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Abstract. This paper shows that contrarily to the common perception, the gravity of General Relativity (GR) can produce 
the gravity of Special Relativity (SR) and vice-versa. This is done via the time dilation that originates from the metric of 
GR in order to obtain the corresponding SR Lagrangian. The inverse procedure is also achievable and it is presented here 
as well. Thus, the Newtonian Gravitational Potential according to SR leads to the corresponding non-Riemannian metric 
of GR. In fact, the SR gravity can be extended to any kind of GR spacetime metric (including the non-Riemannian 
spacetimes with Finsler geometry) rather than the simple description of Einstein field equations of Riemannian GR. The 
Case Study of gravity with Spherical Symmetry is analytically presented. This is applied to repulsive / black holes 
according to Schwarzschild metric and Teleparallel gravity and also to wormholes. Finally, we prove that there exist 
gravitational fields where the particles have superluminal speeds according to GR and SR. 

INTRODUCTION 

It is considered that Special Relativity (SR) cannot explain the gravitational phenomena and only General 
Relativity (GR) can do this (by using curved spacetime) [1] (pp. 90, 111, 116) [2] (pp. 34, 109) [3] (p. 249). This 
paper proves that there exist Gravitational Scalar Generalized Potentials (GSGPs), according to SR [4] and 
Newtonian Physics (NPs) [5], which can produce exactly the results of GR. The way to obtain these GSGPs is the 
usage of the GR time dilation in the SR Lagrangian. We analytically present the case of fields with spherical 

symmetry like these of wormholes according to the massless scalar field of  Einstein Field Equations (EFEs) [6] and 
repeal / black holes according to the Schwarzschild metric [7] and Teleparallel gravity [8]. Finally, we show the 
reverse procedure: the way to obtain GR metrics from the SR GSGPs. Thus, the usage of Newtonian Gravitational 

Potential according to SR leads to the corresponding GR time dilation, which is based on GR with non-Riemannian 

metric [4] (p. 572). 

THE RELATION BETWEEN GR METRICS AND SR GRAVITATIONAL SCALAR 

GENERALIZED POTENTIALS 

The SR has the geometry of Minkowski spacetime with constant Lorentz metric. So, the gravity can be studied as 
a field, which comes from the SR GSGP (VSR) in the rest frame Oxyz.  From this potential  
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(which is completely free of conditions), we obtain the field strength and the relativistic force 
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respectively [3] (p. 342), where m is the inertial mass. Moreover, the corresponding four-force is [2] (pp. 329, 342): 
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where Pυ
r

 is the velocity of the test particle P. The four-force in any other frame (O΄x´y´z´) is obtained via the 

Lorentz transformation (SR relativization).  
Furthermore, the case of SR GSGP yields the SR gravitational Lagrangian and SR Lagrangian of a free particle  
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correspondingly, where ( )Pβ
γ  is the Lorentz γ-factor of the test particle P [3] (p. 351). From equation (4i) we obtain 

the SR 1st
 integral of motion, e.g. the total SR-energy  
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The function of SR GSGP can be obtained via the Equivalence Principle of GR: “accelerated motions caused by 
the gravitational field only (free falls) take place along geodesics of the metric which corresponds to the particular 
gravitational field” [3] (p. 248). The above implies that the curved spacetime of GR demands no-force. Thus, we 
substitute the Lorentz γ-factor in the free particle SR Lagrangian (4) with the GR time dilation 
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This gives the formula of the SR gravitational Lagrangian 
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which combined with the initial formula (4) implies the corresponding GSGP 
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This simple procedure can be applied to any kind of GR metric and we obtain the SR GSGP that corresponds to a 
specific metric. We then solve any problem, by using only the SR 1st

 integral of motion (5) and the Equations of 
motion (Euler-Lagrange equations) 
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Fortunately, the results are exactly the same as GR. Besides, formula (8ii) is used in the reverse procedure. It is also 
noted that the extracted GSGP (8i) can be modified [5] (pp. 22, 31) in order to be more flexible for the solution of 
problems according to SR and NPs [4] (p. 574).  

APPLICATIONS ON FIELDS WITH SPHERICAL SYMMETRY 

Below, we examine the case of fields with Spherical Symmetry. More specifically, we find the SR GSGP of 
wormholes according to the massless scalar field and Einstein Field Equations (EFEs) [6] and repulsive / black 

holes according to the Schwarzschild metric [7] and Teleparallel gravity [8]. 

Wormholes with Spherical Symmetry which originate from the Massless Scalar Field and 

Einstein Field Equations 

The wormholes with spherical symmetry according to the massless scalar field and EFEs, have the GR metric 
[6] (p. 4): 
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where c1, c2 and c3 are arbitrary constants of integration with dimensions in length, square of length and length, 
respectively. From the above we obtain the corresponding GR time dilation  
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The next step is the substitution of (11) in formula (7), which gives the corresponding SR gravitational Lagrangian  
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from which we obtain the equations of motion in this spacetime, using (9). Finally, the substitution of (11) in 
formula (8i) gives the GSGP that corresponds to wormholes with spherical symmetry according to the massless 

scalar field and EFEs: 
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Janis-Newman-Winicour Wormhole (equivalent to Wyman Wormhole) 

The following values of constants [6] (p. 7): 
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(where γ is arbitrary constant, 
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is the  Schwarzschild radius, M is the inertial mass of the wormhole and G is the gravitational constant) imply the 
Janis-Newman-Winicour wormhole (which is equivalent to the Wyman wormhole [9]). Indeed, we have  
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Schwarzschild Black Hole  

The substitution  
  γ =1                                                                             (20) 

to the Janis-Newman-Winicour wormhole (or equivalently, 
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to the general wormhole with spherical symmetry), implies the Schwarzschild black hole [2] (p. 229), [7]. Thus, we 
have  
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The above imply exactly the results of GR [4], even though the SR Lagrangian (23) is different than the 
corresponding GR Lagrangian [2] (p. 238), [4] (p. 542). For instance the radial velocity of a particle is [4] (p. 543): 
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where the integrals of motion are the GR total energy [4] (p. 544): 
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and the GR angular momentum per mass unit [4] (p. 546): 
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The differentiation of (26) gives 
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Thus, a momentarily unmoved particle ( 0=r& ; 0=φ& ) has  
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So, (29) gives the initial acceleration of a momentarily unmoved particle [4] (p. 563): 
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We observe that if we leave a particle somewhere, then it moves radially towards the horizon.  
Besides, the speed of a photon in radial motion around a Schwarzschild black hole [4] (p. 547): 
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is only subluminal and also the photon is unmoved on the horizon (r=rS). So, this black hole is non-traversable. 
Finally, the acceleration of a photon in radial motion around a Schwarzschild black hole is: 
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or equivalently, 
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This means that the Schwarzschild black hole repels the photon! 



Schwarzschild Repulsive Hole  

The substitution  
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to the general wormhole with spherical symmetry, implies the Schwarzschild repulsive hole. It is noted that this 
substitution is not equivalent to the substitution γ =-1 to the Janis-Newman-Winicour wormhole. We also remind 
that the general Schwarzschild solution gives a metric which contains two arbitrary constants [7]. The weak field 

approximation to the Newtonian gravitational field determines the constants (the Schwarzschild radius (15) is one 
of them) and we obtain the metric (22). Furthermore, the substitution (36) is equivalent to the substitution 
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to the Schwarzschild black hole. Then, we have  
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The results of the above repulsive hole can be extracted by the results of black hole [4] with the substitution (37). 
For instance the radial velocity of a particle is [4] (p. 543): 
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where the integral of motions are the GR total energy [4] (p. 544): 
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and the GR angular momentum per mass unit [4] (p. 546): 

2

1

2

22

2

2

S

S2
GR

cc1

1
1

−



















−
+

−+=
φ

φ
&&

& rr

r

rr

r
rh  .                                                     (44) 

 
The differentiation of (42) gives 
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Thus, a momentarily unmoved particle ( 0=r& ; 0=φ& ) has  
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So, equation (29) gives the initial acceleration of a momentarily unmoved particle [4] (p. 563): 
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which becomes  
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We observe that if we leave a particle somewhere, then it is repelled radially away the horizon. Besides, the speed of 

a photon in radial motion around a Schwarzschild repulsive hole [4] (p. 547): 
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is only superluminal and also the photon has infinite speed at the zero-point. So, this repulsive hole is traversable. 
Finally, the acceleration of a photon in radial motion around a Schwarzschild repulsive hole is: 
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or equivalently, 
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This means that the Schwarzschild repulsive hole attracts the photon! 

Black Hole according to Teleparallel gravity 

Another application is the teleparallel gravity, which is based on Weitzenböck spacetime (T4) [8]. The 
corresponding isotropic metric by a static, spherical body may take the form  
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that looks like the Schwarzschild metric [4] (p. 567). The experimental value of the arbitrary parameter ε is  
004.0004.0 ±−=ε                                                                           (53)  

according to observations in the solar system (gravitational deflection of light and precession of Mercury’s 

perihelion) [8] (p. 3538). From the metric (52) we obtain  
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THE REVERSE PROCEDURE: GR METRICS FROM THE SR GRAVITATIONAL 

SCALAR GENERALIZED POTENTIAL 

Finally, we show the reverse procedure: the way to obtain GR metrics from the SR GSGP. This can be done via 
the formula (8ii) which correlates them. Thus, the substitution of the Newtonian Gravitational Potential  
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gives the corresponding GR time dilation 
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This implies 
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which is non-Riemannian metric and we have spacetime with Finsler geometry [4] (pp. 572-573). This complicated 
metric corresponds to a very simple SR gravitational Lagrangian. Indeed, (4) combined with (57) gives 
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This proves that there exist problems with SR solution easier the than the corresponding GR solution.      

CONCLUSION 

The correlation of curved spacetime endowed with variable metric [e.g. the General Relativity (GR)] with the 
spacetime endowed with Lorentz Metric [e.g. the Special Relativity (SR)] becomes via the SR Lagrangian, where 
the Lorentz γ-factor is substituted from the GR time dilation. 

(1) This implies the SR Gravitational Scalar Generalized Potential (GSGP), which corresponds to a GR metric. 
(2) The presented procedure can be applied to any kind of GR, based on Riemannian and non-Riemannian 

spacetime, such as the classical GR and teleparallel gravity, and on other types of gravitation such as the Modified 
Newtonian Dynamics (MoND) which is relativized.  

(3) The reverse procedure: GR Metrics from the SR GSGP is also valid. The case study of Newtonian 

Gravitational Potential leads to the corresponding non-Riemannian metric of spacetime (Finsler geometry). 
(4) The Precession of Mercury’s perihelion, Gravitational deflection of light, Shapiro time delay and  

Gravitational red shift are explained not only by using the GR (e.g. Schwarzschild metric), but also with the usage 
of SR and Newtonian Physics (NPs) [5].  

(5) The wormholes can be studied not only in the frame of GR, but also in the frame of SR. 
(6) There exist gravitational fields (i.e. around a Schwarzschild repulsive hole), where the particles have 

superluminal speeds according to GR and SR. 
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