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Abstract

An element e in a hypergroup H is a strong identity if x ∈ ex = xe ⊆ x ∪ e .
The elements of H separate into two classes, the set A = {x ∈ H | ex = xe = x ∪ e} ,
including e , of attractive elements and the set C = {x ∈ H − e | ex = xe = x} of canonical
elements. If H is a transposition hypergroup then A is shown to be a closed subhypergroup
of essentially indistinguishable elements. The structure of H is then determined, for A can be
contracted into e leaving the “resulting” C ∪ e , which is a polygroup under the relativized
hyperoperation. Therefore, H can be reconstructed from A and C ∪ e , as H is isomorphic
to the expansion of the polygroup C ∪ e by the transposition hypergroup A through e . The
study of transposition hypergroups containing a strong identity separates into the study of
polygroups and the study of transposition hypergroups of all attractive elements.

A fortified transposition hypergroup H is defined and shown to contain a unique
strong identity. Moreover, each nonidentity element is shown to have unique nonidentity
left and right inverses that are identical. For H consisting of all attractive elements, the
subhypergroups K that are symmetric, K = K−1 , are studied. The double cosets of K , the sets
K \ (x/K) = (K \ x)/K if x /∈ K , otherwise K , partition H . The resulting quotient space
H : K of double cosets is proven to be a fortified transposition hypergroup in which K is the
strong identity and every member is attractive.
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170 J. JANTOSCIAK AND C. G. MASSOUROS

1. Introduction and basics

Many algebraic hypergroups are extensive, the elements being
joined are members of the resulting join. Moreover, it is known,
and straightforward to verify, that the extensive enlargement of any
hypergroup is also a hypergroup. An identity element e of an extensive
hypergroup must be a member of every join in which it is a factor, that is,
e ∈ ex and e ∈ xe for every x . Minimal such identities, where ex = xe =
{x, e} , are considered. More generally, a study of any hypergroup, but for
the most part, a transposition hypergroup, which contains an element e ,
herein called a strong identity, that satisfies x ∈ ex = xe ⊆ {x, e} is made.

If a transposition hypergroup with a strong identity has the property
that each nonidentity element has unique nonidentity right and left
inverses which are identical, it is said to be a fortified transposition
hypergroup. When commutative, such hypergroups have application to
the theory of languages and automata and have been known and studied
as fortified join hypergroups (see [8], [7] and [9]). Fortified transposition
hypergroups are examined up through the study of quotient structures in
this presentation.

To conclude this section, the basics needed for this work are reviewed.

Hypergroups. Let (H, ·) be an algebraic hypergroup. So · is a hyper-
operation or join operation in H , given a, b ∈ H , the join a · b , or just
ab , is a nonempty subset of H . For subsets A and B of H , the join
AB =

⋃{ab | a ∈ A, b ∈ B} . Notationally, aB is used for {a}B and Ba for
B{a} . Furthermore, (H, ·) satisfies the two axioms,

(Reproduction) aH = Ha = H for all a ∈ H ;

(Associativity) a(bc) = (ab)c for all a, b, c ∈ H .

Extension Hyperoperations. The join operation · has two inverses right
extension / and left extension \ defined by

a/b = {x | a ∈ xb} and b \ a = {x | a ∈ bx} . (1)

It is convenient to use the relational notation A ≈ B (read A meets
B ) to assert that subsets A and B have an element in common, that is,
that A ∩ B 6= ∅ . Then, as a singleton {a} is identified with its member a ,
the notation a ≈ A or A ≈ a is used as a substitute for a ∈ A . Thus (1)

D
ow

nl
oa

de
d 

by
 [

89
.2

10
.1

66
.2

26
] 

at
 2

3:
20

 0
4 

A
ug

us
t 2

01
3 



STRONG IDENTITIES AND FORTIFICATION 171

becomes the easy to manipulate,

x ≈ a/b if and only if a ≈ xb and x ≈ b \ a if and only if a ≈ bx .

As is done with any hyperoperation, by definition

A/B =
⋃{a/b | a ∈ A, b ∈ B} and B \ A =

⋃{b \ a | a ∈ A, b ∈ B}.

Then A ≈ B/C if and only if B ≈ AC , and A ≈ C \ B if and only if
B ≈ CA .

Transposition Hypergroups. The hypergroup H is a transposition hyper-
group if it satisfies the axiom,

(Transposition) b \ a ≈ c/d implies ad ≈ bc for all a, b, c, d ∈ H .

Clearly the transposition axiom extends to sets, that is, B \ A ≈ C/D
implies AD ≈ BC . A theory of transposition hypergroups is given in [5].

Duality. Two statements of the theory of hypergroups are dual statements
(see [5]) if each results from the other by interchanging the order of the join
operation · , that is, interchanging any join ab with the join ba . Observe
that each of the axioms, reproduction and associativity, is self-dual. The
extensions / and \ have dual definitions, hence must be interchanged in
a construction of a dual statement. Observe then that the transposition
axiom is self-dual. Therefore, a principle of duality holds for the theory of
hypergroups and the theory of transposition hypergroups.

Given a theorem, the dual statement, which results from the
interchanging of the order of the join operation · (and necessarily
interchanging / and \ ), is also a theorem.

Equivalences. For any equivalence relation θ on the hypergroup H , let
aθ denote the equivalence class of element a and Aθ =

⋃{aθ | a ∈ A} .
Let H : θ denote the family of equivalence classes, that is, H : θ =
{aθ | a ∈ H} . The induced hyperoperation ◦ on H : θ is given by

aθ ◦ bθ = {xθ | x ∈ aθbθ} .

The equivalence θ is known as a regular or a type 2 equivalence if
aθbθ ⊆ (ab)θ , and as a congruence or a type 3 equivalence if (ab)θ ⊆ aθbθ .
It is well-known for θ either regular or a congruence, that (H : θ, ◦)
is a hypergroup (see [3] and [1]). The hypergroup H : θ is known
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172 J. JANTOSCIAK AND C. G. MASSOUROS

as the factor or quotient hypergroup of H modulo θ . If θ is a regular
equivalence and H is a transposition hypergroup, then it is known that
H : θ is a transposition hypergroup (see [5]). Each of the notions regular
equivalence and congruence is a self-dual notion.

Elementary Algebra. The two results that underlie the algebra of trans-
position hypergroups (see [5], Propositions 1 and 2) are stated here. They
will be used without citation throughout this paper.

Proposition. In a hypergroup,

(B \ A)/C = B \ (A/C);

(A/B)/C = A/CB and dually C \ (B \ A) = BC \ A;

A 6= ∅ implies B ⊆ (A/B) \ A, and dually, implies B ⊆ A/(B \ A).

Proposition. In a transposition hypergroup,

A(B/C) ⊆ AB/C and dually (C \ B)A ⊆ C \ BA;

A/(B/C) ⊆ AC/B and dually (C \ B) \ A ⊆ B \ CA .

2. Strong identities

The object of study in this section is defined.

Definition. An element e of a hypergroup H is a strong identity if

x ≈ ex = xe ⊆ x ∪ e for all x ∈ H . (2)

The definition obviously implies that a strong identity e satisfies
ee = e . Then e is idempotent and central in H . Note that (2) is self-dual, so
that the notion of a strong identity is a self-dual notion. A hypergroup H
with a strong identity e has a natural partition. Let

A = {x ∈ H | ex = xe = x ∪ e} and C = {x ∈ H − e | ex = xe = x} .

Then H = A∪ C and A∩ C = ∅ . Observe that each of the subsets A and
C is self-dual.

Definition. A member of A is an attractive element and a member of C is
a canonical element.

See [7] for the origin of the terminology. Note that e is then attractive
but not canonical.
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STRONG IDENTITIES AND FORTIFICATION 173

2.1 Examples

Some examples of a hypergroup with a strong identity are given.
Each one is chosen to be a transposition hypergroup.

Example 1. Let H be a nonempty set and · be union (of sets), that
is, x · y = x ∪ y . Then H is a commutative transposition hypergroup
(join space), known as the minimal extensive hypergroup and also called a
B(iset)-hypergroup. The verification is treated in [9]. In H , each element
is a strong identity, and every element is attractive with respect to a given
strong identity.

Example 2. Let H be a quasicanonical hypergroup (polygroup). Then
H is a transposition hypergroup with a unique strong identity, its scalar
identity. Moreover every nonidentity element of H is canonical.

Example 3. Let H be a quasicanonical hypergroup. Let · be the extensive
enlargement of the hyperoperation on H , so the common enlargement of
the hyperoperation on H and the set union hyperoperation of Example 1,
precisely said, x · y = xy ∪ x ∪ y where xy is the hyperproduct in H .
Then H under · is easily seen to be a hypergroup. Denoting the right
and left extensions that are inverse to · by ·/ and ·\ , respectively, it is
immediate that

x ·/y =





x/y ∪ x, if x 6= y;

H, if x = y
and y ·\x =





y \ x ∪ x, if x 6= y;

H, if x = y .

Transposition, since it holds for a quasicanonical hypergroup, can now
be verified in a straightforward case-by-case argument. Then H under
· is a transposition hypergroup. It contains a unique strong identity, the
scalar identity of the quasicanonical H , and every element of H is now
attractive. The above construction appears in [7] for the commutative case.

Example 4. Let H be a dilated B-hypergroup (see [7]). That is, H is a set
with a distinguished element e . Furthermore, · is the set union hyper-
operation of Example 1 enlarged so that e is in the hypercomposition of
an element with itself. Thus,

x · y =





x ∪ y, if x 6= y;

x ∪ e, if x = y .
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174 J. JANTOSCIAK AND C. G. MASSOUROS

That H is a commutative hypergroup is easily verified. Then noting that

x/y = y \ x =





H, if x = y;

x ∪ y, if x 6= y and x = e;

x, if x 6= y and x 6= e ,

transposition follows without difficulty. Therefore, H is a join space with
the unique strong identity e , and in which, every element is attractive.
It may also be observed that H is not isomorphic to a hypergroup
constructed as in Example 3 if the order of H is at least three.

Example 5. Let K be a quasicanonical hypergroup with scalar identity e .
Let L be a transposition hypergroup, disjoint from K − e , all of whose
elements are attractive with respect to a strong identity also denoted by e .
Let H = (K− e) ∪ L be the expansion of K by L through the idempotent e
of K as defined in [4]. Therefore, the hyperoperation · on H is given by

x · y =





xy, if x, y ∈ L;

σ−1(σ(x)σ(y)), otherwise

where σ : H → K is given by

σ(x) =





e, if x ∈ L;

x, otherwise.

From [4] it follows that H under · is a hypergroup in which the extensions
·/ and ·\ satisfy

x ·/y =





x/y, if x, y ∈ L ;

σ−1(σ(x)/σ(y)), otherwise

and

y ·\x =





y \ x, if x, y ∈ L ;

σ−1(σ(y) \σ(x)), otherwise.

Then in a manner that modifies the proof of the transposition axiom for
join spaces in [4] to accommodate noncommutative joins, it can be verified
that H is a transposition hypergroup. Furthermore, e is a strong identity
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STRONG IDENTITIES AND FORTIFICATION 175

in H for which L is the set of attractive elements and K − e is the set of
canonical elements.

2.2 Uniqueness

Let H be a hypergroup with a strong identity e . Example 1 makes it
clear that e need not be unique. Let E = {e ∈ H | e satisfies (2)} be the
set of strong identities of H .

Theorem 1. Let u, v ∈ E . Then uv = vu = u ∪ v .

Recall that a subset K of a hypergroup H is a subhypergroup if
xK = Kx = K for each x ∈ K . A subhypergroup K of H is central if
xy = yx for each x ∈ K and y ∈ H .

Corollary 1. The set E of strong identities is a central subhypergroup of H .

Moreover, E is a B-hypergroup (Example 1) contained in H .

Now the terms attractive element and canonical element would seem
to depend upon the member of E with respect to which they are defined.
This is not the case – the concepts are independent of the chosen strong
identity as is obvious from the next theorem.

Theorem 2. Let u, v ∈ E . Then ux = xu = x ∪ u implies vx = xv = x ∪ v .

Proof. Suppose ux = xu = x ∪ u . Then

v ≈ vu ⊆ v(x ∪ u) = v(xu) = (vx)u ⊆ vx ∪ u .

Hence, whether v = u or not, v ≈ vx = xv , and so vx = xv = x ∪ v . ¤
A hypergroup with a unique strong identity can be obtained from

H by factoring E out. Let ε be the equivalence relation on H whose
equivalence classes are given by

xε =





E, if x ∈ E ;

x, otherwise.

Then ε is regular as xεyε ⊆ (xy)ε is easy to establish. Hence, the family
H : e of equivalence classes forms a hypergroup under the induced hyper-
operation.

Theorem 3. The quotient hypergroup H : ε has the unique strong identity E
and is a transposition hypergroup if H is.
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176 J. JANTOSCIAK AND C. G. MASSOUROS

2.3 Attractive and canonical elements

Let H be a transposition hypergroup containing a strong identity e .
The partition of H into A and C is studied.

Theorem 4. If x 6= e then x/e = e \ x = x .

Proof. y ≈ x/e implies x ≈ ye ⊆ y∪ e . Since x 6= e , clearly y = x . Thus,
x/e = x must follow. By duality, e \ x = x holds. ¤

Theorem 5. A = e/e = e \ e .

Proof. x ≈ A is equivalent to xe ≈ e , and so to x ≈ e/e . Dually, A = e \ e
holds. ¤

Recall that a subset S of a hypergroup is closed if x, y ≈ S implies
x/y ⊆ S and y \ x ⊆ S .

Theorem 6. A is closed.

Proof. It is enough to show A/A ⊆ A . For then by duality, A \ A ⊆ A
holds. Thus, it follows that A is closed. By the elementary algebra of
transposition hypergroups,

A/A = (e/e)/(e \ e) = e/(e \ e)e ⊆ e/(e \ ee) = e/(e \ e) = e/(e/e)

⊆ ee/e = e/e = A . ¤

It is known that a closed subset of a hypergroup is a subhypergroup
(see [5]).

Corollary 2. A is a closed subhypergroup of H .

Corollary 3. A is a transposition hypergroup with strong identity e in which
every element is attractive.

Theorem 7. If a, b ≈ A then a ∪ b ⊆ ab .

Proof. a ≈ ae ⊆ a(b ∪ e) = a(be) = (ab)e = ab ∪ e . Thus, whether a = e
or not, a ≈ ab . Duality, b ≈ ab . ¤

Corollary 4. If a, b ≈ A then a ≈ a/b and a ≈ b/a .

Corollary 5. If a ≈ A then A = a/a = a \ a .

Proof. Let x ≈ A . Then a ≈ xa yields x ≈ a/a . Thus A ⊆ a/a . Since A
is closed, A = a/a . Dually, A = a \ a . ¤
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STRONG IDENTITIES AND FORTIFICATION 177

The theorem states that, in a transposition hypergroup that contains
a strong identity, the subhypergroup A of attractive elements is extensive,
an enlargement of a B-hypergroup. Its second corollary implies that A
contains no proper closed subhypergroups.

Theorem 8. If c ≈ C and a ≈ A then ca = ac = c .

Proof. Let x ≈ ca . Then c ≈ x/a . Since A is closed, x 6≈ A , so x ≈ C .
But then a ≈ c \ x , and so e ≈ ae ⊆ (c \ x)e ⊆ c \ xe = c \ x . Therefore,
x ≈ ce = c . Since ca is nonempty, ca = c holds. Dually, ac = c holds. ¤

The theory in [4] applies. A subhypergroup K of hypergroup is
a subhypergroup of operationally equivalent elements if xy = Ky and
yx = yK whenever x ≈ K and y 6≈ K .

Corollary 6. A is a subhypergroup of operationally equivalent elements.

Theorem 9. Let c ≈ C . Then A ≈ cz implies A ⊆ cz , and A ≈ zc implies
A ⊆ zc .

Proof. Suppose A ≈ cz . Let a ≈ A ∩ cz . Then e ≈ ea ⊆ ecz = cz . Let
x ≈ A . Then x ≈ xe ⊆ xcz = cz , and so A ⊆ cz . Dually, A ≈ zc implies
A ⊆ zc . ¤

A subhypergroup K of a hypergroup is a subhypergroup of
inseparable element if K ≈ xy implies K ⊆ xy whenever x 6≈ K or y 6≈ K .

Corollary 7. A is a subhypergroup of inseparable elements.

A subhypergroup K of a hypergroup is a subhypergroup of
essentially indistinguishable elements if K is a subhypergroup of opera-
tionally equivalent and inseparable elements.

Corollary 8. A is a subhypergroup of essentially indistinguishable elements.

2.4 Structure results

Let H be a transposition hypergroup containing a strong identity
e . The theory in [4] for subhypergroups of essentially indistinguishable
elements and the theory in [5] for transposition hypergroups is employed
to deduce the structure of H .

As in [4], let α be the equivalence relation on H whose equivalence
classes are A and the elements (singletons) of C . Hence,the class of x ,
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178 J. JANTOSCIAK AND C. G. MASSOUROS

denoted by xα , is given by

xα =





A, if x ∈ A ;

x, if x ∈ C .

Then Theorems 8 and 9 imply α satisfies xα yα = (xy)α , and so α

is both regular and a congruence. Therefore, the family H : α of
equivalence classes of α is a transposition hypergroup, which in [4] is
called the quotient of H modulo the contraction of the subhypergroup A
of essentially indistinguishable elements into the idempotent element A
(of H : α ). Furthermore, (ex)α = (xe)α = xα , that is, e is a scalar identity
for α as defined in [5]. Hence, Proposition 15 of [5] applies and yields the
next result.

Theorem 10. The quotient hypergroup H : α is a quasicanonical hypergroup
(polygroup) whose scalar identity is eα = A .

Recall that a subhypergroup N of a hypergroup H is normal if
xN = Nx for each x ∈ H and reflexive if x \ N = N/x for each x ∈ H .
Note that, in a transposition hypergroup H with a strong identity e , the
closed subhypergroup A satisfies

xA = Ax =





A, if x ∈ A ;

x, if x ∈ C .
(3)

Thus, A is normal. Then by Proposition 9 of [5], since A is closed,
A is reflexive. A notion of equivalence modulo a nonempty reflexive
closed subhypergroup is studied in [5] for elements of a transposition
hypergroup. By definition, y and z of H are equivalent modulo A means
yA ≈ Az . But by (3), the condition yA ≈ Az is equivalent to the
disjunctive condition y, z ∈ A or y = z , which is the defining condition
of the equivalence relation α . Hence, for equivalence modulo A , the class
of x , denoted by xA and called the coset of A determined by x , is equal
to xα . The hypergroup, denoted by H : A , of cosets xA is the hypergroup
H : α . The next theorem summarizes.

Theorem 11. A is a reflexive closed subhypergroup of H , α is equivalence
modulo A and the quasicanonical hypergroup H : α = H : A .

Through abuse of notation, let the canonical homomorphism of H
onto H : α = H : A be denoted by α , that is, α(x) = xα = xA
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STRONG IDENTITIES AND FORTIFICATION 179

for each x ∈ H . Obviously, α is the identity mapping on C and sends
every member of A onto the scalar identity of H : α . Let ◦ denote the
hyperoperation on H : α . Then, unless x, y ∈ A holds,

α−1(α(x) ◦α(y)) = α−1(xα ◦ yα) = (xα yα)α = xy .

Therefore, the hypergroup H can be reconstructed from the quasicanoni-
cal hypergroup H : α and the transposition hypergroup A of all attractive
elements. The method of reconstruction is that of Example 5 with K =
H : α , L = A and σ = α . This is the content of Theorem 1 in [4].

Theorem 12. The hypergroup H is the expansion of the hypergroup H : A by
the hypergroup A through the idempotent element eA = A of H : A .

Consider the set C ∪ e , of canonical elements with e adjoined, under
the hyperoperation, denoted by · , which is that on H relativized, that
is, x · y = xy ∩ (C ∪ e) for x, y ∈ C ∪ e . Consider also the canonical
homomorphism α restricted to C ∪ e . It is easy to see that α is an
iso-morphism of C ∪ e under · with the quasicanonical hypergroup
H : α . The quasicanonical hypergroup C ∪ e is referred to as having been
contracted from H .

Structure Theorem. A transposition hypergroup H containing a strong
identity e is isomorphic to the expansion of the quasicanonical hypergroup
C ∪ e by the transposition hypergroup A of all attractive elements through the
idempotent e .

It is now clear that every transposition hypergroup containing a
strong identity is embraced by Example 5. It is also apparent how trans-
position hypergroups that contain a strong identity may be studied.

Summary Remark. The study of transposition hypergroups that contain
a strong identity separates into two parts, (i) the study of quasicanonical
hypergroups and (ii) the study of transposition hypergroups composed of
all attractive elements.

3. Fortified transposition hypergroups

Attention is directed toward the kind of transposition hypergroup
defined next.

Definition. A transposition hypergroup H is fortified if H contains an
element e which satisfies the axioms,
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180 J. JANTOSCIAK AND C. G. MASSOUROS

(a) ee = e ;

(b) x ≈ ex = xe for every x ∈ H ;

(c) for every x ∈ H − e there exists a unique y ∈ H − e such that
e ≈ xy , and furthermore, y satisfies e ≈ yx .

By axiom (a), the element e is idempotent, and by axiom (b), is a
central (two-sided) identity in H . Then, speaking with respect to identity
e , axiom (c) states that each nonidentity element has a unique nonidentity
right inverse which also happens to be a left inverse. But it is easy to show
that a nonidentity left inverse must also be unique. For given e ≈ xy ,
where x, y ∈ H − e , it follows that y is uniquely determined in H − e by
x , and that e ≈ yx holds. Hence, x is uniquely determined in H − e by
y . A nonidentity element has unique nonidentity right and left inverses
which are identical.

Therefore, axiom (c) is self-dual. Obviously, so are (a) and (b). The
principle of duality holds for a fortified transposition hypergroup (FTH).

3.1 Identity

Let H be a fortified transposition hypergroup with respect to identity
e . For x ∈ H − e , the notation x−1 is used for the unique member of
H − e that satisfied axiom (c). Then e ≈ xx−1 and e ≈ x−1x , and clearly,
(x−1)−1 = x . The next result is then evident.

Theorem 13. Let x ∈ H − e . Then e ≈ xy or e ≈ yx implies y ≈ x−1 ∪ e .

Next the role of e can be clarified.

Theorem 14. e is a strong identity for H .

Proof. It suffices to show that ex ⊆ x ∪ e . For x = e the inclusion holds.
Let x 6= e . Suppose y ≈ ex . Then e \ y ≈ x . But e ≈ xx−1 implies
e/x−1 ≈ x . Thus, e \ y ≈ e/x−1 , and transposition yields e = ee ≈ yx−1 .
By the previous theorem, y ≈ x ∪ e . Therefore, the theorem holds. ¤

It is now apparent that e is unique. For if u is an identity distinct
from e , there would exist d distinct from u such that u ≈ ed . But on the
contrary, ed ⊆ d ∪ e holds.

Theorem 15. A fortified transposition hypergroup is a transposition hypergroup
with a unique strong identity.
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STRONG IDENTITIES AND FORTIFICATION 181

A fortified transposition hypergroup H , therefore, consists of
canonical elements C and attractive elements A . Moreover, by the
Structure Theorem, H is the expansion through e of the contracted
hypergroup C ∪ e by the hypergroup A . Clearly, C ∪ e , being quasi-
canonical is a fortified transposition hypergroup. Since A is closed, A
contains x−1 if A contains x . Hence it follows easily, in view of
Corollary 3, that A is a fortified transposition hypergroup of all attractive
elements. The study of such hypergroups is next.

Observe that the hypergroups given in Examples 3 and 4 are fortified
transposition hypergroups of all attractive elements.

3.2 Algebra

Let H be a fortified transposition hypergroup with the strong
identity e for which every element of H is attractive. Then, of course,

ea = ae = a ∪ e for all a ∈ H .

The algebraic results of Section 2.3 must hold. These results are
summarized.

a ∪ b ⊂ ab for all a, b ∈ H .

a ⊆ a/b and a ⊆ b \ a for all a, b ∈ H .
(4)

a/a = a \ a = H for all a ∈ H .

a/e = e \ a = a for all a ∈ H − e .

Moreover, every nonidentity element a of H has unique nonidentity right
and left inverses which are equal and denoted by a−1 . For convenience,
the definition e−1 = e is made. For any subset A of H , let A−1 =
{a−1 | a ∈ A} .

The next result is now clear.

Theorem 16. If e 6= a then e/a = ea−1 = a−1 ∪ e = a−1e = a \ e .

The theorem can be generalized for a nonempty set.

Corollary 9. If A is nonempty and e 6≈ A then e/A = eA−1 = A−1 ∪ e =
A−1e = A \ e .

Now comes a result that deals with the extent to which the property
known as reversibility holds.
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182 J. JANTOSCIAK AND C. G. MASSOUROS

Theorem 17. If a 6= b then ab−1 = a/b ∪ b−1 and b−1a = b \ a ∪ b−1 .

Proof. Assume a 6= b . If a = e then b 6= e , so the previous theorem
applies. If b = e then a 6= e , so the last result of (4) applies.

Assume a 6= e and b 6= e . Then a 6= b implies e 6≈ ab−1 . Thus, by
the previous theorem and (4),

a/b ∪ b−1 ⊆ a/(e/b−1) ∪ b−1 ⊆ ab−1/e ∪ b−1 = ab−1 ∪ b−1 = ab−1.

On the other hand,

ab−1 ⊆ a(e/b) ⊆ ae/b = (a ∪ e)/b = a/b ∪ e/b = a/b ∪ b−1 ∪ e .

Since e 6≈ ab−1 , it follows that ab−1 ⊆ a/b ∪ b−1 . Therefore, the first
equality is established. The second equality follows by duality. ¤

Corollary 10. If A is nonempty and A 6≈ B then

AB−1 = A/B ∪ B−1 and B−1 A = B \ A ∪ B−1 .

Since reversibility is of some interest, it may be useful to remark
that the result of the theorem cannot be improved to ab−1 = a/b
for distinct nonidentity elements a and b . Example 3, beginning with
a spherical join space (see [2]) of more than three elements, gives a
fortified transposition hypergroup of all attractive elements in which a
counterexample is effected for any such a and b provided a and b−1

are distinct also.

Inverse of joins and extensions are considered next.

Theorem 18. If a 6= b−1 then (ab)−1 = b−1a−1 .

Proof. If a = e or b = e , the result clearly holds. Assume a 6= e and
b 6= e . Given a 6= b−1 , note that e 6≈ ab . By the previous results,

(ab)−1 ∪ e = e/ab = (e/b)/a = (b−1 ∪ e)/a

= b−1/a ∪ e/a = b−1/a ∪ a−1 ∪ e = b−1a−1 ∪ e .

Since e 6≈ ab , then e 6≈ (ab)−1 and e 6≈ b−1a−1 . Hence, the theorem is
established. ¤

Corollary 11. If A 6≈ B−1 then (AB)−1 = B−1 A−1 .
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STRONG IDENTITIES AND FORTIFICATION 183

Observe that the theorem also holds when a = b = e . Hence, the corollary
holds when A∩ B−1 = e . That (aa−1)−1 = aa−1 may fail to hold is shown
by Example 2.2 in [8].

Theorem 19. (a/b)−1 ∪ b = b/a ∪ a−1 and (b \ a)−1 ∪ b = a \ b ∪ a−1 .

Proof. If a = b then the result is clear by (4). If a 6= b then by the previous
two theorems,

(a/b)−1 ∪ b = (a/b ∪ b−1)−1 = (ab−1)−1 = ba−1 = b/a ∪ a−1 .

Duality gives the rest. ¤

Corollary 12. If A and B are nonempty then

(A/B)−1 ∪ B = B/A ∪ A−1 and (B \ A)−1 ∪ B = A \ B ∪ A−1 .

3.3 Symmetric subhypergroups

Let H be a fortified transposition hypergroup with the strong
identity e for which every element of H is attractive. Since a/a = H
for any a ∈ H , there are no nonempty proper closed subhypergroups in
H . The study of subhypergroups that are closed with respect to inverses
becomes of interest.

Definition. A subset A is symmetric if a ∈ A implies a−1 ∈ A . A sub-
hypergroup K that is symmetric is a symmetric subhypergroup.

Note that A is symmetric if and only if A−1 = A . Since A ⊆ xA
and A ⊆ Ax by (4), it follows that if A is closed under join then
A is a subhypergroup. Hence, K is a symmetric subhypergroup if
and only if KK = K and K−1 = K . Finally, observe, that e is a
symmetric subhypergroup and that e ≈ K for any nonempty symmetric
subhypergroup K .

The notions of being symmetric and of being a symmetric sub-
hypergroup are self-dual notions.

Three results that lead to the notion of cosets are given.

Theorem 20. Let K be a symmetric subhypergroup. If a 6≈ K then

(a) a/K 6≈ K and K \ a 6≈ K ;

(b) aK = a/K ∪ K and Ka = K \ a ∪ K .
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184 J. JANTOSCIAK AND C. G. MASSOUROS

Proof. Let a 6≈ K . (a) Since a/K ≈ K yields a ≈ KK = K , certainly
a/K 6≈ K holds. (b) Corollary 10 is employed to conclude that aK =
aK−1 = a/K ∪ K−1 = a/K ∪ K . The rest in each of (a) and (b) follows by
duality. ¤

Theorem 21. Let K be a symmetric subhypergroup. If a 6≈ K then

(a/K)K = aK and K(K \ a) = Ka .

Proof. By (4) and the previous theorem, aK ⊆ (a/K)K ⊆ aKK = aK .
Duality yields the other part. ¤

Theorem 22. Let K be a symmetric subhypergroup. If a ∪ b 6≈ K then

a/K ≈ b/K implies a/K = b/K,

and

K \ a ≈ K \ b implies K \ a = K \ b .

Proof. By the previous two theorems, a/K ≈ b/K implies, under the
assumption b 6≈ K , that a ≈ (b/K)K = bK = b/K ∪ K . Then the
assumption a 6≈ K yields a ≈ b/K , so that a/K ⊆ (b/K)/K = b/KK =
b/K . By symmetry, b/K ⊆ a/K , hence a/K = b/K . Duality gives the
rest. ¤

A useful result concerning inverses is given.

Theorem 23. Let K be symmetric subhypergroup. If a 6≈ K then

(a) K/a = Ka−1 and a \ K = a−1K ;

(b) (a/K)−1 = K \ a−1 and (K \ a)−1 = a−1/K .

Proof. The results are trivial if K = ∅ . Suppose K is nonempty.

(a) Now a−1 ≈ e/a ⊆ K/a holds. Thus, since a 6≈ K is given, Corollary 10
implies Ka−1 = K/a ∪ a−1 = K/a . By duality, (a) is established.

(b) From a 6≈ K follows a−1 6≈ K . Hence, Corollary 12, the previous part
and Theorem 20 imply (a/K)−1 ∪ K = K/a ∪ a−1 = Ka−1 = K \ a−1 ∪ K .
But (a/K)−1 6≈ K and K \ a−1 6≈ K hold, so surely, (a/K)−1 = K \ a−1 .
The second part of (b) follows by duality, or by the first part. ¤

It is noted that part (b) of the theorem holds even if a ≈ K .
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STRONG IDENTITIES AND FORTIFICATION 185

3.4 Cosets

Now cosets may be defined for a nonempty symmetric subhyper-
group in a fortified transposition hypergroup H of attractive elements.

Definition. Let a ∈ H and let K be a nonempty symmetric subhyper-
group. Then a←−

K
, the left coset of K determined by a , and dually, a−→

K
, the

right coset of K determined by a , are given by

a←−
K

=





K, if a ≈ K ;

a/K, if a 6≈ K
and a−→

K
=





K, if a ≈ K ;

K \ a, if a 6≈ K .

Notice that a ∈ a←−
K

, and dually, a ∈ a−→
K

. The results of the previous
subsection assure that distinct left cosets, dually, right cosets, are disjoint.
Hence, H :

←−
K = {a←−

K
| a ∈ H} and H :

−→
K = {a−→

K
| a ∈ H} , the families

of left and right cosets, respectively, are each partitions of H .

For A ⊆ H , let A←−
K

=
⋃{a←−

K
| a ∈ A} and A−→

K
=

⋃{a−→
K
| a ∈ A} .

Some results of the last subsection are now recast for cosets.

Theorem 24. Let K be a nonempty symmetric subhypergroup. Then

a←−
K

K = aK = a←−
K
∪ K and Ka−→

K
= Ka = a−→

K
∪ K .

Proof. If a ≈ K then the results are clear since every part of each equality
equals K . If a 6≈ K then use Theorem 21 and Theorem 20 (b). ¤

Corollary 13. Let K be a nonempty symmetric subhypergroup. Then if A is
nonempty,

A←−
K

K = AK = A←−
K
∪ K and KA−→

K
= KA = A−→

K
∪ K .

The equivalence relation whose classes are the left cosets, dually, the
right cosets, is neither necessarily regular nor necessarily a congruence. A
variant of the congruence property holds, however.

Theorem 25. Let K be a nonempty symmetric subhypergroup. Then

(ab)←−
K
⊆ a←−

K
b←−

K
∪ K and (ab)−→

K
⊆ a−→

K
b−→

K
∪ K .

Proof. By the previous corollary and theorem, and by (4)

(ab)←−
K
⊆ abK ⊆ a←−

K
bK = a←−

K
(b←−

K
∪ K)

= a←−
K

b←−
K
∪ a←−

K
K = a←−

K
b←−

K
∪ a←−

K
∪ K = a←−

K
b←−

K
∪ K .
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186 J. JANTOSCIAK AND C. G. MASSOUROS

Duality gives the other part. ¤

Corollary 14. Let K be a nonempty symmetric subhypergroup. Then

(AB)←−
K
⊆ A←−

K
B←−

K
∪ K and (AB)−→

K
⊆ A−→

K
B−→

K
∪ K .

The inverse of a left coset is a right coset, and conversely.

Theorem 26. Let K be nonempty symmetric subhypergroup. Then

(a←−
K

)−1 = (a−1)−→
K

and (a−→
K

)−1 = (a−1)←−
K

.

Proof. If a ≈ K then the results are obvious. If a 6≈ K then use Theorem
23 (b). ¤

Corollary 15. Let K be nonempty symmetric subhypergroup. Then

(A←−
K

)−1 = (A−1)−→
K

and (A−→
K

)−1 = (A−1)←−
K

.

Each of the families H :
←−
K and H :

−→
K of cosets do not necessarily

form a hypergroup, as associativity may fail for the induced hyper-
operation. A hypergroup is formed, however, by the family of double
cosets, which are studied next by using the results concerning cosets.

3.5 Double cosets

Let H be a fortified transposition hypergroup of attractive elements.

Definition. Let a ∈ H and let K be a nonempty symmetric subhyper-
group. Then aK , the double coset of K determined by a , is given by

aK =





K, if a ≈ K ;

K \ (a/K) = (K \ a)/K, if a 6≈ K .

Observe that the notion of being a double coset is a self-dual notion.
Notice that a ∈ aK , that a←−

K
⊆ aK and a−→

K
⊆ aK , and that aK = (a←−

K
)−→

K
=

(a−→
K

)←−
K

.

For A ⊆ H , let AK =
⋃{aK | a ∈ A} . Then AK = (A←−

K
)−→

K
= (A−→

K
)←−

K
holds also.

Let H : K = {aK | a ∈ H} denote the family of double cosets. That
H : K is a partition of H is a consequence of the next result.
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STRONG IDENTITIES AND FORTIFICATION 187

Theorem 27. Let K be a nonempty symmetric subhypergroup. Then

aK ≈ bK implies aK = bK .

Proof. By assumption, (a←−
K

)−→
K
≈ (b←−

K
)−→

K
. Hence a←−

K
≈ (b←−

K
)−→

K
=

(b−→
K

)←−
K

. It follows that a←−
K
⊆ (b−→

K
)←−

K
= (b←−

K
)−→

K
. Therefore, aK =

(a←−
K

)−→
K

⊆ (b←−
K

)−→
K

= bK . By symmetry, bK ⊆ aK , and so, equality
holds. ¤

In view of aK = (a←−
K

)−→
K

= (a−→
K

)←−
K

, the results of the last section are
applicable for double cosets.

Theorem 28. Let K be a nonempty symmetric subhypergroup. Then

K aK = K a←−
K

= aK ∪ K = K a K = a−→
K

K = aKK .

Proof. By Corollary 13, it follows that

K aK = K(a←−
K

)−→
K

= K a←−
K

= (a←−
K

)−→
K
∪ K = aK ∪ K .

Duality gives the remainder except for the equality with KaK . But

KaK = K(a←−
K
∪ K) = Ka←−

K
∪ K = Ka←−

K
,

so that the theorem is established. ¤

Corollary 16. Let K be a nonempty symmetric subhypergroup. Then if A is
nonempty,

KAK = KA←−
K

= AK ∪ K = KAK = A−→
K

K = AKK .

As was the case with cosets, the equivalence relation with the double
cosets as classes need be neither regular nor a congruence. The analogue
of Theorem 25 for double cosets is valid.

Theorem 29. Let K be a nonempty symmetric subhypergroup. Then

(ab)K ⊆ aKbK ∪ K .

Proof. By Corollary 14, it follows that

(ab)K = ((ab)←−
K

)−→
K
⊆ (a←−

K
b←−

K
∪ K)−→

K
= (a←−

K
b←−

K
)−→

K
∪ K−→

K

⊆ (a←−
K

)−→
K

(b←−
K

)−→
K
∪ K ∪ K = aKbK ∪ K . ¤
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188 J. JANTOSCIAK AND C. G. MASSOUROS

Corollary 17. Let K be a nonempty symmetric subhypergroup. Then

(AB)K ⊆ AKBK ∪ K .

Corollary 18. Let K be a nonempty symmetric subhypergroup. Then

K ≈ AKBK implies (AKBK)K = AKBK ∪ K .

Corollary 19. Let K be a nonempty symmetric subhypergroup. Then

K 6≈ AKBK implies (AKBK)K = AKBK .

The inverse of a double coset is a double coset.

Theorem 30. Let K be a nonempty symmetric subhypergroup. Then

(aK)−1 = (a−1)K .

Proof. By Corollary 15, it follows that

(aK)−1 = ((a←−
K

)−→
K

)−1 = ((a←−
K

)−1)←−
K

= ((a−1)−→
K

)←−
K

= (a−1)K . ¤

Corollary 20. Let K be a nonempty symmetric subhypergroup. Then

(AK)−1 = (A−1)K .

3.6 The quotient hypergroup

Let H be a fortified transposition hypergroup of attractive elements.
Here it is shown that the family H : K of double cosets of a nonempty
symmetric subhypergroup K forms a hypergroup, indeed, one that is also
a fortified transposition hypergroup of attractive elements.

Let ◦ be the induced hyperoperation on H : K . It is easy to prove
(Proposition 3.1 of [3]) that associativity holds for ◦ if and only if

((aKbK)K cK)K = (aK(bKcK)K)K .

A theorem establishes this equality.

Theorem 31. Let K be a nonempty symmetric subhypergroup. Then

((aKbK)K cK)K = (aKbKcK)K = (aK(bK cK)K)K .

Proof. The first equality is shown to hold.
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STRONG IDENTITIES AND FORTIFICATION 189

Suppose K 6≈ aKbK . Then Corollary 19 yields (aKbK)K = aKbK , and
the rest is trivial.

Suppose K ≈ aKbK . Then Corollary 18 yields (aKbK) = aKbK ∪ K .
Hence, Theorem 28 gives

(aKbK)KcK = (aKbK ∪ K)cK = aKbKcK ∪ KcK

= aKbKcK ∪ cK ∪ K = aKbKcK ∪ K .

Since K ≈ aKbK ⊆ aKbKcK , then K ⊆ (aKbKcK)K holds. Thus,

((aKbK)K cK)K = (aKbKcK ∪ K)K = (aKbKcK)K ∪ K = (aKbKcK)K .

The second equality is a consequence of duality. The theorem holds. ¤

Theorem 32. Let K be a nonempty symmetric subhypergroup. Then H : K is a
hypergroup.

Proof. Associativity in H : K is a consequence of the previous theorem.
Reproduction in H : K is an easy consequence of reproduction in H . ¤

For a nonempty symmetric subhypergroup K , properties typical of
a fortified transposition hypergroup of attractive elements hold for the
hypergroup H : K .

Theorem 33. In the hypergroup H : K ,

(a) K ◦ aK = aK ◦ K = {aK , K} ;

(b) {aK , bK} ⊆ aK ◦ bK ;

(c) K ∈ aK ◦ (a−1)K .

Proof. Assertion (a) is a consequence of Theorem 28. Assertions (b) and
(c) are obvious. ¤

Another property of a fortified transposition hypergroup of attractive
elements is proven for the hypergroup H : K . Let ◦/ and ◦\ be,
respectively, the right and left extension hyperoperations on H : K .

Theorem 34. In the hypergroup H : K , if aK 6= bK then

aK ◦ (b−1)K = aK ◦/ bK ∪ (b−1)K and (b−1)K ◦ aK = bK ◦\ aK ∪ (b−1)K .

Proof. The following statements are equivalent.

xK ∈ aK ◦/ bK ; aK ∈ xK ◦ bK ; aK ≈ xKbK ; xK ≈ aK/bK .
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190 J. JANTOSCIAK AND C. G. MASSOUROS

Since aK 6= bK is given, obviously, aK 6≈ bK , so Corollary 10 applies, and
with Theorem 30 gives

aK(b−1)K = aK(bK)−1 = aK/bK ∪ (bK)−1 = aK/bK ∪ (b−1)K .

Hence, the statements given next are equivalent.

xK ∈ aK ◦ (b−1)K ; xK ≈ aK(b−1)K ;

xK ≈ aK/bK ∪ (b−1)K ; xK ∈ aK ◦/ bK ∪ (b−1)K .

Therefore, the first assertion is established. The second assertion follows
by duality. ¤

Next it is shown that the quotient hypergroup H : K is a trans-
position hypergroup.

Theorem 35. Transposition holds in the hypergroup H : K .

Proof. Suppose bK ◦\ aK ≈ cK ◦/ dK . That aK ◦ dK ≈ bK ◦ cK is shown.

If aK = bK or cK = dK then Theorem 33 (b) yields the result to be
shown.

Assume aK 6= bK and cK 6= dK . Then the previous theorem implies

aK ∈ bK ◦ (cK ◦/ dK) ⊆ bK ◦ cK ◦ (d−1)K

and

cK ∈ (bK ◦\ aK) ◦ dK ⊆ (b−1)K ◦ aK ◦ dK .

Hence, it follows that aK ◦/ (d−1)K ≈ bK ◦ cK and (b−1)K ◦\ cK ≈ aK ◦ dK

hold.

If aK 6= (d−1)K or if cK 6= (b−1)K , then the previous theorem applies
again and either yields aK ◦/ (d−1)K ⊆ aK ◦ dK or (b−1)K ◦\ cK ⊆ bk ◦ cK ,
and so done in either case.

Finally, assume aK = (d−1)K and cK = (b−1)K . Then Theorem 33 (c)
gives the result. ¤

The quotient hypergroup of a fortified transposition hypergroup of
all attractive elements modulo the double cosets of a nonempty symmetric
subhypergroup is also a fortified transposition hypergroup of all attractive
elements.
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STRONG IDENTITIES AND FORTIFICATION 191

Theorem 36. The transposition hypergroup H : K is a fortified transposition
hypergroup with the strong identity K for which every member of H : K is
attractive.

Proof. That K is a strong identity for which every member of H : K is
attractive follows immediately from Theorem 33 (a). Hence, axioms (a)
and (b) for a fortified transposition hypergroup hold.

Consider axiom (c). Let xK 6= K . It is immediate that (x−1)K 6= K .
Theorem 33 (c) gives K ∈ xK ◦ (x−1)K and K ∈ (x−1)K ◦ xK . The existence
assertion of axiom (c) holds. For the uniqueness assertion of axiom (c),
suppose K ∈ xK ◦ yK where yK 6= K . Then K ≈ xK yK , so that
yK ≈ xK \ K . Theorem 23, Theorem 30 and Theorem 28 yield

yK ≈ (xK)−1K = (x−1)KK = (x−1)K ∪ K .

Hence, yK = (x−1)K . The uniqueness assertion is established, and so is
the theorem. ¤

In any hypergroup H , a subhypergroup K is normal if and only
if x/K = K \ x for each x ∈ H (see [5]). Thus, for the nonempty
symmetric subhypergroup K , if K is normal then it follows easily that
a←−

K
= a−→

K
= aK . Therefore, a corollary holds.

Corollary 21. If K is normal then H :
←−
K = H :

−→
K is a fortified transposition

hypergroup with the strong identity K for which every element is attractive.

3.7 Quasicanonical hypergroups

Recall that, by the Structure Theorem for transposition hypergroups
with a strong identity, the study of fortified transposition hypergroups
separates into that of those containing only attractive elements and that
of those that are quasicanonical. The theory presented above for fortified
transposition hypergroups of attractive elements simplifies a great deal
for quasicanonical hypergroups. A quasicanonical hypergroup may be
characterized as a transposition hypergroup with a scalar identity, an
element e such that ex = xe = x for each element x (see [5]).

Let H be a quasicanonical hypergroup. Since a/b = ab−1 and,
dually, b \ a = b−1a in H , if follows that a subhypergroup is symmetric
if and only if it is closed. Let K be a nonempty symmetric subhypergroup
of H . Then K is invertible, a ≈ bK implies b ≈ aK and, dually, a ≈ Kb
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implies b ≈ Ka . Hence, left and right cosets of K take the respective
forms aK and Ka , and give partitions of H . Moreover, abK ⊆ aKbK
clearly holds, and so the equivalence whose classes are the left cosets is a
congruence (dually, for the right cosets).

The family of left cosets under the induced hyperoperation ◦ thus
forms a hypergroup. In this quotient hypergroup, it is easy to see that
right extension ◦/ (but not necessarily left extension ◦\ ) reduces to a join,
that is, aK ◦/ bK = aK ◦ b−1K . Therefore, transposition holds. Indeed,
bK ◦\ aK ≈ cK ◦/ dK yields aK ≈ bK ◦ (cK ◦/ dK) = bK ◦ cK ◦ d−1K .
Thus follows aK ◦/ d−1K ≈ bK ◦ cK , which gives aK ◦ dK ≈ bK ◦ cK .
The quotient hypergroup is not necessarily quasicanonical. Although the
left coset K is a scalar right identity, aK ◦ K = aK , and a left identity,
aK ≈ K ◦ aK , it need not be a left scalar. Of course, the dual results hold
for the right cosets.

Double cosets have the form KaK and also partition H . The equi-
valence having the double cosets as classes is again a congruence, KabK ⊆
KaKKbK . Hence, a quotient hypergroup of double cosets results. The
quotient hypergroup is easily seen to be a transposition hypergroup as
KaK ◦/ KbK = KaK ◦ Kb−1K and KbK ◦\ KaK = Kb−1K ◦ KaK both hold.
Using the characterization of a quasicanonical hypergroup given above,
one has the next result.

Theorem 37. If H is a quasicanonical hypergroup and K a nonempty symmetric
subhypergroup then H : K , the quotient hypergroup of double cosets, is a
quasicanonical hypergroup with the scalar identity K , where (KaK)−1 =
Ka−1K .

A corollary that appears in [6] results if K is normal.

Corollary 22. If K is normal then the quotient hypergroup of left (right) cosets
is a quasicanonical hypergroup.
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