Explanation of Light Deflection, Precession of Mercury's Perihelion, Gravitational Red Shift and Rotation Curves in Galaxies, by using General Relativity or equivalent Generalized Scalar Gravitational Potential, according to Special Relativity and Newtonian Physics

Abstract

Spyridon Vossos ${ }^{1,2}$, Elias Vossos ${ }^{1,3}$ and Christos G. Massouros ${ }^{1,4}$ ${ }^{1}$ Core department, National and Kapodistrian University of Athens, Euripus Campus GR 34400, Greece

Keywords: Cavendish experiment, dark matter, Einstein relativity theory, closed linear transformation, Euclidean metric, galaxy NGC 3198, Galilean transformation, General relativity, gravitation, gravitational deflection of light, gravitational red shift, kinimatics and dynamics of galaxies, Lagrangian, linear spacetime transformation, Lorentz boost, Lorentz metric, Lorentz transformation, Minkowski space, Modified Newtonian Dynamics, MOND, Newtonian Physics, precession of Earth's perihelion, precession of Mercury's perihelion, rotation curve of Galaxies, Schwarzschild metric, kinimatics and dynamics of Solar system, Special relativity.

PACS: 02.10.Ud, 02.40.Dr, 03.30.+p, 04.20.-q, 04.50.Kd, 04.80.Cc, 95.35.+d, 96.12.De, 96.15.De, 98.20.+d

Abstract

The development of Geometric theories of gravitation and the application of the Dynamics of General Relativity (GR) is the mainstream approach of gravitational field. Besides, the Generalized Special Relativity (GSR) contains the fundamental parameter (ξ_{1}) of Theories of Physics (TPs). Thus, it expresses at the same time Newtonian Physics (NPs) for $\xi_{1} \rightarrow 0$ and Special Relativity (SR) for $\xi_{1}=1$. Moreover, the weak Equivalence Principle (EP) in the context of GSR, has the interpretation: $m_{\mathrm{G}}=m$, where m_{G} and m are the gravitational mass and the inertial rest mass, respectively. In this paper, we bridge GR with GSR. This is achieved, by using a GSR-Lagrangian, which contains the corresponding GR-proper time. Thus, we obtain a new central scalar GSR-gravitational generalized potential $V=V\left(k, l, r, r_{-} d o t, \varphi _d o t\right)$, where $k=k\left(\xi_{\mathrm{I}}\right)$, $l=l\left(\xi_{1}\right), r$ is the distance from the center of gravity and $r_{-} d o t, \varphi_{-} d o t$ are the radial and angular velocity, respectively. The replacement $k=1$ and $l=\xi_{1}^{2}$ makes the above GSRpotential equivalent to the original Schwarzschild Metric (SM). Thus, it explains the Precession of Mercury's Perihelion (PMP), Gravitational Deflection of Light (GDL),

[^0]Gravitational Red Shift (GRS) etc, by using SR and/or NPs. The procedure described in this paper can be applied to any other GR-spacetime metric, in order to find out the corresponding GSR-gravitational potential. So, we also use the GR-proper time of the $3^{\text {rd }}$ Generalized Schwarzschild Metric (3GSM) and we obtain the central scalar GSRgravitational potential $V=V\left(a, k, l, r_{-} d o t, \varphi_{-} d o t\right)$, where $a=a(r)$. The combination of the above with MOND interpolating functions, or distributions of Dark Matter (DM) in galaxies, provides the functions corresponding $a=a(r)$. Thus, we obtain a new GSRGravitational field, which explains the PMP, GDL, GRS as well as the Rotation Curves in Galaxies, eliminating the corresponding DM.

1. Introduction

The Equivalence Principle (EP) in the context of Special Relativity (SR), has many possible interpretations [1] (p. 245). In this paper, we follow the weak EP, where the gravitational mass (m_{G}) is equal to the inertial rest mass (m):

$$
\begin{equation*}
m_{\mathrm{G}}=m \tag{1}
\end{equation*}
$$

This SR-interpretation coincides to the case of Newtonian Physics (NPs). Besides, the gravitational potential energy is usually

$$
\begin{equation*}
U=m_{\mathrm{G}} V=m V, \tag{2}
\end{equation*}
$$

where V is scalar gravitational potential. The above equation is valid, if the scalar gravitational potential depends only on the distance: $V_{\mathrm{GSR}}=V_{\mathrm{GSR}(r)}$. In case that generalized scalar gravitational potential is used, as we do in this paper, (2) is valid only for unmoved particle. Below, we shall explain the most significant gravitational phenomena:
(i) Precession of Mercury's Perihelion (PMP)
(ii) Gravitational Deflection of Light (GDL)
(iii) Gravitational Red Shift (GRS), and
(iv) rotation curves in galaxies, by using initially General Relativity (GR) and after SR and/or NPs.

The EP (1) according to SR, combined with Newtonian scalar gravitational potential

$$
\begin{equation*}
V_{\mathrm{N}}=-\frac{\mathrm{G} M}{r}, \tag{3}
\end{equation*}
$$

gives GR-PMP (Figure 1a): $\Omega=7^{\prime \prime} .16$ per century, [2] (p. 355), [3] (p. 338). This theoretical result is far away from the experimental value: $\Omega_{\text {exp }}=42^{\prime \prime} .9799(9) \mathrm{cy}^{-1}$, which is the contribution of the Sun due to Schwarzschild Gravito-Electric effect (GEE) to the total PMP [4] (p. 6), [5] (p. 152). Moreover, we have already presented the scalar gravitational potential

$$
\begin{equation*}
V=\left(\sqrt{1-k \frac{r_{\mathrm{s}}}{r}}-1\right) \frac{\mathrm{c}^{2}}{k} \leq 0, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{\mathrm{s}}=\frac{2 \mathrm{G} M}{\mathrm{c}^{2}} \tag{5}
\end{equation*}
$$

is Schwarzschild radius. [6]. The combination of EP (1) with potential (4) and $k=5$ according to SR , or the combination of EP (1) with potential (4) and $k=6$ according NPs, give the same precession of Mercury's perihelion: $42^{\prime \prime} .9820(43) \mathrm{cy}^{-1}$, [6] (p. 14). This is in accordance with the experimental value.

On the other hand, the GDL (Figure 1b) is an effect that was firstly predicted by Johann von Soldner, in 1801. He supposed that a ray grazing the Earth (or the Moon, or the Sun) contains particles (photons) moving with steady speed $v=\mathrm{c}$ and he solved the problem, by using NPs and

(a)

(b)

Figure 1. (a) Precession of the pericenter / perihelion of the orbit of a particle / planet by a spherical mass / Sun. (b) Deflection of a ray by a spherical mass / Sun. R is the (minimum) distance of the perihelion / pericenter from the center of gravity and Δ is the angle that the perihelion precesses per revolution.

Newtonian scalar gravitational potential (3) [7] (p.169). The result of the half deflection (φ_{∞}) has

$$
\begin{equation*}
\tan \phi_{\infty}=\frac{\mathrm{G} M}{\mathrm{c} \sqrt{\mathrm{c}^{2} R^{2}-2 \mathrm{G} M R}} \approx \frac{\mathrm{G} M}{\mathrm{c}^{2} R}=\frac{r_{\mathrm{S}}}{2 R} \tag{6}
\end{equation*}
$$

which gives the magnitude of the total deflection of a ray

$$
\begin{equation*}
\Theta \approx \frac{2 \mathrm{G} M}{\mathrm{c} \sqrt{\mathrm{c}^{2} R^{2}-2 \mathrm{G} M R}} \approx \frac{2 \mathrm{G} M}{\mathrm{c}^{2} R}=\frac{r_{\mathrm{S}}}{R}, \tag{7}
\end{equation*}
$$

where R is the minimum distance from the center of gravity. In 1911, a similar result was obtained by Albert Einstein, before the development of GR. He solved the problem, by using SR, the EP \& Newtonian scalar gravitational potential (3) and he calculated exactly [8] (p. 904):

$$
\begin{equation*}
\Theta=\frac{2 \mathrm{G} M}{\mathrm{c}^{2} R}=\frac{r_{\mathrm{s}}}{R} \tag{8}
\end{equation*}
$$

For a ray grazing the Sun, they calculated $\Theta=0^{\prime \prime} .84$ and $\Theta=0^{\prime \prime} .83$, respectively. These results are about the half the observed value $\Theta_{\text {exp }}=1^{\prime \prime} .75$ [9] (p. 249), which is also calculated by Schwarzschild Metric (SM) formula [5] (p. 153):

$$
\begin{equation*}
\Theta=\frac{4 \mathrm{G} M}{\mathrm{c}^{2} R}=\frac{2 r_{\mathrm{s}}}{R} . \tag{9}
\end{equation*}
$$

The same result can be obtained, by using A. Einstein 1911-method and scalar gravitational potential (4) for

$$
\begin{equation*}
k=\frac{4 \mathrm{c}^{2} R}{\pi \mathrm{G} M}=\frac{8 R}{\pi r_{\mathrm{s}}} . \tag{10}
\end{equation*}
$$

This means variable $k \gg 5$ ($k=5$ is the value which predicts the Precession of Mercury's perihelion). So, potential (4) is also inefficient to explain the GDL according to SR, in contrast to scalar gravitational generalized potential (236) (see below).

The above analysis explains why the gravitational field is usually studied, by using the Dynamics of GR and the development of Geometric theories of gravitation [10]. The EP in GR is: accelerated motions caused by the gravitational field only (free fall) take place along geodesics of the metric, which corresponds to the particular gravitational field [2] (p. 248).

In this paper, we use generalized Relativity Theory (RT), which contains Einstein Relativity Theory (ERT) and Newtonian Physics (NPs), keeping the formalism of ERT. Thus, the differences between these two Theories of Physics (TPs) are limited to their different value of metric coefficients of spacetime for the corresponding Relativistic Inertial observers (RIOs) and the fundamental parameter of TPs: ξ_{1}. NPs has $\xi_{1} \rightarrow 0$, while ERT has $\xi_{1}=1$ [11]. The case of observers with variable metric of spacetime, leads to the corresponding GR. For being this clear, we present the $1^{\text {st }}$ Generalized Schwarzschild Metric (1GSM) and the $3^{\text {rd }}$ Generalized Schwarzschild Metric (3GSM), which are in accordance with any SR based on isotropic Generalized metrics (g_{I}) and Einstein field equations.

In case of 1GSM, we compute the corresponding Lagrangian, Equations of motion, Precession of planets' orbits, Deflection of light etc, resulting formulas which are referred to any TPs. We also present the results of the original Schwarzschild metric (SM), by adopting no-superposition principle, in contrast with many textbooks, and we obtain the total GR-energy. Finally, the generalized potential energy is calculated, by reducing the kinetic energy (which is considered equal to this of GSR) from the total GR-energy. Thus, we conclude that although SM is a static and stationary metric of nonrotating mass, it produces Gravito-Magnetic Effect (GME), because the GSR-gravitational potential and the GSR-gravitational force depend on the velocity of the particle.

The next step is the invention of a method which bridges GR with GSR. This is achieved, by using a GSR-Lagrangian, which contains the time dilation of the corresponding GR-Lagrangian. Thus, we obtain a new central scalar GSR-Gravitational generalized potential $V=V(k, l, r, \dot{r}, \dot{\phi})$, where $k=k\left(\xi_{I}\right)$, $l=l\left(\xi_{\mathrm{I}}\right), r$ is the distance from the center of gravity and $\dot{r}, \dot{\phi}$ are the radial and angular velocity, respectively. We demand that 'this new GSR-gravitational field in accordance with EP (1), gives the same equation of orbit as SM does' and we obtain $k=1$ and $l=\xi_{1}^{2}$.

In case of 3GSM, we apply the above procedure and we obtain a new central scalar GSRgravitational potential $V=V(a, k, l, \dot{r}, \dot{\phi})$, where $a=a(r)$. The combination of the above with Modified Newtonian Dynamics (MOND) and/or distributions of phantom Dark Matter (DM) in galaxies, provides the corresponding functions $a=a(r)$. Thus, we have also achieved the relativization of MOND. More specifically, we use a new generalized interpolating function (μ) (which expresses both
the Simple and the Standard μ) and/or a very simple distribution of DM, for the explanation of the Rotation Curves in Galaxies (e.g. NGC-3198) as well as the Solar system, eliminating DM. Generally, this approach, in non rotating black hole, planetary and star system-scale, coincides to the original SM, while in galactic scale, it gives MONDian or DM-results. Finally, we have obtained a new Gravitational field, which not only explains the PMP, GDL, GRS etc, but also the Rotation Curves in Galaxies, eliminating the corresponding DM.

2. Isometric Closed Linear Transformations of Complex Spacetime endowed with the Corresponding Metrics

In this paper, the metric coefficients of time and space have different signs. Moreover, 3D-space is isotropic, in case of Isometric Closed Linear Transformations of Complex Spacetime (ICLSTTs) [12]. Thus, for RIOs, the representation of the non-degenerate inner product in holonomic basis $\left[\mathbf{e}_{\mu}\right]=\left[\mathbf{e}_{0}, \mathbf{e}_{1}\right.$, $\left.\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\left[\mathbf{e}_{c t}, \mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right]$ is the real matrix of metric:

$$
\begin{equation*}
g_{1}=\operatorname{diag}\left(g_{100}, g_{111}, g_{122}, g_{133}\right)=g_{111} \operatorname{diag}\left(-\frac{1}{\xi_{1}^{2}}, 1,1,1\right)=g_{100} \operatorname{diag}\left(1,-\xi_{1}^{2},-\xi_{1}^{2},-\xi_{1}^{2}\right), \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{\mathrm{I}}=\sqrt{\frac{g_{\mathrm{II11}}}{-g_{\mathrm{I} 00}}} \tag{12}
\end{equation*}
$$

The index I remind us that we are referred to the spacetime of the RIOs of each specific TP. Besides the GSR has real Universal Speed $\left(c_{1}\right)$:

$$
\begin{equation*}
c_{\mathrm{I}}=\frac{1}{\xi_{\mathrm{I}}} \mathrm{c} \tag{13}
\end{equation*}
$$

and the transformation of a contravariant four-vector is

$$
\begin{equation*}
\mathrm{d} X^{\prime}=\Lambda_{\mathrm{I}\left(\xi_{1}, \beta\right)} \mathrm{d} X, \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
\Lambda_{\mathrm{I}\left(\xi_{\mathrm{I}}, \beta\right)}=\gamma_{(\xi, \beta)}\left[\begin{array}{cccc}
1 & -\xi_{\mathrm{I}}^{2} \beta_{x} & -\xi_{\mathrm{I}}^{2} \beta_{y} & -\xi_{\mathrm{I}}^{2} \beta_{z} \\
-\beta_{x} & 1 & \mathrm{i} \xi_{\mathrm{I}} \beta_{z} & -\mathrm{i} \xi_{\mathrm{I}} \beta_{y} \\
-\beta_{y} & -\mathrm{i} \xi_{\mathrm{I}} \beta_{z} & 1 & \mathrm{i} \xi_{\mathrm{I}} \beta_{x} \\
-\beta_{z} & \mathrm{i} \xi_{\mathrm{I}} \beta_{y} & -\mathrm{i} \xi_{\mathrm{I}} \beta_{x} & 1
\end{array}\right]=\gamma_{(\xi, \beta)}\left[\begin{array}{cc}
1 & -\xi_{\mathrm{I}}^{2} \beta^{T} \\
-\beta & \mathrm{I}_{3}+\mathrm{i} \xi_{\mathrm{I}} \mathrm{~A}_{(\beta)}
\end{array}\right], \tag{15}\\
\beta^{i}=\frac{\mathrm{d} x^{i}}{\mathrm{~d} x^{0}} ; \quad \beta=\left[\begin{array}{c}
\beta_{x} \\
\beta_{y} \\
\beta_{z}
\end{array}\right] ; \quad \mathrm{A}_{(\beta)}=\left[\begin{array}{ccc}
0 & \beta_{z} & -\beta_{y} \\
-\beta_{z} & 0 & \beta_{x} \\
\beta_{y} & -\beta_{x} & 0
\end{array}\right] \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
\gamma_{(\delta)}=\frac{1}{\sqrt{1-\delta^{\mathrm{T}} \delta}} \tag{17}
\end{equation*}
$$

is Lorentz γ-factor. The typical matrix of IECLSTTs along x-axis (Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) is
$\Lambda_{\mathrm{Ityp}}=\gamma_{(\xi, \beta)}\left[\begin{array}{cccc}1 & -\xi_{1}^{2} \beta & 0 & 0 \\ -\beta & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathrm{i} \xi_{1} \beta \\ 0 & 0 & -\mathrm{i} \xi_{1} \beta & 1\end{array}\right] ; \Lambda_{\text {Гysp }}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -\beta & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ; \Lambda_{\mathrm{B} y p}=\gamma_{(\beta)}\left[\begin{array}{cccc}1 & -\beta & 0 & 0 \\ -\beta & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathrm{i} \beta \\ 0 & 0 & -\mathrm{i} \beta & 1\end{array}\right]$
The specific value $\xi_{1} \rightarrow 0\left(\mathrm{~g}_{111} \rightarrow 0, \mathrm{~g}_{100} \neq 0\right)$ gives Galilean Transformation (GT) with infinite Universal Speed $\left(c_{1} \rightarrow+\infty\right)$ and the corresponding metric of the spacetime (let us call Galilean metric):

$$
\begin{equation*}
g_{\Gamma}=\lim _{g_{\mathrm{III}} \rightarrow 0} \operatorname{diag}\left(g_{\mathrm{I} 00}, g_{\mathrm{I} 11}, g_{\mathrm{II1}}, g_{\mathrm{II1} 1}\right)=g_{\mathrm{I} 00} \lim _{\xi_{\mathrm{I}} \rightarrow 0} \operatorname{diag}\left(1,-\xi_{\mathrm{I}}^{2},-\xi_{\mathrm{I}}^{2},-\xi_{\mathrm{I}}^{2}\right) \tag{19}
\end{equation*}
$$

The corresponding spacetime (let us call Galilean spacetime) has infinite curvature ($K \rightarrow+\infty$) in any orientation $\kappa \mathbf{e}_{\mathbf{x}}+\lambda \mathbf{e}_{\mathbf{y}}+\mu \mathbf{e}_{\mathbf{z}}$ of 3 D -space. This is the reason that time is absolute for any type of observers as well as the Universal speed is infinite $\left(c_{\mathrm{I}} \rightarrow+\infty\right)$.

The specific value $\xi_{\mathrm{I}}=1\left(g_{\mathrm{II1}}=-g_{\mathrm{I} 00}\right)$ gives transformation with $c_{\mathrm{I}}=\mathrm{c}$ (the universal speed is the wellknown present speed of light in vacuum) and the corresponding metric of spacetime

$$
\begin{equation*}
g_{\mathrm{B}}=g_{\mathrm{I} 11} \operatorname{diag}(-1,1,1,1)=g_{\mathrm{I} 11} \eta \tag{20}
\end{equation*}
$$

which for $g_{111}=1$ becomes the Lorentz metric (η). Thus, we have the Lorentzian case of GSR [13], [14], which is associated with ERT.

We now make the option that observer O measures real spacetime. As some elements of matrix Λ_{I} are imaginary numbers, we conclude that the spacetime of one moving observer is complex. Thus, we put an index C to the complex natural sizes and the real natural sizes have no index. In addition, any complex Cartesian Coordinates (CCs) of the theory may be turned to the corresponding real CCs, in order to be perceived by human senses. This is achieved, if the moving ObserverO' considers as Real CCs the corresponding lengths of rods [11] (p. 6). Thus, it emerges the (Generalized; GalileanNewtonian; Lorentzian-Einsteinian) Real Boost (RB)

$$
\begin{equation*}
\mathrm{d} X^{\prime}=\Lambda_{\operatorname{IR}(\beta)} \mathrm{d} X ; \mathrm{d} X^{\prime}=\Lambda_{\Gamma(\beta)} \mathrm{d} X ; \mathrm{d} X^{\prime}=\Lambda_{\mathrm{L}(\beta)} \mathrm{d} X \tag{21}
\end{equation*}
$$

where

$$
\Lambda_{\mathrm{IR}(\beta)}=\left[\begin{array}{cc}
\gamma_{\left(\xi_{\mathrm{I}} \beta\right)} & -\gamma_{\left(\xi_{\mathrm{I}} \beta\right)} \xi_{\mathrm{I}}^{2} \beta^{T} \tag{22}\\
-\gamma_{\left(\xi_{\mathrm{I}} \beta\right)} \beta & \mathrm{I}_{3}+\frac{\gamma_{\left(\xi_{\mathrm{I}} \beta\right)}-1}{\beta^{T} \beta} \beta \beta^{T}
\end{array}\right] ; \Lambda_{\Gamma(\beta)}=\left[\begin{array}{cc}
1 & 0 \\
-\beta & \mathrm{I}_{3}
\end{array}\right] ; \Lambda_{\mathrm{L}(\beta)}=\left[\begin{array}{cc}
\gamma_{(\beta)} & -\gamma_{(\beta)} \beta^{T} \\
-\gamma_{(\beta)} \beta & \mathrm{I}_{3}+\frac{\gamma_{(\beta)}-1}{\beta^{T} \beta} \beta \beta^{T}
\end{array}\right]
$$

The typical matrix of (Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) RB along x-axis is

We observe that for $\xi_{\mathrm{I}}=1$, we have the original typical proper Lorentz Boost (LB) (see e.g. [2] p. 21, eq. 1.38) and the corresponding general proper LB (see e.g. [2] p. 24, eq. 1.47).

Supposing one Particle (P) with real mass m moving with velocity $\vec{v}_{P}=\vec{\beta}_{P} \mathrm{c}$ wrt observer O, we calculate the Generalized kinetic energy; Generalized relativistic energy; Generalized energy of Rest mass [11] (p. 10):

$$
\begin{equation*}
K=\frac{\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)}-1}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2} ; E=\frac{\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)}}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2} ; E_{\text {rest }}=\frac{1}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2} \tag{24}
\end{equation*}
$$

3. GR: Generalized Schwarzschild metrics

3.1. The metric of a static and centrally symmetric gravitational field

Einstein field equations in vacuum [9] (pp. 303, 396) are reduced to the single tensor equation $R_{\mu \nu}=0$. This emerges the metric of a static and centrally symmetric gravitational field

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{\mathrm{I} 00} f_{(r)} \mathrm{c}^{2} \mathrm{~d} t^{2}+g_{\mathrm{I} 11} g_{(r)} \mathrm{d} r^{2}+g_{\mathrm{I} 11} h_{(r)} \mathrm{d} \theta^{2}+g_{\mathrm{I} 11} h_{(r)} \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{25}
\end{equation*}
$$

with the following conditions [15] (p. 2):

$$
\begin{equation*}
g_{(r)}=\frac{\mu}{f_{(r)}\left(1-f_{(r)}\right)^{4}}\left(\frac{\mathrm{~d} f}{\mathrm{~d} r}\right)^{2} ; h_{(r)}=\frac{\mu}{\left(1-f_{(r)}\right)^{2}} \tag{26}
\end{equation*}
$$

where μ is an arbitrary constant and f is an arbitrary function of r (not constant).

3.2. The $3^{\text {rd }}$ Generalized Schwarzschild Metric, Relativistic potential and Field strength

We define the $3^{\text {rd }}$ Generalized Schwarzschild Relativistic Potential (3GSRP) around a center of gravity with mass M as

$$
\begin{equation*}
\Phi=\frac{\mathrm{c}^{2}}{2 \xi_{\mathrm{I}}^{2}} \ln \left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right) \tag{27}
\end{equation*}
$$

where $a_{(r)}$ is unspecified function, in accordance with any TPs. The 3GSP is connected with Φ, via the formula

$$
\begin{equation*}
\ln f_{(r)}=\frac{2}{c_{\mathrm{I}}^{2}} \Phi=\frac{2 \xi_{\mathrm{I}}^{2}}{\mathrm{c}^{2}} \Phi \tag{28}
\end{equation*}
$$

which emerges

$$
\begin{equation*}
f_{(r)}=1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r} \tag{29}
\end{equation*}
$$

After replacing the above equation and $\mu=\xi_{\mathrm{I}}^{4} r_{\mathrm{S}}^{2}$ to (26), we also have

$$
\begin{equation*}
g_{(r)}=\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)} ; h_{(r)}=\frac{r^{2}}{a_{(r)}^{2}} . \tag{30}
\end{equation*}
$$

So, we obtain the $3^{\text {rd }}$ Generalized Schwarzschild Metric (3GSM)

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{\mathrm{I} 00}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}+\frac{g_{\mathrm{I} 11}\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)} \mathrm{d} r^{2}+\frac{g_{\mathrm{I} 11} r^{2}}{a_{(r)}^{2}} \mathrm{~d} \theta^{2}+\frac{g_{\mathrm{I} 11} r^{2}}{a_{(r)}^{2}} \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{31}
\end{equation*}
$$

with spatial part

$$
\begin{equation*}
\mathrm{d} l^{2}=\frac{g_{\mathrm{II11}}\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}{ }^{2} r_{\mathrm{S}}}{r}\right)} \mathrm{d} r^{2}+\frac{g_{\mathrm{II1} 1} r^{2}}{a_{(r)}{ }^{2}} \mathrm{~d} \theta^{2}+\frac{g_{\mathrm{II1} 1} r^{2}}{a_{(r)}{ }^{2}} \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{32}
\end{equation*}
$$

where $a_{(r)}$ is an arbitrary function of the distance r (or constant). Now, we can calculate the following quantity [which usually is considered as the radial field strength in textbooks [9] (p. 230)], by defining

$$
\begin{equation*}
\vec{g}=-\sqrt{g_{\mathrm{I} 11}} \nabla \Phi=-\sqrt{g_{\mathrm{I} 11}} \frac{d \Phi}{d l} \hat{r}=-\sqrt{g_{\mathrm{I} 11}} \frac{d \Phi}{d r} \frac{d r}{d l} \hat{r} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\sqrt{g_{\mathrm{I} 11}} \frac{d \Phi}{d r} \frac{d r}{d l} \tag{34}
\end{equation*}
$$

The positive value $(g>0)$ means gravity, while negative value $(g<0)$ means antigravity. So, it is

$$
\begin{equation*}
g=\frac{G M}{r^{2}}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}} a_{(r)}^{2}>0 \tag{35}
\end{equation*}
$$

We also prefer $a_{(r)}>0$, in order to ensure Gravitational Red Shift (GRS). We shall see that the field strength on moving particle is given by a different formula, which also contains the velocity of the particle and also the field strength of unmoved particle is given by (35), if only $a_{(r)}=1$.

3.3. The $1^{\text {st }}$ Generalized Schwarzschild Metric, Relativistic potential, Field strength, Lagrangian, Geodesics, Equations of motion, Precession of planets' orbits and Deflection of light

In case that $a_{(r)}=1$, (27) gives the $1^{\text {st }}$ Generalized Schwarzschild Relativistic Potential (1GSRP) [12] (p. 11):

$$
\begin{equation*}
\Phi=\frac{\mathrm{c}^{2}}{2 \xi_{\mathrm{I}}^{2}} \ln \left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)=-\frac{\mathrm{c}^{2}}{2} \frac{r_{\mathrm{S}}}{r}+\ldots=-\frac{\mathrm{G} M}{r}+\ldots \tag{36}
\end{equation*}
$$

Thus, (31) emerges the $1^{\text {st }}$ Generalized Schwarzschild metric (1GSM):

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{100}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}+\frac{g_{\mathrm{II1}}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}+g_{111} r^{2} \mathrm{~d} \theta^{2}+g_{111} r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{37}
\end{equation*}
$$

Besides, (35) gives

$$
\begin{equation*}
\vec{g}_{(r)}=-\frac{G M}{r^{2}}\left(1-\xi_{I}{ }^{2} \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r}, \tag{38}
\end{equation*}
$$

which is the $1^{\text {st }}$ Generalized Schwarzschild field strength (g) for unmoved particle.
The usual definition of Lagrangian of gravitational system (M, m) [9] (p. 205)

$$
\begin{equation*}
L=m \dot{x}^{\mu} g_{\mu \nu} \dot{x}^{\nu}, \tag{39}
\end{equation*}
$$

for orbit on the 'plane' $\theta=\pi / 2$, emerges the $I^{s t}$ Generalized Schwarzschild Lagrangian (1GSL) [11] (p. 15):

$$
\begin{equation*}
L=m g_{100}\left[\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \dot{i}^{2}-\frac{\xi_{\mathrm{I}}^{2}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \dot{r}^{2}-\xi_{\mathrm{I}}^{2} r^{2} \dot{\phi}^{2}\right] ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau} . \tag{40}
\end{equation*}
$$

The well-known Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d \tau}\left(\frac{\partial L}{\partial \dot{x}^{\mu}}\right)-\frac{\partial L}{\partial x^{\mu}}=0 \quad ; \mu=0,1,2 \tag{41}
\end{equation*}
$$

give us the equations of motion:

$$
\begin{gather*}
E_{\mathrm{GR}}=\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \dot{i} ;=\frac{\mathrm{d}}{\mathrm{~d} \tau} ; \tag{42}\\
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{2 \dot{r}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}\right)-\left[-\frac{r_{\mathrm{S}}}{r^{2}} \mathrm{c}^{2} \dot{t}^{2}+\frac{\partial}{\partial r}\left(\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}}\right) \dot{r}^{2}+2 \dot{\phi}^{2}\right]=0 ; \tag{43}\\
J_{\mathrm{GR}}=m h_{\mathrm{GR}}=m r^{2} \dot{\phi} \quad ;=\frac{\mathrm{d}}{\mathrm{~d} \tau}, \tag{44}
\end{gather*}
$$

where the integrals of motion are: the total GR-energy (E_{GR}) and the total GR-angular momentum $\left(J_{\mathrm{GR}}\right)$ of the system ($h_{\mathrm{GR}}=J_{\mathrm{GR}} / m$ is the GR-angular momentum per mass unit). The solutions of the above equations of motion satisfy the condition

$$
\begin{equation*}
L=m g_{100} \mathrm{c}^{2} . \tag{45}
\end{equation*}
$$

So, they can also be used for the practical determination of geodesics [9] (p. 205). It is noted that

$$
\begin{equation*}
h_{\mathrm{GR}}=r^{2} \dot{\phi}=r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} \tau} \frac{\mathrm{~d} t}{\mathrm{~d} t}=r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}=h_{\mathrm{N}} t ; h_{\mathrm{N}}=r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} t} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{46}
\end{equation*}
$$

where $h_{\mathrm{N}}=J_{\mathrm{N}} / m$ is the corresponding Newtonian-angular momentum per mass unit. Besides (43) is also written as

$$
\begin{equation*}
2 \ddot{\ddot{r}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r^{2}} \dot{r}^{2}+\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} \frac{r_{\mathrm{s}}}{r^{2}} \mathrm{c}^{2} \dot{t}^{2}-2\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} r \dot{\phi}^{2}=0 ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{47}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} r}{\mathrm{~d} t^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r^{2}} \frac{\dot{r}^{2}}{\dot{t}^{2}}+\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} \frac{r_{\mathrm{S}}}{r^{2}} \mathrm{c}^{2}-2\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} r \frac{\dot{\phi}^{2}}{\dot{t}^{2}}=0 \quad ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{48}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
2 \ddot{r}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r^{2}} \dot{r}^{2}+\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} \frac{r_{\mathrm{s}}}{r^{2}} \mathrm{c}^{2}-2\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} r \dot{\phi}^{2}=0 \quad ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{49}
\end{equation*}
$$

Now, we study the motion of particle P around the center of gravity of mass M. In case that $\dot{r}=0$, we have motion at the perihelion and/or aphelion or Uniform Circular Motion (UCM). Thus,

$$
\begin{equation*}
2 \ddot{r}+\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \frac{r_{\mathrm{s}}}{r^{2}} \mathrm{c}^{2}-2\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \dot{\phi}^{2}=0 ;=\frac{\mathrm{d}}{\mathrm{~d} t} ; r \rightarrow R \tag{50}
\end{equation*}
$$

The UCM (with $r=R=$ const) has the extra condition $\ddot{r}=0$. Thus, the above eqn gives the same angular velocity and the same centripetal acceleration for any TPs

$$
\begin{equation*}
\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\omega=\sqrt{\frac{G M}{R^{3}}} ; a=\frac{v^{2}}{R}=\omega^{2} R=\frac{G M}{R^{2}}=g_{\mathrm{N}} . \tag{51}
\end{equation*}
$$

Let us remind that a solution of the system of $(\mathrm{N}-1)$ Euler-Lagrange equations automatically satisfies the Nth equation, except for the solution $\mathrm{x}_{\mathrm{N}}=$ const [9] (p. 213). Since we have already dealt with $r=$ const, we can now forget about eqn (43). Instead, we use Lagrangian (40) combined with (45) [9] (p. 239). Thus, we obtain

$$
\begin{equation*}
\dot{r}^{2}=-\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)+\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2} \dot{t}^{2}-\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) r^{2} \dot{\phi}^{2} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{52}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left(\frac{\mathrm{d} r}{\mathrm{~d} t}\right)^{2}=-\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \frac{1}{\dot{t}^{2}}+\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2}-\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \frac{r^{2} \dot{\phi}^{2}}{\dot{t}^{2}} ;=\frac{\mathrm{d}}{\mathrm{~d} \tau} . \tag{53}
\end{equation*}
$$

The above eqns by using (42) and (44) become, respectively:

$$
\begin{gather*}
\dot{r}^{2}=-\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right)+\frac{\xi_{\mathrm{I}}^{2} E_{\mathrm{GR}}^{2}}{m^{2} \mathrm{c}^{2}}-\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \frac{h_{\mathrm{GR}}^{2}}{r^{2}} ;=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{54}\\
\left(\frac{\mathrm{~d} r}{\mathrm{~d} t}\right)^{2}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right)^{2}\left[1-\frac{m^{2} \mathrm{c}^{4}}{\xi_{\mathrm{I}}^{4} E_{\mathrm{GR}}^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right)\left(1+\frac{\xi_{\mathrm{I}}^{2}}{\mathrm{c}^{2}} \frac{h_{\mathrm{GR}}^{2}}{r^{2}}\right)\right] . \tag{55}
\end{gather*}
$$

Accordingly to the mainstream approach in textbooks, the further study is based on the superposition principle. This emerges the relation of time to proper time (GR-time dilation). Replacing this to (42), they obtain the final formula of the total GR-energy. Finally, the generalized potential energy is calculated, by reducing the kinetic energy (which is considered equal to this of SR) from the total relativistic energy. In this paper, we follow a similar approach with no-superposition principle. Thus, we obtain simple central potential which describes GEE in case of unmoved particle, while moving particle has also GME. So, we conclude that even SM is a static and stationary metric of non-rotating mass, there exists gravitomagnetism, because the GSR-gravitational potential and the GSR-gravitational force depend on the velocity of the particle. This is not obvious in case of GR, because the motion on the curved geodesics is considered as inertial motion. But, a space endowed with steady metric (like Minkowski spacetime) makes clearest the above consideration.

The isometry of spacetime relieves us the relation of time to proper time $[11](\mathrm{p} .16)$:

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{\mathrm{I} 00} \mathrm{c}^{2} \mathrm{~d} \tau^{2}=g_{\mathrm{I} 00}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}+\frac{g_{\mathrm{II11}}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}+g_{\mathrm{I} 11} r^{2} \mathrm{~d} \theta^{2}+g_{\mathrm{II11}} r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2} ; \theta=\frac{\pi}{2} \tag{56}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left(\frac{\mathrm{d} \tau}{\mathrm{~d} t}\right)^{2}=1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}-\frac{\xi_{\mathrm{I}}^{2}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} t}\right)^{2} \frac{1}{\mathrm{c}^{2}}-\xi_{\mathrm{I}}^{2} r^{2}\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)^{2} \frac{1}{\mathrm{c}^{2}} ; \theta=\frac{\pi}{2} \tag{57}
\end{equation*}
$$

This gives the GR-time dilation

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} \tau}=\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} \geq 1 ;=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{58}
\end{equation*}
$$

Replacing the above equation to (42), we obtain the final formula of the total GR-energy

$$
\begin{equation*}
E_{\mathrm{GR}}=\frac{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}{\sqrt{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \geq 0 \quad ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{59}
\end{equation*}
$$

We observe the different contribution of the radial and orbital velocity to the total energy! Now, we demand zero kinetic energy $(K=0)$, in case that the particle is static $\left(\vec{\beta}_{P}=0\right)$. Thus, $E_{G R\left(\vec{\beta}_{P}=0\right)}=E_{\text {rest }}+U_{(r)}$, where $U_{(r)}$ is the potential energy of unmoved particle. Replacing (24iii) and (59) to the above equation, we have

$$
\begin{gather*}
U_{(r)}=\left(\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}-1\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 \tag{60}\\
V_{(r)}=\left(\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}-1\right) \frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 \tag{61}
\end{gather*}
$$

where V is the $1^{\text {st }}$ Generalized Schwarzschild Potential (1GSP) of unmoved particle(where (2) has been used, too). This is a central potential with field strength:

$$
\begin{equation*}
\vec{g}_{(r)}=-\frac{d V}{d r} \hat{r}=-\frac{G M}{r^{2}}\left(1-\xi_{I}^{2} \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} \tag{62}
\end{equation*}
$$

We observe that the result is the same as (38). Besides, the mechanic energy $E_{\mathrm{m}}=E_{\mathrm{GR}}-E_{\mathrm{rest}}=K+U_{\mathrm{g}}$ is

$$
\begin{equation*}
E_{\mathrm{m}}=\left(\frac{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}{\left.\left.\sqrt{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{\left.1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)}\right.}-1\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \quad ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} . . .\right]}\right. \tag{63}
\end{equation*}
$$

The generalized Potential energy is defined as $U_{\mathrm{g}}=E_{\mathrm{GR}}-E_{\mathrm{rest}}-K=E_{\mathrm{GR}}-E$. The consideration of the Generalized relativistic energy as equal to this of SR (24ii), gives

$$
\begin{equation*}
U_{g}=\left(\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\gamma_{\left(\xi_{\mathrm{s}} \vec{\beta}_{\mathrm{P}}\right)}\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \tag{64}
\end{equation*}
$$

We also observe that if $\vec{\beta}_{P} \rightarrow 0$, the above equation becomes equal to (61). Finally, the replacement of (58) to (46i) gives

$$
\begin{equation*}
h_{\mathrm{GR}}=h_{\mathrm{N}} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}=h_{\mathrm{N}}\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} \geq h_{\mathrm{N}} ; h_{\mathrm{N}}=r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} t} ;=\frac{\mathrm{d}}{\mathrm{~d} t} \text {. } \tag{65}
\end{equation*}
$$

Besides, for a particle or planet at the perihelion and/or aphelion, or in UCM (where $r=R ; \dot{r}=0$), the above equation becomes

$$
\begin{equation*}
h_{\mathrm{GR}}=h_{\mathrm{N}}\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} \geq h_{\mathrm{N}} ; h_{\mathrm{N}}=r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} t} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{66}
\end{equation*}
$$

Morever, for a particle or planet in UCM, we obtain

$$
\begin{equation*}
h=h_{\mathrm{N}}\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{R}+\frac{\mathrm{G} M}{\mathrm{c}^{2} R}\right)\right]^{-\frac{1}{2}}=h_{\mathrm{N}}\left[1-\xi_{\mathrm{I}}^{2} \frac{3 r_{\mathrm{S}}}{2 R}\right]^{-\frac{1}{2}} \geq h_{\mathrm{N}} ; h_{\mathrm{N}}=r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} t} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{67}
\end{equation*}
$$

where (51i) has been also used.
In case of Generalized photon, it is $m=0$ and the velocity at infinite distance from the center of gravity is $c_{\mathrm{I}}=\mathrm{c} / \xi_{\mathrm{I}}$. But, the total angular momentum of the system $J_{\mathrm{GR}}=m r^{2} \dot{\phi}=m h_{\mathrm{GR}}$ is generally finite $\neq 0$ (except for radial motion). Thus, must be

$$
\begin{equation*}
h_{\mathrm{GR}}=+\infty, \tag{68}
\end{equation*}
$$

and (65) demands

$$
\begin{equation*}
1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)=0 ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{69}
\end{equation*}
$$

This can also be concluded, by using the energy formula (59) and demanding $\mathrm{E} \neq 0$. So, eqn (69) correlates the radial and the angular velocity of Generalized photon. Besides, the velocity of the Generalized photon $\left(\mathrm{c}_{P}\right)$ at random position is given by the formula

$$
\begin{equation*}
c_{P}^{2}=\dot{r}^{2}+r^{2} \dot{\phi}^{2} . \tag{70}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{c_{P}^{2}-\dot{r}^{2}}{\mathrm{c}^{2}}\right)=0 \tag{71}
\end{equation*}
$$

In case of Generalized photon in radial motion, the above eqn gives

$$
\begin{equation*}
c_{p}=\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \frac{\mathrm{c}}{\xi_{\mathrm{I}}} ; \gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)}=\frac{1}{\xi_{\mathrm{I}} \sqrt{\frac{r_{\mathrm{s}}}{r}\left(2-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)}} \tag{72}
\end{equation*}
$$

We observe that the photon is unmoved on the $1^{\text {st }}$ generalized Schwarzschild radius ($r_{S I}=\xi_{1}^{2} r_{\mathrm{S}}$) as well as Lorentz γ-factor is infinite only at infinite distance (except for NPs where it is infinite everywhere). Besides, eqn (71) is transformed to

$$
\begin{equation*}
1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{c_{P}^{2}}{\mathrm{c}^{2}}\right)=0 \tag{73}
\end{equation*}
$$

In case of UCM, or motion at the perihelion/aphelion, where $r=R ; \dot{r}=0$, the velocity of the Generalized photon is denoted as c_{R} and the (71) becomes

$$
\begin{equation*}
1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{R}+\frac{c_{R}^{2}}{\mathrm{c}^{2}}\right)=0 \tag{74}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
c_{R}=\mathrm{c} \sqrt{\frac{1}{\xi_{\mathrm{I}}^{2}}-\frac{r_{\mathrm{s}}}{R}} . \tag{75}
\end{equation*}
$$

Besides the combination of (67) with (68) gives the radius of UCM for a photon

$$
\begin{equation*}
R=\frac{3}{2} \xi_{\mathrm{I}}^{2} r_{\mathrm{s}} \tag{76}
\end{equation*}
$$

The above result has accordance with ERT, by replacing $\xi_{\mathrm{I}}=1[9]$ (p. 239). Moreover, the replacement of (76) to (75) emerges

$$
\begin{equation*}
c_{R}=\frac{\mathrm{c}}{\xi_{\mathrm{I}}} \sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}} \frac{\mathrm{c}}{\xi_{\mathrm{I}}} . \tag{77}
\end{equation*}
$$

The orbit of motion comes with similar way to the original Schwarzschild space [9] (pp. 238-45). Thus, the exact differential equation of motion is [11] (p. 15):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}}+3 \xi_{\mathrm{I}}{ }^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; u=\frac{1}{r} ; h_{\mathrm{GR}}=r^{2} \dot{\phi} ;=\frac{\mathrm{d}}{\mathrm{~d} \tau} . \tag{78}
\end{equation*}
$$

This reminds us the orbit of conic section with differential eqn and solution, respectively:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{1}{R(1+e)}=\frac{1}{a\left(1-e^{2}\right)}=\frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}} ; u=\frac{1}{r}=\frac{1+e \sin \phi}{R(1+e)}=\frac{1+e \sin \phi}{a\left(1-e^{2}\right)}=\frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}}(1+e \sin \phi), \tag{79}
\end{equation*}
$$

where R is the (minimum) distance of the perihelion / pericenter from the center of gravity, e is the eccentricity of the conic section, α is the semimajor axis in case of ellipse and angle ϕ is measured from axis which passes the center of gravity and it is perpendicular to the radius of perihelion R as it is shown in Figure 1a. It noted that

$$
\begin{equation*}
R=a(1-e) ; \frac{{h_{\mathrm{GR}}}^{2}}{\mathrm{G} M}=R(1+e)=a\left(1-e^{2}\right) . \tag{80}
\end{equation*}
$$

In case of small velocities relative to $c_{1}\left(v \lll / \xi_{\mathrm{I}}\right.$, or equivalently $\left.r \gg \xi_{1}^{2} r_{\mathrm{s}}\right)$, we replace the solution of the simplified differential equation (79) to the last term of the exact differential equation of motion (46). Thus, we have the approximate differential equation of motion (which only approximately validates UCM):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}}+3 \xi_{\mathrm{I}}{ }^{2} \frac{\mathrm{G}^{3} M^{3}}{\mathrm{c}^{2} h_{\mathrm{GR}}{ }^{4}}(1+e \sin \phi)^{2} ; u=\frac{1}{r} ; \quad h_{\mathrm{GR}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau}, \tag{81}
\end{equation*}
$$

with exact solution:
$u=\frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}}\left(1+e \sin \phi+3 \xi_{\mathrm{I}}{ }^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{GR}}{ }^{2}} e\left(\frac{\pi}{2}-\phi\right) \cos \phi\right) ; h_{\mathrm{GR}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{d} t} ; \quad \frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}}=\frac{1}{R(1+e)}=\frac{1}{a\left(1-e^{2}\right)}$.

The approximate solution is obtained as following. We rewrite (82i) as

$$
\begin{equation*}
u=\frac{\mathrm{G} M}{{h_{\mathrm{GR}}}^{2}}\left[1+e\left(\sin \phi+3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{GR}}}^{2}}\left(\frac{\pi}{2}-\phi\right) \cos \phi\right)\right] . \tag{83}
\end{equation*}
$$

and we remember the identity

$$
\begin{equation*}
\sin (\phi+d)=\sin \phi \cos d+\cos \phi \sin d \tag{84}
\end{equation*}
$$

These are associated, by using

$$
\begin{equation*}
d=\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{GR}}^{2}}\left(\frac{\pi}{2}-\phi\right)=\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} R(1+e)}\left(\frac{\pi}{2}-\phi\right)=\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}\left(\frac{\pi}{2}-\phi\right) \ll 1 \quad ; \cos d \approx 1 ; \sin d \approx d \tag{85}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
u=\frac{\mathrm{G} M}{{h_{\mathrm{GR}}}^{2}}\left[1+e \sin \left(\phi+\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{GR}}^{2}}^{2}}\left(\frac{\pi}{2}-\phi\right)\right)\right]=\frac{\mathrm{G} M}{{h_{\mathrm{GR}}^{2}}^{2}}\left[1+e \sin \left(\phi\left(1-3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{GR}}}^{2}}\right)+\frac{3 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{2 \mathrm{c}^{2}{h_{\mathrm{GR}}^{2}}^{2}}\right)\right] \tag{86}
\end{equation*}
$$

The above eqn can be written as

$$
\begin{equation*}
u \approx \frac{\mathrm{G} M}{h_{\mathrm{GR}}{ }^{2}}\left[1+e \sin \left(\lambda_{\mathrm{GR}} \phi+\left(1-\lambda_{\mathrm{GR}}\right) \frac{\pi}{2}\right)\right] ; \lambda_{\mathrm{GR}}=1-\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{GR}}}^{2}}=1-\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} R(1+e)}=1-\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}, \tag{87}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
u=\frac{1}{r} \approx \frac{\mathrm{G} M}{{h_{\mathrm{GR}}}^{2}}\left[1+e \sin \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)+\frac{\pi}{2}\right)\right] . \tag{88}
\end{equation*}
$$

Thus, we also obtain

$$
\begin{equation*}
u=\frac{1}{r} \approx \frac{\mathrm{G} M}{{h_{\mathrm{GR}}}^{2}}\left[1+e \cos \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)\right]=\frac{1}{R(1+e)}\left[1+e \cos \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)\right]=\frac{1}{a\left(1-e^{2}\right)}\left[1+e \cos \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)\right], \tag{89}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{\mathrm{GR}}=1-\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{GR}}^{2}}^{2}}=1-\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} R(1+e)}=1-\frac{3 \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)} \tag{90}
\end{equation*}
$$

with condition

$$
\begin{equation*}
0<\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{GR}}^{2}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} R(1+e)}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)} \ll 1 \tag{91}
\end{equation*}
$$

For every perihelion, we have

$$
\begin{equation*}
\cos \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)=1 \tag{92}
\end{equation*}
$$

The first, the second and the n-th perihelion correspond to $\phi=\frac{\pi}{2}, \phi=\frac{2 \pi}{\lambda_{\mathrm{GR}}}+\frac{\pi}{2}$ and $\phi=\frac{2 n \pi}{\lambda_{\mathrm{GR}}}+\frac{\pi}{2}$, respectively (Figure 1a). Hence, the orbit can be regarded as an ellipse that rotates ('precesses') about one of its foci by an amount

$$
\begin{equation*}
\Delta=\frac{2 \pi}{\lambda_{\mathrm{GR}}}-2 \pi=\left(\frac{1}{\lambda_{\mathrm{GR}}}-1\right) 2 \pi \approx 2 \pi \lambda_{\mathrm{GR}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{R(1+e) \mathrm{c}^{2}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{a\left(1-e^{2}\right) \mathrm{c}^{2}} \tag{93}
\end{equation*}
$$

rad per revolution.
We observe that the above eqn predicts precession of cycle $(e=0)$ for $\xi_{1} \neq 0$, because it comes form the approximate solution (83) of the approximate differential equation of motion (81). Finally, the angular velocity of ellipse rotation is given by the formula

$$
\begin{equation*}
\Omega\left(\frac{\prime \prime}{c y}\right)=\Delta\left(\frac{\mathrm{rad}}{\mathrm{rev}}\right)\left(\frac{360^{\circ}}{2 \pi \mathrm{rad}}\right)\left(\frac{3600^{\prime \prime}}{1^{\circ}}\right) \frac{1}{T}\left(\frac{\mathrm{rev}}{\text { day }}\right)\left(\frac{365.242 \text { day }}{\text { year }}\right)\left(\frac{100 \text { year }}{\mathrm{cy}}\right), \tag{94}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Omega\left(\frac{\prime \prime}{\overline{c y}}\right)=\Delta\left(\frac{\mathrm{rad}}{\mathrm{rev}}\right)\left(\frac{7533657 \times 10^{3 \prime \prime} \cdot \mathrm{day}}{\mathrm{rad} \cdot \mathrm{cy}}\right) \frac{1}{T}\left(\frac{\mathrm{rev}}{\mathrm{day}}\right) . \tag{95}
\end{equation*}
$$

The corresponding angular and radial velocities are obtained as following. We initially calculate E_{GR} and h_{GR}, by working at the $1^{\text {st }}$ perihelion, where $\phi=\frac{\pi}{2} ; R=\alpha(1-e) ; \dot{r}=0 ; \ddot{\phi}=0$. Thus, (59) and (65) become

$$
\begin{equation*}
E_{\mathrm{GR}}=\frac{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R}}{\sqrt{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}{ }^{2}}{\mathrm{c}^{2}}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \geq 0 ; h_{\mathrm{GR}}=R^{2} \dot{\phi}_{(R)}\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{R}+\frac{R^{2} \dot{\phi}_{(R)^{2}}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{96}
\end{equation*}
$$

The null radial velocity at the perihelion turns (55) to

$$
\begin{equation*}
1-\frac{m^{2} \mathrm{c}^{4}}{\xi_{\mathrm{I}}^{4} E_{\mathrm{GR}}{ }^{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R}\right)\left(1+\frac{\xi_{\mathrm{I}}^{2}}{\mathrm{c}^{2}} \frac{h_{\mathrm{GR}}^{2}}{R^{2}}\right)=0 . \tag{97}
\end{equation*}
$$

Moreover, the replacement of (96) to the above eqn gives

$$
\begin{equation*}
1-\frac{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}^{2}}{\mathrm{c}^{2}}\right)}{\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R}\right)}\left(1+\frac{\xi_{\mathrm{I}}^{2}}{\mathrm{c}^{2}} \frac{R^{2} \dot{\phi}_{(R)}^{2}}{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}^{2}}{\mathrm{c}^{2}}\right)}\right)=0 \tag{98}
\end{equation*}
$$

or equivalently,
which is valid for any value of $\dot{\phi}_{(R)}$ and R. Thus, (96) combined with (55) gives the radial velocity at any position.
Alternatively, we differentiate (89) wrt time and we obtain

$$
\begin{gather*}
\frac{\dot{r}}{r^{2}}=\frac{\mathrm{G} M e}{h_{\mathrm{GR}}{ }^{2}} \lambda_{\mathrm{GR}} \dot{\phi} \sin \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)=\frac{e}{R(1+e)} \lambda_{\mathrm{GR}} \dot{\phi} \sin \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)=\frac{e}{a\left(1-e^{2}\right)} \lambda_{\mathrm{GR}} \dot{\phi} \sin \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right) ; \tag{100}\\
\frac{\ddot{r} r^{2}-2 \dot{r^{2}}}{r^{2}}=\frac{\mathrm{G} M e}{h^{2}} \lambda_{\mathrm{GR}}\left[\lambda_{\mathrm{GR}} \dot{\phi}^{2} \cos \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)+\ddot{\phi} \sin \left(\lambda_{\mathrm{GR}}\left(\phi-\frac{\pi}{2}\right)\right)\right] ;=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{101}
\end{gather*}
$$

At the perihelion $(\dot{r}=0)$ the above eqn becomes

$$
\begin{equation*}
\frac{\ddot{r}_{(R)}}{R^{2}}=\frac{\mathrm{G} M e}{h_{\mathrm{GR}}{ }^{2}} \lambda_{\mathrm{GR}}{ }^{2} \dot{\phi}_{(R)}{ }^{2} . \tag{102}
\end{equation*}
$$

Besides, the combination of (80ii) with (96ii) gives

$$
\begin{equation*}
{h_{\mathrm{GR}}}^{2}=\mathrm{G} M R(1+e)=\mathrm{G} M a\left(1-e^{2}\right)=\frac{R^{4} \dot{\phi}_{(R)}^{2}}{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}{ }^{2}}{\mathrm{c}^{2}}\right)} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{103}
\end{equation*}
$$

The above emerges

$$
\begin{equation*}
\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}^{2}}{\mathrm{c}^{2}}\right)\right] \mathrm{G} M R(1+e)=\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{R}+\frac{R^{2} \dot{\phi}_{(R)}^{2}}{\mathrm{c}^{2}}\right)\right] \mathrm{G} M a\left(1-e^{2}\right)=R^{4} \dot{\phi}_{(R)^{2}}{ }^{2} \tag{104}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\dot{\phi}_{(R)}=\sqrt{\frac{\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R}\right) \mathrm{G} M R(1+e)}{R^{4}+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}} R^{3}}{2}(1+e)}} ; R=a(1-e) \gg r_{\mathrm{S}} . \tag{105}
\end{equation*}
$$

Moreover, the total GR-energy can be calculated by replacing (105) to (96i):

$$
\begin{equation*}
E_{\mathrm{GR}}=\frac{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}}{\sqrt{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{R}+\frac{r_{\mathrm{S}}}{2 R} \frac{\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}\right)(1+e)}{1+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}(1+e)}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \geq 0 \quad ; \quad R=a(1-e) \gg r_{\mathrm{S}} \tag{106}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
E_{\mathrm{GR}}=\frac{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}}{\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}\left(\frac{2+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}(1+e)+\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}\right)(1+e)}{1+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}(1+e)}\right.}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \geq 0 \quad ; \quad R=a(1-e) \gg r_{\mathrm{S}} \tag{107}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
E_{\mathrm{GR}}=\frac{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}}{\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}\left(\frac{3+e}{1+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}(1+e)}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \geq 0 ; R=a(1-e) \gg r_{\mathrm{S}} \tag{108}
\end{equation*}
$$

In this way, the mechanic energy (63) becomes

$$
\begin{equation*}
E_{\mathrm{m}}=\left[\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{R}\right)\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}\left(\frac{3+e}{1+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 R}(1+e)}\right)\right)^{-\frac{1}{2}}-1\right] \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} ; \quad R=a(1-e) \gg r_{\mathrm{S}} \tag{109}
\end{equation*}
$$

In case of UCM $(e \rightarrow 0, a \rightarrow R),(105)$ becomes

$$
\begin{equation*}
\dot{\phi}_{(R)}=\sqrt{\frac{\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R}\right) \mathrm{G} M R}{R^{4}+\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}} R^{3}}{2}}}, \tag{110}
\end{equation*}
$$

which is slightly smaller than the valid (51i), because it comes form the approximate solution (83) of the approximate differential equation of motion (81).

Moreover, the Generalized Gravitational Deflection of light can be obtained in a similar way to the original SM [9] (pp. 248-49). The combination of (78) with (68) gives

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=3 \xi_{\mathrm{I}}{ }^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; u=\frac{1}{r} . \tag{111}
\end{equation*}
$$

In case of large distances from the center of gravity relative to $r_{\mathrm{S}}\left(r \gg r_{\mathrm{S}} ; u \ll 1 / r_{\mathrm{S}}\right)$, we replace the solution (straight line) of the simplified equation of orbit

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=0 ; u=\frac{\sin \phi}{R} . \tag{112}
\end{equation*}
$$

to the last term of the exact differential equation of orbit (Figure 1b). Thus, we have the approximate differential equation of orbit

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2}} \frac{\sin ^{2} \phi}{R^{2}}=3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2} R^{2}}\left(1-\cos ^{2} \phi\right) \tag{113}
\end{equation*}
$$

with solution

$$
\begin{equation*}
u=\frac{\sin \phi}{R}+3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{2 \mathrm{c}^{2} R^{2}}\left(1+\frac{1}{3} \cos 2 \phi\right) . \tag{114}
\end{equation*}
$$

Here, angle ϕ is measured from axis which passes the center of gravity and it is perpendicular to the radius of perihelion R (Figure 1b).
For $r \rightarrow+\infty$:

$$
\begin{equation*}
u \rightarrow 0 ; \phi \rightarrow \phi_{\infty} ; \sin \phi_{\infty} \rightarrow \phi_{\infty} ; \cos 2 \phi_{\infty} \rightarrow 1 \tag{115}
\end{equation*}
$$

Thus, it emerges

$$
\begin{equation*}
\phi_{\infty}=-2 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2} R}, \tag{116}
\end{equation*}
$$

which is only the right hand deflection. There also exists the left hand deflection with

$$
\begin{equation*}
\phi_{\infty l}=\pi+2 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2} R} . \tag{117}
\end{equation*}
$$

So, we obtain the magnitude of the total deflection of a ray

$$
\begin{equation*}
\Theta=4 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2} R}=2 \xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R} . \tag{118}
\end{equation*}
$$

In case that $\xi_{\mathrm{I}} \rightarrow 0^{+}$(Galilean metric), (58) gives $\dot{i}=1$ for $m \neq 0$, or $\dot{t}=+\infty$ (for generalized photons $m=0$). Thus, we obtain the Newtonian results:

$$
\begin{gather*}
\Phi_{\mathrm{N}}=\lim _{\xi_{1} \rightarrow 0} \Phi=\frac{\mathrm{c}^{2}}{2} \lim _{\xi_{1} \rightarrow 0}\left[\frac{1}{\xi_{\mathrm{I}}^{2}} \ln \left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{s}}}{r}\right)\right]=\frac{\mathrm{c}^{2}}{4} \lim _{\xi_{1} \rightarrow 0}\left[\frac{1}{\xi_{\mathrm{I}}} \frac{\frac{-2 \xi_{\mathrm{I}} r_{\mathrm{S}}}{r}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}}\right]=-\frac{\mathrm{c}^{2}}{2} \frac{r_{\mathrm{S}}}{r}=-\frac{\mathrm{G} M}{r} ; \tag{119}\\
\mathrm{d} S_{\mathrm{N}}^{2}=g_{100} \lim _{\xi_{1} \rightarrow 0}\left[\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}-\frac{\xi_{\mathrm{I}}^{2}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}-\xi_{\mathrm{I}}^{2} r^{2} \mathrm{~d} \theta^{2}-\xi_{\mathrm{I}}^{2} r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right] ; \tag{120}
\end{gather*}
$$

$$
\begin{gather*}
\vec{g}_{\mathrm{N}(r)}=-\frac{\mathrm{G} M}{r^{2}} \hat{r} ; \tag{121}\\
L_{\mathrm{N}}=m g_{\mathrm{I} 00} \lim _{\xi_{1} \rightarrow 0}\left[\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \mathrm{c}^{2} \dot{t}^{2}-\frac{\xi_{\mathrm{I}}^{2}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \dot{r}^{2}-\xi_{\mathrm{I}}^{2} r^{2} \dot{\phi}^{2}\right] ; E_{\mathrm{N}}=+\infty ; \tag{122}\\
\ddot{r}+\frac{\mathrm{G} M}{r^{2}}-r \dot{\phi}^{2}=0 ; J_{\mathrm{N}}=m r^{2} \dot{\phi} ; h_{\mathrm{N}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} ; \theta=\frac{\pi}{2} . \tag{123}
\end{gather*}
$$

The Newtonian differential equation of motion and the corresponding solution are

$$
\begin{align*}
& \frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{{h_{\mathrm{N}}{ }^{2}}^{2}} ; u=\frac{\mathrm{G} M}{h_{\mathrm{N}}{ }^{2}}\left(1+e_{\mathrm{N}} \cos \phi\right) ; u=\frac{1}{r} ; h_{\mathrm{N}}=r^{2} \dot{\phi} ; \cdot \frac{\mathrm{d}}{\mathrm{~d} t} ; \tag{124}\\
& e_{\mathrm{N}}=\sqrt{1+\frac{2 E_{\mathrm{mN}} h_{\mathrm{N}}{ }^{2}}{\mathrm{G}^{2} M^{2} m}} ; E_{\mathrm{mN}}=-\frac{\mathrm{G} M m}{2 a_{\mathrm{N}}} ; \frac{h_{\mathrm{N}}{ }^{2}}{\mathrm{G} M}=R_{\mathrm{N}}\left(1+e_{\mathrm{N}}\right)=a_{\mathrm{N}}\left(1-e_{\mathrm{N}}{ }^{2}\right), \tag{125}
\end{align*}
$$

where α_{N} is the semimajor axis of Newtonian ellipse which do not rotate $\left(\Delta_{N}=0\right)$. Besides

$$
\begin{equation*}
U_{\mathrm{N}}=-\frac{\mathrm{G} M m}{r} ; V_{\mathrm{N}}=-\frac{\mathrm{G} M}{r} ; K_{\mathrm{N}}=\frac{1}{2}\left|\vec{\beta}_{P}\right|^{2} m \mathrm{c}^{2}=\frac{1}{2} m|\vec{v}|^{2} \quad E_{\mathrm{mN}}=\frac{1}{2} m|\vec{v}|^{2}-\frac{\mathrm{G} M}{r} \tag{126}
\end{equation*}
$$

The Generalized Newtonian photon has

$$
\begin{equation*}
\dot{t}=+\infty ; c_{R}=\mathrm{c} \lim _{\xi_{\mathrm{I}} \rightarrow 0} \sqrt{\frac{1}{\xi_{\mathrm{I}}^{2}}-\frac{r_{\mathrm{S}}}{R}}=+\infty \quad ; \quad \Theta_{\mathrm{N}}=0 \tag{127}
\end{equation*}
$$

We observe that the speed of light is infinite $\left(c_{R}=+\infty\right)$ at the perihelion as well as at infinite distance from the center of gravity and also there is no-deflection of light.

In case that $\xi_{\mathrm{I}}=1$, it emerges the well-known results of the original Schwarzschild metric in ERT (see e.g. [8] pp. 228-45):

$$
\begin{gather*}
\Phi_{E}=\frac{\mathrm{c}^{2}}{2} \ln \left(1-\frac{r_{\mathrm{S}}}{r}\right) ; \tag{128}\\
\mathrm{d} S_{\mathrm{E}}^{2}=g_{\mathrm{I} 00}\left[\left(1-\frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}-\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}-r^{2} \mathrm{~d} \theta^{2}-r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right] ; \tag{129}\\
\vec{g}_{\mathrm{E}(r)}=-\frac{G M}{r^{2}}\left(1-\frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} ; \tag{130}\\
\left.L_{\mathrm{E}}=m g_{100}\left(1-\frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \dot{t}^{2}-\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \dot{r}^{2}-r^{2} \dot{\phi}^{2}\right] ; E_{\mathrm{E}}=\left(1-\frac{r_{\mathrm{S}}}{r}\right) m \mathrm{c}^{2} \dot{t} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{E}}} \tag{131}\\
\frac{\mathrm{~d}}{\mathrm{~d} \tau_{\mathrm{E}}}\left(\frac{2 \dot{r}}{1-\frac{r_{\mathrm{S}}}{r}}\right)-\left[-\frac{r_{\mathrm{S}}}{r^{2}} \mathrm{c}^{2} \dot{t}^{2}+\frac{\partial}{\partial r}\left(\frac{1}{1-\frac{r_{\mathrm{S}}}{r}}\right) \dot{r}^{2}+2 r \dot{\phi}^{2}\right]=0 ; J_{\mathrm{E}}=m r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{E}}} . \tag{132}
\end{gather*}
$$

The differential equation of motion of the original Schwarzschild metric has come from (39):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h_{\mathrm{E}}^{2}}+3 \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; u=\frac{1}{r} ; h_{\mathrm{E}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{E}}} \tag{133}
\end{equation*}
$$

The corresponding ERT approximate differential equation of motion (which also approximately validates UCM) is:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{{h_{\mathrm{E}}^{2}}^{2}}+3 \frac{\mathrm{G}^{3} M^{3}}{\mathrm{c}^{2} h_{\mathrm{E}}^{4}}\left(1+e_{\mathrm{E}} \cos \phi\right)^{2} ; u=\frac{1}{r} ; \quad h_{\mathrm{E}}=r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{E}}} \tag{134}
\end{equation*}
$$

with exact and approximate solution, correspondingly

$$
\begin{gather*}
u=\frac{\mathrm{G} M}{h_{\mathrm{E}}^{2}}\left(1+e_{\mathrm{E}} \cos \phi+3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}} e_{\mathrm{E}} \phi \sin \phi\right) ; \frac{h_{\mathrm{E}}^{2}}{\mathrm{G} M}=R_{\mathrm{E}}\left(1+e_{\mathrm{E}}\right)=a_{\mathrm{E}}\left(1-e_{\mathrm{E}}^{2}\right) ; \tag{135}\\
u \approx \frac{\mathrm{G} M}{h_{\mathrm{E}}^{2}}\left(1+e_{\mathrm{E}} \cos \left[\left(1-3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}}\right) \phi\right]\right) ; 0<\frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}} \ll 1 \tag{136}
\end{gather*}
$$

The last eqn can be written as

$$
\begin{equation*}
u=\frac{1}{r} \approx \frac{\mathrm{G} M}{{h_{\mathrm{E}}^{2}}^{2}}\left[1+e \cos \left(\lambda_{\mathrm{E}} \phi\right)\right] ; \lambda_{\mathrm{E}}=1-3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}} ; 0<\frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}} \ll 1 \tag{137}
\end{equation*}
$$

Hence the Einsteinian-orbit can be regarded as an Einsteinian ellipse (with α_{E} semimajor axis) which rotates ('precesses') about one of its foci by an amount

$$
\begin{equation*}
\Delta_{\mathrm{E}}=\frac{2 \pi}{1-3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}}}-2 \pi \approx \frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{E}}^{2}}=\frac{6 \pi \mathrm{G} M}{a_{\mathrm{E}}\left(1-e_{\mathrm{E}}^{2}\right) \mathrm{c}^{2}} ; h_{\mathrm{E}}=r^{2} \dot{\phi} \quad ; \quad \dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} \tau_{\mathrm{E}}}=\frac{\mathrm{d} \phi}{\mathrm{~d} t} \dot{t} \tag{138}
\end{equation*}
$$

rad per revolution. Accordingly to our no-superposition approach, we have

$$
\begin{align*}
& \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{E}}}=\left[1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} \geq 1 ; E_{\mathrm{E}}=\frac{1-\frac{r_{\mathrm{S}}}{r}}{\sqrt{1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{\left.1-\frac{r_{\mathrm{S}}}{r} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)}\right.}} m \mathrm{c}^{2} \geq 0 ; \tag{139}\\
& U_{g \mathrm{E}}=\left(\left(1-\frac{r_{\mathrm{S}}}{r}\right)\left[1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\gamma_{\left(\xi_{\left.\mathrm{s}, \bar{\beta}_{P}\right)}\right.}\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 ; V_{\mathrm{E}(r)}=\left(\sqrt{1-\frac{r_{\mathrm{S}}}{r}}-1\right) \mathrm{c}^{2} \leq 0 ; \tag{140}\\
& K_{\mathrm{E}}=\left(\gamma_{\left(\vec{\beta}_{P}\right)}-1\right) m \mathrm{c}^{2} \geq 0 ; E_{\mathrm{mE}}=\left(\left(1-\frac{r_{\mathrm{S}}}{r}\right)\left[1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-1\right) m \mathrm{c}^{2} . \tag{141}
\end{align*}
$$

The Generalized Einsteinian photon has

$$
\begin{equation*}
\dot{t}=+\infty ; c_{R}=\mathrm{c} \sqrt{1-\frac{r_{\mathrm{S}}}{R}} ; \quad \Theta=\frac{4 \mathrm{G} M}{\mathrm{c}^{2} R} . \tag{142}
\end{equation*}
$$

We observe that the speed of light is zero $\left(c_{R}=0\right)$ on the horizon $\left(R=r_{S}\right)$, while as at infinite distance from the center of gravity is $c_{\mathrm{I}}=\mathrm{c}$ and also the well-known deflection of light.

4. Generalized SR: Gravitational Field from Generalized Central Potential

4.1. GSR-Gravitational Potential, Lagrangian, Equations of motion and correlation to GR

We study the motion of particle P with mass m, around a center of gravity with mass M. The usual definition of Lagrangian of gravitational system (M, m) [9] (p. 205) gives

$$
\begin{equation*}
L=m \dot{x}^{\mu} g_{\mu \nu} \dot{x}^{\nu}=\frac{m \mathrm{~d} S^{2}}{\mathrm{~d} \tau^{2}}=\frac{m g_{100} \mathrm{c}^{2} \mathrm{~d} \tau^{2}}{\mathrm{~d} \tau^{2}}=m g_{100} \mathrm{c}^{2} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} . \tag{143}
\end{equation*}
$$

This is valid in both the GR and SR [2] (p. 345). In case of GSR, the geometry of spacetime has steady metric (11). So, gravity is studied as a field, which comes from GSR-gravitational potential $\left(V_{\mathrm{GSR}}, \vec{w}_{\mathrm{GSR}}\right)$. This adds extra terms to the GSR-Lagrangian of a free particle P. In this paper, we examine the case that $\vec{w}_{\text {GSR }}=0$, according to the weak approach of EP (1). Thus, the GSRLagrangian in the frame of mass M, is [2] (p. 351):

$$
\begin{equation*}
L_{\mathrm{GSR}}=-g_{\mathrm{IO0}}\left(-\frac{1}{\gamma_{\left(\xi_{1} \beta_{p}\right)}} m \mathrm{c}^{2}-\xi_{\mathrm{I}}^{2} m V_{\mathrm{GSR}(r, i, \dot{\gamma})}\right)=g_{\mathrm{II1}}\left(-\frac{1}{\gamma_{\left(\xi_{1}, \beta_{p}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}-m V_{\mathrm{GSR}(r, r, \dot{r})}\right), \tag{144}
\end{equation*}
$$

where $V_{\text {GSR }}$ is generalized central scalar gravitational potential. Besides, the orbit of particle P is on the 'plane' $\theta=\pi / 2$ and we have:

$$
\begin{gather*}
v_{P}^{2}=\dot{r}^{2}+r^{2} \dot{\phi}^{2} ; \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}=\frac{1}{\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{\dot{r}^{2}+r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}}}, \tag{145}\\
L_{\mathrm{GSR}}=-g_{\mathrm{I} 00}\left(-\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{\dot{r}^{2}+r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}} m \mathrm{c}^{2}-\xi_{\mathrm{I}}^{2} m V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}}\right) ;=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{146}
\end{gather*}
$$

Let us find the first integral of motion for the above GSR-Lagrangian

$$
\begin{equation*}
C_{1}=\sum_{\mu=1}^{n=2}\left(\frac{\partial L_{\mathrm{GSR}}}{\partial \dot{x}^{\mu}}\right) \dot{x}^{\mu}-L_{\mathrm{GSR}} ; \mu=1,2, \tag{147}
\end{equation*}
$$

which gives

$$
\begin{equation*}
E^{*}=\frac{C_{1}}{g_{\mathrm{II1}}}=\gamma_{\left(\xi_{1} \beta_{P}\right)} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\mathrm{GSR}(r, \dot{,}, \dot{)})}-m \mathrm{c}^{2}\left(\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}} \frac{\dot{\phi}}{\mathrm{c}^{2}}+\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}} \frac{\dot{r}}{\mathrm{c}^{2}}\right) . \tag{148}
\end{equation*}
$$

The GSR-relativistic energy definition (24ii) plus the potential energy (2) give the quantity

$$
\begin{equation*}
E_{\mathrm{tGSR}}=\frac{\gamma_{\left(\xi_{1} \beta_{p}\right)} m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\operatorname{GSR}(r, i, i, \phi)}, \tag{149}
\end{equation*}
$$

which is maintained if only

$$
\begin{equation*}
\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}} \frac{\dot{\phi}}{\mathrm{c}^{2}}+\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}} \frac{\dot{r}}{\mathrm{c}^{2}}=0 . \tag{150}
\end{equation*}
$$

In any other case there exists a non-null quantity

$$
\begin{equation*}
E_{\mathrm{dGSR}}=-m \mathrm{c}^{2}\left(\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}} \frac{\dot{\phi}}{\mathrm{c}^{2}}+\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}} \frac{\dot{r}}{\mathrm{c}^{2}}\right) . \tag{151}
\end{equation*}
$$

For instance, if $V_{\mathrm{GSR}}=V_{\mathrm{GSR}(r) \text {, then }}$ there is no dGSR- energy and the $t G S R$-energy is maintained [6] (pp. 11-12). Generally, the first integral of motion gives the total energy

$$
\begin{equation*}
E^{*}=\frac{C_{1}}{g_{\mathrm{II1}}}=E_{\mathrm{tGSR}}+E_{\mathrm{dGSR}} . \tag{152}
\end{equation*}
$$

Thus, we obtain the generalized potential energy:

$$
\begin{equation*}
U^{*}=E^{*}-E=m V_{\operatorname{GSR}(r, i, \dot{\phi})}-m \mathrm{c}^{2}\left(\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}} \frac{\dot{\phi}}{\mathrm{c}^{2}}+\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}} \frac{\dot{r}}{\mathrm{c}^{2}}\right) . \tag{153}
\end{equation*}
$$

We observe that if only condition (150) is valid (e.g. $V_{\mathrm{GSR}}=V_{\mathrm{GSR}(r)}$), then the potential energy is given by the formula

$$
\begin{equation*}
U=m V_{\mathrm{GSR}(r, i, \dot{\phi})} \tag{154}
\end{equation*}
$$

We also observe that the coordinate φ is ignored in GSR-Lagrangian (146). So, the second integral of motion is

$$
\begin{equation*}
C_{2}=\frac{\partial L_{\mathrm{GSR}}}{\partial \dot{\phi}} \tag{155}
\end{equation*}
$$

which gives

$$
\begin{equation*}
C_{2}=-g_{\mathrm{I} 00}\left(\xi_{\mathrm{I}}^{2} m \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} r^{2} \dot{\phi}-\xi_{\mathrm{I}}^{2} m \frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}}\right)=g_{\mathrm{I} 11}\left(m \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} r^{2} \dot{\phi}-m \frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}}\right) \tag{156}
\end{equation*}
$$

The $t G S R$-angular momentum (J) is defined as

$$
\begin{equation*}
J=m h=m \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{157}
\end{equation*}
$$

where $h=J / m$ is the $t G S R$-angular momentum per rest mass unit. So, tGSR-angular momentum (J) is maintained only if

$$
\begin{equation*}
\frac{\partial V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}}{\partial \dot{\phi}}=0 . \tag{158}
\end{equation*}
$$

In any other case, there exists a quantity

$$
\begin{equation*}
J_{\mathrm{dGSR}}=m h_{\mathrm{dGSR}}=-m \frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}} . \tag{159}
\end{equation*}
$$

that we call $d G S R$-angular momentum. In case that $V_{\mathrm{GSR}}=V_{\mathrm{GSR}(\mathrm{r})}$, there is no dGSR-angular momentum and the tGSR-angular momentum (J) is maintained [6] (pp. 11-12). Generally, the second integral of motion gives

$$
\begin{equation*}
J^{*}=m h^{*}=J+J_{\mathrm{dGSR}}=m\left(h+h_{\mathrm{dGSR}}\right)=\frac{C_{2}}{g_{\mathrm{I} 11}} . \tag{160}
\end{equation*}
$$

Now, let us pass to Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L_{\mathrm{GSR}}}{\partial \dot{x}^{\mu}}\right)-\frac{\partial L_{\mathrm{GSR}}}{\partial x^{\mu}}=0 \quad ; \mu=1,2 \tag{161}
\end{equation*}
$$

which give us the equations of motion:

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} \dot{r}-\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}}\right)-\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} r \dot{\phi}^{2}+\frac{\partial V_{\mathrm{GSR}}}{\partial r}=0 \tag{162}\\
& J^{*}=m h^{*}=m \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} r^{2} \dot{\phi}-m \frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{163}
\end{align*}
$$

The case of circular motion is obtained by putting $r=R=$ constant to (123).
The only thing that we have to do, is the proposition of function $V_{\text {GSR }}$. Fortunately, GR can help by reminding us that the EP in GR is: 'accelerated motions caused by the gravitational field only (free fall) take place along geodesics of the metric, which corresponds to the particular gravitational field' [2] (p. 248). So, the curved spacetime of GR demands no force and also Lorentz γ-factor is replaced by the GR-time dilation \dot{t} :

$$
\begin{equation*}
\gamma_{\left(\xi_{1} \vec{\beta}_{P}\right)} \rightarrow \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{GR}}} \tag{164}
\end{equation*}
$$

Moreover, it is

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{\mathrm{I} 00} \mathrm{c}^{2} \mathrm{~d} \tau_{\mathrm{GR}}^{2} \tag{165}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
g_{\mathrm{I} 00} \mathrm{c}^{2} \frac{\mathrm{~d} \tau_{\mathrm{GR}}^{2}}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} S^{2}}{\mathrm{~d} t^{2}} \tag{166}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{GR}}}=\left(\frac{\mathrm{d} S^{2}}{g_{\mathrm{I} 00} \mathrm{c}^{2} \mathrm{~d} t^{2}}\right)^{-\frac{1}{2}} \geq 1 \tag{167}
\end{equation*}
$$

The GSR-Lagrangian of a free particle P [2] (p. 351)

$$
\begin{equation*}
L_{\mathrm{GSR}}=-g_{\mathrm{I} 00}\left(-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}} m \mathrm{c}^{2}\right)=g_{\mathrm{I} 11}\left(-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\right) \tag{168}
\end{equation*}
$$

by using (127) becomes

$$
\begin{equation*}
L_{\mathrm{GSR}}=-g_{\mathrm{I} 00}\left(-\frac{1}{\dot{t}} m \mathrm{c}^{2}\right)=g_{\mathrm{I} 11}\left(-\frac{1}{\dot{t}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\right) ; \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{GR}}} \tag{169}
\end{equation*}
$$

We observe that GSR-Lagrangian (169i) is not the same as the corresponding of GR (39) (because GR is referred to spacetime with variable curvature, while GSR is valid in spacetime with steady curvature), but we shall see that they give exactly the same results. Besides, (169) combined with (144ii) gives

$$
\begin{equation*}
\frac{1}{\dot{t}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}=\frac{1}{\gamma_{\left(\xi_{1} \beta_{p}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})} ; \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{GR}}} \tag{170}
\end{equation*}
$$

Finally, we obtain the potential

$$
\begin{equation*}
V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(\frac{1}{\dot{t}}-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right) ; \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{GR}}} \tag{171}
\end{equation*}
$$

Thus, we need the formula of GR-time dilation $\dot{t}=\dot{t}_{(r, \dot{r}, \phi)}$. Furthermore, the replacement of the potential to (105), give us the GSR-Lagrangian

$$
\begin{equation*}
L_{\mathrm{GSR}}=g_{\mathrm{I} 00} m \mathrm{c}^{2} \frac{1}{\dot{t}}=-g_{\mathrm{I} 11} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \frac{1}{\dot{t}} ; \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{GR}}} \tag{172}
\end{equation*}
$$

Finally, the weak EP (1) combined with central potential gives:

$$
\begin{equation*}
\vec{F}=m \vec{g} \quad ; \quad \vec{g}=-\frac{\partial V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}}{\partial r} \hat{r} ; g=\frac{\partial V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}}{\partial r} \tag{173}
\end{equation*}
$$

where \vec{g} is the field strength. The positive value of field strength g means gravity, while negative value means antigravity.

4.2. GSR combined with 1GSM: Gravitational Potential, Field strength, Lagrangian, Equations of motion, Precession of planets' orbits and Deflection of Light

Now, it is time to specify the above procedure, by combining the GSR with the 1GSM. The replacement of (58) to (171), gives the GSR- $1^{\text {st }}$ Generalized Schwarzschild Potential (GSR-1GSP):

$$
\begin{equation*}
V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{174}
\end{equation*}
$$

We make the above potential more flexible, by adapting

$$
\begin{equation*}
\left.V_{\operatorname{GSR}(r, i, \dot{\phi})}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(l l-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}}, \beta_{p}\right)}}\right) ; k=k\left(\xi_{\mathrm{I}}\right) ; l=l\left(\xi_{\mathrm{I}}\right) ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{175}
\end{equation*}
$$

which is called as Modified GSR-1 ${ }^{\text {st }}$ Generalized Schwarzschild Potential (M-GSR-1GSP). This modification makes the GSR-generalized potential and the GSR-Lagrangian more flexible, in order to obtain results in accordance to the experimental data, by using different TPs. Of course, the values

$$
\begin{equation*}
k=\xi_{\mathrm{I}}^{2} ; l=1 \tag{176}
\end{equation*}
$$

makes the above potential equal to (174): the GSR-gravitational generalized potential which corresponds to the 1GSM. Moreover, we calculate

$$
\begin{gather*}
\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}}=-k l \frac{r^{2} \dot{\phi}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+r^{2} \dot{\phi} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} ; \tag{177}\\
\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}}=-\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{\left.\left.1-k \frac{r_{\mathrm{S}}}{r} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\dot{r} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right.\right. \tag{178}\\
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[\frac{l}{2}\left[k \frac{r_{\mathrm{S}}}{r^{2}}+\frac{k^{2} \frac{r_{\mathrm{S}}}{r^{2}}}{\left(1-k \frac{r_{\mathrm{S}}}{r}\right)^{2}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}-\frac{2 k r \dot{\phi}^{2}}{\mathrm{c}^{2}}\right) \cdot\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\xi_{\mathrm{I}}^{2} \frac{r \dot{\phi}^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}\right] \tag{179}
\end{gather*}
$$

Besides the GSR-Lagrangian (146) becomes

$$
\begin{equation*}
L_{\mathrm{GSR}}=g_{100} l m \mathrm{c}^{2}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}=-g_{111} \frac{\operatorname{lm\mathrm {c}^{2}}}{\xi_{\mathrm{I}}{ }^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}} ;=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{180}
\end{equation*}
$$

which is called as Modified GSR-1 ${ }^{\text {st }}$ Generalized Schwarzschild Lagrangian (M-GSR-1GSL). Moreover, the replacement of (177) and (178) to (148) gives
or equivalently,

$$
\begin{equation*}
E^{*}=\gamma_{\left(\xi_{\mathrm{I}} \bar{\beta}_{P}\right)} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}-m \mathrm{c}^{2}\left(\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(-k l \frac{r^{2} \dot{\phi}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}-\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}\right)+\frac{v^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}\right) \tag{182}
\end{equation*}
$$

This is also written as

$$
\begin{equation*}
E^{*}=\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}-m \mathrm{c}^{2}\left(\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(-k l \frac{r^{2} \dot{\phi}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}-\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}\right)+\frac{v^{2}}{\mathrm{c}^{2}} \frac{\left.\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)^{2}}^{\gamma_{\left(\xi_{\mathrm{I}} \bar{\beta}_{P}\right)}^{2}}\right)}{}\right) \tag{183}
\end{equation*}
$$

in order to use the identity

$$
\begin{equation*}
1+\xi_{\mathrm{I}}^{2} \frac{v^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}{ }^{2}=\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}{ }^{2} \tag{184}
\end{equation*}
$$

Thus, it emerges

$$
\begin{equation*}
E^{*}=\gamma_{\left(\xi_{1} \beta_{p}\right)} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}-m \mathrm{c}^{2}\left(\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(-k l \frac{r^{2} \dot{\phi}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}-\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}\right)+\frac{\gamma_{\left(\xi_{1} \beta_{p}\right)}{ }^{2}-1}{\xi_{\mathrm{I}}^{2} \gamma_{\left(\xi_{1} \beta_{p}\right)}}\right) . \tag{185}
\end{equation*}
$$

The above eqn is further simplified to

$$
\begin{equation*}
E^{*}=m V_{\mathrm{GSR}(r, r, \dot{\phi})}-m \mathrm{c}^{2}\left(\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(-k l \frac{r^{2} \dot{\phi}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}-\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\xi_{\mathrm{I}}^{2} \mathrm{c}^{2}}\right)-\frac{1}{\xi_{\mathrm{I}}^{2} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right) \tag{186}
\end{equation*}
$$

The replacement of (175) to the above, gives

$$
\begin{equation*}
\left.E^{*}=\frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(l l 1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}+\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(k l \frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}+\frac{k l}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}\right)\right) \tag{187}
\end{equation*}
$$

which can also be written as

$$
\begin{equation*}
E^{*}=\frac{\operatorname{lm} \mathrm{c}^{2}}{\xi_{\mathrm{I}}{ }^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)+k \frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}+\frac{k}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}\right) \cdot(\tag{188}
\end{equation*}
$$

So, the first integral of motion gave us

$$
\begin{equation*}
E^{*}=\frac{\operatorname{lm} \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(1-k \frac{r_{\mathrm{S}}}{r}\right) \tag{189}
\end{equation*}
$$

This is exactly the total GR-energy (59), in case that $k=\xi_{\mathrm{I}}^{2} ; l=1$. Now, we demand zero kinetic energy $(K=0)$, in case that the particle is static $\left(\vec{\beta}_{P}=0\right)$. Thus, we have

$$
\begin{equation*}
E_{\left(\vec{\beta}_{P}=0\right)}^{*}=E_{\text {rest }}+U \tag{190}
\end{equation*}
$$

where U is the GSR-gravitational potential energy of a rest body and

$$
\begin{equation*}
E_{\left(\vec{\beta}_{P}=0\right)}^{*}=\frac{l m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(1-k \frac{r_{\mathrm{S}}}{r}\right)^{\frac{1}{2}} \tag{191}
\end{equation*}
$$

is the total GSR-energy of a rest body. Replacing the above eqn and (24iii) to (190), we have

$$
\begin{gather*}
U_{(r)}=\left(l \sqrt{1-k \frac{r_{\mathrm{S}}}{r}}-1\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 \tag{192}\\
V_{(r)}=\left(l \sqrt{1-k \frac{r_{\mathrm{S}}}{r}}-1\right) \frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 \tag{193}
\end{gather*}
$$

where $V_{(r)}$ is the $1^{\text {st }}$ Generalized Schwarzschild Potential (1GSP) of a rest body. This is a central potential with field strength:

$$
\begin{equation*}
\vec{g}_{(r)}=-\frac{d V}{d r} \hat{r}=-\frac{k l}{\xi_{I}^{2}} \frac{G M}{r^{2}}\left(1-k \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} . \tag{194}
\end{equation*}
$$

We observe that this result is the same as the corresponding GR-formula (62), in case that $k=\xi_{\mathrm{I}}{ }^{2}$; $l=1$. Finally, the GSR-mechanic energy is

$$
\begin{equation*}
E_{\mathrm{m}}=E^{*}-E_{\text {rest }} \tag{195}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
E_{\mathrm{m}}=\left(\left(1-k \frac{r_{\mathrm{S}}}{r}\right)\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\frac{1}{l}\right) \frac{\operatorname{lm} \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \quad ; \quad \theta=\frac{\pi}{2} \tag{196}
\end{equation*}
$$

A part of the above energy is the $d G S R$ - energy. From (185) we obtain

$$
\begin{equation*}
E_{\mathrm{dGSR}}=\frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(\frac{k l}{\mathrm{c}^{2}}\left(r^{2} \dot{\phi}^{2}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \dot{r}^{2}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\frac{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}{ }^{2}-1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right)\right. \tag{197}
\end{equation*}
$$

Besides, the lGSR-mechanic energy is defined as

$$
\begin{equation*}
E_{\mathrm{ml}}=K+m V_{\operatorname{GSR}(r, r, \dot{\phi})}=E^{*}-E_{\mathrm{rest}}-E_{\mathrm{d}} \tag{198}
\end{equation*}
$$

Thus, we calculate, by using (24i) and (175):

$$
\begin{equation*}
E_{\mathrm{ml}}=\frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(l\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\frac{\left.\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)}\right)^{2}-\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}-1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right) \tag{199}
\end{equation*}
$$

Finally, we obtain the generalized GSR-potential energy:

$$
\begin{equation*}
U^{*}=E^{*}-E=\left(\left(1-k \frac{r_{\mathrm{S}}}{r}\right)\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\frac{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}{l}\right) \frac{\operatorname{lm} \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \tag{200}
\end{equation*}
$$

We observe that the above formula does not associated with eqn (154), because condition (150) is invalid for generalized potential (175).

The case of circular motion is obtained by replacing (178) and (179) to equation of motion (162)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\right)+ \tag{201}\\
& \frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \frac{l}{2}\left(k \frac{r_{\mathrm{s}}}{r^{2}}+\frac{k^{2} \frac{r_{\mathrm{s}}}{r^{2}}}{\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{2}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}-\frac{2 k r \dot{\phi}^{2}}{\mathrm{c}^{2}}\right) \cdot\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}=0
\end{align*}
$$

We then put $r=R=$ constant and we obtain

$$
\begin{equation*}
\frac{r_{\mathrm{S}}}{R^{2}}-\frac{2 R \dot{\phi}^{2}}{\mathrm{c}^{2}}=0 . \tag{202}
\end{equation*}
$$

This gives Uniform Circular Motion (UCM), with the same angular velocity and the same centripetal acceleration for any TPs

$$
\begin{equation*}
\omega=\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\sqrt{\frac{\mathrm{G} M}{R^{3}}} ; a=\frac{v^{2}}{R}=\omega^{2} R=\frac{\mathrm{G} M}{R^{2}}=g_{\mathrm{N}}, \tag{203}
\end{equation*}
$$

exactly as it happens in case of GR.
The orbit of motion comes with similar way to the original Schwarzschild space [9] (pp. 238-45) as following. We replace (177) to (163) and we obtain

$$
\begin{equation*}
h^{*}=k l \frac{r^{2} \dot{\phi}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} ;=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{204}
\end{equation*}
$$

Besides, (189) gives

$$
\begin{equation*}
\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}=\frac{\xi_{\mathrm{I}}^{2} E^{*}}{\operatorname{lmc}^{2}\left(1-k \frac{r_{\mathrm{S}}}{r}\right)} \tag{205}
\end{equation*}
$$

The replacement of the above to (204), emerges

$$
\begin{equation*}
\dot{\phi}=\frac{m c^{2} h^{*}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)}{k E^{*} r^{2}} ;=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{206}
\end{equation*}
$$

Moreover, (205) can be written as

$$
\begin{equation*}
\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{1}{\mathrm{c}^{2}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \phi}\right)^{2} \dot{\phi}^{2}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}=\frac{l m \mathrm{c}^{2}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)}{\xi_{\mathrm{I}}^{2} E^{*}} . \tag{207}
\end{equation*}
$$

The combination of the above eqn with (206) gives

$$
\begin{equation*}
\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \phi}\right)^{2} \frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)}{k^{2} E^{* 2} r^{4}}+\frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{2}}{k^{2} E^{* 2} r^{2}}\right]^{\frac{1}{2}}=\frac{\operatorname{lm\mathrm {c}^{2}(1-k\frac {r_{\mathrm {s}}}{r})}}{\xi_{\mathrm{I}}^{2} E^{*}}\right. \tag{208}
\end{equation*}
$$

The following definition/property

$$
\begin{equation*}
u=\frac{1}{r} \quad ; r=\frac{1}{u} \quad ; \quad \frac{\mathrm{d} r}{\mathrm{~d} \phi}=-\frac{1}{u^{2}} \frac{\mathrm{~d} u}{\mathrm{~d} \phi}=-r^{2} \frac{\mathrm{~d} u}{\mathrm{~d} \phi}, \tag{209}
\end{equation*}
$$

transforms (208) to

$$
\begin{equation*}
\left[1-k\left(r_{\mathrm{S}} u+\left(\frac{\mathrm{d} u}{\mathrm{~d} \phi}\right)^{2} \frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k r_{\mathrm{S}} u\right)}{k^{2} E^{* 2}}+\frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k r_{\mathrm{S}} u\right)^{2} u^{2}}{k^{2} E^{* 2}}\right)\right]^{\frac{1}{2}}=\frac{\operatorname{lm} \mathrm{c}^{2}\left(1-k r_{\mathrm{S}} u\right)}{\xi_{\mathrm{I}}^{2} E^{*}} \tag{210}
\end{equation*}
$$

Thus, the above eqn gives

$$
\begin{equation*}
1-k r_{\mathrm{S}} u-\left(\frac{\mathrm{d} u}{\mathrm{~d} \phi}\right)^{2} \frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k r_{\mathrm{S}} u\right)}{k E^{* 2}}-\frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k r_{\mathrm{S}} u\right)^{2} u^{2}}{k E^{* 2}}=\frac{l^{2} m^{2} \mathrm{c}^{4}\left(1-k r_{\mathrm{S}} u\right)^{2}}{\xi_{\mathrm{I}}^{4} E^{* 2}} \tag{211}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
1-\left(\frac{\mathrm{d} u}{\mathrm{~d} \phi}\right)^{2} \frac{m^{2} \mathrm{c}^{2} h^{* 2}}{k E^{* 2}}-\frac{m^{2} \mathrm{c}^{2} h^{* 2}\left(1-k r_{\mathrm{S}} u\right) u^{2}}{k E^{* 2}}=\frac{l^{2} m^{2} \mathrm{c}^{4}\left(1-k r_{\mathrm{S}} u\right)}{\xi_{\mathrm{I}}^{4} E^{* 2}} \tag{212}
\end{equation*}
$$

and even better to

$$
\begin{equation*}
\left(\frac{\mathrm{d} u}{\mathrm{~d} \phi}\right)^{2}+\left(1-k r_{\mathrm{S}} u\right) u^{2}=-\frac{k l^{2} \mathrm{c}^{2}\left(1-k r_{\mathrm{S}} u\right)}{\xi_{\mathrm{I}}^{4} h^{* 2}}+\frac{k E^{* 2}}{m^{2} \mathrm{c}^{2} h^{* 2}} \tag{213}
\end{equation*}
$$

Differentiation wrt φ emerges

$$
\begin{equation*}
2 \frac{\mathrm{~d} u}{\mathrm{~d} \phi} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} \phi^{2}}+2 u \frac{\mathrm{~d} u}{\mathrm{~d} \phi}-3 k r_{\mathrm{S}} u^{2} \frac{\mathrm{~d} u}{\mathrm{~d} \phi}=\frac{k^{2} l^{2} \mathrm{c}^{2} r_{\mathrm{S}}}{\xi_{\mathrm{I}}^{4} h^{* 2}} \frac{\mathrm{~d} u}{\mathrm{~d} \phi} \tag{214}
\end{equation*}
$$

which generally gives

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u-\frac{3}{2} k r_{\mathrm{S}} u^{2}=\frac{k^{2} l^{2} \mathrm{c}^{2} r_{\mathrm{S}}}{2 \xi_{\mathrm{I}}^{4} h^{* 2}} \tag{215}
\end{equation*}
$$

Thus, we obtain the equation of trajectory for central GSR-gravitational potential (175):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{k^{2} l^{2}}{\xi_{\mathrm{I}}^{4}} \frac{\mathrm{G} M}{h^{* 2}}+3 k \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; u=\frac{1}{r} \tag{216}
\end{equation*}
$$

where

$$
\begin{equation*}
h^{*}=\frac{k l}{\xi_{\mathrm{I}}^{2}} h_{\mathrm{N}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} ; h_{\mathrm{N}}=r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{217}
\end{equation*}
$$

according to (204).
Here, we can make one of the following options:
(i) the GSR-gravitational potential is equivalent to 1 GSM , or
(ii) the GSR-gravitational potential is equivalent to the original SM.

The first option demands the differential eqn (216) be the same as (78), while the second option associate it with (133). Both options lead to

$$
\begin{equation*}
l=\frac{\xi_{\mathrm{I}}^{2}}{k} \tag{218}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h^{* 2}}+3 k \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; h^{*}=h_{\mathrm{N}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} ; h_{\mathrm{N}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{219}
\end{equation*}
$$

The comparison of the above GSR-equation of orbit to the corresponding of 1GSM (78), shows us that we can easily obtain the GSR-results, by replacing

$$
\begin{equation*}
\xi_{\mathrm{I}}^{2} \rightarrow k \quad ; \quad h_{\mathrm{GR}} \rightarrow h^{*} \tag{220}
\end{equation*}
$$

to the 1GSM-results. Thus, it emerges the precession of ellipse which rotates about one of its foci by an amount

$$
\begin{equation*}
\Delta=\frac{2 \pi}{1-3 k \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{* 2}}}-2 \pi \approx \frac{6 \pi k \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{* 2}}=\frac{6 \pi k \mathrm{G} M}{R(1+e) \mathrm{c}^{2}}=\frac{6 \pi k \mathrm{GM}}{a\left(1-e^{2}\right) \mathrm{c}^{2}} \tag{221}
\end{equation*}
$$

rad per revolution with condition

$$
\begin{equation*}
0<\frac{6 \pi k \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{GR}}^{2}}^{2}}=\frac{6 \pi k \mathrm{G} M}{\mathrm{c}^{2} R(1+e)}=\frac{6 \pi k \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)} \ll 1 \tag{222}
\end{equation*}
$$

In case of Generalized photon in radial motion (72) is transformed to

$$
\begin{equation*}
c_{p}=\left(1-k \frac{r_{\mathrm{S}}}{r}\right) \frac{\mathrm{c}}{\xi_{\mathrm{I}}} ; \gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)}=\frac{1}{\sqrt{k \frac{r_{\mathrm{S}}}{r}\left(2-k \frac{r_{\mathrm{S}}}{r}\right)}} \tag{223}
\end{equation*}
$$

Moreover, the magnitude of the total Deflection of light is

$$
\begin{equation*}
\Theta=4 k \frac{\mathrm{G} M}{\mathrm{c}^{2} R}=4 k \frac{r_{\mathrm{S}}}{R} \tag{224}
\end{equation*}
$$

The options are further differentiated as following:

$$
\begin{gather*}
k=\xi_{\mathrm{I}}^{2} ; l=1 ; \frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h^{* 2}}+3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; \tag{i}\\
h^{*}=h_{\mathrm{N}}\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}=h_{\mathrm{N}} \frac{\mathrm{~d} t}{\mathrm{~d} \tau_{1 G S M}}=h_{1 G S M} ; \tag{226}\\
V_{\mathrm{GSR}(r, \dot{r}, \dot{\phi})}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right) ; h_{\mathrm{N}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} ; \tag{227}\\
E^{*}=\frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) ;
\end{gather*}
$$

$$
\begin{align*}
& E_{\mathrm{m}}=\left(\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-1\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} ; \tag{229}\\
& U^{*}=E^{*}-E=\left(\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\gamma_{\left(\xi_{\mathrm{I}} \bar{\beta}_{P}\right)}\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} ; \tag{230}\\
& g=\frac{\mathrm{c}^{2}}{\xi_{1}^{2}}\left[\frac{1}{2}\left(\xi_{1}^{2} \frac{r_{\mathrm{s}}}{r^{2}}+\frac{\xi_{1}^{4} \frac{r_{\mathrm{s}}}{r^{2}}}{\left(1-\xi_{1}^{2} \frac{r_{\mathrm{s}}}{r}\right)^{2}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}-\frac{2 \xi_{1}^{2} r \dot{\phi}^{2}}{\mathrm{c}^{2}}\right) \cdot\left[1-\xi_{1}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{1}^{2} \frac{r_{\mathrm{s}}}{r}}{\dot{\dot{r}^{2}}}_{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\xi_{1}^{2} \frac{r \dot{\phi}^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{\mathrm{s}} \beta_{p}\right)}\right] \tag{231}\\
& \Delta=\frac{2 \pi}{1-3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{* 2}}}-2 \pi \approx \frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{* 2}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{R(1+e) \mathrm{c}^{2}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{a\left(1-e^{2}\right) \mathrm{c}^{2}}=\Delta_{1 \mathrm{GSM}} ; \tag{232}\\
& c_{p}=\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right) \frac{\mathrm{c}}{\xi_{\mathrm{I}}} ; \gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)}=\frac{1}{\xi_{\mathrm{I}} \sqrt{\frac{r_{\mathrm{S}}}{r}\left(2-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}\right)}} ; \Theta=4 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2} R}=2 \xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{R} . \tag{233}\\
& \text { (ii) } \\
& k=1 ; l=\xi_{\mathrm{I}}^{2} ; \frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h^{* 2}}+3 \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; \tag{234}\\
& h^{*}=h_{\mathrm{N}}\left[1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}=h_{\mathrm{N}} \frac{\mathrm{~d} t}{\mathrm{~d} \tau_{S M}}=h_{\mathrm{E}} ; \tag{235}\\
& V_{\operatorname{GSR}(r, r, \dot{\phi})}=\frac{\mathrm{c}^{2}}{\xi_{1}^{2}}\left(\xi_{\mathrm{I}}^{2}\left[1-\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}-\frac{1}{\left.\gamma_{\left(\xi_{5}, \beta_{P}\right)}\right)}\right) ; h_{\mathrm{N}}=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} ; \tag{236}\\
& E^{*}=m \mathrm{c}^{2}\left[1-\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\left(1-\frac{r_{\mathrm{s}}}{r}\right) ; \tag{237}\\
& E_{\mathrm{m}}=\left(\left(1-\frac{r_{\mathrm{s}}}{r}\right)\left[1-\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-1\right) m \mathrm{c}^{2} . \tag{238}
\end{align*}
$$

$$
\begin{gather*}
U^{*}=E^{*}-E=\left(\left(1-\frac{r_{\mathrm{s}}}{r}\right)\left[1-\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}-\frac{\gamma_{\left(\xi_{\mathrm{s}} \beta_{p}\right)}}{\xi_{\mathrm{I}}^{2}}\right) m \mathrm{c}^{2} ; \tag{239}\\
g=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[\frac{\xi_{\mathrm{I}}^{2}}{2}\left[\frac{r_{\mathrm{s}}}{r^{2}}+\frac{\frac{r_{\mathrm{s}}}{r^{2}}}{\left(1-\frac{r_{\mathrm{s}}}{r}\right)^{2}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}-\frac{2 r \dot{\phi}^{2}}{\mathrm{c}^{2}}\right) \cdot\left[1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\xi_{\mathrm{I}}^{2} \frac{r \dot{\phi}^{2}}{\mathrm{c}^{2}} \gamma_{\left(\mathrm{s}_{\mathrm{I}} \beta_{p}\right)}\right] ; \tag{240}\\
\Delta \tag{241}\\
=\frac{2 \pi}{1-3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}}}-2 \pi \approx \frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}}=\frac{6 \pi \mathrm{G} M}{R(1+e) \mathrm{c}^{2}}=\frac{6 \pi \mathrm{G} M}{a\left(1-e^{2}\right) \mathrm{c}^{2}}=\Delta_{\mathrm{E}} ;
\end{gather*}
$$

In case of Generalized photon in radial motion, (223) and (224) are transformed to

$$
\begin{equation*}
c_{p}=\left(1-\frac{r_{\mathrm{S}}}{r}\right) \frac{\mathrm{c}}{\xi_{\mathrm{I}}} ; \gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)}=\frac{1}{\sqrt{\frac{r_{\mathrm{S}}}{r}\left(2-\frac{r_{\mathrm{S}}}{r}\right)}} ; \Theta=\frac{4 \mathrm{G} M}{\mathrm{c}^{2} R}=2 \frac{r_{\mathrm{S}}}{R} \tag{242}
\end{equation*}
$$

In case of UCM, both the options give:

$$
\begin{equation*}
\omega=\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\sqrt{\frac{\mathrm{G} M}{R^{3}}} ; a=\frac{v^{2}}{R}=\omega^{2} R=\frac{\mathrm{G} M}{R^{2}}=g_{\mathrm{N}} ; v=\sqrt{\frac{\mathrm{G} M}{R}} ; g=\frac{\mathrm{G} M}{R^{2}} \gamma_{\left(\xi_{1} \beta_{P}\right)}=\gamma_{\left(\xi_{1} \beta_{P}\right)} g_{\mathrm{N}} . \tag{243}
\end{equation*}
$$

Besides, we have correspondingly:
(i) $\quad h^{*}=\sqrt{\mathrm{GMR}}\left(1-\frac{3 \xi_{\mathrm{I}}{ }^{2}}{\mathrm{c}^{2}} \frac{\mathrm{G} M}{R}\right)^{-\frac{1}{2}} ; E_{\mathrm{m}}=\left(\left(1-\xi_{\mathrm{I}}{ }^{2} \frac{r_{\mathrm{S}}}{r}\right)\left(1-\frac{3 \xi_{\mathrm{I}}^{2}}{\mathrm{c}^{2}} \frac{\mathrm{G} M}{R}\right)^{-\frac{1}{2}}-1\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}{ }^{2}}$,
(ii)

$$
\begin{equation*}
h^{*}=\sqrt{\mathrm{G} M R}\left(1-\frac{3}{\mathrm{c}^{2}} \frac{\mathrm{G} M}{R}\right)^{-\frac{1}{2}} ; E_{\mathrm{m} \text { tot }}=\left(\left(1-\frac{r_{\mathrm{S}}}{r}\right)\left(1-\frac{3}{\mathrm{c}^{2}} \frac{\mathrm{G} M}{R}\right)^{-\frac{1}{2}}-1\right) m \mathrm{c}^{2} \tag{245}
\end{equation*}
$$

Moreover, we study the gravitational field on unmoved particle. Thus, (179) is transformed to

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \frac{l k}{2} \frac{r_{\mathrm{S}}}{r^{2}}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}} \tag{246}
\end{equation*}
$$

The replacement of (5) and condition (218) to the above eqn gives

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{G} M}{r^{2}}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}} \tag{247}
\end{equation*}
$$

We observe that this formula is the same to the corresponding of 1 GSM (for $k=\xi_{\mathrm{I}}^{2}$), but it is very different than the corresponding of UCM (243iv). The corresponding initial acceleration is computed as following. Eqn (178) is transformed to

$$
\begin{equation*}
\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}}=-\frac{k l}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{S}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\dot{r} \gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)} \tag{248}
\end{equation*}
$$

by taking $\dot{\phi}=0$. The above eqn and (179) are replaced in (162) and we have for $\dot{\phi}=0$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{k l}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-k \frac{r_{\mathrm{s}}}{r}} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\right)+\frac{\mathrm{G} M}{r^{2}}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}}=0 \tag{249}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\frac{1}{\xi_{\mathrm{I}}^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{k l \dot{r}}{1-k \frac{r_{\mathrm{s}}}{r}}\right)\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}}+\frac{\mathrm{G} M}{r^{2}}\left(1-k \frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}=0 \tag{250}
\end{equation*}
$$

by taking also $\dot{r}=0$. This is equivalent to

$$
\begin{equation*}
\left[\frac{1}{\xi_{\mathrm{I}}^{2}}\left(\frac{k l \ddot{r}\left(1-k \frac{r_{\mathrm{s}}}{r}\right)}{\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{2}}\right)+\frac{\mathrm{G} M}{r^{2}}\right]\left(1-k \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}}=0 \tag{251}
\end{equation*}
$$

by taking once again $\dot{r}=0$. The replacement of condition (218) to the above eqn gives

$$
\begin{equation*}
\frac{\ddot{r}}{1-k \frac{r_{\mathrm{s}}}{r}}+\frac{\mathrm{G} M}{r^{2}}=0 \tag{252}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
a_{r}=\ddot{r}=-\frac{\mathrm{G} M}{r^{2}}\left(1-k \frac{r_{\mathrm{s}}}{r}\right) \tag{253}
\end{equation*}
$$

We observe that the acceleration of unmoved particle generally depends on the used TPs and also it is different than the corresponding field strength (except for $k=0$ that corresponds to the Newtonian potential, where it is equal). Besides, the acceleration of unmoved particle on the modified Schwarzschild radius ($r=k r_{\mathrm{S}}$) is null!

In case of planet Mercury, it is $\alpha=0.38709893$ AU, $e=0.20563069$ and $T=87.968$ days [16]. The values: $\mathrm{AU}=1.4959787066 \times 10^{11} \mathrm{~m}, \mathrm{G}=6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, \mathrm{c}=299792458 \mathrm{~ms}^{-1}$ (exact) [17] (pp. 1-1, 1-20, 14-2) and $M=1,988,500 \times 10^{24} \mathrm{~kg}$ [18], give

$$
\begin{equation*}
\frac{r_{\mathrm{S}}}{a\left(1-e^{2}\right)}=\frac{2 \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}=5.32518(53) \times 10^{-8} \ll 1 . \tag{254}
\end{equation*}
$$

The case of Earth, with $\alpha=1.00000011$ AU, $e=0.01671022$ and $T=365.242$ days [19], emerges

$$
\begin{equation*}
\frac{r_{\mathrm{S}}}{a\left(1-e^{2}\right)}=\frac{2 \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}=1.97476(20) \times 10^{-8} \ll 1 \tag{255}
\end{equation*}
$$

Now, we can return to all the previous formulas and replace the above values. Thus, (95) combined with (138) or (241) give the results, which are summarized in Table 1. We observe that both ESR and NPs give the same precessions.

Table 1. Angular velocity ('precession') of ellipse perihelion rotation for Mercury and Earth, according to $k=1$ GSR-Gravitational field $\left(\Omega_{\mathrm{GSR}}\right)$ for Newtonian Physics $\left(\xi_{\mathrm{I}}=0\right)$ and Einsteinian Special Relativity ($\xi_{\mathrm{I}}=1$) and according to the original Schwarzschild metric $\left(\Omega_{\mathrm{EGR}}\right) . \Delta \Omega_{\mathrm{GSRr}}(\%)$ is the percentile relative change.

	Mercury			Earth			
$\xi_{\text {I }}$	k	$\mathbf{\Omega}_{\mathrm{GSR}} /{ }^{\prime \prime} \mathbf{c y ~}^{\mathbf{- 1}}$	$\mathbf{\Omega}_{\mathrm{EGR}} /{ }^{\prime} \mathbf{c y}{ }^{\mathbf{- 1}}$	$\Delta \Omega_{\text {GSRr }}(\%)$	$\mathbf{\Omega}_{\mathrm{GSR}} /{ }^{\prime \prime} \mathbf{c} \mathbf{y}^{\mathbf{- 1}}$	$\mathbf{\Omega}_{\mathbf{E G R}} /{ }^{\prime \prime} \mathbf{c} \mathbf{y}^{\mathbf{- 1}}$	$\Delta \Omega_{\mathrm{GSRr}}(\%)$
0	1	42.9820(43) ${ }^{(1)}$	$42.9820(43)^{(1)}$	0	3.83893(38) ${ }^{(1)}$	$3.83893(38){ }^{(1)}$	0
1	1	$42.9820(43)^{(1)}$	$42.9820(43)^{(1)}$	0	$3.83893(38)^{(1)}$	$3.83893(38){ }^{(1)}$	0

[^1]
4.3. GSR combined with 3GSM: Gravitational Potential, Field strength, Lagrangian, Equations of motion and Rotation curves in Galaxies

Now, we specify again the procedure described in 4.1, by combining the GSR with the 3GSM. Firstly, we have to calculate the corresponding GR-time dilation \dot{t}. Thus, (31) for $\theta=\pi / 2$ gives

$$
\begin{equation*}
g_{\mathrm{I} 00} \mathrm{c}^{2} \mathrm{~d} \tau^{2}=g_{\mathrm{I} 00}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}+\frac{g_{\mathrm{II11}}\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)} \mathrm{d} r^{2}+\frac{g_{\mathrm{I} 11} r^{2}}{a_{(r)}^{2}} \mathrm{~d} \phi^{2} \tag{256}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left(\frac{\mathrm{d} \tau}{\mathrm{~d} t}\right)^{2}=1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}-\frac{\xi_{\mathrm{I}}^{2}\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)}\left(\frac{\mathrm{d} r}{\mathrm{~d} t}\right)^{2} \frac{1}{\mathrm{c}^{2}}-\frac{\xi_{\mathrm{I}}^{2} r^{2}}{a_{(r)}{ }^{2}}\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)^{2} \frac{1}{\mathrm{c}^{2}} \tag{257}
\end{equation*}
$$

The above eqn gives

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} \tau}=\left[1-\xi_{\mathrm{I}}^{2}\left(a_{(r)} \frac{r_{\mathrm{s}}}{r}+\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-\xi_{1}{ }^{2} a_{(r)} \frac{r_{\mathrm{s}}}{r}\right.} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}{ }^{2} \mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}} \geq 1 ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{258}
\end{equation*}
$$

Moreover, the replacement of the above eqn to (171), gives the GSR-3 ${ }^{\text {rd }}$ Generalized Schwarzschild Potential (GSR-3GSP):

$$
\begin{equation*}
V_{\mathrm{GSR}(r, i, \dot{\phi})}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(\left[1-\xi_{\mathrm{I}}^{2}\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-\xi_{\mathrm{I}}{ }^{2} a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}{ }^{2} \mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \tag{259}
\end{equation*}
$$

We make the above potential more flexible, by adapting

$$
\begin{equation*}
V_{\mathrm{GSR}(r, i, \phi)}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left(l\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}{ }^{2} \mathrm{c}^{2}}\right)\right]^{\frac{1}{2}}-\frac{1}{\gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)}}\right) ; k=k\left(\xi_{\mathrm{I}}\right) ; l=l\left(\xi_{\mathrm{I}}\right) ;=\frac{\mathrm{d}}{\mathrm{~d} t},(\tag{260}
\end{equation*}
$$

which is called as Modified GSR-3 ${ }^{\text {rd }}$ Generalized Schwarzschild Potential (M-GSR-3GSP). This modification makes the GSR-generalized potential and the GSR-Lagrangian more flexible, in order to obtain results in accordance to the experimental data, by using different TPs. Of course, the values

$$
\begin{equation*}
k=\xi_{\mathrm{I}}^{2} ; l=1 \tag{261}
\end{equation*}
$$

makes the above potential equal to (259): the GSR-gravitational generalized potential which corresponds to the 3GSM. Furthermore, we calculate

$$
\begin{equation*}
\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{\phi}}=-k l \frac{r^{2} \dot{\phi}}{\xi_{\mathrm{I}}^{2} a_{(r)}^{2}}\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}^{2} \mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+r^{2} \dot{\phi} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} \tag{262}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}}=-\frac{k l\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}{ }^{2} \mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\dot{r} \gamma_{\left(\xi_{1} \beta_{P}\right)} ; \tag{263}
\end{align*}
$$

or equivalently,

The above eqn is further simplified to

The case of circular motion is obtained by replacing (263) and (266) to equation of motion (162). We then put $r=R=$ constant and we obtain

$$
\begin{equation*}
\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[\frac{l}{2}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(k \frac{r_{\mathrm{S}}}{r^{2}}-\frac{2 k r \dot{\phi}^{2}}{\mathrm{c}^{2} a_{(r)}^{3}}\right) \cdot\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}^{2} \mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\right]=0 \tag{267}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(\frac{r_{\mathrm{S}}}{r^{2}}-\frac{2 r \dot{\phi}^{2}}{\mathrm{c}^{2} a_{(r)}^{3}}\right)=0 \tag{268}
\end{equation*}
$$

The physical solution is

$$
\begin{equation*}
\frac{r_{\mathrm{S}}}{R^{2}}-\frac{2 R \dot{\phi}^{2}}{\mathrm{c}^{2} a_{(R)}^{3}}=0 \tag{269}
\end{equation*}
$$

This gives Uniform Circular Motion (UCM), with the same angular velocity and the same centripetal acceleration for any TPs:

$$
\begin{equation*}
\omega=\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\sqrt{\frac{a_{(R)}^{3} \mathrm{G} M}{R^{3}}} ; a=\frac{v^{2}}{R}=\omega^{2} R=a_{(R)}{ }^{3} \frac{\mathrm{G} M}{R^{2}}=a_{(R)}{ }^{3} g_{\mathrm{N}}, \tag{270}
\end{equation*}
$$

Thus, the velocity in UCM is given by the formula

$$
\begin{equation*}
v=a_{(R)} \frac{3}{2} \sqrt{\frac{\mathrm{GM}}{R}} \tag{271}
\end{equation*}
$$

Now, let as compare the above centripetal acceleration (270ii) to the corresponding field strength in UCM. Thus, (266) becomes

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[\frac{l}{2}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(k \frac{r_{\mathrm{S}}}{r^{2}}-\frac{2 k r \dot{\phi}^{2}}{\mathrm{c}^{2} a_{(r)}^{3}}\right) \cdot\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}^{2} \mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\xi_{\mathrm{I}}^{2} \frac{r \dot{\phi}^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}\right] \tag{272}
\end{equation*}
$$

By taking $\dot{r}=0$. The replacement of (270i) to the above eqn gives

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}\left[\frac{l k}{2}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(\frac{r_{\mathrm{S}}}{R^{2}}-\frac{2 \mathrm{G} M}{\mathrm{c}^{2} R^{2}}\right) \cdot\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{R}+\frac{r^{2} \dot{\phi}^{2}}{a_{(r)}^{2} \mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\xi_{\mathrm{I}}^{2} \frac{r \dot{\phi}^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)}\right], \tag{273}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=R \dot{\phi}^{2} \gamma_{\left(\xi_{1} \beta_{P}\right)}=\gamma_{\left(\xi_{\mathrm{I}} \beta_{P}\right)} a_{(R)}{ }^{3} \frac{\mathrm{G} M}{R^{2}} . \tag{274}
\end{equation*}
$$

The field strength is also written as

$$
\begin{equation*}
g=\frac{1}{\sqrt{1-\xi_{\mathrm{I}}{ }^{2} \frac{R^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}}} \frac{\mathrm{G} M a_{(R)}{ }^{3}}{R^{2}}=\frac{1}{\sqrt{1-\xi_{\mathrm{I}}{ }^{2} \frac{\mathrm{G} M a_{(R)}{ }^{3}}{\mathrm{c}^{2} R}}} \frac{\mathrm{GM} a_{(R)}{ }^{3}}{R^{2}}=\frac{1}{\sqrt{1-\xi_{\mathrm{I}}{ }^{2} \frac{a_{(R)}{ }^{3} r_{\mathrm{S}}}{2 R}}} \frac{\mathrm{G} M a_{(R)}{ }^{3}}{R^{2}}, \tag{275}
\end{equation*}
$$

which depends on the used TPs and also is larger than the centripetal acceleration (except for $\xi_{\mathrm{I}} \rightarrow 0$ that corresponds to NPs, where it is equal).

Finally, we study the gravitational field on unmoved particle. Thus, (266) is transformed to

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \frac{l k}{2} \frac{r_{\mathrm{S}}}{r^{2}}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(1-k a_{(r)} \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}} \tag{276}
\end{equation*}
$$

The replacement of (5) and condition (218) to the above eqn gives

$$
\begin{equation*}
g=\frac{\partial V_{\mathrm{GSR}}}{\partial r}=\frac{\mathrm{G} M}{r^{2}}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(1-k a_{(r)} \frac{r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}} . \tag{277}
\end{equation*}
$$

We observe that this formula of unmoved particle is very different than the corresponding of UCM (274). We also observe that the field strength is not given by eqn (35). The corresponding initial acceleration is computed as following. Eqn (263) is transformed to

$$
\begin{equation*}
\frac{\partial V_{\mathrm{GSR}}}{\partial \dot{r}}=-\frac{k l\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)^{2}}{a_{(r)}{ }^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)^{2}}{a_{(r)}{ }^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}+\dot{r} \gamma_{\left(\xi_{\mathrm{I}} \beta_{p}\right)}, \tag{278}
\end{equation*}
$$

by taking $\dot{\phi}=0$. The above eqn and (277) are replaced in (162) and we have

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{k l\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)^{2}}{a_{(r)}^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}}{\xi_{\mathrm{I}}^{2}}\left[1-k\left(a_{(r)} \frac{r_{\mathrm{S}}}{r}+\frac{\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)^{2}}{a_{(r)}^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)} \frac{\dot{r}^{2}}{\mathrm{c}^{2}}\right)\right]^{-\frac{1}{2}}\right] \tag{279}\\
& +\frac{\mathrm{G} M}{r^{2}}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}=0
\end{align*}
$$

This leads to

$$
\begin{equation*}
\frac{1}{\xi_{\mathrm{I}}^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{k l\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)^{2} \dot{r}}{a_{(r)}^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}+\frac{\mathrm{G} M}{r^{2}}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}=0\right. \tag{280}
\end{equation*}
$$

by taking also $\dot{r}=0$. This is equivalent to

$$
\begin{equation*}
\left[\frac{1}{\xi_{\mathrm{I}}^{2}}\left(\frac{k l\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)^{2} \ddot{r} a_{(r)}{ }^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{s}}}{r}\right)}{a_{(r)}{ }^{8}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)^{2}}\right)+\frac{\mathrm{G} M}{r^{2}}\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\right]\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}=0 \tag{281}
\end{equation*}
$$

by taking once again $\dot{r}=0$. The above emerges

$$
\begin{equation*}
\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)\left[\frac{1}{\xi_{\mathrm{I}}^{2}} \frac{k l\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right) \ddot{r}}{a_{(r)}^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)}+\frac{\mathrm{G} M}{r^{2}}\right]=0 \tag{282}
\end{equation*}
$$

The replacement of condition (218) to the above eqn gives

$$
\begin{equation*}
\frac{\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right) \ddot{r}}{a_{(r)}^{4}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)}+\frac{\mathrm{G} M}{r^{2}}=0 \tag{283}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
a_{r}=\ddot{r}=-\frac{a_{(r)}^{4}}{\left(a_{(r)}-r \frac{\mathrm{~d} a}{\mathrm{~d} r}\right)} \frac{\mathrm{G} M}{r^{2}}\left(1-k a_{(r)} \frac{r_{\mathrm{S}}}{r}\right) \tag{284}
\end{equation*}
$$

We observe that the acceleration of unmoved particle generally depends on the used TPs and also is different than the corresponding field strength (except for $a_{(r)}=1$ and $k=0$ that corresponds to the Newtonian potential, where it is equal). Besides, the acceleration of unmoved particle on the modified Schwarzschild radius $\left(r=k a_{(r)} r_{\mathrm{s}}\right)$ is null!

4.4. The Combination of Modified GSR-Gravitational Field (m-GSR-3GSM) with MOND

Modified Newtonian Dynamics (MOND) explains the rotation curves in many galaxies, by using suitable Interpolating Function (μ) in Milgrom's Law [20]. The spherical or cylindrical distribution of mass, causes Modified Newtonian acceleration

$$
\begin{equation*}
a=\frac{1}{\mu_{(r)}} \frac{G M}{r^{2}} \tag{285}
\end{equation*}
$$

In case of UCM, the combination of the above with M-GSR-3GSM-acceleration (270ii) emerges

$$
\begin{equation*}
\frac{1}{\mu_{(r)}}=a_{(r)}^{3} ; a_{(r)}=\frac{1}{\mu_{(r)^{\frac{1}{3}}}} \tag{286}
\end{equation*}
$$

Two common choices are the Simple and Standard interpolating function, correspondingly

$$
\begin{equation*}
\frac{1}{\mu_{\mathrm{Simpl}}}=1+\frac{a_{0}}{a}=\frac{1}{2}\left(1+\sqrt{1+\left(\frac{r}{r_{0}}\right)^{2}}\right) ; \frac{1}{\mu_{\mathrm{Stand}}}=\sqrt{1+\left(\frac{a_{0}}{a}\right)^{2}}=\frac{1}{\sqrt{2}} \sqrt{1+\sqrt{1+\frac{1}{4}\left(\frac{r}{r_{0}}\right)^{4}}} ; r_{0}=\sqrt{\frac{\mathrm{GM}}{4 a_{0}}} \tag{287}
\end{equation*}
$$

where r_{0} is called Milgrom radius [21] (p. 3) and $a_{0}=1.2(\pm 0.1) \times 10^{-10} \mathrm{~ms}^{-2}$ [20] (p. 1) is an extra (acceleration-dimensional) gravitational constant. The above functions are specifications of the generalized interpolating function

$$
\begin{equation*}
\frac{1}{\mu_{\lambda, n}}=\left(1+\left(\lambda \frac{a_{0}}{a}\right)^{n}\right)^{\frac{1}{n}}=\frac{1}{2^{\frac{1}{n}}}\left(1+\sqrt{1+\frac{\lambda^{n}}{4^{n-1}}\left(\frac{r}{r_{0}}\right)^{2 n}}\right)^{\frac{1}{n}} ; r_{0}=\sqrt{\frac{G M}{4 a_{0}}} \tag{288}
\end{equation*}
$$

for $\lambda=1$ and $n=1,2$, respectively. Thus we obtain the corresponding acceleration and velocity in UCM:

$$
\begin{equation*}
a=\frac{1}{2^{\frac{1}{n}}}\left(1+\sqrt{1+\frac{\lambda^{n}}{4^{n-1}}\left(\frac{r}{r_{0}}\right)^{2 n}}\right)^{\frac{1}{n}} \frac{\mathrm{G} M}{r^{2}} ; v=\frac{1}{2^{\frac{1}{2 n}}}\left(1+\sqrt{1+\frac{\lambda^{n}}{4^{n-1}}\left(\frac{r}{r_{0}}\right)^{2 n}}\right)^{\frac{1}{2 n}} \sqrt{\frac{\mathrm{GM}}{r}} \tag{289}
\end{equation*}
$$

which give the same velocity at infinite distance from the center of gravity for any value of n :

$$
\begin{equation*}
v_{\infty}=\sqrt[4]{\lambda \mathrm{GMa} a_{0}} \quad ; \quad \beta_{\infty}=\frac{1}{\mathrm{c}} \sqrt[4]{\lambda \mathrm{GMa} a_{0}} \tag{290}
\end{equation*}
$$

Besides, (286) emerges

$$
\begin{equation*}
a_{(r)}=\frac{1}{\mu_{(r)^{\frac{1}{3}}}}=\frac{1}{2^{\frac{1}{3 n}}}\left(1+\sqrt{1+\frac{\lambda^{n}}{4^{n-1}}\left(\frac{r}{r_{0}}\right)^{2 n}}\right)^{\frac{1}{3 n}} \tag{291}
\end{equation*}
$$

The value $n=0$ gives $1 / \mu=a_{(r)}=\infty$, which means infinite acceleration. Another interesting value is $n \rightarrow \infty$ with

$$
\frac{1}{\mu_{\lambda, \infty}}=\lim _{n \rightarrow \infty}\left(1+\left(\frac{\lambda a_{0}}{a}\right)^{n}\right)^{\frac{1}{n}}=\left\{\begin{array}{c}
1, a \geq \lambda a_{0} \tag{292}\\
\frac{\lambda a_{0}}{a}, a \leq \lambda a_{0}
\end{array}=\left\{\begin{array}{cc}
1 \quad, \quad r \leq \frac{2 r_{0}}{\sqrt{\lambda}} \\
\sqrt{\frac{\lambda a_{0}}{\mathrm{G} M}} r, & r \geq \frac{2 r_{0}}{\sqrt{\lambda}}
\end{array}=\left\{\begin{array}{cc}
1, & r \leq \frac{2 r_{0}}{\sqrt{\lambda}} \\
\frac{\sqrt{\lambda} r}{2 r_{0}}, & r \geq \frac{2 r_{0}}{\sqrt{\lambda}}
\end{array} .\right.\right.\right.
$$

Thus, we obtain the corresponding acceleration and velocity in UCM:

$$
a=\left\{\begin{array}{cc}
\frac{\mathrm{GM}}{r^{2}}, & r \leq \frac{2 r_{0}}{\sqrt{\lambda}} \tag{293}\\
\frac{\sqrt{\lambda \mathrm{GMa}}}{r}, & \frac{\mathrm{G} M}{r^{2}}, \\
r \geq \frac{2 r_{0}}{\sqrt{\lambda}}
\end{array}=\left\{\begin{array}{rl}
\frac{2 r_{0}}{\sqrt{\lambda}} \\
\frac{v_{\infty}{ }^{2}}{r}, & r \geq \frac{2 r_{0}}{\sqrt{\lambda}}
\end{array} ; v=\left\{\begin{aligned}
\sqrt{\frac{\mathrm{GM}}{r}}, & r \leq \frac{2 r_{0}}{\sqrt{\lambda}} \\
v_{\infty}, & r \geq \frac{2 r_{0}}{\sqrt{\lambda}}
\end{aligned}\right.\right.\right.
$$

We observe that $\mu_{\lambda, \infty}$ gives Newtonian acceleration near to the center of gravity, while this is inversely proportional to the distance far away the center of gravity. Besides, in UCM the velocity has the well-known formula for $r<2 r_{0} / \operatorname{sqrt}(\lambda)$, while it becomes steady for $r>2 r_{0} / \operatorname{sqrt}(\lambda)$. Thus, $\mu_{\lambda, \infty}$ is inefficient to explain the rotation curves in galaxies. Besides, (286) gives

$$
a_{\infty(r)}=\frac{1}{\mu_{\infty(r)}^{\frac{1}{3}}}=\left\{\begin{array}{cc}
1 & , r \leq \frac{2 r_{0}}{\sqrt{\lambda}} \\
\left(\frac{\sqrt{\lambda} r}{2 r_{0}}\right)^{\frac{1}{3}}, & r \geq \frac{2 r_{0}}{\sqrt{\lambda}} \tag{294}
\end{array} .\right.
$$

The specific value $\lambda=1$:
i. gives the well-known original MONDian acceleration in UCM, which is also efficient to explain the rotation curves in galaxies (for $n=1,2, \ldots$) as well as the precession of Mercury's orbit and the deflection of light (because $a_{(r)} \approx \mu \approx 1$ in the Solar system), but
ii. in case of empty of mass space: $M \rightarrow 0\left(r_{0} \rightarrow 0\right)$, gives $1 / \mu_{n} \rightarrow \infty$ and $a_{(r)} \rightarrow \infty$ (even if $\left.n \rightarrow \infty\right)$. Thus, the 3GSM (31) gives

$$
\begin{equation*}
g_{\theta \theta}=\lim _{M \rightarrow 0} \frac{g_{I 11} r^{2}}{a_{(r)}{ }^{2}}=0 \neq g_{I 11} r^{2} ; g_{\phi \phi}=\lim _{M \rightarrow 0} \frac{g_{\mathrm{I11}} r^{2}}{a_{(r)}{ }^{2}} \sin ^{2} \theta=0 \neq g_{111} r^{2} \sin ^{2} \theta . \tag{295}
\end{equation*}
$$

Thus, we do not obtain the metric of RIOs (11), except for the case of Galilean metric (19).
iii. gives extra larges values of the acceleration around bodies with small mass [except for $n \rightarrow \infty$, where $1 / \mu=1\left(a_{(r)}=1\right)$ for $\left.r<2 r_{0}\right]$. For instance a body of $M=1 \mathrm{Kg}\left(r_{0}=0.373 \mathrm{~m}\right)$ at distance $r=1 \mathrm{~m}$, produces $\mu_{\text {simp }}=0.518\left(1 / \mu_{\text {simp }}=1.93\right)$ according to the Simple interpolating function. Besides, the above has $\mu_{1, \infty}=0.746$ ($1 / \mu_{1, \infty}=1.34$). This means twice value and 134% stronger than the Newtonian acceleration, respectively. Thus, it contradicts to the Cavendish experiment.

In this paper, we make changes to MOND ('New' MOND), resolving the above contradiction (ii). Thus, we define

$$
\begin{equation*}
\lambda=\lambda_{0}=\left(\frac{M}{M+m_{0}}\right)^{2}<1, \tag{296}
\end{equation*}
$$

where m_{0} is unspecified non-zero mass-dimensional constant. Now, (291) becomes

$$
\begin{equation*}
a_{(r)}=\frac{1}{2^{\frac{1}{3 n}}}\left(1+\sqrt{1+\frac{1}{4^{n-1}}\left(\frac{M}{M+m_{0}}\right)^{2 n}\left(\frac{r}{r_{0}}\right)^{2 n}}\right)^{\frac{1}{3 n}}=\frac{1}{2^{\frac{1}{3 n}}}\left(1+\sqrt{1+\frac{1}{4^{n-1}}\left(\frac{M^{2}}{\left(M+m_{0}\right)^{2}}\right)^{n}\left(\frac{4 a_{0} r^{2}}{\mathrm{G} M}\right)^{n}}\right)^{\frac{1}{3 n}} . \tag{297}
\end{equation*}
$$

So, the case of empty of mass space: $M \rightarrow 0$ emerges

$$
\begin{equation*}
\lim _{M \rightarrow 0} a_{(r)}=1 \tag{298}
\end{equation*}
$$

Thus, the 3GSM (31) is transformed to the 1GSM (37), which for $M \rightarrow 0$ gives the metric of RIOs (11).

4.5. The Combination of Modified GSR Gravitational Field strength with the concept of phantom Dark Matter and the Velocity at Infinite Distance of MOND

Below, we shall find the metric of spacetime that corresponds to the concept of phantom DM [9] (p. 356). We consider a very simple distribution of phantom DM:

$$
\begin{equation*}
\rho_{\mathrm{dark}}=\frac{C_{\mathrm{dark}}}{r^{2}} ; M_{\mathrm{dark}}=\int_{0}^{r} 4 \pi r^{2} \rho_{\mathrm{dark}} d r=4 \pi C_{\mathrm{dark}} r \tag{299}
\end{equation*}
$$

and also all the luminous-baryonic mass at the center of gravity. In case of a spherical or cylindrical distribution of mass, the Modified Newtonian acceleration is

$$
\begin{equation*}
a=\frac{\mathrm{G}\left(M+M_{\mathrm{dark}}\right)}{r^{2}}=\frac{\mathrm{G} M}{r^{2}}\left(1+\frac{M_{\mathrm{dark}}}{M}\right)=\frac{\mathrm{G} M}{r^{2}}\left(1+\frac{4 \pi C_{\mathrm{dark}} r}{M}\right)=\frac{\mathrm{G} M}{r^{2}}+\frac{4 \pi \mathrm{G} C_{\mathrm{dark}}}{r} . \tag{300}
\end{equation*}
$$

The combination of the above to (285) gives

$$
\begin{equation*}
\frac{1}{\mu_{\mathrm{DM}}}=1+\frac{M_{\mathrm{dark}}}{M}=1+\frac{4 \pi \mathrm{G} C_{\mathrm{dark}} r}{M} \tag{301}
\end{equation*}
$$

Besides, the velocity in UCM is given by the formula

$$
\begin{equation*}
v^{2}=\frac{\mathrm{G}\left(M+M_{\mathrm{dark}}\right)}{r}=\frac{\mathrm{G} M}{r}+4 \pi \mathrm{G} C_{\mathrm{dark}} \tag{302}
\end{equation*}
$$

which at infinite distance from the center of gravity, gives

$$
\begin{equation*}
v_{\infty}^{2}=4 \pi \mathrm{G} C_{\mathrm{dark}} \tag{303}
\end{equation*}
$$

The combination of the above equation with the (290) MONDian formula gives

$$
\begin{equation*}
C_{\mathrm{dark}}=\frac{1}{4 \pi} \sqrt{\frac{\lambda M a_{0}}{\mathrm{G}}}=\frac{\sqrt{\lambda} M}{8 \pi r_{0}} \tag{304}
\end{equation*}
$$

The replacement of the above to the initial eqn (299i) gives

$$
\begin{equation*}
\rho_{\mathrm{dark}}=\frac{1}{4 \pi} \sqrt{\frac{a_{0}}{\mathrm{G}}} \frac{\sqrt{\lambda} \sqrt{M}}{r^{2}}=\frac{\sqrt{\lambda}}{8 \pi} \frac{M}{r_{0} r^{2}} . \tag{305}
\end{equation*}
$$

Thus, (301) combined to (286) gives

$$
\begin{equation*}
\frac{1}{\mu_{(r)}}=a_{(r)}^{3}=1+\frac{\sqrt{\lambda}}{2} \frac{r}{r_{0}} ; a_{(r)}=\frac{1}{\mu_{(r)^{\frac{1}{3}}}^{\frac{1}{3}}}=\left(1+\frac{\sqrt{\lambda}}{2} \frac{r}{r_{0}}\right)^{\frac{1}{3}} \tag{306}
\end{equation*}
$$

Moreover, (270) and (271) give the corresponding acceleration and velocity in UCM:

$$
\begin{equation*}
a=\left(1+\frac{\sqrt{\lambda}}{2} \frac{r}{r_{0}}\right) \frac{\mathrm{G} M}{r^{2}} ; v=\sqrt{1+\frac{\sqrt{\lambda}}{2} \frac{r}{r_{0}} \sqrt{\frac{\mathrm{GM}}{r}} ~} \tag{307}
\end{equation*}
$$

Finally, it is proven that the corresponding values of function $a_{(r)}$ have the properties: Standard Interpolating function < Simple Interpolating function < Absorption of DM into the metric and also 'New' < 'old'.

In this paper, we use $m_{0}=m_{\mathrm{e}}$ (mass of electron) in (296). Thus, observations in macrocosm has

$$
\begin{equation*}
\lambda=\lambda_{0}=\left(\frac{M}{M+m_{\mathrm{e}}}\right)^{2} \approx 1^{-} ; M \gg m_{\mathrm{e}} \tag{308}
\end{equation*}
$$

and we obtain the results of original 'old' MOND.

5. Gravitational Red Shift

We initially present the Gravitational Red Shift (GRS) according to GR. Thus, we consider two consecutive wave fronts passing first A and then B [9] (p.188). Thus, we have four events: $A\left(t_{1}\right), A\left(t_{2}\right)$, $B\left(\mathrm{t}_{3}\right), B\left(\mathrm{t}_{4}\right)$ and also

$$
\begin{equation*}
\mathrm{d} S_{A}^{2}=g_{100} \mathrm{c}^{2} \mathrm{~d} \tau_{A}^{2}=g_{100}\left(1-a_{\left(r_{A} A\right.} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{A}}\right) \mathrm{c}^{2} \mathrm{~d} t_{A}^{2} ; \mathrm{d} S_{B}^{2}=g_{100} \mathrm{c}^{2} \mathrm{~d} \tau_{B}^{2}=g_{100}\left(1-a_{\left(r_{A}\right)} \frac{\xi_{1}^{2} r_{\mathrm{S}}}{r_{A}}\right) \mathrm{c}^{2} \mathrm{~d} t_{B}^{2}, \tag{309}
\end{equation*}
$$

by using the 3GSM (31). The square root and integration of the above leads to
where T_{A}, T_{B} and T are the period of the wave for unmoved observers located at A, B and infinite distance, correspondingly. The coordinate time (period of the wave) T is considered the same at A and $B\left(t_{2}-t_{1}=t_{4}-t_{3}=T\right)$. So, we obtain

$$
\begin{equation*}
\frac{T_{B}}{T_{A}}=\sqrt{\frac{1-a_{\left(r_{B}\right)} \frac{\xi_{\mathrm{I}} r_{\mathrm{S}}}{r_{B}}}{1-a_{\left(r_{A}\right)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{A}}}} ; \frac{f_{B}}{f_{A}}=\sqrt{\frac{1-a_{\left(r_{A}\right)} \frac{\xi_{\mathrm{I}} r_{\mathrm{S}}}{r_{A}}}{1-a_{\left(r_{B}\right)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{B}}}}, \tag{311}
\end{equation*}
$$

where f_{A} and f_{B} are the frequencies recognized by observers located at A and B (inversely proportional to the times of passing as measured by standard clocks). The above formula emerges

$$
\begin{equation*}
T_{(r)}=T\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{\frac{1}{2}} ; f_{(r)}=f_{\infty}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}, \tag{312}
\end{equation*}
$$

where $f_{(r)}$ and f_{∞} are the frequencies measured by unmoved observers located at distance r from the center of gravity and at infinite distance, respectively. Besides, we can correlate the corresponding total GR-energies, by using $E_{\mathrm{GR}}=\mathrm{h} f$:

$$
\begin{equation*}
E_{\mathrm{GR}(r)}=E_{\mathrm{GR}}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{s}}}{r}\right)^{-\frac{1}{2}}, \tag{313}
\end{equation*}
$$

where $E_{\mathrm{GR}(r)}$ and E_{GR} are the energies measured by unmoved observers located at distance r from the center of gravity and at infinite distance, respectively.
Now, we define GRS z-factor:

$$
\begin{equation*}
z=\frac{\lambda_{\mathrm{O}}-\lambda_{\mathrm{EL}}}{\lambda_{\mathrm{EL}}}=\frac{\lambda_{\mathrm{O}}}{\lambda_{\mathrm{EL}}}-1=\frac{\frac{c_{\mathrm{E}}}{f_{\mathrm{O}}}}{\frac{c_{\mathrm{E}}}{f_{\mathrm{EL}}}}-1=\frac{f_{\mathrm{EL}}}{f_{\mathrm{O}}}-1 . \tag{314}
\end{equation*}
$$

Thus, we calculate

$$
\begin{equation*}
z=\frac{f_{\mathrm{EL}}}{f_{\mathrm{O}}}-1=\frac{f_{(r)}}{f_{\infty}}-1=\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}-1 ; z \approx \frac{\xi_{\mathrm{I}}^{2} a_{(r)} r_{\mathrm{S}}}{2 r}=\frac{\xi_{\mathrm{I}}^{2} a_{(r)} \mathrm{G} M}{\mathrm{c}^{2} r}, \tag{315}
\end{equation*}
$$

where λ_{O} is the observed wavelength of radiation which is produced at distance r from the center of gravity and λ_{EL} is the wavelength of corresponding radiation that is produced in Earth Laboratory (both of them are measured by unmoved observers on Earth, where the speed of light is c_{E}). The above exact and approximate formula (in case of large distance from the center of gravity), has come by considering

$$
\begin{equation*}
f_{(r)}=f_{\mathrm{EL}} . \tag{316}
\end{equation*}
$$

More specifically, $\xi_{\mathrm{I}}=1$ gives the Einsteinian-Lorentzian 3GSM-results:

$$
\begin{align*}
& \frac{T_{B}}{T_{A}}=\sqrt{\frac{1-a_{(r)} \frac{r_{\mathrm{S}}}{r_{B}}}{1-a_{(r)} \frac{r_{\mathrm{S}}}{r_{A}}}} ; \frac{f_{B}}{f_{A}}=\sqrt{\frac{1-a_{(r)} \frac{r_{\mathrm{S}}}{r_{A}}}{1-a_{(r)}},} \begin{array}{l}
r_{\mathrm{S}} \\
T_{(r)}
\end{array}=T\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{\frac{1}{2}} ; f_{(r)}=f_{\infty}\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}, \tag{317}\\
& z=\left(1-a_{(r)} \frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}-1 ; z \approx a_{(r)} \frac{r_{\mathrm{S}}}{2 r}=a_{(r)} \frac{\mathrm{G} M}{\mathrm{c}^{2} r} . \tag{318}
\end{align*}
$$

The choice $a_{(r)}=1$ leads to the 1GSM-results:

$$
\begin{align*}
& \frac{T_{B}}{T_{A}}=\sqrt{\frac{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{B}}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{A}}}} ; \frac{f_{B}}{f_{A}}=\sqrt{\frac{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{A}}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{B}}},} \tag{320}\\
& T_{(r)}=T\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{\frac{1}{2}} ; f_{(r)}=f_{\infty}\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}, \tag{321}\\
& z=\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}-1 ; z \approx \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{2 r}=\frac{\xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} r} . \tag{322}
\end{align*}
$$

We observe that there is no-GRS, in case that light is emitted from position with $r \rightarrow+\infty$ (for any TPs) or $\xi_{1} \rightarrow 0$ (NPs). Besides, ERT (with $\xi_{1}=1$) gives the well-known original Schwarzschild-GRS:

$$
\begin{align*}
& \frac{T_{B}}{T_{A}}=\sqrt{\frac{1-\frac{r_{\mathrm{s}}}{r_{B}}}{1-\frac{r_{\mathrm{S}}}{r_{A}}}} ; \frac{f_{B}}{f_{A}}=\sqrt{\frac{1-\frac{r_{\mathrm{S}}}{r_{A}}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r_{B}}},} \tag{323}\\
& T_{(r)}=T\left(1-\frac{r_{\mathrm{S}}}{r}\right)^{\frac{1}{2}} ; f_{(r)}=f_{\infty}\left(1-\frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}, \tag{324}\\
& z=\left(1-\frac{r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}}-1 ; z \approx \frac{r_{\mathrm{s}}}{2 r}=\frac{\mathrm{G} M}{\mathrm{c}^{2} r} . \tag{325}
\end{align*}
$$

The application of formula (325) to the Sun surface $\left\{r=6.9599 \times 10^{8} \mathrm{~m}, M=1,988,500 \times 10^{24} \mathrm{~kg}[18]\right.$ and $\mathrm{G}=6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, \mathrm{c}=299792458 \mathrm{~ms}^{-1}$ (exact) [17] (pp. 1-1, 1-20, 14-2) \} emerges $\mathrm{z}_{\text {theoretical }}=2.12244 \times 10^{-6}$. In case that we examine the 74 strong lines of the spectrum of iron $\mathrm{Fe}(\mathrm{I})$, we obtain $R=\mathrm{z}_{\text {observed }} / Z_{\text {theoretical }}=0.97(0.16$), while all the 738 (weak, medium and strong) lines have $R=\mathrm{Z}_{\text {observed }} / \mathrm{Z}_{\text {theoretical }}=0.76(0.24)$ [22] (p. 247).

In case of GSR, the GRS is explained via a different way. Let us consider a ray of light (E / M wave) emitted from source at distance r from the center of gravity. The corresponding period (frequency) of the wave $T(f)$ is considered the same at any point for unmoved observers located anywhere, because the space has steady curvature and there exist no time dilation. Thus, the only way to obtain again the above GR-results, is the consideration that (316) is invalid and the emitted radiation is affected by gravitation via the formula

$$
\begin{equation*}
f_{\mathrm{O}}=f_{(r)}=f_{\infty}=\sqrt{1-a_{(r)} \frac{k r_{\mathrm{S}}}{r}} f_{\mathrm{EL}} . \tag{326}
\end{equation*}
$$

(i) The first option of GSR $\left(k=\xi_{1}^{2}\right)$ transforms (326) to

$$
\begin{equation*}
f_{\mathrm{O}}=f_{(r)}=f_{\infty}=\sqrt{1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}} f_{\mathrm{EL}} \tag{327}
\end{equation*}
$$

which gives the 3GSM-results. More specifically, $\xi_{\mathrm{l}}=1$ transforms (327) to

$$
\begin{equation*}
f_{\mathrm{O}}=f_{(r)}=f_{\infty}=\sqrt{1-a_{(r)} \frac{r_{\mathrm{S}}}{r}} f_{\mathrm{EL}} \tag{328}
\end{equation*}
$$

that leads to the Einsteinian-Lorentzian 3GSM-results.
The choice $a_{(r)}=1$ transforms (327) to

$$
\begin{equation*}
f_{\mathrm{O}}=f_{(r)}=f_{\infty}=\sqrt{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}} f_{\mathrm{EL}} \tag{329}
\end{equation*}
$$

which gives the 1GSM-results. More specifically, $\xi_{1}=1$ transforms (329) to

$$
\begin{equation*}
f_{\mathrm{O}}=f_{(r)}=f_{\infty}=\sqrt{1-\frac{r_{\mathrm{S}}}{r}} f_{\mathrm{EL}} \tag{330}
\end{equation*}
$$

that leads to the original Schwarzschild metric-results.
(ii) The second option of GSR $(k=1)$ transforms (326) to (328), which gives again the EinsteinianLorentzian 3GSM-results. More specifically, $a_{(r)}=1$ transforms (328) to (330), which leads again to the original Schwarzschild metric-results.

6. Experimental Validation - Discussion

In Table 2, we show the values of characteristic parameters for the original 1 Kg , the Earth, the Sun [data from [17] (pp. 1-1, 14-2)], Galaxy NGC 3198 (data from [23] (p. 56) and [24] (p. 3)) and the Observable Universe (data from [25] (p. 43) and [26] (p. 27)). Besides, M is the mass that is enclosed in a sphere of radius R, r_{0} is Milgrom radius, v_{∞} is new velocity at infinite distance and $\beta_{0 \infty}$ is the corresponding velocity factor. The inverse of the Interpolating functions $1 / \mu_{\text {simpl }}, 1 / \mu_{\text {stand }}$ and $1 / \mu_{\mathrm{DM}}$ as well as functions $a_{\text {simpl }}, a_{\text {stand }}$ and a_{DM} on a sphere of radius R and they have been obtained from (287i), (287ii), (306i), (291) for $n=1,2$ and (306) for $\lambda=1$, respectively. Besides, we have used the following values of physical constants: $a_{0}=1.2(0.1) \times 10^{-10} \mathrm{~ms}^{-2} \quad[20](\mathrm{p} .1), A U=1.4959787066 \times 10^{11} \mathrm{~m}$, $\mathrm{G}=6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, \mathrm{c}=299792458 \mathrm{~ms}^{-1}$ (exact) [17] (pp. 1-1, 1-20, 14-2).
6.1. The Combination $3^{\text {rd }}$ Generalized Schwarzschild Metric or Modified GSR-Gravitational Field with MOND Simple \& Standard Interpolating Function and Absorption of the Dark Matter into the field in Galaxy NGC 3198

In order to find out what is the effect of the modification at large mass and size systems, we analytically examine Galaxy NGC 3198.

The values of Circular Velocities [experimental ($V_{\text {exp }}$) and calculated by the Combination of 3GSM or Modified GSR-Gravitational Field with the corresponding Simple $\mu\left(V_{\text {simp }}\right)$, or Standard μ ($V_{\text {stand }}$), or Absorption of DM into the Metric by using distribution (305) for $\left.\lambda=1\left(V_{\mathrm{DM}}\right)\right]$, the Luminous Mass of the galaxy that is enclosed within the circular orbit $\left(M_{\mathrm{d}}\right)$, the corresponding values of the function $1 / \mu_{(r)}$ $\left(1 / \mu_{\text {simp }}, 1 / \mu_{\text {stand }}, 1 / \mu_{\mathrm{DM}}\right)$, function $a_{(r)}\left(a_{\text {simp }}, a_{\text {stand }}, a_{\mathrm{DM}}\right)$ wrt the distance from the center of Galaxy NGC 3198, are contained in Table 3 (data from [27] (p. 2)). The Circular Velocities ($V_{\text {simp }}, V_{\text {stand }}, V_{\mathrm{DM}}$) have been calculated by using (289ii) for $n=1,2$ and (307ii) for $\lambda=1$, the values of function $1 / \mu_{(r)}\left(1 / \mu_{\text {simp }}\right.$, $1 / \mu_{\text {stand }}, 1 / \mu_{\mathrm{DM}}$), by using (287i), (287ii) and (306i) for $\lambda=1$, the values of function $a_{(r)}\left(a_{\text {simp }}, a_{\text {stand }}, a_{\mathrm{DM}}\right)$, by using (291) for $n=1,2$ and (306ii) for $\lambda=1$, respectively. The experimental values ($a_{\text {exp }}$) have been obtained, by replacing the experimental velocity ($V_{\text {exp }}$) in (271).

In Figure 2, we show the plot of function $a_{(r)}$ wrt the distance from the center of Galaxy NGC 3198 for the Combination of 3GSM or Modified GSR-Gravitational Field with Simple $\mu\left(a_{\text {simp }}\right)$, or Standard $\mu\left(a_{\text {stand }}\right)$, or Absorption of phantom Dark Matter into the Metric by using distribution (306ii) for $\lambda=1$ $\left(a_{\mathrm{DM}}\right)$. The experimental values ($a_{\text {exp }}$) have been obtained, by replacing the experimental velocity ($V_{\text {exp }}$) in (271). In addition, the corresponding Rotation Curves in Galaxy NGC 3198 are shown in Figure 3.

We observe that in case of Galaxy NGC 3198, Schwarzschild or Newtonian field strength produces maximum relative error about 66% at extra large distances. The Simple μ gives better results, producing maximum relative error 39% near to the galactic center. The Standard μ gives even better results, producing maximum relative error about 23% at the center of the galaxy. The Absorption of phantom DM into the Metric by using distribution (305) for $\lambda=1$ (V_{DM}) has maximum relative error 54% near to the galactic center. It is noted that the relative error of experimental Circular Velocities is $\left(\Delta V_{\text {exp }}\right)_{\mathrm{r}} \approx 8 \%$ related to the uncertainty of the Hubble constant H_{0} [9] (pp. 356-357). Finally, the values at distance $13.8 \mathrm{Mpc}=2.846 \times 10^{12} \mathrm{AU}=4.258 \times 10^{23} \mathrm{~m}$, which is the distance of Galaxy NGC 3198 from Earth [28], give us the image of what happens at extremely large distances. The replacement of $a_{(r)}=12.998$ to the 3GSM (31) gives $g_{000}=0,9999999969 g_{100} \rightarrow g_{100}$. This means that if $r \rightarrow \infty$, then $3 \mathrm{GSM} \rightarrow$ metric of RIOs (11).

The same procedure can be followed in any galaxy, by using only the mass of the visible disk. Thus, it explains the rotation curves of many galaxies, eliminating the corresponding DM (see Figure 4 [28]). Besides, we can obtain even better results, by using value of n in (288) and (291): $1<n<2$, or other distribution of phantom DM such as in [29] (p.13) that contains the core radius R_{0}.

Table 2. Characteristic parameters (mass M, distance or size radius R, Schwarzschild radius r_{s}, Milgrom radius $r_{0}, r_{0} / r_{\mathrm{s}}$, velocity at infinite distance $v_{\infty}, \beta_{\infty}, 1 / \mu_{\text {simp }}, 1 / \mu_{\text {sand }}, 1 / \mu_{\mathrm{DM}}, a_{\text {simp }}, a_{\text {stand }}, a_{\mathrm{DM}}$ on a sphere of radius R) for the original 1 Kg , the Earth, the Sun, galaxy NGC 3198 and the Observable Universe.

	$\begin{aligned} & \hline 1 \mathrm{Kg} \\ & \text { (original) } \end{aligned}$	Earth	Sun	NGC 3198	Observable Universe
M/Kg	1	5.9742×10^{24}	1.9891×10^{30}	$6.76294 \times 10^{40(2)}$	10^{53}
$\boldsymbol{R} / \mathrm{m}$	1	6378140 (1)	6.9599×10^{8}	2.47×10^{20}	4.3×10^{26}
/AU	6.68×10^{-12}	4.263523×10^{-5}	4.6524×10^{-3}	1.65×10^{9}	2.9×10^{15}
/ Kpc	3.24×10^{-20}	2.066999×10^{-13}	2.2555×10^{-11}	8 (3)	14×10^{6}
$r_{\text {s }} / \mathrm{m}$	2.96×10^{-27}	8.8736×10^{-3}	2,954.4	1.004451×10^{14}	1.48×10^{26}
/AU	1.98×10^{-38}	5.9316×10^{-14}	1.9749×10^{-8}	671.434	9.9×10^{14}
/ Kpc	9.61×10^{-47}	2.8757×10^{-22}	9.5746×10^{-17}	0.0000680703	4.80×10^{6}
r_{0} / m	0.373	9.1143×10^{11}	5.2591×10^{14}	9.6972671×10^{19}	1.18×10^{26}
/AU	2.49×10^{-12}	6.0925	3,515.5	6.45222×10^{8}	7.9×10^{14}
/ Kpc	1.21×10^{-20}	2.9537×10^{-8}	0.000017043	3.14265	3.8×10^{6}
$r_{0} / r_{\text {s }}$	1.26×10^{26}	1.02712×10^{14}	1.7801×10^{11}	965,430	0.80
$\boldsymbol{v}_{\infty} / \mathrm{m} \mathrm{s}^{-1}$	9.45×10^{-6}	14.7899	355.27	152,556	1.68×10^{8}
$\boldsymbol{\beta}_{\infty}$	3.15×10^{-14}	4.93339×10^{-8}	1.1851×10^{-6}	0.000508873	0.56
$1 / \mu_{\text {simpl }}$	1.93	$1+1.22 \times 10^{-11}$	$1+4.38 \times 10^{-13}$	1.86819	2.39
$1 / \mu_{\text {stand }}$	1.54	$1+2 \times 10^{-16}$	$1+2 \times 10^{-16}$	1.48232	1.97
$1 / \mu_{\text {DM }}$	2.34	$1+3.50 \times 10^{-6}$	$1+6.62 \times 10^{-7}$	2.27355	2.82
$\boldsymbol{a}_{\text {simpl }}$	1.25	$1+4.08 \times 10^{-12}$	$1+4.86 \times 10^{-14}$	1.23161	1.34
$a_{\text {stand }}$	1.15	$1+6.67 \times 10^{-17}$	$1+6.67 \times 10^{-17}$	1.14020	1.25
$\boldsymbol{a}_{\text {DM }}$	1.33	$1+3.89 \times 10^{-7}$	$1+2.21 \times 10^{-7}$	1.31493	1.41

Table 3. Circular Velocities [experimental ($V_{\text {exp }}$) and calculated by the Combination of Lorentzian-Einsteinian $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR Gravitational Field with the corresponding Simple μ ($V_{\text {simp }}$) or Standard μ ($V_{\text {stand }}$) or Absorption of DM into the Metric by using distribution (305) for $\lambda=1$ (V_{DM})], the Luminous Mass of the galaxy that is enclosed within the circular orbit $\left(M_{\mathrm{d}}\right)$, the corresponding values of function $1 / \mu_{(r)}$ and function $a_{(r)}$ wrt the distance from the center of Galaxy NGC 3198. The relative errors of the experimental Velocities are $\left(\Delta V_{\text {exp }}\right)_{\mathrm{r}} \approx 8 \%$ [9] (pp. 356-357).

6.2. The Combination of $3^{\text {rd }}$ Generalized Schwarzschild Metric or Modified GSR-Gravitational Field with MOND Simple \& Standard Interpolating Function or Absorption of Dark Matter into the field in the Solar System

In order to find out what is the effect of the modification at medium mass and size systems, we now examine our Solar System.
The mean values of Rotational Velocities, the Mass of the Solar System that is enclosed within the orbit wrt the mean distance the planet from the Sun, are contained in Table 4 [data from [17] (p. 143)]. The Circular Velocities ($V_{\text {schwar }}$, $V_{\text {simp }}, V_{\text {stand }}$) have been calculated, by using (243iii), (289ii) for $\lambda=1$ and $n=1,2$, respectively. The values of function $1 / \mu_{(r)}\left(1 / \mu_{\text {simp }}, 1 / \mu_{\text {stand }}\right)$ have been calculated, by using (287i), (287ii) and (306i) for $\lambda=1$, the values of function $a_{(r)}\left(a_{\text {exp }}, a_{\text {simp }}, a_{\text {stand }}\right)$, by using (271) and (291) for $n=1,2$, respectively. The coefficients of metric $\left(g_{00}\right)$ have been obtained, by replacing the corresponding values of $a_{(r)}$ and also $g_{100}=-1, g_{111}=1$ in (31). In addition, the corresponding Rotation Curves and Mass Distribution in the Solar System are shown in Figure 10 and Figure 11 of [21], respectively.

We observe that in case of Solar System, the Combination of 3GSM or Modified GSR-Gravitational Field with MOND Simple or Standard μ, gives almost the same Rotational Velocities ($V_{\text {simp }}, V_{\text {stand }}$) and the same coefficients of metric (by taking $g_{100}=-1$ and $\left.g_{111}=1\right)\left(g_{00}\right)$ as those calculated by the original

Schwarzschild metric ($V_{\text {Schwar, }} g_{00, \mathrm{Lor}}$), because it is $a_{(r)} \approx 1$. Thus, there are not significant changes to the Relativistic Doppler Shift, the gravitational red shift as well as the precession of Mercury's orbit ($g_{00}=0.9999999490$). Finally, the values at distance $13.8 \mathrm{Mpc}=2.846 \times 10^{12} \mathrm{AU}=4.258 \times 10^{23} \mathrm{~m}$, (which is the distance of Galaxy NGC 3198 from Earth [23]) give us the image of what happens at extra large distances. The replacement of $a_{(r)}=739.61$ to the 3 GSM (31) gives $g_{00}=\left(1-5.13 \times 10^{-18}\right) g_{100} \rightarrow g_{100}$. This means that if $r \rightarrow \infty$, then 3GSM \rightarrow metric of RIOs (11). Besides, the corresponding velocity in UCM is $V_{\text {simp }}=V_{\text {stand }}=355.99 \mathrm{~ms}^{-1} \neq 0$.

7. Conclusions

The gravitational field can be described equally well, by using Metrics according to General Relativity (GR), or Generalized Potential according to Special Relativity (SR) and Newtonian Physics (NPs). In this paper, we also use Generalized Special Relativity (GSR) that unifies SR and NPs. Thus, GR is correlated to SR and NPs via the corresponding GSR-Lagrangian. More specifically, the Rotation Curves in Galaxies are explained, by using the $3^{\text {rd }}$ Generalized Schwarzschild Metric (3GSM) according to General Relativity, or the Modified GSR-3 ${ }^{\text {rd }}$ Generalized Schwarzschild Potential (M-GSR-3GSP) according to GSR, eliminating the corresponding Dark Matter (DM). The above contain the unspecified function $a_{(r)}$ that is determined, by using extra-modified interpolating functions of Modified Newtonian Dynamics (MOND), or Distributions of phantom DM. In scale of non rotating black hole, planetary and star system, it is $a_{(r)} \approx 1$. Thus, the 3GSM, or M-GSR-3GSP are simplified to the $1^{\text {st }}$ Generalized Schwarzschild Metric (1GSM) according to GR, or the Modified GSR-1 ${ }^{\text {st }}$ Generalized Schwarzschild Potential (M-GSR-1GSP) according to SR and NPs, which explain the Precession of Mercury's perihelion, Deflection of Light and Gravitational Red Shift.

Figure 2. Plot of function $a_{(r)}$ wrt the distance (r) from the center of Galaxy NGC 3198 for the Combination of $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR-Gravitational Field with Simple interpolating function ($a_{\text {simp }}$), or Standard interpolating function ($a_{\text {stand }}$), or Absorption of phantom Dark Matter into the Metric by using distribution (305) for $\lambda=1\left(a_{\mathrm{DM}}\right)$. The experimental values (a_{exp}) have been obtained, by replacing the experimental velocity ($V_{\text {exp }}$) in (271).

Figure 3. Rotation Curves in Galaxy NGC 3198. Rotational Velocities [experimental ($V_{\text {exp }}$), calculated by Schwarzschild or Newtonian field strength $\left(V_{\mathrm{d}}\right)$ and the Combination of $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR-Gravitational Field with Simple interpolating function ($V_{\text {simp }}$), or Standard interpolating function $\left(V_{\text {stand }}\right)$, or Absorption of phantom Dark Matter into the Metric by using distribution (305) for $\left.\lambda=1\left(V_{\mathrm{DM}}\right)\right]$ wrt the distance (r) from the center of Galaxy NGC 3198.

Galaxies well fit by MOND

84 listed at present
UGC 2885 NGC 5533 NGC 6674 NGC 7331 NGC 5907 NGC 2998
NGC 801 NGC 5371 NGC 5033 NGC 2903 NGC 3521 NGC 2683 NGC 3198 NGC 6946 NGC 2403 NGC 6503 NGC 1003 NGC 247 NGC 7739 NGC 300

NGC 5585 NGC 55 NGC 1560 NGC 3109 UGC 128 UGC 2259 M 33
IC 2574 DDO 170 DDO 168 NGC 3726 NGC 3769 NGC 3877 NGC 3893
NGC 3917 NGC 3949 NGC 3953 NGC 3972 NGC 3992 NGC 4010
NGC 4013 NGC 4051 NGC 4085 NGC 4088 NGC 4100 NGC 4138
NGC 4157 NGC 4183 NGC 4217 NGC 4389 UGC 6399 UGC 6446
UGC 6667 UGC 6818 UGC 6917 UGC 6923 UGC 6930 UGC 6973
UGC 6983 UGC 7089 NGC 1024 NGC 3593 NGC 4698 NGC 5879 IC 724
F563-1 F563-V2 F568-1 F568-3 F568-V1 F571-V1 F574-1 F583-1
F583-4 UGC 1230 UGC 5005 UGC 5999 Carina Fornax
Leo I Leo II Sculptor Sextans Sgr
Figure 4. Galaxies with rotation curves well fit by MOND [31].

Table 4. Rotational Velocities [experimental ($V_{\text {exp }}$) and calculated by the Combination of $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR-Gravitational Field with MOND Simple or Standard Interpolating Function ($V_{\text {simp }}, V_{\text {stand }}$)], the Luminous Mass of the Solar System that is enclosed within the circular orbit $\left(M_{\mathrm{d}}\right)$, the corresponding values of function $1 / \mu_{(r)}$, function $a_{(r)}$ and time coefficient of metric (by taking $g_{100}=-1$ and $\left.g_{111}=1\right)\left(g_{00}\right)$ wrt the mean distance from the Sun. Data from [17] (p. 14-3).

Name	$\begin{aligned} & r \\ & / \mathrm{AU} \\ & / 10^{11} \mathrm{~m} \end{aligned}$	$\begin{array}{ll}\boldsymbol{M}_{\text {d }} \quad \\ & 110^{24} \mathrm{~kg}\end{array}$	$\begin{gathered} 1 / \mu_{\text {Schwar }}=1 \\ 1 / \mu_{\text {simp }} \\ 1 / \mu_{\text {stand }} \end{gathered}$	$\begin{gathered} a_{\text {Schwar }}=1 \\ a_{\text {simp }} \\ a_{\text {stand }} \end{gathered}$	$g_{00, \text { Schwar }}$ $g_{00, \text { simp,Lor }}$ $g_{00, \text { stand,Lor }}$	$V_{\text {Schwar }}$ $V_{\text {simp }}$ $V_{\text {stand }}$ $/ \mathrm{Km} \mathrm{s}^{-1}$
Sun	0.00465	1,989,100	1	1	-0.9999957553	436.747
Surface	0.00696		1.00000000000	1.00000000000	-0,9999957553	436.747
			1.00000000000	1.00000000000	-0.9999957553	436.747
Mercury	0.38710	1,989,100.0000	1	1	-0.9999999490	47.880
	0.57909		1.00000000303	1.00000000101	-0.9999999490	47.880
			1.00000000000	1.00000000000	-0.9999999490	47.880
Venus	0.72333	1,989,100.3302	1	1	-0.9999999727	35.027
	1.08209		1.00000001058	1.00000000353	-0.9999999727	35.027
			1.00000000000	1.00000000000	-0.9999999727	35.027
Earth	1.00000	1,989,105.1992	1	1	-0.9999999803	29.790
	1.49598		1.00000002023	1.00000000674	-0.9999999803	29.790
			1.00000000000	1.00000000000	-0.9999999803	29.790
Mars	1.52369	1,989,111.1715	1	1	-0.9999999870	24.134
	2.27941		1.00000004696	1.00000001565	-0.9999999870	24.134
			1.00000000000	1.00000000000	-0.9999999870	24.134
Jupiter	5.20283	1,989,111.8134	1	1	-0.9999999962	13.060
	7.78332		1.00000054758	1.00000018253	-0.9999999962	13.060
			1.00000000000	1.00000000000	-0.9999999962	13.060
Saturn	9.53876	1,991,010.6134	1	1	-0.9999999979	9.650
	14.26978		1.00000183881	1.00000061294	-0.9999999979	9.650
			1.00000000000	1.00000000000	-0.9999999979	9.650
Uranus	19.19139	1,991,579.1134	1	1	-0.9999999990	6.804
	28.70991		1.00000744114	1.00000248038	-0.9999999990	6.804
			1.00000000002	1.00000000001	-0.9999999990	6.804
Neptune	30.06107	1,991,665.7384	1	1	-0.9999999993	5.437
	44.97072		1.00001825627	1.00000608539	-0.9999999993	5.437
			1.00000000017	1.00000000006	-0.9999999993	5.437
Pluto	39.52940	1,991,768.5184	1	1	-0.9999999995	4.741
	59.13514		1.00003156571	1.00001052179	-0.9999999995	4.741
			1.00000000050	1.00000000017	-0.9999999995	4.741
NGC	2.846×10^{12}	1,991,768.5334	1	1	-1,0000000000	3.12×10^{-7}
3198	4.258×10^{12}		404,577,538.2	739.6062784	-1,0000000000	355.39
			404,577,537.7	739.6062781	-1,0000000000	355.39

[^2]```
 EGR: Einsteinian General Relativity
 EP: Equivalence Principle
 ERT: Einstein Relativity Theory
 ESR: Einsteinian Special Relativity
 GDL: Gravitational Deflection of Light
 GEE: Gravito-Electric Effect
 GME: Gravito-Magnetic Effect
 GR: General Relativity
 GRS: Gravitational Red Shift
 GSR: Generalized Special Relativity
GSR-1GSP: GSR-1 1t Generalized Schwarzschild Potential
GSR-3GSP: GSR-3 }\mp@subsup{}{}{\mathrm{ rd }}\mathrm{ Generalized Schwarzschild Potential
 GT: Galilean Transformation
ICLSTTs: Isometric Closed Linear Transformations of Complex Spacetime
 LSTT: Linear Spacetime Transformation
 LB: Lorentz Boost
M-GSR-3GSP: Modified GSR-1 }\mp@subsup{1}{}{\mathrm{ st }}\mathrm{ Generalized Schwarzschild Potential
M-GSR-3GSP: Modified GSR-3 'rd Generalized Schwarzschild Potential
 MOND: Modified Newtonian Dynamics
 NPs: Newtonian Physics
 PMP: Precession of Mercury's Perihelion
 ro: Milgrom radius
 RB: Real Boost
 RIOs: Relativistic Inertial observers
 rs: Schwarzschild radius
 rsI: 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ Generalized Schwarzschild radius
 rsm
 RT: Relativity Theory
 SM: Schwarzschild Metric
 SR: Special Relativity
 TPs: Theory of Physics
UCM: Uniform Circular Motion
 \mu}\mathrm{ : Interpolating function
```


## References

[1] Phipps T E 1986 Mercury's precession according to special relativity Am. J. Phys. 54 (3) 245247. [DOI: 10.1119/1.14664]
[2] Tsamparlis M 2010 Special relativity: An introduction with 200 problems and solutions (Berlin Heidelberg: Springer-Verlag). [ISBN: 978-3-642-03836-5, e-ISBN: 978-3-642-03837-2]
[3] Goldstein H 1980 Classical Mechanics, $2^{\text {nd }}$ Edition (Cambridge, London: Addison-Wesley). [ISBN: 0-201-02969-3]
[4] Park R S et al 2017 Precession of Mercury's Perihelion from Ranging to the MESSENGER Spacecraft Astronomical Journal 153, 121, pp 1-7. [DOI: 10.3847/1538-3881/aa5be2]
[5] Einstein, A 1920 Relativity: The Special and General Theory; (Holt, New York, USA). Translated by Robert W. Lawson.
[6] Vossos S, Vossos E and Massouros Ch G 2019 New Central Scalar Gravitational Potential according to Special Relativity and Newtonian Physics explains the Precession of Mercury's Perihelion, the Gravitational Red Shift and the Rotation Curves in Galaxies, eliminating Dark Matter J Phys: Conf Ser 1391, 012095. [DOI: 10.1088/1742-6596/ 1391/1/012095]
[7] von Soldner J G 1804 Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung, durch die Attraktion eines Weltkörpers, an welchem er nahe vorbei geht Berliner Astronomisches Jahrbuch 1804, 161-172.
https://de.wikisource.org/w/index.php?title=Ueber_die_Ablenkung_eines_Lichtstrals_von_s einer_geradlinigen_Bewegung\&oldid=2052200
[8] Einstein A 1911 On the Influence of Gravitation on the Propagation of Light Annalen der Physik, 35, 898-908. Translated by Michael D. Godfrey. http://gallica.bnf.fr/ark:/12148/bpt6k15338w.image
[9] Rindler W 2006 Relativity: Special, General and Cosmological (New York: Oxford University Press), pp 205, 229-245, 364. [ISBN: 978-0-19-856732-5].
[10] Einstein A 1920 Relativity: The Special and General Theory (New York, USA: Holt). Translated by Robert W. Lawson.
[11] Vossos S and Vossos E 2018 Unification of Newtonian Physics with Einstein Relativity Theory, by using Generalized Metrics of Complex Spacetime and application to the Motions of Planets and Stars, eliminating Dark Matter J Phys.: Conf. Ser. 1141 012128. [DOI: 10.1088/1742-6596/1141/1/012128]
[12] Vossos S and Vossos E 2016 Euclidean Closed Linear Transformations of Complex Spacetime and generally of Complex Spaces of dimension four endowed with the Same or Different Metric J Phys: Conf Ser 738 012048. [DOI:10.1088/1742-6596/738/1/012048]
[13] Vossos E, Vossos S and Massouros C. G. 2020 Closed linear transformations of complex space-time endowed with Euclidean or Lorentz metric IJPAM, 44-2020, 1033-1053.
[14] Vossos S and Vossos E 2015 Euclidean Complex Relativistic Mechanics: A New Special Relativity Theory J. Phys.: Conf. Ser. 633 012027. [DOI:10.1088/1742-6596/633/1/012027]
[15] Golovko V A 2019 New metrics for the gravitational field of a point mass Results in Physics 13 102288. [DOI: 10.1016/j.rinp.2019.102288]
[16] Williams D R. Mercury Fact Sheet. [Access: June 27, 2018] https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
[17] Lide D R ed 2009 CRC Handbook of Chemistry and Physics 89th Edition (Internet Version) (FL: CRC Press/Taylor and Francis, Boca Raton).
[18] Williams D R. Sun Fact Sheet. [Access: June 27, 2018] https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
[19] Williams D R. Earth Fact Sheet. [Access: June 27, 2018] https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
[20] McGaugh S and Milgrom M 2013 Andromeda Dwarfs in Light of MOND Astrophysical Journal 766(1), 22, pp 1-7. [DOI: 10.1088/0004-637X/766/1/22]
[21] Vossos S and Vossos E 2017 Explanation of Rotation Curves in Galaxies and Clusters of them, by Generalization of Schwarzschild Metric and Combination with MOND, eliminating Dark Matter, J. Phys.: Conf Ser. 936012008. [DOI:10.1088/1742-6596/936/1/012008]
[22] Lopresto J C, Chapman R D and Sturgis E A 1980 Solar gravitational redshift Solar Physics 66, 245-249.
[23] Begeman KG $1989 \mathrm{H}_{\mathrm{I}}$ rotation curves of spiral galaxies. I - NGC 3198 Astron Astrophys 223(12) $47-60$ http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1989A\%26A...223...47B\& defaultprint=YES\&filetype=.pdf
[24] Heymans C 2017 The Dark Universe (IOP Publishing, Bristol, UK). [ISBN: 978-0-7503-1373-5] [DOI:10.1088/978-0-7503-1373-5]
[25] Davies P 2006 The Goldilocks Enigma (New York, USA: First Mariner Books). [ISBN: 978-0-618-59226-5]
[26] Bars I and Terning J 2009 Extra Dimensions in Space and Time (New York, USA: Springer). [ISBN: 978-0-387-77637-8].
[27] Karukes EV, Salucci P and Gentile G 2015 The Dark Matter Distribution in the Spiral NGC3198 out of $0.22 \mathrm{R}_{\mathrm{vir}}$ Astron Astrophys 578, A13, pp 1-8. [DOI: 10.1051/0004-6361/201425339]
[28] McGaugh S. MOND Rotation Curve Fits-"The MOND pages". [Access: April 19, 2019] http://astroweb.case.edu/ssm/mond/fitroster.html
[29] Corbelli E, Thilker D, Zibetti S, Giovanardi C, Salucci P 2014 Dynamical signatures of a $\Lambda$ CDM-halo and the distribution of the baryons in M33 Astron Astrophys 572, A23, pp 1-18. [DOI: 10.1051/0004-6361/201424033]


[^0]:    ${ }^{2}$ e-mail: svossos@uoa.gr.
    ${ }^{3}$ e-mail: evossos@uoa.gr.
    ${ }^{4}$ e-mail: ChrMas@uoa.gr.

[^1]:    ${ }^{1}$ [16], [17] (pp. 1-1, 1-20, 14-2), [18], [19]

[^2]:    Abbreviations-Annotations
    1GSL: $1^{\text {st }}$ Generalized Schwarzschild Lagrangian
    1GSM: $1^{\text {st }}$ Generalized Schwarzschild Metric
    1GSP: $1^{\text {st }}$ Generalized Schwarzschild Potential
    1GSRP: ${ }^{\text {st }}$ Generalized Schwarzschild Relativistic Potential
    3GSL: $3^{\text {rd }}$ Generalized Schwarzschild Lagrangian
    3GSM: $3^{\text {rd }}$ Generalized Schwarzschild Metric
    3GSRP: $3^{\text {rd }}$ Generalized Schwarzschild Relativistic Potential CCs: Cartesian Coordinates
    $c_{\mathrm{I}}$ : Universal Speed
    DM: Dark Matter

