarding the subhypergroups of these hypergoups are given.
First let us recall that a subhypergroup h of a transposition polysymmetrical hypergroup
is symmetric, if x ∈ h implies S(x) ⊆ h, while a subhypergroup of a hypergoup is called
closed if and only if x/y ⊆ h and y \ x ⊆ h, for every x, y ∈ h.

Proposition 3.13. H does not have non empty proper closed subhypergroups.

Proof. Since x/x = x \ x = H, for every x ∈ H, H does not have nonempty proper closed
subhypergroups. �

Proposition 3.14. Let h be a symmetric subhypergroup of H. If x /∈ h, then
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(i) x/h ∩ h = ∅ and h \ x ∩ h = ∅,
(ii) xh = x/h ∪ h and hx = h \ x ∪ h,

(iii) h/x = hS(x) and x \ h = S(x)h.

Proof. (i) Let x /∈ h. If x/y ∩ h 6= ∅ for some y ∈ h, then x ∈ hy ⊆ h, which contradicts
the assumption. Thus x/h ∩ h = ∅.

(ii) Since h is symmetric, it derives that S(h) = h. Also e /∈ xh, since x /∈ h. So,
according to Corollary 3.5 we have xh = xS(h) = x/h ∪ S(h) = x/h ∪ h.

(iii) According to Proposition 3.1, S(x) ⊆ e/x. Obviously e/x is a subset of h/x,
so S(x) ⊆ h/x. Since x /∈ h we have e /∈ hS(x). Thus Corollary 3.5 implies that hS(x) =
h/x ∪ S(x) = h/x. The rest in each of (i), (ii) and (iii) follows by duality. �

Proposition 3.15. Let h be a symmetric subhypergroup of H. If x /∈ h, then

(x/h)h = xh and h(h \ x) = hx

Proof. Since x ∈ x/h, it derives that xh ⊆ (x/h)h. Also, because of Proposition 3.14 (ii) it
holds: x/h ⊆ xh. Thus xh ⊆ (x/h)h ⊆ (xh)h = xh. Duality yields the other part. �

Proposition 3.16. Let h be a symmetric subhypergroup of H. If x, y /∈ h, then
(i) x/h ∩ y/h 6= ∅ implies x/h = y/h,

(ii) h \ x ∩ h \ y 6= ∅ implies h \ x = h \ y,
(iii) h \ (x/h) ∩ h \ (y/h) 6= ∅ implies h \ (x/h) = h \ (y/h)

Proof. (i) x/h∩ y/h 6= ∅ implies that x ∈ (y/h)h. Since y /∈ h, from Propositions 3.15 and
3.14(ii) follows the equality: (y/h)h = yh = y/h ∪ h. Thus x ∈ y/h ∪ h. Since x /∈ h, it
derives that x ∈ y/h. So x/h ⊆ (y/h)/h = y/hh = y/h. By symmetry y/h ⊆ x/h. Hence
x/h = y/h. Duality gives (ii).

(iii) Algebra of hypergroups [3, 6] and Proposition 3.15 gives:
h \ (x/h) ∩ h \ (y/h) 6= ∅⇒ (h \ x)/h ∩ h \ (y/h) 6= ∅⇒ h \ x ∩ [h \ (y/h)]h 6= ∅⇒
h \ x ∩ h \ [(y/h)h] 6= ∅⇒ h \ x ∩ h \ yh 6= ∅⇒ x ∈ yh⇒ y ∈ x/h⇒ y/h ⊆ (x/h)/h⇒
y/h ⊆ x/(hh)⇒ y/h ⊆ x/h⇒ h\ (y/h) ⊆ h\ (x/h). By symmetry h\ (x/h) ⊆ h\ (y/h),

and so equality holds. �

4. Cosets

This paragraph refers to cosets defined from a nonempty symmetric subhypergroup in a
transposition polysymmertical hypergroup H. It is assumed that H has a strong identity
and consists only of attractive elements. The definitions of the left, the right and the double
coset are the same to these in [4].

Definition 4.1. Let x ∈ H and let h be a nonempty symmetric subhypergroup. Then x←−
h

,
the left coset of h determined by x, and dually, x−→

h
, the right coset of h determined by x,

are given by

x←−
h

=
h, if x ∈ h
x/h, if x /∈ h. and x−→

h
=

h, if x ∈ h
x \ h, if x /∈ h.

For A ⊆ H, A←−
h

and A−→
h

denote the unions ∪{x←−
h
|x ∈ A} and ∪{x−→

h
|x ∈ A} respectively.

Recalling that in any hypergroup the equality (B \A)/C = B \ (A/C) is valid, we have:

Definition 4.2. Let x ∈ H and let h be a nonempty symmetric subhypergroup. Then, xh,
the double coset of h determined by x, is given by

xh =
h, if x ∈ h
h \ (x/h) = (h \ x)/h, if x /∈ h.
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Following the above notation, if A is a non void subset of H, then Ah denotes the union
∪{xh|x ∈ A}. Next, it is being shown that properties which are in value for the cosets in
fortified transposition hypergroups [4] are also valid in these hypergroups.

Proposition 4.3. Let h be a symmetric subhypergroup of H. Then
(i) x ∈ x←−

h
, x ∈ x−→

h
and x ∈ xh

(ii) x←−
h
⊆ xh and x−→

h
⊆ xh

(iii) xh = (x←−
h

)−→
h

= (x−→
h

)←−
h

Proposition 3.15 assures that distinct left cosets, dually, right cosets as well as double
cosets are disjoint. Thus:

Proposition 4.4. The families H :
←−
h = {x←−

h
|x ∈ H}, H :

−→
h = {x−→

h
|x ∈ H} and

H : h = {xh|x ∈ H} of left, right and double cosets are each one partitions of H.

Proposition 4.5. Let h be a symmetric subhypergroup of H. Then
(i) x←−

h
h = xh = x←−

h
∪ h

(ii) hx−→
h

= hx = x−→
h
∪ h

Proof. (i) If x ∈ h, then the equalities are valid, since every part of each equality equals h.
If x /∈ h, then because of Proposition 3.15 x←−

h
h = (x/h)h = xh and because of Proposition

3.14 (ii) xh = x/h ∪ h = x←−
h
∪ h. Duality gives (ii). �

Corollary 4.6. If A is a non empty subset of H and h a symmetric subhypergroup of H.
Then

A←−
h

h = Ah = A←−
h
∪ h and hA−→

h
= hA = A−→

h
∪ h.

Proposition 4.7. Let h be a symmetric subhypergroup of H. Then

hxh = hx←−
h

= xh ∪ h = hxh = x−→
h

h = xhh

Proof. By Proposition 4.5(i), it follows that:

hxh = h(x←−
h
∪ h) = hx←−

h
∪ h = hx←−

h

and by duality it holds: hxh = x−→
h

h. Next, Proposition 4.3(iii) and Corollary 4.6 gives the
equalities: hxh = h(x←−

h
)−→

h
= hx←−

h
= (x←−

h
)−→

h
∪ h = xh ∪ h. Duality gives the rest and so the

Proposition holds. �

Corollary 4.8. If A is a non empty subset of H and h a symmetric subhypergroup of H.
Then

hAh = hA←−
h

= Ah ∪ h = hAh = A−→
h

h = Ahh.

Proposition 4.9. Let h be a symmetric subhypergroup of H. Then
(i) (xy)←−

h
⊆ x←−

h
y←−

h
∪ h

(ii) (xy)−→
h
⊆ x−→

h
y−→

h
∪ h

Proof. (i) Because of Corollary 4.6 (xy)←−
h
⊆ (xy)←−

h
h = xyh is valid. Next, because of

Proposition 3.3, it holds: xyh ⊆ (x/h)yh = x←−
h

yh. Now, Proposition 4.4 gives:

x←−
h

yh = x←−
h

(y−→
h
∪ h) = x←−

h
y−→

h
∪ x←−

h
h = x←−

h
y−→

h
∪ x←−

h
∪ h.

Finally, because of Proposition 3.3, the equality x←−
h

y−→
h
∪x←−

h
∪h = x←−

h
y−→

h
∪h, holds. Duality

gives part (ii). �

Corollary 4.10. Let A,B be non empty subsets of H and h a symmetric subhypergroup of
H. Then

(AB)←−
h
⊆ A←−

h
B←−

h
∪ h and (AB)−→

h
⊆ A−→

h
B−→

h
∪ h
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Proposition 4.11. Let h be a symmetric subhypergroup of H. Then

(xy)h ⊆ xhyh ∪ h

Proof. Proposition 4.3 (iii) and Corollary 4.10 gives

(xy)h = ((xy)←−
h

)−→
h
⊆ [x←−

h
y←−

h
∪ h]−→

h
= (x←−

h
y←−

h
)−→

h
∪ h−→

h
⊆ (x←−

h
)−→

h
(y←−

h
)−→

h
∪ h = xhyh ∪ h

and so the Proposition. �

Corollary 4.12. Let A,B be non empty subsets of H and h a symmetric subhypergroup of
H. Then

(AB)h ⊆ AhBh ∪ h.

Corollary 4.13. Let A,B be non empty subsets of H and h a symmetric subhypergroup of
H. Then

(i) h ∩AhBh 6= ∅ implies (AhBh)h = AhBh ∪ h and
(ii) h ∩AhBh = ∅ implies (AhBh)h = AhBh

Let ”•” be the induced hypercomposition on H : h. Using Proposition 3.1 of [3] it can be
proved that associativity holds in (H : h, •) if and only if ((xhyh)hzh)h = (xh(yhzh)h)h. In a
similar way to Theorem 31 of [4] one can prove that the above equality holds in transposition
polysymmetrical hypergroups of attractive elements and therefore

Proposition 4.14. Let h be a symmetric subhypergroup of H. Then (H : h, •) is a hyper-
group.

5. Homomorphisms

According to the terminology introduced by M. Krasner [5], if H and H ′ are two hy-
pergroups, then a homomorphism from H to H ′ is a mapping φ : H → P(H ′) such that
φ(xy) ⊆ φ(x)φ(y), for every x, y ∈ H. A homomorphism is called normal if φ is a mapping
from H to H ′ and φ(xy) = φ(x)φ(y) for every x, y ∈ H.

Proposition 5.1. If φ is a normal homomorphism from H to H ′, then

φ(b \ a) ⊆ φ(b) \ φ(a) and φ(a/b) ⊆ φ(a)/φ(b).

Proof. If y ∈ φ(b \ a), then φ(x) = y for some x ∈ b \ a, from where it follows that a ∈ bx.
Thus φ(a) ∈ φ(bx) = φ(b)φ(x) and consequently φ(x) ∈ φ(b) \ φ(a). Therefore, the first
relation is established. The second relation follows by duality. �

Now let H and H ′ be two transposition polysymmetrical hypergroups with strong iden-
tities e and e′ respectively and suppose that they consist only of attractive elements. As
usual the kernel of φ, denoted by kerφ, is the subset φ−1(φ(e)) of H. Also the homomorphic
image φ(H) of H is denoted by Imφ.

Proposition 5.2. If φ is a normal homomorphism from H to H ′, then
(i) kerφ is a semisubhypergroup of H,

(ii) Imφ is a subhypergroup of H ′ which generally does not contain the strong identity
of H ′, but φ(e) is a neutral element in Imφ.

Proof. (i) If x ∈ kerφ, then φ(xkerφ) = φ(e). Thus xkerφ ⊆ kerφ.
(ii) Let x ∈ H. Then φ(x)φ(H) = ∪y∈Hφ(xy) = φ(xH) = φ(H). Similarly φ(H)φ(x) =

φ(H). Thus Imφ is a subhypergroup of H ′. Yet, since x ∈ ex = xe it holds φ(x) ∈
φ(e)φ(x) = φ(x)φ(e). �

Proposition 5.3. Let φ be a normal epimorphism from H to H ′. Then φ(e) = e′.
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Proof. Since φ is a normal epimorphism, there exists a subset X of H such that φ(X) =
S(φ(e)). Next the relation e′ ∈ φ(e)S(φ(e)) implies:

e′ ∈ φ(e)φ(X) = φ(eX) = φ({e} ∪X) = {φ(e)} ∪ φ(X).

Consequently either e′ = φ(e) or e′ ∈ φ(X) = S(φ(e)). By the definition of the symmetric
set, from e′ ∈ S(φ(e)) it derives that e′ = S(φ(e)). Thus e′ = φ(e) and so the proposition.

�

The notion of the complete homomorphism, which was introduced in [8], is defined as
follows for the case of transposition polysymmetrical hypergroups.

Definition 5.4. A homomorphism will be called complete if for every x ∈ kerφ follows
that S(x) ⊆ kerφ.

Proposition 5.5. If φ is a complete and normal homomorphism, then kerφ is a symmetric
subhypergroup of H.

Proof. x ∈ kerφ implies xkerφ ⊆ kerφ, since kerφ is a semisubhypergroup of H. Next let
y ∈ kerφ and x′ ∈ S(x). Then y ∈ (xx′)y = x(x′y) ⊆ xkerφ. Thus kerφ ⊆ xkerφ and so
kerφ = xkerφ. Similarly (kerφ)x = kerφ, and therefore kerφ is a subhypergroup of H. In
addition kerφ is a symmetric subhypergroup of H, since x ∈ kerφ implies S(x) ⊆ kerφ. �

Proposition 5.6. Let φ be a complete and normal homomorphism for which φ(e) = e′ is
valid. Then φ(S(x)) ⊆ S(φ(x)).

Proof. e′ ∈ Imφ, since φ(e) = e′. Next let y ∈ Imφ. Then y = φ(x) for a x in H.
Let x′ ∈ S(x). Then e′ = φ(e) ∈ φ(xx′) = φ(x)φ(x′). If φ(x) 6= e′, then φ(x′) 6= e′,
since φ is complete. Thus e′ ∈ φ(x)φ(x′) implies that φ(x′) ∈ S(φ(x)). Consequently
φ(S(x)) ⊆ S(φ(x)). �

Corollary 5.7. Let φ be a normal homomorphism for which it holds φ(e) = e′ and
φ(S(x)) = S(φ(x)) for every x ∈ H. Then

(i) Imφ is a symmetric subhypergroup of H ′,
(ii) The homomorphic image of every symmetric subhypergroup of H is a symmetric

subhypergroup of H ′.
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