New Central Scalar Gravitational Potential according to Special Relativity and Newtonian Physics, explains the Precession of Mercury's Perihelion, the Gravitational Red Shift and the Rotation Curves in Galaxies, eliminating Dark Matter

Spyridon Vossos ${ }^{1,2}$, Elias Vossos ${ }^{1,3}$ and Christos G. Massouros ${ }^{1,4}$
${ }^{1}$ National and Kapodistrian University of Athens, Euripus Campus, Greece

Keywords: Cavendish experiment, dark matter, Einstein Relativity Theory, Euclidean closed linear transformations, Euclidean complex relativistic mechanics, Euclidean metric, Galaxies: kinimatics and dynamics of, Galaxies: rotation curve, Galilean transformation, General Relativity, geodesics, gravitation, gravitational red shift, Lagrangian, linear spacetime transformation, Lorentz boost, Lorentz metric, Lorentz transformation, Minkowski space, Modified Newtonian Dynamics, MOND, Newtonian Physics, precession of Earth's perihelion, precession of Mercury's perihelion, relativistic Doppler shift, Schwarzschild metric, Solar System: kinimatics and dynamics of, Special Relativity.

PACS: 02.10.Ud, 02.40.Dr, 03.30.+p, 04.20.-q, 04.50.Kd, 04.80.Cc, 95.35.+d, 96.12.De, 96.15.De, 98.20.+d

Abstract

The mainstream approach of gravitational field is the development of Geometric theories of gravitation and the application of the Dynamics of General Relativity (GR). Besides, the Generalized Special Relativity (GSR) contains the fundamental parameter $\left(\xi_{\mathrm{I}}\right)$ of Theories of Physics (TPs). Thus, it expresses at the same time Newtonian Physics (NPs) for $\xi_{\mathrm{I}} \rightarrow 0$ and Einstein Relativity Theory (ERT) for $\xi_{\mathrm{I}}=1$. Moreover, the Equivalence Principle (EP) in the context of GSR, has two possible interpretations: $m_{\mathrm{G}}=m(1)$, or $m_{\mathrm{G}}=\gamma\left(\xi_{\mathrm{I}}, \beta\right) m(2)$, where $\beta=v / \mathrm{c}$ and $m_{\mathrm{G}}, m, \gamma$ are the gravitational mass, inertial rest mass and Lorentz γ-factor, respectively. In this paper we initially present a new central scalar potential $V=V_{(k, r)}$, where $k=k\left(\xi_{\mathrm{I}}\right)$ and r is the distance from the center of gravity. We demand that 'this new GSR gravitational field in accordance with EP (1), gives the same precession of Mercury's orbit as Schwarzschild Metric (SM) does' and we obtain $k=6-\xi_{\mathrm{I}}^{2}$. This emerges Einsteinian SR-horizon at $r=5 r_{\mathrm{S}}$, while NPs extends the horizon at six Schwarzschild radius $\left(6 r_{\mathrm{S}}\right)$.

[^0]We can also explain the Gravitational Red Shift (GRS), if only the proposed GSR Gravitational field strength $g=g(k, r)$ is combined with EP (2). We modify the aforementioned central scalar potential as $V=V(h, k, r)$, where $h=h(r)$. The combination of the above with MOND interpolating functions, or distributions of Dark Matter (DM) in galaxies, provides six different functions $h=h(r)$. Thus, we obtain a new GSR central Gravitational field strength $g=g(h, k, r)$, which not only explains the Precession of Mercury's Perihelion, but also the Rotation Curves in Galaxies, eliminating Dark Matter.

1. Introduction

The Equivalence Principle (EP) in the context of Special Relativity (SR), has two possible interpretations [1] (p.245). According to the mainstream approach (weak EP), the gravitational mass $\left(m_{\mathrm{G}}\right)$ is equal to the inertial rest mass (m):

$$
\begin{equation*}
m_{G}=m . \tag{1}
\end{equation*}
$$

On the other hand, the alternative approach is

$$
\begin{equation*}
m_{\mathrm{G}}=\gamma \mathrm{m} . \tag{2}
\end{equation*}
$$

Besides, we have the gravitational potential energy

$$
\begin{equation*}
U=m_{\mathrm{G}} V, \tag{3}
\end{equation*}
$$

where V is scalar gravitational potential.
The consideration of Newtonian scalar gravitational potential

$$
\begin{equation*}
V_{\mathrm{N}}=-\frac{\mathrm{G} M}{r} \tag{4}
\end{equation*}
$$

according to SR, gives precession of Mercury's perihelion only 7.16" per century, in case that we follow the mainstream approach (1) [2] (p. 355), [3] (p. 338), while the alternative approach (2) gives $21.49^{\prime \prime}$ per century [4] (p. 758), [5] (p. 758). Both the above theoretical results are far away from the experimental value:

$$
\begin{equation*}
\left.\Omega_{\text {exp }}=42.9799(9)\right)^{\prime c y^{-1}} \text {. } \tag{5}
\end{equation*}
$$

This is the contribution of the Sun due to Schwarzschild Gravitoelectric effect to the total precession of Mercury's perihelion [6] (p. 6). Therefore, when dealing with the gravitational field, we usually apply the Dynamics of General Relativity (GR) and we develop Geometric theories of gravitation [7]. The EP in GR is: accelerated motions caused by the gravitational field only (free fall) take place along geodesics of the metric, which corresponds to the particular gravitational field [2] (p. 248).

In this paper, we use generalized Relativity Theory (RT), which contains Einstein Relativity Theory (ERT) and Newtonian Physics (NPs), keeping the formalism of ERT. Thus, the differences between these two Theories of Physics (TPs) are limited to their different value of metric coefficients of spacetime for the corresponding Relativistic Inertial observers (RIOs) and the fundamental parameter of TPs: ξ_{1}. NPs has $\xi_{1} \rightarrow 0$, while ERT has $\xi_{1}=1$ [8].

The case of observers with variable metric of spacetime, leads to the corresponding GR. For being this clear, we produce the $1^{\text {st }}$ Generalized Schwarzschild Metric (1 GSM) and the $3^{\text {rd }}$ Generalized Schwarzschild Metric (3GSM), which are in accordance with any SR based on isotropic Generalized metrics $\left(g_{1}\right)$ and Einstein field equations.

In case of 1GSM, we compute the corresponding Lagrangian, geodesics, equations of motion, precession of planets' orbits etc, resulting formulas which are referred to any TPs. We also present the results of the original Schwarzschild metric (SM), by adopting a new separation of total energy into potential energy (which depends only on distance) and generalized kinetic energy (which depends not only on velocity, but also on distance). This emerges a new central potential, which gives the wellknown Schwarzschild gravitational field strength. The next step is the modification of the above potential (by introducing a real parameter k), because is going to be used according to Generalized Special Relativity (GSR) (as a pure GSR field in the spacetime of RIOs). The condition: 'this new

GSR gravitational field strength gives the same precession of Mercury's orbit as the original SM does', emerges the value of parameter $k=6-\xi_{1}^{2}$. Thus, we obtain the new GSR central scalar gravitational potential $V=\left[\operatorname{sqrt}\left(1-k r_{\mathrm{s}} / r\right)-1\right] \mathrm{c}^{2} / k$. NPs (with $\xi_{1} \rightarrow 0$) gives $k=6$, while ERT (with $\xi_{1}=1$) emerges $k=5$. Finally, we compare the SR and GR approaches of gravity and conclude no significant variation.

In case of 3GSM, the combination of its Newtonian version with Modified Newtonian Dynamics (MOND), leads to MOND relativization. After, we pass to RIOs of ordinary flat spacetime (Minkowski space) with Lorentz metric, extending MOND methods to ERT. We use Simple and Standard Interpolating Function (μ) to the Lorentzian version of 3GSM, for the explanation of the Rotation Curves in Galaxies as well as the Solar system, eliminating Dark Matter. Generally, this approach, in non rotating black hole, planetary and star system scale, coincides to the original Schwarzschild metric, while in galactic scale, it gives MONDian results. We also modify the aforementioned central scalar potential as $V=\left[\mathrm{sqrt}\left(1-h k r_{s} / r\right)-1\right] \mathrm{c}^{2} / k$, where $h=h(r)$. The combination of the above with MOND interpolating functions, or distributions of Dark Matter (DM) in galaxies, provides six different functions $h=h(r)$. Thus, we obtain a new GSR central Gravitational field strength $g=g(h, k, r)$, which not only explains the Precession of Mercury's Perihelion, but also the Rotation Curves in Galaxies, eliminating Dark Matter.

2. Isometric Euclidean Closed Linear Transformations of Complex Spacetime endowed with the Corresponding Metrics

In this paper, the metric coefficients of time and space have different signs. Moreover, 3D-space is isotropic, in case of Isometric Euclidean Closed Linear Transformations of Complex Spacetime (IECLSTTs) [9]. Thus, for RIOs, the representation of the non-degenerate inner product in holonomic basis $\left\{\mathbf{e}_{c t}, \mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$ of 'flat' spacetime is the real matrix

$$
\begin{equation*}
g_{\mathrm{I}}=\operatorname{diag}\left(g_{\mathrm{I} 00}, g_{\mathrm{I} 11}, g_{\mathrm{I} 22}, g_{\mathrm{I} 33}\right)=g_{\mathrm{I} 11} \operatorname{diag}\left(-\frac{1}{\xi_{\mathrm{I}}^{2}}, 1,1,1\right)=g_{\mathrm{I} 00} \operatorname{diag}\left(1,-\xi_{\mathrm{I}}^{2},-\xi_{\mathrm{I}}^{2},-\xi_{\mathrm{I}}^{2}\right), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{I}=\sqrt{\frac{g_{111}}{-g_{100}}} \tag{7}
\end{equation*}
$$

The index I remind us that we are referred to the spacetime of the RIOs of each specific TPs. This GSR has real Universal Speed $\left(c_{\mathrm{I}}\right)$:

$$
\begin{equation*}
c_{\mathrm{I}}=\frac{1}{\xi_{\mathrm{I}}} \mathrm{c} \tag{8}
\end{equation*}
$$

and the transformation of a contravariant four-vector is

$$
\begin{equation*}
\mathrm{d} X^{\prime}=\Lambda_{\mathrm{I}\left(\xi_{1}, \vec{\beta}\right)} \mathrm{d} X, \tag{9}
\end{equation*}
$$

where

$$
\begin{gather*}
\Lambda_{\mathrm{I}\left(\xi_{1}, \vec{\beta}\right)}=\gamma_{(\xi, \bar{\beta}, \overline{)}}\left[\begin{array}{cccc}
1 & -\xi_{\mathrm{I}}^{2} \beta_{x} & -\xi_{\mathrm{I}}^{2} \beta_{y} & -\xi_{\mathrm{I}}^{2} \beta_{z} \\
-\beta_{x} & 1 & \mathrm{i} \xi_{\mathrm{I}} \beta_{z} & -\mathrm{i} \xi_{\mathrm{I}} \beta_{y} \\
-\beta_{y} & -\mathrm{i} \xi_{\mathrm{I}} \beta_{z} & 1 & \mathrm{i} \xi_{\mathrm{I}} \beta_{x} \\
-\beta_{z} & \mathrm{i} \xi_{\mathrm{I}} \beta_{y} & -\mathrm{i} \xi_{\mathrm{I}} \beta_{x} & 1
\end{array}\right]=\gamma_{(\xi, \bar{j}, \overline{)}}\left[\begin{array}{cc}
1 & -\xi_{\mathrm{I}}^{2} \beta^{T} \\
-\beta & \mathrm{I}_{3}+\mathrm{i} \xi_{\mathrm{I}} \mathrm{~A}_{(\beta)}
\end{array}\right], \tag{10}\\
\beta^{i}=\frac{\mathrm{d} x^{i}}{\mathrm{~d} x^{0}} ; \quad \beta=\left[\begin{array}{c}
\beta_{x} \\
\beta_{y} \\
\beta_{z}
\end{array}\right] ; \quad \mathrm{A}_{(\beta)}=\left[\begin{array}{ccc}
0 & \beta_{z} & -\beta_{y} \\
-\beta_{z} & 0 & \beta_{x} \\
\beta_{y} & -\beta_{x} & 0
\end{array}\right] \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\gamma_{(\bar{\delta})}=\frac{1}{\sqrt{1-\vec{\delta}^{2}}} \tag{12}
\end{equation*}
$$

is Lorentz γ-factor.
The specific value $\xi_{\mathrm{I}} \rightarrow 0\left(\mathrm{~g}_{\mathrm{II1}} \rightarrow 0, \mathrm{~g}_{\mathrm{I} 00} \neq 0\right)$ gives Galilean Transformation (GT) with Infinite Universal Speed $\left(c_{\mathrm{I}} \rightarrow+\infty\right)$ and the corresponding metric of the spacetime (let us call Galilean metric)

$$
\begin{equation*}
g_{\Gamma}=\lim _{g_{111} \rightarrow 0} \operatorname{diag}\left(g_{\mathrm{I} 00}, g_{\mathrm{II1}}, g_{\mathrm{I} 11}, \quad g_{\mathrm{I} 11}\right)=g_{\mathrm{I} 00} \lim _{\xi_{1} \rightarrow 0} \operatorname{diag}\left(1,-\xi_{\mathrm{I}}^{2},-\xi_{\mathrm{I}}^{2},-\xi_{\mathrm{I}}^{2}\right) . \tag{13}
\end{equation*}
$$

The corresponding spacetime (let us call Galilean spacetime) has infinite curvature ($K \rightarrow+\infty$) in any orientation $\kappa \mathbf{e}_{\mathbf{x}}+\lambda \mathbf{e}_{\mathbf{y}}+\mu \mathbf{e}_{\mathbf{z}}$ of 3 D -space. This is the reason that time is absolute for any type of observers as well as the Universal speed is infinite $\left(c_{\mathrm{I}} \rightarrow+\infty\right)$.

The specific value $\xi_{\mathrm{I}}=1\left(g_{\mathrm{II1}}=-g_{\mathrm{I} 00}\right)$ gives Vossos Transformation (VT) with $c_{\mathrm{I}}=\mathrm{c}$ (the universal speed is the speed of light in vacuum) and the corresponding metric of spacetime (let us call Vossos metric)

$$
\begin{equation*}
g_{\mathrm{B}}=g_{\mathrm{I} 11} \operatorname{diag}(-1,1,1,1)=g_{\mathrm{II1}} \eta, \tag{11}
\end{equation*}
$$

which for $g_{111}=1$ becomes the Lorentz metric (η). Thus, we have the Lorentzian case of Euclidean Complex Relativistic Mechanics (ECRMs) [10], which is associated with ERT.

We now make the option that observer O measures real spacetime. As matrix Λ_{I} contains some elements which are imaginary numbers, we conclude that the spacetime of one moving observer is complex. Thus, we put an index C to the complex natural sizes and the real natural sizes have no index. The typical matrix of IECLSTTs along x-axis (Generalized; Galilean-Newtonian; LorentzianEinsteinian) is
$\Lambda_{\mathrm{Ityp}}=\gamma_{\left(\xi_{\mathrm{I}} \beta\right)}\left[\begin{array}{cccc}1 & -\xi_{\mathrm{I}}^{2} \beta & 0 & 0 \\ -\beta & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathrm{i} \xi_{\mathrm{I}} \beta \\ 0 & 0 & -\mathrm{i} \xi_{\mathrm{I}} \beta & 1\end{array}\right] ; \Lambda_{\Gamma t y p}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -\beta & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ; \Lambda_{\mathrm{B} t y p}=\gamma_{(\beta)}\left[\begin{array}{cccc}1 & -\beta & 0 & 0 \\ -\beta & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathrm{i} \beta \\ 0 & 0 & -\mathrm{i} \beta & 1\end{array}\right]$.
In addition, any complex Cartesian Coordinates (CCs) of the theory may be turned to the corresponding real CCs, in order to be perceived by human senses. This is achieved, if the moving Observer O^{\prime} considers as Real CCs the corresponding lengths of rods [8] (p. 6). Thus, it emerges the (Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) Real Boost (RB)

$$
\begin{equation*}
\mathrm{d} X^{\prime}=\Lambda_{\mathrm{IR}(\beta)} \mathrm{d} X ; \mathrm{d} X^{\prime}=\Lambda_{\Gamma(\beta)} \mathrm{d} X ; \mathrm{d} X^{\prime}=\Lambda_{\mathrm{L}(\beta)} \mathrm{d} X, \tag{13}
\end{equation*}
$$

where

$$
\Lambda_{\mathrm{IR}(\vec{\beta})}=\left[\begin{array}{cc}
\gamma_{\left(\xi_{1} \vec{\beta}\right)} & -\gamma_{\left(\xi_{\mathrm{s}, \vec{\beta}}\right)} \xi_{\mathrm{I}}^{2} \beta^{T} \tag{14}\\
-\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}\right)} \beta & \mathrm{I}_{3}+\frac{\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}\right)}-1}{\beta^{T} \beta} \beta \beta^{T}
\end{array}\right] ; \Lambda_{\Gamma(\vec{\beta})}=\left[\begin{array}{cc}
1 & 0 \\
-\beta & \mathrm{I}_{3}
\end{array}\right] ; \Lambda_{\mathrm{L}(\vec{\beta})}=\left[\begin{array}{cc}
\gamma_{(\vec{\beta})} & -\gamma_{(\vec{\beta})} \beta^{T} \\
-\gamma_{(\vec{\beta})} \beta & \mathrm{I}_{3}+\frac{\gamma_{(\vec{\beta})}-1}{\beta^{T} \beta} \beta \beta^{T}
\end{array}\right] .
$$

The typical matrix of (Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) RB along x-axis is

$$
\Lambda_{\mathrm{IR} \operatorname{typ}(\beta)}=\left[\begin{array}{cccc}
\gamma_{\left(\xi_{1} \beta\right)} & -\xi_{1}^{2} \gamma_{\left(\xi_{1} \beta\right)} \beta & 0 & 0 \tag{15}\\
-\gamma_{\left(\xi_{5} \beta\right)} \beta & \gamma_{\left(\xi_{1} \beta\right)} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \Lambda_{\Gamma t y p(\beta)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\beta & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \Lambda_{\mathrm{Ltyp}(\beta)}=\left[\begin{array}{cccc}
\gamma_{(\beta)} & -\gamma_{(\beta)} \beta & 0 & 0 \\
-\gamma_{(\beta)} \beta & \gamma_{(\beta)} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

We observe that for $\xi_{\mathrm{I}}=1$, we have the original typical proper Lorentz Boost (LB) (see e.g. [2] p. 21, eq. 1.38) and the corresponding general proper LB (see e.g. [2] p. 24, eq. 1.47).

Supposing one Particle (P) with real mass m moving with velocity $\vec{v}_{P}=\vec{\beta}_{P}$ c wrt observer O, we calculate the Generalized relativistic kinetic energy; Generalized relativistic energy; Generalized energy of Rest mass [8] (p. 10):

$$
\begin{equation*}
K=\frac{\gamma_{\left(\xi_{1} \vec{\beta}_{P}\right)}-1}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2} ; E=\frac{\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)}}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2} ; E_{\text {rest }}=\frac{1}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2} \tag{16}
\end{equation*}
$$

3. GR: Generalized Schwarzschild metrics

3.1. The metric of a static and centrally symmetric gravitational field

Einstein field equations in vacuum [11] (pp. 303, 396) are reduced to the single tensor equation $R_{\mu \nu}=0$.
This emerges the metric of a static and centrally symmetric gravitational field

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{100} f_{(r)} \mathrm{c}^{2} \mathrm{~d} t^{2}+g_{111} g_{(r)} \mathrm{d} r^{2}+g_{111} h_{(r)} \mathrm{d} \theta^{2}+g_{111} h_{(r)} \sin ^{2} \theta \mathrm{~d} \phi^{2}, \tag{17}
\end{equation*}
$$

with the following conditions [12] (p. 2):

$$
\begin{equation*}
g_{(r)}=\frac{\mu}{f_{(r)}\left(1-f_{(r)}\right)^{4}}\left(\frac{\mathrm{~d} f}{\mathrm{~d} r}\right)^{2} ; h_{(r)}=\frac{\mu}{\left(1-f_{(r)}\right)^{2}}, \tag{18}
\end{equation*}
$$

where μ is an arbitrary constant and f is an arbitrary function of r (not constant).

3.2. The $3^{r d}$ Generalized Schwarzschild Metric, Relativistic potential and Field strength

We define a new relativistic potential Φ around a center of gravity with mass M (let us call $3^{\text {rd }}$ Generalized Schwarzschild Relativistic Potential-3GSRP) as

$$
\begin{equation*}
\Phi=\frac{\mathrm{c}^{2}}{2 \xi_{\mathrm{I}}^{2}} \ln \left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{s}}}{r}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{\mathrm{s}}=\frac{2 \mathrm{G} M}{\mathrm{c}^{2}} \tag{20}
\end{equation*}
$$

is Schwarzschild radius and $a_{(r)}$ is unspecified function, in accordance with any TPs. The 3GSP is connected with Φ, via the formula

$$
\begin{equation*}
\ln f_{(r)}=\frac{2}{c_{\mathrm{I}}^{2}} \Phi=\frac{2 \xi_{\mathrm{I}}^{2}}{\mathrm{c}^{2}} \Phi \tag{21}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
f_{(r)}=1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r} . \tag{22}
\end{equation*}
$$

After replacing the above equation and $\mu=\xi_{1}^{4} r_{\mathrm{S}}^{2}$ to (18), we also have

$$
\begin{equation*}
g_{(r)}=\frac{\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)} ; h_{(r)}=\frac{r^{2}}{a_{(r)}^{2}} . \tag{23}
\end{equation*}
$$

So, we obtain the $3^{r d}$ Generalized Schwarzschild Metric (3GSM)

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{100}\left(1-a_{(r)} \frac{\xi_{1}^{2} r_{\mathrm{s}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}+\frac{g_{111}\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-a_{(r)} \frac{\xi_{1}{ }^{2} r_{\mathrm{s}}}{r}\right)} \mathrm{d} r^{2}+\frac{g_{111} r^{2}}{a_{(r)}{ }^{2}} \mathrm{~d} \theta^{2}+\frac{g_{111} r^{2}}{a_{(r)}{ }^{2}} \sin ^{2} \theta \mathrm{~d} \phi^{2}, \tag{24}
\end{equation*}
$$

with spatial part

$$
\begin{equation*}
\mathrm{d} l^{2}=\frac{g_{\mathrm{I11}}\left(r \frac{\mathrm{~d} a}{\mathrm{~d} r}-a_{(r)}\right)^{2}}{a_{(r)}{ }^{4}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}{ }^{2} r_{\mathrm{s}}}{r}\right)} \mathrm{d} r^{2}+\frac{g_{\mathrm{I11}} r^{2}}{a_{(r)}{ }^{2}} \mathrm{~d} \theta^{2}+\frac{g_{\mathrm{I11}} r^{2}}{a_{(r)}{ }^{2}} \sin ^{2} \theta \mathrm{~d} \phi^{2}, \tag{25}
\end{equation*}
$$

where a is an arbitrary function of r (or constant). Now, we can calculate this radial field strength, by defining

$$
\begin{equation*}
\vec{g}=-\sqrt{g_{\mathrm{I} 11}} \nabla \Phi=-\sqrt{g_{\mathrm{I} 11}} \frac{d \Phi}{d l} \hat{r}=-\sqrt{g_{\mathrm{I} 11}} \frac{d \Phi}{d r} \frac{d r}{d l} \hat{r}, \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\sqrt{g_{\mathrm{I} 11}} \frac{d \Phi}{d r} \frac{d r}{d l} \tag{27}
\end{equation*}
$$

The positive value of field strength means gravity, while negative value means antigravity. So, it is

$$
\begin{equation*}
g=\frac{G M}{r^{2}}\left(1-a_{(r)} \frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)^{-\frac{1}{2}} a_{(r)}^{2}>0 \tag{28}
\end{equation*}
$$

We also prefer $a>0$, in order to ensure Gravitational Red Shift (GRS).

3.3. The $1^{\text {st }}$ Generalized Schwarzschild Metric, Relativistic potential, Field strength, Lagrangian,

 Geodesics, Equations of motion and Precession of planets' orbitsIn case that $a_{(r)}=1$, (19) gives the $1^{\text {st }}$ Generalized Schwarzschild Relativistic Potential (1GSRP) [9] (p.11):

$$
\begin{equation*}
\Phi=\frac{\mathrm{c}^{2}}{2 \xi_{\mathrm{I}}^{2}} \ln \left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right)=-\frac{\mathrm{c}^{2}}{2} \frac{r_{\mathrm{S}}}{r}+\ldots=-\frac{\mathrm{G} M}{r}+\ldots \tag{29}
\end{equation*}
$$

Thus, (24) emerges the $1^{\text {st }}$ Generalized Schwarzschild metric (1GSM):

$$
\begin{equation*}
\mathrm{d} S^{2}=g_{\mathrm{I} 00}\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}+\frac{g_{\mathrm{II11}}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}+g_{\mathrm{I} 11} r^{2} \mathrm{~d} \theta^{2}+g_{\mathrm{I} 11} r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{30}
\end{equation*}
$$

Besides, the $I^{\text {st }}$ Generalized Schwarzschild field strength (g) is

$$
\begin{equation*}
\vec{g}=-\frac{G M}{r^{2}}\left(1-\xi_{I}{ }^{2} \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} . \tag{31}
\end{equation*}
$$

The usual definition of Lagrangian of gravitational system (M, m) [11] (p. 205)

$$
\begin{equation*}
L=m \dot{x}^{\mu} g_{\mu \nu} \dot{x}^{\nu} \tag{32}
\end{equation*}
$$

for orbit on the 'plane' $\theta=\pi / 2$, gives the $1^{s t}$ Generalized Schwarzschild Lagrangian (1GSL) [8] (p. 15):

$$
\begin{equation*}
L=m g_{\mathrm{I} 00}\left[\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \dot{t}^{2}-\frac{\xi_{\mathrm{I}}^{2}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}} \dot{r}^{2}-\xi_{\mathrm{I}}^{2} r^{2} \dot{\phi}^{2}\right] ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} . \tag{33}
\end{equation*}
$$

The well-known Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d \tau}\left(\frac{\partial L}{\partial \dot{x}^{\mu}}\right)-\frac{\partial L}{\partial x^{\mu}}=0 ; \mu=0,1,3 \tag{34}
\end{equation*}
$$

give us

$$
\begin{gather*}
E=\left(1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}\right) \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \dot{t} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau} ; \tag{35}\\
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{2 \dot{r}}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}\right)-\left[-\frac{r_{\mathrm{S}}}{r^{2}} \mathrm{c}^{2} \dot{t}^{2}+\frac{\partial}{\partial r}\left(\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{r}}\right) \dot{r}^{2}+2 r \dot{\phi}^{2}\right]=0 \tag{36}
\end{gather*}
$$

$$
\begin{equation*}
J=m r^{2} \dot{\phi} \quad ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{37}
\end{equation*}
$$

where E is the total energy and J is the total angular momentum of the system (the integrals of motion). The solutions of the above equations of motion satisfy the condition

$$
\begin{equation*}
L=m g_{\mathrm{I} 00} \mathrm{c}^{2} \tag{38}
\end{equation*}
$$

So, they can also be used for the practical determination of geodesics [11] (p. 205).
Now, we study the motion of particle P around the center of gravity of mass M. The case of Uniform Circular Motion (UCM) is obtained, by putting $r=R=$ constant to (36). The orbit of noncircular motion comes with similar way to the original Schwarzschild space [11] (pp. 238-45). Thus, the exact differential equation of motion is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h^{2}}+3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; u=\frac{1}{r} ; h=r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau}, \tag{39}
\end{equation*}
$$

where $h=\mathrm{J} / \mathrm{m}$ is the angular momentum per mass unit.
In case of small velocities relative to $c_{\mathrm{I}}\left(v \ll \mathrm{c} / \xi_{\mathrm{I}}\right)$, we replace the solution of the simplified differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h^{2}} ; u=\frac{\mathrm{G} M}{h^{2}}(1+e \cos \phi) ; \quad \frac{\mathrm{G} M}{h^{2}}=\frac{1}{a\left(1-e^{2}\right)} \tag{40}
\end{equation*}
$$

to the last term of the exact differential equation of motion (e is the eccentricity of the conic section, α is the semimajor axis in case of ellipse). Thus, we have the approximate differential equation of motion (which also validates UCM):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h^{2}}+3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{3} M^{3}}{\mathrm{c}^{2} h^{4}}(1+e \cos \phi)^{2} ; u=\frac{1}{r} ; \quad h=r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau} \tag{41}
\end{equation*}
$$

with exact and approximate solution, correspondingly

$$
\begin{gather*}
u=\frac{\mathrm{G} M}{h^{2}}\left(1+e \cos \phi+3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}} e \phi \sin \phi\right) ; u=\frac{1}{r} ; h=r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t} ; \frac{\mathrm{G} M}{h^{2}}=\frac{1}{a\left(1-e^{2}\right)} \tag{42}\\
u \approx \frac{\mathrm{G} M}{h^{2}}\left(1+e \cos \left[\left(1-3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}}\right) \phi\right]\right) ; 0<\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}} \ll 1 \tag{43}
\end{gather*}
$$

The last equation can be written as

$$
\begin{equation*}
u=\frac{1}{r} \approx \frac{\mathrm{G} M}{h^{2}}\left[1+e \cos \left(\lambda_{\mathrm{GR}} \phi\right)\right] ; \lambda_{\mathrm{GR}}=1-3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}} ; 0<\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}} \ll 1 . \tag{44}
\end{equation*}
$$

Hence the orbit can be regarded as an ellipse that rotates ('precesses') about one of its foci by an amount

$$
\begin{equation*}
\Delta=\frac{2 \pi}{1-3 \xi_{\mathrm{I}}^{2} \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}}}-2 \pi \approx \frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}}=\frac{6 \pi \xi_{\mathrm{I}}^{2} \mathrm{G} M}{a\left(1-e^{2}\right) \mathrm{c}^{2}} ; h=r^{2} \dot{\phi} \quad ; \quad \dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} \tau}=\frac{\mathrm{d} \phi}{\mathrm{~d} t} \dot{t} \tag{45}
\end{equation*}
$$

rad per revolution. Finally the angular velocity of ellipse rotation is given by the formula

$$
\begin{equation*}
\Omega\left(\frac{\prime \prime}{c y}\right)=\Delta\left(\frac{\mathrm{rad}}{\mathrm{rev}}\right)\left(\frac{360^{\circ}}{2 \pi \mathrm{rad}}\right)\left(\frac{3600^{\prime \prime}}{1^{\circ}}\right) \frac{1}{T}\left(\frac{\mathrm{rev}}{\text { day }}\right)\left(\frac{365.242 \text { day }}{\text { year }}\right)\left(\frac{100 \text { year }}{\mathrm{cy}}\right) \tag{46}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Omega\left(\frac{\prime \prime}{\mathrm{cy}}\right)=\Delta\left(\frac{\mathrm{rad}}{\mathrm{rev}}\right)\left(\frac{7533657 \times 10^{3 \prime \prime} \cdot \mathrm{day}}{\mathrm{rad} \cdot \mathrm{cy}}\right) \frac{1}{T}\left(\frac{\mathrm{rev}}{\mathrm{day}}\right) \tag{47}
\end{equation*}
$$

Accordingly to the mainstream approach in textbooks, the further study is based on the superposition principle. This emerges the relation of time to proper time. Replacing this to (35), they obtain the final formula of the total relativistic energy. Finally, the generalized potential energy is
calculated, by reducing the kinetic energy (which is considered equal to this of SR) from the total relativistic energy. But SM is a static and stationary metric of non-rotating mass. So, there is no gravitomagnetism and we expect that the gravitational force is independent from the velocity of the particle. Thus we adapt the following approach which gives simple central potential which describes Gravitoelectric Effect (GEE).

The isometry of spacetime relieves us the relation of time to proper time $[8](\mathrm{p} .16)$:

$$
\begin{equation*}
\dot{i}=\frac{\mathrm{d} t}{\mathrm{~d} \tau}=\left[1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}{ }^{2} \frac{r_{\mathrm{s}}}{r}} \beta_{P r}{ }^{2}+\beta_{P \phi}{ }^{2}\right)\right]^{-\frac{1}{2}} \geq 1 ; \theta=\frac{\pi}{2} . \tag{48}
\end{equation*}
$$

Replacing the above equation to (35), we obtain the final formula of the total relativistic energy

$$
\begin{equation*}
E=\frac{1-\xi_{1}^{2} \frac{r_{\mathrm{s}}}{r}}{\sqrt{1-\xi_{\mathrm{I}}^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}} \beta_{P r}^{2}+\beta_{P \phi}^{2}\right)}} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \geq 0 ; \theta=\frac{\pi}{2} . \tag{49}
\end{equation*}
$$

We observe the different contribution of the radial and orbital velocity to the total energy! Now, we demand zero kinetic energy $(K=0)$, in case that the particle is static $\left(\vec{\beta}_{P}=0\right)$. Then $E_{\left(\vec{\beta}_{p}=0\right)}=E_{\text {rest }}+U$, where U is the potential energy. Replacing (16iii) and (49) to the above equation, we have

$$
\begin{align*}
& U=\left(\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}}-1\right) \frac{\mathrm{m} \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 ; \tag{50}\\
& V=\left(\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{s}}}{r}}-1\right) \frac{\mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} \leq 0 \tag{51}
\end{align*}
$$

where V is the $1^{\text {st }}$ Generalized Schwarzschild Potential (1GSP). This is a central potential:

$$
\begin{equation*}
\vec{g}=-\frac{d V}{d r} \hat{r}=-\frac{G M}{r^{2}}\left(1-\xi_{I}^{2} \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} . \tag{52}
\end{equation*}
$$

We observe that the result is the same as (31). The generalized Relativistic Kinetic energy is defined as $K_{\mathrm{g}}=E-E_{\text {rest }}-U$. So,

$$
\begin{equation*}
\left.K_{\mathrm{g}}=\left(\frac{1-\xi_{\mathrm{I}}{ }^{2} \frac{r_{\mathrm{s}}}{r}}{\sqrt{1-\xi_{\mathrm{I}}{ }^{2}\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\xi_{\mathrm{I}}{ }^{2} \frac{r_{\mathrm{s}}}{r}} \beta_{P r}{ }^{2}+\beta_{P \phi}{ }^{2}\right)}}-\sqrt{1-\xi_{\mathrm{I}}{ }^{2} \frac{r_{\mathrm{s}}}{r}}\right) \frac{m \mathrm{c}^{2}}{\frac{\xi_{\mathrm{I}}{ }^{2}}{\mathrm{~m}^{2}}}\right) ; \theta=\frac{\pi}{2} . \tag{53}
\end{equation*}
$$

We also observe that if $r \rightarrow+\infty$, the above equation becomes the Relativistic Kinetic energy of GSR: (16i). Finally the Relativistic mechanic energy $E_{\mathrm{m}}=E-E_{\text {rest }}=K_{\mathrm{g}}+U$ is

In case that $\xi_{1} \rightarrow 0^{+}$(Galilean metric), (48) gives $\dot{i}=1$. Thus, we obtain the Newtonian results:

$$
\begin{gather*}
\Phi_{\mathrm{N}}=\lim _{\xi_{\mathrm{I}} \rightarrow 0} \Phi=\frac{\mathrm{c}^{2}}{2} \lim _{\xi_{\mathrm{I}} \rightarrow 0}\left[\frac{1}{\xi_{\mathrm{I}}^{2}} \ln \left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{s}}}{r}\right)\right]=\frac{\mathrm{c}^{2}}{4} \lim _{\xi_{\mathrm{I}} \rightarrow 0}\left[\frac{1}{\xi_{\mathrm{I}}} \frac{\frac{-2 \xi_{\mathrm{I}} r_{\mathrm{S}}}{r}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{s}}}{r}}\right]=-\frac{\mathrm{c}^{2}}{2} \frac{r_{\mathrm{S}}}{r}=-\frac{\mathrm{G} M}{r} ; \tag{55}\\
\mathrm{d} S_{\mathrm{N}}^{2}=g_{\mathrm{I} 00} \lim _{\xi_{\mathrm{I}} \rightarrow 0}\left[\left(1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}-\frac{\xi_{\mathrm{I}}^{2}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}-\xi_{\mathrm{I}}^{2} r^{2} \mathrm{~d} \theta^{2}-\xi_{\mathrm{I}}^{2} r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right] ; \tag{56}\\
\vec{g}_{\mathrm{N}}=-\frac{\mathrm{G} M}{r^{2}} \hat{r} ; \tag{57}\\
L_{\mathrm{N}}=m g_{100} \mathrm{c}^{2} ; E_{\mathrm{N}}=+\infty ; \ddot{r}+\frac{\mathrm{G} M}{r^{2}}-r \dot{\phi}^{2}=0 ; J_{\mathrm{N}}=m r^{2} \dot{\phi} ; \quad=\frac{\mathrm{d}}{\mathrm{~d} t} ; \theta=\frac{\pi}{2} . \tag{58}
\end{gather*}
$$

The Newtonian differential equation of motion and the corresponding solution are

$$
\begin{gather*}
\frac{\mathrm{d}^{2} u_{\mathrm{N}}}{\mathrm{~d} \phi^{2}}+u_{\mathrm{N}}=\frac{\mathrm{G} M}{h_{\mathrm{N}}{ }^{2}} ; u_{\mathrm{N}}=\frac{\mathrm{G} M}{h_{\mathrm{N}}{ }^{2}}\left(1+e_{\mathrm{N}} \cos \phi\right) ; u=\frac{1}{r} ; h_{\mathrm{N}}=r^{2} \dot{\phi} ;=\frac{\mathrm{d}}{\mathrm{~d} t} ; \tag{59}\\
e_{\mathrm{N}}=\sqrt{1+\frac{2 E_{\mathrm{mN}} h_{\mathrm{N}}{ }^{2}}{\mathrm{G}^{2} M^{2} m}} ; E_{\mathrm{mN}}=-\frac{\mathrm{G} M m}{2 a_{\mathrm{N}}}, \tag{60}
\end{gather*}
$$

where α_{N} is the semimajor axis of Newtonian ellipse which do not rotate $\left(\Lambda_{\mathrm{N}}=0\right)$. Besides

$$
\begin{equation*}
U_{\mathrm{N}}=-\frac{\mathrm{G} M m}{r} ; V_{\mathrm{N}}=-\frac{\mathrm{G} M}{r} ; K_{\mathrm{N}}=\frac{1}{2}\left|\vec{\beta}_{P}\right|^{2} m \mathrm{c}^{2}=\frac{1}{2} m|\vec{v}|^{2} \quad E_{\mathrm{mN}}=\frac{1}{2} m|\vec{v}|^{2}-\frac{\mathrm{G} M}{r} . \tag{61}
\end{equation*}
$$

In case that $\xi_{1}=1$, it emerges the well-known results of the original Schwarzschild metric in ERT (see e.g. [11] pp. 228-45):

$$
\begin{gather*}
\Phi_{E}=\frac{\mathrm{c}^{2}}{2} \ln \left(1-\frac{r_{\mathrm{s}}}{r}\right) ; \tag{62}\\
\mathrm{d} S_{\mathrm{E}}^{2}=g_{\mathrm{IOO}}\left[\left(1-\frac{r_{\mathrm{S}}}{r}\right) \mathrm{c}^{2} \mathrm{~d} t^{2}-\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \mathrm{~d} r^{2}-r^{2} \mathrm{~d} \theta^{2}-r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right] ; \tag{63}\\
\vec{g}_{\mathrm{EGR}}=-\frac{G M}{r^{2}}\left(1-\frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} ; \tag{64}
\end{gather*}
$$

$$
\begin{gather*}
L_{\mathrm{EGR}}=m g_{100}\left[\left(1-\frac{r_{\mathrm{s}}}{r}\right) \mathrm{c}^{2} \dot{t}^{2}-\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \dot{\mathrm{r}}^{2}-r^{2} \dot{\phi}^{2}\right] ; E_{\mathrm{EGR}}=\left(1-\frac{r_{\mathrm{s}}}{r}\right) m \mathrm{c}^{2} \dot{t} ;=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{EGR}}} ; \theta=\frac{\pi}{2} . \tag{65}\\
\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{EGR}}}\left(\frac{2 \dot{r}}{1-\frac{r_{\mathrm{s}}}{r}}\right)-\left[-\frac{r_{\mathrm{s}}}{r^{2}} \mathrm{c}^{2} \dot{t}^{2}+\frac{\partial}{\partial r}\left(\frac{1}{1-\frac{r_{\mathrm{s}}}{r}}\right) \dot{r}^{2}+2 r \dot{\phi}^{2}\right]=0 ; J_{\mathrm{EGR}}=m r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{EGR}}} . \tag{66}
\end{gather*}
$$

The differential equation of non-UCMs of the original Schwarzschild metric has come from (39):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h_{\mathrm{E}}^{2}}+3 \frac{\mathrm{G} M}{\mathrm{c}^{2}} u^{2} ; u=\frac{1}{r} ; h_{\mathrm{EGR}}=r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{EGR}}} \tag{67}
\end{equation*}
$$

The corresponding ERT approximate differential equation of motion (which also validates UCM) is:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{\mathrm{G} M}{h_{\mathrm{EGR}}{ }^{2}}+3 \frac{\mathrm{G}^{3} M^{3}}{\mathrm{c}^{2} h_{\mathrm{EGR}}{ }^{4}}(1+e \cos \phi)^{2} ; u=\frac{1}{r} ; \quad h_{\mathrm{EGR}}=r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{EGR}}} \tag{68}
\end{equation*}
$$

with exact and approximate solution, correspondingly

$$
\begin{gather*}
u=\frac{\mathrm{G} M}{{h_{\mathrm{EGR}}}^{2}}\left(1+e_{\mathrm{EGR}} \cos \phi+3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{EGR}}{ }^{2}} e_{\mathrm{EGR}} \phi \sin \phi\right) ; \frac{\mathrm{G} M}{{h_{\mathrm{EGR}}}^{2}}=\frac{1}{a_{\mathrm{EGR}}\left(1-e_{\mathrm{EGR}}{ }^{2}\right)} ; \tag{69}\\
u \approx \frac{\mathrm{G} M}{{h_{\mathrm{EGR}}}^{2}}\left(1+e_{\mathrm{EGR}} \cos \left[\left(1-3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h_{\mathrm{EGR}}^{2}}\right) \phi\right]\right) ; 0<\frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{EGR}}}^{2}} \ll 1 . \tag{70}
\end{gather*}
$$

The last equation can be written as

$$
\begin{equation*}
u=\frac{1}{r} \approx \frac{\mathrm{G} M}{h^{2}}\left[1+e \cos \left(\lambda_{\mathrm{EGR}} \phi\right)\right] ; \lambda_{\mathrm{EGR}}=1-3 \frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}} ; 0<\frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2} h^{2}} \ll 1 \tag{71}
\end{equation*}
$$

Hence the ERT orbit can be regarded as an Einsteinian ellipse (with $\alpha_{\text {EGR }}$ semimajor axis) which rotates ('precesses) about one of its foci by an amount

$$
\begin{equation*}
\Delta_{\mathrm{EGR}}=\frac{2 \pi}{1-3{\frac{\mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{EGR}}}^{2}}}^{2}} 2 \pi \approx \frac{6 \pi \mathrm{G}^{2} M^{2}}{\mathrm{c}^{2}{h_{\mathrm{EGR}}}^{2}}=\frac{6 \pi \mathrm{G} M}{a_{\mathrm{EGR}}\left(1-e_{\mathrm{EGR}}^{2}\right) \mathrm{c}^{2}} ; \quad h_{\mathrm{EGR}}=r^{2} \dot{\phi} ; \dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} \tau_{\mathrm{EGR}}}=\frac{\mathrm{d} \phi}{\mathrm{~d} t} \dot{t} \tag{72}
\end{equation*}
$$

rad per revolution. Accordingly to our non-mainstream approach, we have

$$
\begin{align*}
& \dot{t}=\frac{\mathrm{d} t}{\mathrm{~d} \tau_{\mathrm{EGR}}}=\left[1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{S}}}{r}}{\beta_{P r}}^{2}+\beta_{P \phi}{ }^{2}\right)\right]^{-\frac{1}{2}} \geq 1 ; E_{\mathrm{EGR}}=\frac{1-\frac{r_{\mathrm{S}}}{r}}{\sqrt{\left(1-\left(\frac{r_{\mathrm{S}}}{r}+\frac{1}{1-\frac{r_{\mathrm{S}}}{r}} \beta_{P r}{ }^{2}+\beta_{P \phi}{ }^{2}\right)\right.}} m \mathrm{c}^{2} \geq 0 \tag{73}\\
& U_{\mathrm{EGR}}=\left(\sqrt{1-\frac{r_{\mathrm{S}}}{r}}-1\right) m \mathrm{c}^{2} \leq 0 ; \quad V_{\mathrm{EGR}}=\left(\sqrt{1-\frac{r_{\mathrm{S}}}{r}}-1\right) \mathrm{c}^{2} \leq 0 ; \tag{74}\\
& K_{\mathrm{g} \text { EGR }}=\left(\frac{1-\frac{r_{\mathrm{s}}}{r}}{\sqrt{1-\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \beta_{P r}{ }^{2}+\beta_{P \phi}{ }^{2}\right)}}-\sqrt{1-\frac{r_{\mathrm{s}}}{r}}\right) m \mathrm{c}^{2} \geq 0
\end{align*}
$$

$$
\begin{equation*}
E_{\mathrm{mEGR}}=\left(\frac{1-\frac{r_{\mathrm{s}}}{r}}{\sqrt{1-\left(\frac{r_{\mathrm{s}}}{r}+\frac{1}{1-\frac{r_{\mathrm{s}}}{r}} \beta_{P r}{ }^{2}+\beta_{P \phi}^{2}\right)}}-1\right) m \mathrm{c}^{2} ; \theta=\frac{\pi}{2} . \tag{75}
\end{equation*}
$$

4. GSR: Metric of RIOs, Gravitational Potential, Field strength, Lagrangian, Equations of motion and Precession of planets' orbits

In case of GSR, the geometry of spacetime has steady metric (6). So, gravity is studied as a field, which comes from GSR gravitational potential $\left(V_{\mathrm{GSR}}, \vec{w}_{\mathrm{GSR}}\right)$. This adds extra terms to the GSR Lagrangian of a free particle P. In this paper, we examine the case that $\vec{w}_{S R}=0$, according to the mainstream approach of EP (1). Thus, the GSR Lagrangian in the frame of mass M, is [2] (p. 351):

$$
\begin{equation*}
L_{\mathrm{GSR}}=-g_{\mathrm{IOO}}\left(-\frac{1}{\gamma_{\left(\xi_{1} \beta_{p}\right)}} m \mathrm{c}^{2}-\xi_{\mathrm{I}}{ }^{2} m V_{\mathrm{GSR}}\right), \tag{76}
\end{equation*}
$$

where $V_{\text {GSR }}$ is central gravitational potential. Besides, the orbit of particle P is on the 'plane' $\theta=\pi / 2$ and we have:

$$
\begin{gather*}
v^{2}=\dot{r}^{2}+r^{2} \dot{\phi}^{2} ; \gamma_{\left(\xi_{\mathrm{p}} \dot{P}_{P}\right)}=\frac{1}{\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{\dot{r}^{2}+r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}}}} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{77}\\
L_{\mathrm{GSR}}=-g_{\mathrm{IOO}}\left(-\sqrt{1-\xi_{\mathrm{I}}^{2} \frac{\dot{r}^{2}+r^{2} \dot{\phi}^{2}}{\mathrm{c}^{2}} m \mathrm{c}^{2}-\xi_{\mathrm{I}}^{2} m V_{\mathrm{GSR}}}\right) . \tag{78}
\end{gather*}
$$

The GSR total energy definition (16ii) and Euler-Lagrange equations (34) give us the equations of motion:

$$
\begin{align*}
& E_{\mathrm{totGR}}=\frac{\gamma_{\left(\xi_{\mathrm{s}} \bar{p}_{p}\right)} m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}+m V_{\mathrm{GSR}} ; \tag{79}\\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\gamma_{\left(\xi_{\mathrm{s}}, \bar{\beta}_{P}\right)} \dot{r}\right)-\gamma_{\left(\xi_{\mathrm{G}} \dot{\beta}_{P}\right)} r \dot{\phi}^{2}+\frac{\partial V_{\mathrm{GSR}}}{\partial r}=0 ; \tag{80}\\
& J=m h=\gamma_{\left(\xi, \bar{B}_{P}\right)} m r^{2} \dot{\phi} ; \cdot=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{81}
\end{align*}
$$

where the integrals of motion are: the GSR total energy ($E_{\text {totGRR }}$) and the GSR total angular momentum (J). Besides, $h=J / \mathrm{m}$ is the GSR angular momentum per mass unit. Solving (79) in terms of γ, we find

$$
\begin{equation*}
\gamma_{\left(\xi_{\mathrm{s}} \bar{\beta}_{P}\right)}=\xi_{\mathrm{I}}^{2} \frac{E_{\mathrm{totGSR}}-m V_{\mathrm{GSR}}}{m \mathrm{c}^{2}} . \tag{82}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
v^{2}=\left(\frac{\mathrm{d} r}{\mathrm{~d} \phi}\right)^{2} \dot{\phi}^{2}+r^{2} \dot{\phi}^{2}=\left[\left(\frac{\mathrm{d} r}{\mathrm{~d} \phi}\right)^{2}+r^{2}\right] \frac{h^{2}}{\gamma_{\left(\xi_{s} \bar{\beta}_{P}\right)}{ }^{2} r^{4}} ; \cdot \frac{\mathrm{d}}{\mathrm{~d} t} . \tag{83}
\end{equation*}
$$

Replacing the above in the identity $1+\xi_{\mathrm{I}}^{2} \frac{v^{2}}{\mathrm{c}^{2}} \gamma_{\left(\xi_{1} \bar{P}_{P}\right)^{2}}^{2}=\gamma_{\left(\xi_{\xi} \bar{\beta}_{P}\right)^{2}}{ }^{2}$, we obtain the equation of trajectory:

$$
\begin{equation*}
1+\xi_{\mathrm{I}}^{2} \frac{h^{2}}{\mathrm{c}^{2}}\left[\left(\frac{\mathrm{~d} u}{\mathrm{~d} \phi}\right)^{2}+u^{2}\right]=\xi_{\mathrm{I}}^{4}\left(\frac{E_{\mathrm{totGR}}-m V_{\mathrm{GSR}}}{m \mathrm{c}^{2}}\right)^{2} ; u=\frac{1}{r} ; h=r^{2} \dot{\phi} ;=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{84}
\end{equation*}
$$

Differentiation wrt φ, emerges the equation of trajectory for a central gravitational potential:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=-\frac{\xi_{\mathrm{I}}^{2}}{h^{2}} \frac{E_{\mathrm{totGR}}-m V_{\mathrm{GSR}}}{m \mathrm{c}^{2}} \frac{\mathrm{~d} V_{\mathrm{GSR}}}{\mathrm{~d} u} ; u=\frac{1}{r} ; h=r^{2} \dot{\phi} ;=\frac{\mathrm{d}}{\mathrm{~d} t}, \tag{85}
\end{equation*}
$$

where the points with extreme values and circular motion are excluded [2] (p. 352).
Now, we propose the formula of GSR gravitational central potential:

$$
\begin{equation*}
V_{\mathrm{GSR}}=\left(\sqrt{1-k \frac{r_{\mathrm{S}}}{r}}-1\right) \frac{\mathrm{c}^{2}}{k} \leq 0 ; k=k\left(\xi_{\mathrm{I}}\right) . \tag{86}
\end{equation*}
$$

The idea comes from 1GSP (51). This is modified (by introducing a real number k), because it is used according to GSR (in the space of RIOs). We also observe that the GSR horizon is located at distance k Schwarzschild radius ($k r_{\mathrm{s}}$) from the center of gravity. Besides, we obtain the following GSR gravitational field strength:

$$
\begin{equation*}
\vec{g}=-\frac{d V_{\mathrm{GSR}}}{d r} \hat{r}=-\frac{\mathrm{G} M}{r^{2}}\left(1-k \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} \tag{87}
\end{equation*}
$$

The replacement of (86) to (85), gives the exact equation of trajectory for GSR Gravitational field:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=-\frac{\xi_{\mathrm{I}}^{2}}{h^{2}}\left[-\mathrm{G} M \frac{E_{\mathrm{totGR}}}{m \mathrm{c}^{2}}\left(1-k r_{s} u\right)^{-\frac{1}{2}}+\frac{\mathrm{G} M}{k}-\frac{\mathrm{G} M}{k}\left(1-k r_{s} u\right)^{-\frac{1}{2}}\right] ; u=\frac{1}{r} \tag{88}
\end{equation*}
$$

In order to make the above equation similar to the corresponding of Newtonian scalar gravitational potential at large distance $\left(k r_{s} u \ll 1\right.$ or equivalently $\left.r \gg k r_{s}\right)$, we apply Taylor theorem to the quantity:

$$
\begin{equation*}
\left(1-k r_{\mathrm{s}} u\right)^{-\frac{1}{2}} \approx 1+\frac{k}{2} r_{\mathrm{s}} u ; u=\frac{1}{r} ; r \gg k r_{\mathrm{s}} . \tag{89}
\end{equation*}
$$

So, we obtain the approximate equation of trajectory for GSR Gravitational field:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+\left[1-\xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{h^{2}} \frac{E_{\text {tot }}}{m \mathrm{c}^{2}} \frac{k \mathrm{G} M}{\mathrm{c}^{2}}-\xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{h^{2}} \frac{\mathrm{G} M}{\mathrm{c}^{2}}\right] u=\xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{h^{2}} \frac{E_{\text {tot GSR }}}{m \mathrm{c}^{2}} ; u=\frac{1}{r} ; r \gg k r_{\mathrm{S}}, \tag{90}
\end{equation*}
$$

which after replacing

$$
\begin{equation*}
\lambda_{\mathrm{GSR}}^{2}=1-\xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{h^{2}} \frac{E_{\mathrm{totGR}}}{m \mathrm{c}^{2}} \frac{k \mathrm{G} M}{\mathrm{c}^{2}}-\xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{h^{2}} \frac{\mathrm{G} M}{\mathrm{c}^{2}}, \tag{91}
\end{equation*}
$$

gives

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+\lambda_{\mathrm{GSR}}{ }^{2} u=\xi_{\mathrm{I}}^{2} \frac{\mathrm{G} M}{h^{2}} \frac{E_{\mathrm{totGSR}}}{m \mathrm{c}^{2}} ; u=\frac{1}{r} ; r \gg k r_{\mathrm{s}} . \tag{92}
\end{equation*}
$$

The above equation of trajectory for GSR Gravitational field at large distance, has the following solution:

$$
\begin{equation*}
u=\frac{1}{r}=\frac{\xi_{\mathrm{I}}^{2} \mathrm{G} M E_{\mathrm{totGR}}}{\lambda_{\mathrm{GSR}}{ }^{2} m \mathrm{c}^{2} h^{2}}\left[1+e \cos \left(\lambda_{\mathrm{GSR}} \phi\right)\right] ; u=\frac{1}{r} ; \frac{\mathrm{G} M}{h^{2}}=\frac{1}{a\left(1-e^{2}\right)} ; r \gg k r_{\mathrm{s}} . \tag{93}
\end{equation*}
$$

Hence we have obtained again, the ellipse which rotates ('precesses') about one of its foci, by using only GSR.

The system of equations (91) and (93) contains the variables $\lambda_{\text {GSR }}$ and $E_{\text {totGSR }}$. So, we calculate them, by working at the perihelion, where $\varphi=0, r=\alpha(1-e)$:

$$
\begin{equation*}
\frac{1}{a(1-e)}=\frac{\xi_{\mathrm{I}}^{2} \mathrm{G} M E_{\mathrm{totGR}}}{\lambda_{\mathrm{GSR}}{ }^{2} m \mathrm{c}^{2} h^{2}}(1+e) ; \quad \frac{\mathrm{G} M}{h^{2}}=\frac{1}{a\left(1-e^{2}\right)} ; r \gg k r_{\mathrm{s}} . \tag{94}
\end{equation*}
$$

This emerges

$$
\begin{equation*}
E_{\mathrm{totGSR}}=\lambda_{\mathrm{GSR}}{ }^{2} \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}} ; r \gg k r_{\mathrm{S}} . \tag{95}
\end{equation*}
$$

So, the combination of the last equation with (91) gives the SR total energy at large distance:

$$
\begin{equation*}
E_{\mathrm{totGSR}}=\frac{\frac{1}{\xi_{\mathrm{I}}^{2}}-\frac{\mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}}{1+\frac{k \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}} m \mathrm{c}^{2} \leq \frac{m \mathrm{c}^{2}}{\xi_{\mathrm{I}}^{2}}=E_{\mathrm{rest}} ; r \gg k r_{\mathrm{S}} \tag{96}
\end{equation*}
$$

Besides, the replacement of the above equation to (91) gives

$$
\begin{equation*}
\lambda_{\mathrm{GSR}}^{2}=1-\frac{\left(k+\xi_{\mathrm{I}}^{2}\right) \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)+k \mathrm{G} M}=\frac{\mathrm{c}^{2} a\left(1-e^{2}\right)-\xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)+k \mathrm{G} M} \geq 0 ; r \gg k r_{\mathrm{S}} \tag{97}
\end{equation*}
$$

The above leads to the final conditions

$$
\begin{equation*}
0 \leq e \leq \sqrt{1-\xi_{\mathrm{I}}^{2} \frac{r_{\mathrm{S}}}{2 a}} ; a \gg k r_{\mathrm{s}} \tag{98}
\end{equation*}
$$

Moreover, the combination of (95) and (97) with (93) gives

$$
\begin{equation*}
u=\frac{1}{r}=\frac{1}{a\left(1-e^{2}\right)}\left[1+e \cos \left(\lambda_{\mathrm{GSR}} \phi\right)\right] ; \lambda_{\mathrm{GSR}}=\sqrt{\frac{\mathrm{c}^{2} a\left(1-e^{2}\right)-\xi_{\mathrm{I}}^{2} \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)+k \mathrm{G} M}} ; r \gg k r_{\mathrm{S}} \tag{99}
\end{equation*}
$$

Thus, the precession of ellipse is

$$
\Delta_{\mathrm{GSR}}=\left(\frac{1}{\lambda_{\mathrm{GSR}}}-1\right) 2 \pi=\left(\sqrt{\frac{\mathrm{c}^{2} a\left(1-e^{2}\right)+k \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)-\xi_{\mathrm{I}}^{2} \mathrm{G} M}}-1\right) 2 \pi=\left(\sqrt{\frac{1+\frac{k r_{\mathrm{S}}}{2 a\left(1-e^{2}\right)}}{1-\frac{\xi_{\mathrm{I}}^{2} r_{\mathrm{S}}}{2 a\left(1-e^{2}\right)}}}-1\right) 2 \pi \quad ; a \gg k r_{\mathrm{S}}(100)
$$

rad per revolution.
The condition: 'this new GSR gravitational field gives the same precession of Mercury's orbit as does the original Schwarzschild metric', is equivalent to

$$
\begin{equation*}
\lambda_{\mathrm{GSR}}^{2}=\lambda_{\mathrm{EGR}}{ }^{2} \tag{101}
\end{equation*}
$$

This combined with (71ii) and (97), gives

$$
\begin{equation*}
k=\frac{6-\xi_{\mathrm{I}}^{2}-\frac{9}{2} \frac{r_{\mathrm{S}}}{a\left(1-e^{2}\right)}}{\left(1-\frac{3}{2} \frac{r_{\mathrm{S}}}{a\left(1-e^{2}\right)}\right)^{2}} \tag{102}
\end{equation*}
$$

Parameter k (reason) must be independent from a and e (results). So, we prefer to adopt the integer value (Generalized; Newtonian; Einsteinian):

$$
\begin{equation*}
k=6-\xi_{\mathrm{I}}^{2} ; k=6 ; k=5 \tag{103}
\end{equation*}
$$

According to (87), the force is

$$
\begin{equation*}
\vec{F}=m \vec{g}=-m \frac{d V}{d r} \hat{r}=-\frac{\mathrm{G} M m}{r^{2}}\left(1-k \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \hat{r} \tag{104}
\end{equation*}
$$

At large distance ($r \gg k r_{\mathrm{S}}$), we apply Taylor theorem to the quantity:

$$
\begin{equation*}
\left(1-k \frac{r_{s}}{r}\right)^{-\frac{1}{2}} \approx 1+\frac{k}{2} \frac{r_{s}}{r}=1+k \frac{\mathrm{G} M}{\mathrm{c}^{2} r} ; r \gg k r_{\mathrm{S}} \tag{105}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\vec{F}=\left(-\frac{\mathrm{G} M m}{r^{2}}-k \frac{\mathrm{G}^{2} M^{2} m}{\mathrm{c}^{2} r^{3}}\right) \hat{r} ; r \gg k r_{\mathrm{s}} \tag{106}
\end{equation*}
$$

According to NPs $\left(\xi_{\mathrm{I}} \rightarrow 0 ; k \rightarrow 6\right)$, we obtain

$$
\begin{equation*}
\vec{F}=\left(-\frac{\mathrm{G} M m}{r^{2}}-6 \frac{\mathrm{G}^{2} M^{2} m}{\mathrm{c}^{2} r^{3}}\right) \hat{r} ; r \gg k r_{\mathrm{s}} \tag{107}
\end{equation*}
$$

which is the force that predicts the precession of Mercury's perihelion, by using Perturbation Theory [1] (p. 246), [3] (p.512), [13] (p. 536-539).

In case of planet Mercury, it is $\alpha=0.38709893$ AU, $e=0.20563069$ and $T=87.968$ days [14]. The values: $\mathrm{AU}=1.4959787066 \times 10^{11} \mathrm{~m}, \mathrm{G}=6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, \mathrm{c}=299792458 \mathrm{~ms}^{-1}$ (exact) [15] (pp. 1-1, 1-20, 14-2) and $M=1,988,500 \times 10^{24} \mathrm{~kg}$ [16], give

$$
\begin{equation*}
\frac{r_{\mathrm{S}}}{a\left(1-e^{2}\right)}=\frac{2 \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}=5.32518(53) \times 10^{-8} \ll 1 \tag{108}
\end{equation*}
$$

The case of Earth, with $\alpha=1.00000011 \mathrm{AU}, e=0.01671022$ and $T=365.242$ days [17], emerges

$$
\begin{equation*}
\frac{r_{\mathrm{S}}}{a\left(1-e^{2}\right)}=\frac{2 \mathrm{G} M}{\mathrm{c}^{2} a\left(1-e^{2}\right)}=1.97476(20) \times 10^{-8} \ll 1 \tag{109}
\end{equation*}
$$

Now, we can return to all the previous formulas and replace the above values. Thus (100) and (47) give the results, which are summarized in Table 1. We observe that both ESR and NPs give the same precessions.

Table 1. Angular velocity of ellipse perihelion rotation ('precession') for Mercury and Earth, according to GSR Gravitational field $\left(\Omega_{\mathrm{GSR}}\right)$ for Newtonian Physics $\left(\xi_{\mathrm{I}}=0\right)$ and Einsteinian Special Relativity $\left(\xi_{\mathrm{I}}=1\right)$ and according to the original Schwarzschild Gravitoelectric Effect $\left(\Omega_{\mathrm{EGR}}\right) . \Delta \Omega_{\mathrm{GSRr}}(\%)$ is the percentile relative change.

		Mercury			Earth		
$\xi_{\text {I }}$	k	$\Omega_{\text {GSR }} /{ }^{\prime \prime} \mathbf{c y}{ }^{-1}$	$\Omega_{\text {EGR }} /{ }^{\prime \prime} \mathbf{c y}{ }^{-1}$	$\Delta \Omega_{\text {GSRr }}(\%)$	$\mathbf{\Omega}_{\text {GSR }} /{ }^{\prime \prime} \mathbf{c y ~}^{\mathbf{- 1}}$	$\Omega_{\text {EGR }} /{ }^{\prime \prime} \mathbf{c y ~}^{-1}$	$\Delta \mathbf{S}_{\text {GSRr }}(\%)$
0	6	42.9820(43)	42.9799(9) ${ }^{(1)}$	0.005(10)	3.83893(38)	3.8401(4)	-0.030(14)
1	5	42.9820(43)	$42.9799(9){ }^{(1)}$	$\begin{aligned} & 0.005(10) \\ & { }^{1}[6](\mathrm{p} .6) \end{aligned}$	3.83893(38)	3.8401(4)	-0.030(14)

5. GSR: Gravitational Red Shift

The proposed GSR Gravitational field was combined with the mainstream approach of EP (1). This combination cannot produce Gravitational Red Shift (GRS) as SM does. On the other hand, GRS is achieved, if only the proposed GSR Gravitational field is combined with the alternative approach of $E P$ (2)

$$
\begin{equation*}
m_{G}=\gamma_{\left(\xi_{1} \vec{\beta}_{P}\right)} m \tag{110}
\end{equation*}
$$

More specifically in GSR, the photon (the particle which is associated with the E/M radiation) [8] (p. 13) has

$$
\begin{equation*}
m=0 ; \beta_{P}=\frac{1}{\xi_{\mathrm{I}}} ; \gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)} \rightarrow+\infty ; E=\frac{\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)}}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2}=h f ; m_{G}=\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)} m=\xi_{\mathrm{I}}^{2} \frac{h f}{\mathrm{c}^{2}} \tag{111}
\end{equation*}
$$

Thus, the energy conservation gives

$$
\begin{equation*}
E_{\mathrm{totGSR}}=E+m_{\mathrm{G}} \mathrm{~V}_{\mathrm{GSR}(\mathrm{r})}=\frac{\gamma_{\left(\xi_{\mathrm{\beta}} \vec{\beta}_{P}\right)}}{\xi_{\mathrm{I}}^{2}} m \mathrm{c}^{2}+\gamma_{\left(\xi_{\mathrm{I}} \vec{\beta}_{P}\right)} m \mathrm{~V}_{\mathrm{GSR}(\mathrm{r})}=h f_{(r)}+\xi_{\mathrm{I}}^{2} h f_{(r)} \frac{\mathrm{V}_{\mathrm{GSR}(\mathrm{r})}}{\mathrm{c}^{2}}=h f_{\infty} \tag{112}
\end{equation*}
$$

where h is Plank constant and $f(r) ; f_{\infty}$ are the frequencies of E / M radiation at distance r from the center of gravity and at infinite distance, respectively. So, we obtain GRS:

$$
\begin{equation*}
\left.\left.f_{\infty}=f_{(r)}\left(1+\xi_{1}^{2} V_{\mathrm{GSR}(r)} / \mathrm{c}^{2}\right)=f(r)\left(1+\xi_{1}^{2} / k\left[\mathrm{sqrt}\left(1-k r_{\mathrm{S}} / r\right)-1\right]\right) \approx f_{(r)}\left(1-\xi_{1}^{2} / \mathrm{c}^{2} \mathrm{G} M / r\right)\right]\right)<f_{(r)}, \tag{113}
\end{equation*}
$$

where (113iii) is referred to light which was emitted from atoms located far away from the GSR horizon. We observe that NPs (with $\xi_{1} \rightarrow 0$) has no GRS, in contrast to ESR (with $\xi_{1}=1$) which gives the well-known GRS of ERT. For instance, the replacement of $f_{(r)}$ with the Earth laboratory value of line D_{1} at the spectrum of Sodium (Na) to the above formula, emerges f_{∞} equal to the data from astronomical observation [18].

6. Modification of GSR Gravitational Field in order to also explain the Rotation Curves in Galaxies

The next step is the Modification of GSR Gravitational Field (86) in order to also explain the Rotation Curves in Galaxies

$$
\begin{equation*}
V_{\mathrm{GSR}}=\left(\sqrt{1-h_{(r)} k \frac{r_{\mathrm{s}}}{r}}-1\right) \frac{\mathrm{c}^{2}}{k} \leq 0 ; k=6-\xi_{\mathrm{I}}^{2} ; h\left(k r_{\mathrm{s}} \approx 1,\right. \tag{114}
\end{equation*}
$$

where h is an unspecified function of the distance with slow evolution, in accordance with any TPs. The condition (114iii) simplifies the modified GSR Gravitational Field to (86), near to the GSR horizon. Besides, we obtain the following GSR gravitational field strength:

$$
\begin{align*}
& \vec{g}=-\frac{d V_{\mathrm{GSR}}}{d r} \hat{r}=\left[-\frac{\mathrm{G} M}{r^{2}}\left(h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r}\right)\left(1-k h_{(r)} \frac{r_{s}}{r}\right)^{-\frac{1}{2}}\right] \hat{r}=-g \hat{r} \tag{115}\\
& g=\frac{\mathrm{G} M}{r^{2}}\left(h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r}\right)\left(1-k h_{(r)} \frac{r_{s}}{r}\right)^{-\frac{1}{2}} ; k=6-\xi_{1}^{2} . \tag{116}
\end{align*}
$$

The positive value of field strength g means gravity, while negative value means antigravity. In case of UCM, it is $g=v^{2} / r$. So,

$$
\begin{equation*}
v^{2}=\frac{\mathrm{G} M}{r}\left(h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r}\right)\left(1-k h_{(r)} \frac{r_{s}}{r}\right)^{-\frac{1}{2}} ; k=6-\xi_{1}^{2} . \tag{117}
\end{equation*}
$$

The above (116) reminds us the corresponding of 3GSM (28), which express only gravity. Far away from the horizon, the gravitational field strengths (28) and (116) become the same if only

$$
\begin{equation*}
a_{(r)}^{2}=h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r} \tag{118}
\end{equation*}
$$

We extend the above condition at any distance.

6.1. The Combination of Modified GSR Gravitational Field strength with MOND

Modified Newtonian Dynamics (MOND) explains the rotation curves in many galaxies, by using suitable Interpolating Function (μ) in Milgrom's Law [19]. In case of a spherical or cylindrical distribution of mass, the Modified Newtonian field strength is

$$
\begin{equation*}
g=\frac{1}{\mu_{(r)}} \frac{G M}{r^{2}} \tag{119}
\end{equation*}
$$

The combination of the 3GSM field strength (28) with MOND (188) and condition (118) emerges

$$
\begin{equation*}
a_{(r)}^{2}=\frac{1}{\mu_{(r)}}=h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r} . \tag{120}
\end{equation*}
$$

Two common choices are the Simple and Standard interpolating function, correspondingly

$$
\begin{equation*}
\frac{1}{\mu}=1+\frac{a_{0}}{g}=\frac{1}{2}\left(1+\sqrt{1+\left(\frac{r}{r_{0}}\right)^{2}}\right) ; \frac{1}{\mu}=\sqrt{1+\left(\frac{a_{0}}{g}\right)^{2}}=\frac{1}{\sqrt{2}} \sqrt{1+\sqrt{1+\frac{1}{4}\left(\frac{r}{r_{0}}\right)^{4}}} ; r_{0}=\sqrt{\frac{G M}{4 a_{0}}}, \tag{121}
\end{equation*}
$$

where r_{0} is called Milgrom radius [20] (p. 3) and $a_{0}=1.2(\pm 0.1) \times 10^{-10} \mathrm{~ms}^{-2}$ [19] (p. 1) is a new (acceleration-dimensional) physical constant. Both the Interpolating functions give the same velocity at infinite distance from the center of gravity

$$
\begin{equation*}
v_{\infty}^{2}=\sqrt{\mathrm{GMa} a_{0}} \tag{122}
\end{equation*}
$$

From (120), we calculate that

$$
\begin{equation*}
h_{(r)}=-r \int \frac{\mathrm{~d} r}{r^{2} \mu_{(r)}}=-\frac{r}{r_{0}} \int \frac{1}{\left(\frac{r}{r_{0}}\right)^{2} \mu_{(r)}} \mathrm{d}\left(\frac{r}{r_{0}}\right)=-\frac{r}{r_{0}} I . \tag{123}
\end{equation*}
$$

Besides, the integrals of Simple and Standard interpolating functions are correspondingly:

$$
\begin{align*}
& I_{\text {Simpl }}=\int \frac{1}{2 x^{2}}\left(1+\sqrt{1+x^{2}}\right) \mathrm{d} x=\frac{1}{2}\left(-\frac{1}{x}-\frac{\sqrt{1+x^{2}}}{x}+\operatorname{arcsinh} x\right)+C_{\text {Simpl }}=\frac{1}{2}\left(-\frac{1}{x}-\frac{\sqrt{1+x^{2}}}{x}+\ln \left(x+\sqrt{1+x^{2}}\right)\right)+C_{\text {Simpl }} \tag{124}\\
& I_{\text {Stand }}=\int \frac{1}{\sqrt{2} x^{2}} \sqrt{1+\sqrt{1+\frac{x^{4}}{4}}} \mathrm{~d} x=\frac{1}{2} \frac{\left(\sqrt{1+\frac{x^{4}}{4}}+1\right)^{\frac{1}{4}}}{\left(\sqrt{1+\frac{x^{4}}{4}}-1\right)^{\frac{1}{4}}}\left(-1+2^{\frac{3}{4}}\left(1-\sqrt{1+\frac{x^{4}}{4}}\right)^{\frac{1}{4}}{ }^{2} \mathrm{~F}_{1}\left(\frac{1}{4}, \frac{1}{4} ; \frac{5}{4} ; \frac{1}{2}\left(\sqrt{1+\frac{x^{4}}{4}}+1\right)\right)\right)+C_{\text {Stand }} \tag{125}
\end{align*}
$$

The last solution contains Gauss hypergeometric function and has steady imaginary part

$$
\begin{equation*}
\operatorname{Im}\left[\mathrm{I}_{\text {Stand }}-\mathrm{C}_{\text {Stand }}\right]=\frac{1}{\sqrt{2}}^{2} \mathrm{~F}_{1}\left(\frac{1}{4}, \frac{1}{4} ; \frac{5}{4} ; 1\right)=\frac{1}{\sqrt{2}} \Gamma_{\left(\frac{3}{4}\right)} \Gamma_{\left(\frac{5}{4}\right)}=0.7853981633974484 . \tag{126}
\end{equation*}
$$

Thus, we have correspondingly

$$
\begin{gather*}
h_{(r)}=-x I_{\text {Simpl }}=\frac{1}{2}\left(1+\sqrt{1+x^{2}}-x \operatorname{arcsinh} x\right)-x C_{\text {Simpl }}=\frac{1}{2}\left(1+\sqrt{1+x^{2}}-x \ln \left(x+\sqrt{1+x^{2}}\right)\right)-x C_{\text {Simpl }} ; x=\frac{r}{r_{0}} ; \tag{127}\\
h_{(r)}=-x I_{\text {Stand }}=\frac{1}{\sqrt{2}} \sqrt{1+\sqrt{1+\frac{x^{4}}{4}}}\left(1-2^{\frac{3}{4}}\left(1-\sqrt{1+\frac{x^{4}}{4}}\right)^{\frac{1}{4}}{ }^{2} \mathrm{~F}_{1}\left(\frac{1}{4}, \frac{1}{4} ; \frac{5}{4} ; \frac{1}{2}\left(\sqrt{1+\frac{x^{4}}{4}}+1\right)\right)\right)-x C_{\text {Stand }} \tag{128}
\end{gather*}
$$

We observe that in case of Simple Interpolating function: $h_{(0)}=1$. So, we prefer $C_{\text {Simpl }}=0$ and we have

$$
\begin{equation*}
h_{(r)}=\frac{1}{2}\left(1+\sqrt{1+x^{2}}-x \operatorname{ArcSinh} x\right)=\frac{1}{2}\left(1+\sqrt{1+x^{2}}-x \ln \left(x+\sqrt{1+x^{2}}\right)\right) ; \quad x=\frac{r}{r_{0}} \tag{129}
\end{equation*}
$$

We also observe that the Standard Interpolating function has $h_{(0)}=1$, but we now prefer

$$
\begin{equation*}
C_{\text {Stand }}=-\frac{1}{\sqrt{2}}{ }^{2} \mathrm{~F}_{1}\left(\frac{1}{4}, \frac{1}{4} ; \frac{5}{4} ; 1\right) i=-\frac{1}{\sqrt{2}} \Gamma_{\left(\frac{3}{4}\right)} \Gamma_{\left(\frac{5}{4}\right)} i=-0.7853981633974484 \mathrm{i} . \tag{130}
\end{equation*}
$$

in order to get rid of the imaginary part. Thus, we obtain

$$
\begin{equation*}
h_{(r)}=-x I_{\text {Stand }}=\frac{1}{\sqrt{2}} \sqrt{1+\sqrt{1+\frac{x^{4}}{4}}}\left(1-2^{\frac{3}{4}}\left(1-\sqrt{1+\frac{x^{4}}{4}}\right)^{\frac{1}{4}}{ }^{2} \mathrm{~F}_{1}\left(\frac{1}{4}, \frac{1}{4} ; \frac{5}{4} ; \frac{1}{2}\left(\sqrt{1+\frac{x^{4}}{4}}+1\right)\right)\right)+x \frac{1}{\sqrt{2}} \Gamma_{\left(\frac{3}{4}\right)\left(\frac{5}{4}\right)^{i}} \tag{131}
\end{equation*}
$$

This kind of 'old' MONDian field strength:
i. is efficient to explain the rotation curves in galaxies as well as the precession of Mercury's orbit (because $a \approx \mu \approx h \approx 1$ in the Solar system), but
ii. gives extra larges values of the gravitational field strength around bodies with small mass. For instance a body of $M=1 \mathrm{Kg}$ at distance $r=1 \mathrm{~m}$, produces $\mu=0.518(1 / \mu=1.93)$ according to the Simple interpolating function. This means twice value of the Newtonian field strength and contradicts to the Cavendish experiment.

In this paper, we also make changes to MOND resolving the above contradiction. Thus, we define the New Simple and New Standard interpolating function (μ) respectively

$$
\begin{equation*}
\frac{1}{\mu}=1+\frac{M}{M_{0}} \frac{a_{0}}{g} ; \frac{1}{\mu}=\sqrt{1+\left(\frac{M}{M_{0}} \frac{a_{0}}{g}\right)^{2}} . \tag{132}
\end{equation*}
$$

Let us also define the following characteristic radii of α system with mass M :

$$
\begin{equation*}
r_{\infty}=\frac{2 r_{0}}{\sqrt{\beta_{\infty}}}=\sqrt[8]{\frac{G^{3} c^{4}}{a_{0}^{5}}} \sqrt[8]{M^{3}}=\mathrm{C} \sqrt[8]{M^{3}} ; R_{0}=\sqrt{\frac{G M_{0}}{4 a_{0}}} \tag{133}
\end{equation*}
$$

where M_{0} is the mass that is contained in a sphere of radius r_{∞} with the same center as the center of the system with mass M. We also calculate $\mathbf{C = 4 . 2 (0 . 2) \times 1 0 ^ { 6 }} \mathbf{~ m K g}{ }^{-3 / 8}$, by using $a_{0}=1.2(\pm 0.1) \times 10^{-10} \mathrm{~ms}^{-2}$ [19] (p.1), $\mathrm{G}=6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ and $\mathrm{c}=299792458 \mathrm{~ms}^{-1}$ (exact) [15] (pp. 1-1, 1-20, 14-2). For instance:
(i) In case that we examine the gravitational field at distance $r=1 \mathrm{~m}$ from a body with $M=1 \mathrm{Kg}$ on planet Earth (at high $h=2 \mathrm{~m}$), we calculate $r_{\infty}=1.4(0.1) \times 10^{-13} \mathrm{Kpc}=2.8(0.1) \times 10^{-5} \quad \mathrm{AU}=4.2(0.2) \times 10^{6}$ m . Taking into account that the Earth has radius $R_{\text {Earth }}=6,378,140 \mathrm{~m}$ and mass $M_{\text {Earth }}=5.974210^{24} \mathrm{~kg}$ [15] (pp.1-1,14-2), the accurate calculation of M_{0} needs the part of the mass of Earth that is contained into the sphere with center the body. Of course, this mass has not spherical or cylindrical symmetry. So, the following calculation gives us only order of magnitude. We can easily find that $M_{0}=\left(V_{0} / V_{\text {Earth }}\right)$ $M_{\text {Earth }}$, where V_{0} is the common part of these spheres. Besides, we approximately consider that we have one sphere with center on the surface of another equal sphere (Figure 1). Thus the common volume can be calculated, by using the second Pappus's centroid theorem $V_{0}=d \cdot S=2 \pi C S$ [21], where $C=(4 r \sin 3 a) /[2 a-\sin (2 a)]-r \cos a$ is the distance of the center of Circular segment of central angle $2 a=120^{\circ}=2 \pi / 3 \mathrm{rad}$ from the rotation axis and $S=\left(r^{2} / 2\right)[2 a-\sin (2 a)]$ is the area of the aforementioned Circular segment. So, it emerges $V_{0}=\pi r^{3}[(4 / 3) \sin 3(\pi / 3)-2(\pi / 3) \cos (\pi / 3)+2 \sin (\pi / 3) \cos 2(\pi / 3)]=$ $0.251840554 \pi r^{3}$, where $r=\operatorname{CubicRoot}\left[\left(R_{\text {Earth }}{ }^{3}+r_{\infty}{ }^{3}\right) / 2\right]=5.5(0.3) \times 10^{6} \mathrm{~m}$ and the mass of interest is $M_{0}=\left(V_{0} / V_{\text {Earth }}\right) M_{\text {Earth }}=\left[3 V_{0} /\left(4 \pi R_{\text {Earth }}{ }^{3}\right)\right] M_{\text {Earth }}=\left[3 \cdot 0.251840554 \pi r^{3} /\left(4 \pi R_{\text {Earth }}{ }^{3}\right)\right] M_{\text {Earth }}=\quad[3 \cdot 0.251840554$ $\left.\left(5.5 \times 10^{6}\right)^{3} /\left(4 \cdot 6378140^{3}\right)\right] \cdot 5.9742 \times 10^{24} \quad \mathrm{~kg}=7.2(\pm 1.2) \times 10^{23} \quad \mathrm{~kg}$. This results $R_{0}=1.0(0.2) \times 10^{-8}$ $\mathrm{Kpc}=2.1(0.3) \mathrm{AU}=3.2(0.5) \times 10^{11} \mathrm{~m}$.
(ii) The calculation of the gravitational field of planet Earth at high $h=2 \mathrm{~m}$, gives $r_{\infty}=2.7(0.1) \times 10^{-4} \mathrm{Kpc}=5.5(0.3) \times 10^{4} \mathrm{AU}=8.2(0.4) \times 10^{15} \mathrm{~m}$. Taking into account that our Solar system has radius $r_{\text {Solarsys }}=2.4 \times 10^{-7} \mathrm{Kpc}=50 \mathrm{AU}=7.5 \times 10^{12} \mathrm{~m}$ and the closest star to the Earth is Alpha Centauri at distance $r=4.37 \mathrm{ly}=1.34 \mathrm{pc}=276 \times 10^{3} \mathrm{AU}=4.13 \times 10^{16} \mathrm{~m}$ [22] (pp. 219-236), we understand that $M_{0}=M_{\text {Solsys }}=1.9918 \times 10^{30} \mathrm{~kg}$ (the total mass of the Solar System). This gives $R_{0}=1.7055 \times 10^{-5}$ $K p c=3,517.8 \quad \mathrm{AU}=5.2626 \times 10^{14} \mathrm{~m}$.
(iii) The study of the gravitational field of the Sun at planet Earth, emerges $r_{\infty}=0.0314(0.0014)$ $\mathrm{Kpc}=6.5(0.3) \times 10^{6} \mathrm{AU}=9.7(0.5) \times 10^{17} \mathrm{~m}$. Taking into account that our galaxy (Milky Way) has mass $m_{\mathrm{G}}=1.3(\pm 0.3) \times 10^{12} \mathrm{M}_{\odot}=2.5(\pm 0.6) \times 1042 \mathrm{Kg}[23]$, diameter $d_{\mathrm{G}}=2 r_{\mathrm{G}}=175(\pm 25) \times 10^{3} \mathrm{ly}=53.6(\pm 7.7)$ $\mathrm{Kpc}=1.103(\pm 0.158) \times 10^{10} \mathrm{AU}=1.65(\pm 0.24) \times 10^{21} \mathrm{~m}[24]$ and our Solar System is located at distance $r=2.65(\pm 0.1) \times 10^{3} \mathrm{ly}=0.812(\pm 0.003) \mathrm{Kpc}=1.67 \times 10^{8} \mathrm{AU}=2.51 \times 10^{19} \mathrm{~m}$ from the Galactic Center, it is obvious that the sphere of radius r_{∞} does not enclose the supermassive black hole of Sagittarius A* with mass $m=4.31(06) \times 10^{6} \quad \mathrm{M}_{\odot}=8.57(12) \times 10^{36} \mathrm{Kg}$ [25]. Thus, it is efficient to use as $M_{0}=\left(r_{\infty}{ }^{2} / r_{\mathrm{G}}{ }^{2}\right) m_{\mathrm{G}}=3.5 \times 10^{36} \mathrm{Kg}$ (about 0.00014% of the mass of Milky Way) and we obtain $R_{0}=0.023$ $\mathrm{Kpc}=4.7 \times 10^{6} \mathrm{AU}=7.0 \times 10^{17} \mathrm{~m}$.
(iv) The calculation of the gravitational field of Galaxy NGC 3198 on a star at distance $r=8 \mathrm{Kpc}$ from its center, emerges $r_{\infty}=279 \mathrm{Kpc}=5.7 \times 10^{10} \mathrm{AU}=8.6 \times 10^{21} \mathrm{~m}$. Thus, the sphere of radius r_{∞},
encloses the whole galaxy of radius $r_{\mathrm{G}}=50 \mathrm{Kpc}=1.03 \times 10^{10} \mathrm{AU}=1.54 \times 10^{21} \mathrm{~m}$ and we put $M_{0}=m_{\mathrm{G}}=6.76294 \times 10^{40} \mathrm{Kg}[26]$ (p. 56). This gives $R_{0}=3.14 \mathrm{Kpc}=6.5 \times 10^{8} \mathrm{AU}=9.7 \times 10^{19} \mathrm{~m}$.
(v) The study of the gravitational field of the Observable Universe at the Limit of observation, emerges $r_{\infty}=1.02 \times 10^{7} \mathrm{Kpc}=2.10 \times 10^{15} \mathrm{AU}=3.14 \times 10^{26} \mathrm{~m}$. Taking into account that the Observable Universe has mass $m_{\mathrm{U}}=10^{53} \mathrm{Kg}$ [27] (p. 43) and radius $r_{\mathrm{U}}=4.5 \times 10^{10} \mathrm{ly}=1.4 \times 10^{7} \mathrm{Kpc}=2.9 \times 10^{15}$ $\mathrm{AU}=4.3 \times 10^{26} \mathrm{~m}$ [28] (p. 27), it is efficient to use as $M_{0}=\left(r_{\infty}{ }^{3} / r_{\mathrm{U}}{ }^{3}\right) m_{\mathrm{U}}=3.9 \times 10^{52} \mathrm{Kg}$ (about 39% of mass of the Observable Universe). Thus, we obtain $R_{0}=7.8 \times 10^{9} \mathrm{ly}=2.4 \times 10^{6} \mathrm{Kpc}=4.9 \times 10^{14} \mathrm{AU}=7.4 \times 10^{25} \mathrm{~m}$. The above manifest that the gravitational field of a system which is enclosed within a circular orbit of radius r, is not only affected by the internal mass (M), but it is also affected by the part of total mass (M_{0}) (internal \& external) of the hyper-system (that is enclosed within radius r_{∞}), where the system belongs!

Figure 1. One sphere with center on the surface of another equal sphere. The common volume is calculated, by using the second Pappus's centroid theorem: $V_{0}=d \cdot S=2 \pi C S$, where $C=\left(4 r \sin ^{3} a\right) /[2 a-\sin (2 a)]-r \cos a$ is the distance of the center of Circular segment of central angle $2 a=120^{\circ}=2 \pi / 3 \mathrm{rad}$ from the rotation axis and $S=\left(r^{2} / 2\right)[2 a-\sin (2 a)]$ is the area of the aforementioned Circular segment.

Thus, we obtain the New Simple \& New Standard interpolating function (μ), respectively

$$
\begin{equation*}
\frac{1}{\mu}=\frac{1}{2}\left(1+\sqrt{1+\left(\frac{r}{R_{0}}\right)^{2}}\right) ; \frac{1}{\mu}=\frac{1}{\sqrt{2}} \sqrt{1+\sqrt{1+\frac{1}{4}\left(\frac{r}{R_{0}}\right)^{4}}} . \tag{134}
\end{equation*}
$$

Both the New Interpolating functions give the same new velocity at infinite distance from the center of gravity (e.g. Galaxy)

$$
\begin{equation*}
v_{0 \infty}^{2}=\sqrt{\mathrm{G} \frac{M^{2}}{M_{0}} a_{0}}=M \sqrt{\frac{\mathrm{G} a_{0}}{M_{0}}} ; \beta_{0 \infty}=\frac{v_{0 \infty}}{c}=\frac{1}{c} \sqrt[4]{G \frac{M^{2}}{M_{0}} a_{0}}=\frac{\sqrt{M}}{c} \sqrt[4]{\frac{\mathrm{G} a_{0}}{M_{0}}} \tag{135}
\end{equation*}
$$

The above referred examples [System (Location) - Hyper-system] give, respectively the following results (data from Table 1):
(a) New Simple interpolating function: (i) $M=1 \mathrm{Kg}$ (located at high $h=2 \mathrm{~m}$ from Earth at $r=1 \mathrm{~m}$) Earth: $\quad \mu=0.999999999999999999999998 \quad\left(1 / \mu=1.000000000000000000000002=1+2 \times 10^{-24}\right)$, (ii) Earth (at $h=2 \mathrm{~m}$ from Earth surface) - Solar System: $\mu=0.99999999999999996$ $\left(1 / \mu=1.00000000000000004=1+4 \times 10^{-17}\right)$, (iii) Sun (at Earth) - 0.00014% Milky Way:
$\mu=0.999999999999989\left(1 / \mu=1.00000000000001=1+1 \times 10^{-14}\right)$, (iv) NGC 3198 (at Star 8 Kpc) - NGC 3198: $\mu=0.53528(1 / \mu=1.8682)$, (v) Observable Universe (at the Limit of observation) - 39% Observable Universe: $\mu=0.32(1 / \mu=3.2)$.
(b) New Standard interpolating function: (i) $M=1 \mathrm{Kg}$ (located at high $h=2 \mathrm{~m}$ from Earth at $r=1 \mathrm{~m}$) - Earth: $\quad \mu=0.9997$ $\left(1 / \mu=1.0003=1+3 \times 10^{-48}\right)$, (ii) Earth (at $h=2 \mathrm{~m}$ from Earth surface) - Solar System: $\mu=0.9999999999999999999999999999999993$ $\left(1 / \mu=1.0000000000000000000000000000000007=1+7 \times 10^{-34}\right)$, (iii) Sun (at Earth) -0.00014% Milky Way: $\mu=0.99999999999999999999999999993$ ($1 / \mu=1.00000000000000000000000000007=1+7 \times 10^{-29}$), (iv) NGC 3198 (at Star 8 Kpc) - NGC 3198: $\mu=0.67462$ ($1 / \mu=1.48232$), (v) Observable Universe (at the Limit of observation) - 39% Observable Universe: $\mu=0.37$ ($1 / \mu=2.7$).
The results are in accordance with the Cavendish experiment, observations in our solar system and also explain the rotation curves in Galaxies, especially in case of Standard μ. Besides, they are summarized in Table 1.

6.2. The Combination of Modified GSR Gravitational Field strength with the concept of phantom Dark Matter and the Velocity at Infinite Distance of MOND

Below, we shall find the metric of spacetime that corresponds to the concept of phantom DM [1] (p. 356). We consider a very simple distribution of phantom $D M$:

$$
\begin{equation*}
\rho_{\mathrm{dark}}=\frac{C_{\mathrm{dark}}}{r^{2}} ; M_{\mathrm{dark}}=\int_{0}^{r} 4 \pi r^{2} \rho_{\mathrm{dark}} d r=4 \pi C_{\mathrm{dark}} r \tag{136}
\end{equation*}
$$

and also all the luminous-baryonic mass at the center of gravity. In case of a spherical or cylindrical distribution of mass, the Modified Newtonian field strength is

$$
\begin{equation*}
g=\frac{\mathrm{G}\left(M+M_{\mathrm{dark}}\right)}{r^{2}}=\left(\frac{\mathrm{G} M}{r^{2}}+\frac{4 \pi \mathrm{G} C_{\mathrm{dark}}}{r}\right) \tag{137}
\end{equation*}
$$

Thus, the velocity in UCM is given by the formula

$$
\begin{equation*}
v^{2}=\frac{\mathrm{G}\left(M+M_{\mathrm{dark}}\right)}{r}=\left(\frac{\mathrm{G} M}{r}+4 \pi \mathrm{G} C_{\mathrm{dark}}\right) \tag{138}
\end{equation*}
$$

which at infinite distance from the center of gravity, gives

$$
\begin{equation*}
v_{\infty}{ }^{2}=4 \pi \mathrm{G} C_{\mathrm{dark}} . \tag{139}
\end{equation*}
$$

The combination of the above equation with the 'old' (122) or New (135i) MONDian formula gives correspondingly

$$
\begin{equation*}
C_{\mathrm{dark}}=\frac{1}{4 \pi} \sqrt{\frac{M a_{0}}{\mathrm{G}}} ; C_{\mathrm{dark}}=\frac{M}{4 \pi} \sqrt{\frac{a_{0}}{\mathrm{G} M_{0}}}, \tag{140}
\end{equation*}
$$

where M_{0} is the part of mass of the hyper-system that is enclosed within radius r_{∞}. i) According to (140i), the initial equations can be written as

$$
\begin{equation*}
\rho_{\mathrm{dark}}=\frac{1}{4 \pi} \sqrt{\frac{a_{0}}{\mathrm{G}}} \frac{\sqrt{M}}{r^{2}}=\frac{1}{8 \pi} \frac{M}{r_{0} r^{2}} ; M_{\mathrm{dark}}=\sqrt{\frac{M a_{0}}{\mathrm{G}}} r=\frac{M}{2} \frac{r}{r_{0}} . \tag{141}
\end{equation*}
$$

The replacement of 'old' MONDian (140i) to (137) and the combination with (119) and (120) give

$$
\begin{equation*}
a_{(r)}^{2}=\frac{1}{\mu_{(r)}}=h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r}=1+\frac{1}{2} \frac{r}{r_{0}} . \tag{142}
\end{equation*}
$$

ii) According to 'new' MONDian (140ii), the initial equations can be written as

$$
\begin{equation*}
\rho_{\mathrm{dark}}=\frac{M}{4 \pi} \sqrt{\frac{a_{0}}{\mathrm{G} M_{0}}} \frac{1}{r^{2}}=\frac{1}{8 \pi} \frac{M}{R_{0} r^{2}} ; M_{\mathrm{dark}}=M \sqrt{\frac{a_{0}}{\mathrm{G} M_{0}}} r=\frac{M}{2} \frac{r}{R_{0}} . \tag{143}
\end{equation*}
$$

The replacement of (140ii) to (137) and the combination with (119) and (120) give

$$
\begin{equation*}
a_{(r)}^{2}=\frac{1}{\mu_{(r)}}=h_{(r)}-r \frac{\mathrm{~d} h}{\mathrm{~d} r}=1+\frac{1}{2} \frac{r}{R_{0}} . \tag{144}
\end{equation*}
$$

Thus, the integral of (123) in case of DM is

$$
\begin{equation*}
I_{D M}=\int \frac{1}{x^{2}}\left(1+\frac{1}{2} x\right) \mathrm{d} x=-\frac{1}{x}+\frac{1}{2} \ln x+C_{\mathrm{DM}}, \tag{145}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\frac{r}{r_{0}} \quad ; \quad x=\frac{r}{R_{0}} \tag{146}
\end{equation*}
$$

for 'old' or 'new' distribution of DM, correspondingly. Thus, we have

$$
\begin{equation*}
h_{(r)}=-x I_{\text {Simpl }}=1-\frac{x}{2} \ln x-x C_{\mathrm{DM}} \tag{147}
\end{equation*}
$$

We observe that $h_{(0)}=1$. So, we prefer $C_{\text {Simpl }}=0$ and we also have

$$
\begin{equation*}
h_{(r)}=-x I_{\text {Simpl }}=1-\frac{x}{2} \ln x . \tag{148}
\end{equation*}
$$

The 'new' concept, for $M \rightarrow 0$ gives $a \approx \mu \approx h \approx 1$. This turns metric (24) approximately equal to the metric of RIOs (6). This is a general property, because we have used (135i). Besides, the examination of the dark matter around a body with $M=1 \mathrm{Kg}$, near to planet Earth, within radius $r=1 \mathrm{~m}$ (at high $h=2 \mathrm{~m}$), gives $M_{\text {dark }}=5.488 \times 10^{-13} \mathrm{Kg}$. This corresponds to the Newtonian field strength, in accordance with the Cavendish experiment.

Finally, it is proven that the corresponding values of function $a_{(r)}$ have the properties: Standard Interpolating function < Simple Interpolating function < Absorption of DM and also 'New' < 'old'.

7. Experimental Validation - Discussion

In Table 2, we show the values of 'old' and 'new' characteristic parameters for the original 1 Kg , the Earth, the Sun (see [9] (p. 8) and data from [15] (pp. 1-1, 14-2)), Galaxy NGC 3198 (data from [26] (p. 56) and [29] (p. 3)) and the Observable Universe (data from [27] (p. 43) and [28] (p. 27)). Besides, M_{0} is the mass that is enclosed in a sphere of radius r_{∞} and the radii r_{∞}, R_{0}, the new velocity at infinite distance $v_{0 \infty}, \beta_{0 \infty}$, the inverse of the New Interpolating functions $1 / \mu_{\text {Nsimpl }}$ and $1 / \mu_{\text {Nstand }}$ on a sphere of radius R and they have been obtained from (133i), (133ii), (135i), (135ii), (134i) \& (134ii), respectively. Besides, we have used the following values of physical constants: $a_{0}=1.2(0.1) \times 10^{-10} \mathrm{~ms}^{-2}$ [19] (p.1), $\mathrm{AU}=1.4959787066 \times 10^{11} \mathrm{~m}, \mathrm{G}=6.67428(67) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, \mathrm{c}=299792458 \mathrm{~ms}^{-1}$ (exact) [15] (pp. 1-1, 1-20, 14-2).
7.1. The Combination of Lorentzian-Einsteinian $3^{\text {rd }}$ Generalized Schwarzschild Metric or Modified GSR Gravitational Field with 'old' or 'New' MOND Simple \& Standard Interpolating Function and 'old' or 'New' Absorption of the Dark Matter into the field in Galaxy NGC 3198

In order to find out what is the effect of the modification at large mass and size systems, we analytically examine Galaxy NGC 3198.

The values of Circular Velocities [experimental ($V_{\text {exp }}$) and calculated by the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with the corresponding Simple μ ($V_{\text {simp,Lor }}$) or New Simple μ ($V_{\text {Nsimp,Lor }}$) or Standard μ ($V_{\text {stand,Lor }}$) or New Standard μ ($V_{\text {Nstand,Lor }}$) or Absorption of DM into the Metric by using distribution (141) ($V_{\text {DM,Lor }}$) or Absorption of DM into the Metric by using distribution (143) ($V_{\mathrm{NDM}, \mathrm{Lor}}$)], the Luminous Mass of the galaxy that is enclosed within the circular orbit $\left(M_{\mathrm{d}}\right)$, the corresponding Schwarzschild radius $\left(r_{\mathrm{S}}\right)$, Milgrom radius $\left(r_{0}\right)$, the corresponding values of the function $a_{(r)}\left(a_{\text {simp,Lor }}\right.$ or $a_{\text {Nsimp,Lor }}$ or $a_{\text {stand,Lor }}$ or $a_{\text {Nstand,Lor }}$ or $a_{\mathrm{DM}, \mathrm{Lor}}$ or $\left.a_{\mathrm{NDM}, \mathrm{Lor}}\right)$, function $h_{(r)}\left(h_{\text {simp,Lor }}\right.$ or $h_{\mathrm{Ns} \text { simp,Lor }}$ or $h_{\text {stand,Lor }}$ or $h_{\mathrm{Nstand,Lor}}$ or $h_{\mathrm{DM}, \mathrm{Lor}}$ or $\left.h_{\mathrm{NDM}, \mathrm{Lor}}\right)$ and time coefficient of metric $g_{00}\left(g_{00, \text { simp,Lor }}\right.$ or $g_{00, \text { Nsimp,Lor }}$ or $g_{00, \text { stand,Lor }}$ or $g_{00, \text {,Nstand,Lor }}$ or $g_{00, \text { DM,Lor }}$ or $g_{00, \text { NDM,Lor }}$) wrt the distance from the center of Galaxy NGC 3198, are contained in Table 3 (data from [30] (p. 2)). The Circular Velocities ($V_{\text {simp,Lor }}, V_{\text {stand,Lor }}, V_{\text {Nsimp,Lor }}, V_{\text {Nstand,Lor }}, V_{\mathrm{DM}, \mathrm{Lor}}$, and $V_{\text {NDM,Lor }}$) have been
calculated by using (119) or (28) or (116), the values of function $a_{(r)}\left(a_{\text {simp,Lor }}\right.$ or $a_{\text {stand,Lor }}$ or $a_{\text {Nsimp.Lor }}$ or $a_{\text {Nstand,Lor }}$ or $a_{\text {DM,Lor }}$ or $a_{\text {NDM,Lor }}$), by using (120) combined with (121) or (134) or (142) or (144), the values of function $h_{(r)}\left(h_{\text {simp,Lor }}\right.$ or $h_{\text {stand,Lor }}$ or $h_{\text {Nsimp,Lor }}$ or $h_{\text {Nstand,Lor }}$ or $h_{\text {DM,Lor }}$ or $\left.h_{\text {NDM,Lor }}\right)$, by using and (129) or (131) or (148) combined with (146), respectively. Finally the values of time coefficient of metric (g_{00}) have been calculated from (24) for $\xi_{1}=1$.

The calculation of the gravitational field of Galaxy NGC 3198 on a star at distance $r=2 \mathrm{Kpc}$ from its center, emerges $r_{\infty}=118 \mathrm{Kpc}=2.4 \times 10^{10} \mathrm{AU}=3.6 \times 10^{21} \mathrm{~m}$. Thus, the sphere of radius r_{∞}, encloses the whole galaxy of radius $r_{\mathrm{G}}=50 \mathrm{Kpc}=1.03 \times 10^{10} \mathrm{AU}=1.54 \times 10^{21} \mathrm{~m}$ and we put $M_{0}=m_{\mathrm{G}}=6.76294 \times 10^{40} \mathrm{Kg}$ [4] (p. 56). This gives steady new Milgrom radius $R_{0}=3.14 \mathrm{Kpc}=6.5 \times 10^{8} \mathrm{AU}=9.7 \times 10^{19} \mathrm{~m}$.

Table 2. Characteristic parameters (mass M, distance or size radius R, Schwarzschild radius r_{s}, Milgrom radius $r_{0}, r_{0} / r_{\mathrm{s}}$, velocity at infinite distance $v_{\infty}, \beta_{\infty}$, new Milgrom radius R_{0}, new velocity at infinite distance $v_{0 \infty}, \beta_{0 \infty}$, New Interpolating functions $1 / \mu_{\mathrm{NSimpl}}$ and $1 / \mu_{\mathrm{NStand}}$ on a sphere of radius R) for 1 Kg , the Earth, the Sun, galaxy NGC 3198 and the Observable Universe.

	$\begin{aligned} & 1 \mathrm{Kg} \\ & \text { (original) } \end{aligned}$	Earth	Sun	NGC 3198	Observable Universe
M/Kg	1	5.9742×10^{24}	$1.9891 \times 10^{30}{ }^{(1)}$	$6.76294 \times 10^{40}(2)$	$10^{53} \quad{ }^{(4)}$
R / m	1	6378140 (1)	6.9599×10^{8}	2.47×10^{20}	4.3×10^{26}
/AU	6.68×10^{-12}	4.263523×10^{-5}	4.6524×10^{-3}	1.65×10^{9}	2.9×10^{15}
/ Kpc	3.24×10^{-20}	2.066999×10^{-13}	2.2555×10^{-11}	$8 \quad{ }^{(3)}$	$14 \times 10^{6}{ }^{(5)}$
$r_{\text {s }} / \mathrm{m}$	2.96×10^{-27}	8.8736×10^{-3}	2,954.4	1.004451×10^{14}	1.48×10^{26}
/AU	1.98×10^{-38}	5.9316×10^{-14}	1.9749×10^{-8}	671.434	9.9×10^{14}
/ Kpc	9.61×10^{-47}	2.8757×10^{-22}	9.5746×10^{-17}	0.0000680703	4.80×10^{6}
r_{0} / m	0.373	9.1143×10^{11}	5.2591×10^{14}	9.6972671×10^{19}	1.18×10^{26}
/AU	2.49×10^{-12}	6.0925	3,515.5	6.45222×10^{8}	7.9×10^{14}
/ Kpc	1.21×10^{-20}	2.9537×10^{-8}	0.000017043	3.14265	3.8×10^{6}
$r_{0} / r_{\text {s }}$	1.26×10^{26}	1.02712×10^{14}	1.7801×10^{11}	965,430	0.80
$\boldsymbol{v}_{\infty} / \mathrm{m} \mathrm{s}^{-1}$	9.45×10^{-6}	14.7899	355.27	152,556	1.68×10^{8}
$\boldsymbol{\beta}_{\infty}$	3.15×10^{-14}	4.93339×10^{-8}	1.1851×10^{-6}	0.000508873	0.56
$\boldsymbol{r}_{\infty} / \mathrm{m}$	$4.2(0.2) \times 10^{6}$	$8.2(0.4) \times 10^{15}$	$9.7(0.5) \times 10^{17}$	8.6×10^{21}	3.14×10^{26}
/ AU	$2.8(0.1) \times 10^{-5}$	$5.5(0.3) \times 10^{4}$	$6.5(0.3) \times 10^{6}$	5.7×10^{10}	2.10×10^{15}
/ Kpc	$1.4(0.1) \times 10^{-13}$	$2.7(0.1) \times 10^{-4}$	$0.0314(0.0014)$	279	1.02×10^{7}
$\boldsymbol{M}_{0} / \mathrm{Kg}$	$7.2(1.2) \times 10^{23}$	1.9918×10^{30}	3.5×10^{36}	6.76294×10^{40}	3.9×10^{52}
$\boldsymbol{R}_{0} / \mathrm{m}$	$3.2(0.5) \times 10^{11}$	5.2626×10^{14}	9.7×10^{17}	9.7×10^{19}	7.4×10^{25}
/ AU	2.1(0.3)	3,517.8	4.7×10^{6}	6.5×10^{8}	4.9×10^{14}
/ Kpc	$1.0(0.2) \times 10^{-8}$	1.7055×10^{-5}	0.023	3.14	2.4×10^{6}
$v_{000} / \mathrm{m} \mathrm{s}^{-1}$	1.0×10^{-11}	0.615	9.75	152,556	2.1×10^{8}
$\boldsymbol{\beta}_{0 \times}$	3.3×10^{-20}	2.05×10^{-9}	3.25×10^{-8}	0.000508873	0.70
$1 / \mu_{\text {Nsimpl }}$	$1+2 \times 10^{-24}$	$1+4 \times 10^{-17}$	$1+1 \times 10^{-14}$	1.8682	3.2
$1 / \mu_{\text {Nstand }}$	$1+3 \times 10^{-48}$	$1+7 \times 10^{-34}$	$1+7 \times 10^{-29}$	1.48232	2.7

Table 3. Circular Velocities [experimental ($V_{\text {exp }}$) and calculated by the Combination of Lorentzian-Einsteinian $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR Gravitational Field with the corresponding Simple μ ($V_{\text {simp,Lor }}$) or New Simple μ ($V_{\text {Nsimp,Lor }}$) or Standard μ ($V_{\text {stand,Lor }}$) or New Standard μ ($V_{\text {Nstand,Lor }}$) or Absorption of $D M$ into the Metric by using distribution (141) ($V_{\mathrm{DM}, \mathrm{Lor}}$) or Absorption of DM into the Metric by using distribution (143) ($V_{\mathrm{NDM}, \mathrm{Lor}}$)], the Luminous Mass of the galaxy that is enclosed within the circular orbit (M_{d}), the corresponding values of function $a_{(r)}$, function $h_{(r)}$ and time coefficient of metric $\left(g_{00}\right)$ wrt the distance from the center of Galaxy NGC 3198. The relative errors of the experimental Velocities are ($\left.\Delta V_{\text {exp }}\right)_{\mathrm{r}} \approx 8 \%$. ${ }^{1}[30]$ (p. 2)

$\begin{aligned} & \boldsymbol{r} \\ & / \mathrm{Kpc} \\ & / 10^{20} \mathrm{~m} \end{aligned}$	$\begin{aligned} & \boldsymbol{M}_{\mathbf{d}} \\ & \quad / 10^{40} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \boldsymbol{V}_{\text {exp }} \\ & \quad / \mathrm{Km} \mathrm{~s}^{-1} \end{aligned}$	$\boldsymbol{a}_{\text {simp,Lor }}$ $a_{\text {stand,Lor }}$ $\boldsymbol{a}_{\text {Nsimp,Lor }}$ $\boldsymbol{a}_{\text {Nstand,Lor }}$ $\boldsymbol{a}_{\text {DM,Lor }}$ $a_{\text {NDM,Lor }}$	$\boldsymbol{h}_{\text {simp,Lor }}$ $\boldsymbol{h}_{\text {stand,Lor }}$ $\boldsymbol{h}_{\text {Nsimp,Lor }}$ $\boldsymbol{h}_{\text {Nstand,Lor }}$ $h_{\text {DM,Lor }}$ $\boldsymbol{h}_{\text {NDM,Lor }}$	$\boldsymbol{g}_{00, \text { simp,Lor }}$ $g_{00, \text { stand,Lor }}$ $g_{00, \mathrm{Nsimp}, \mathrm{Lor}}$ $g_{00, \mathrm{Nstand,Lor}}$ $g_{00, \mathrm{DM}, \mathrm{Lor}}$ $g_{00, \text { NDM,Lor }}$	$V_{\text {simp,Lor }}$ $V_{\text {stand,Lor }}$ $V_{\text {Nsimp,Lor }}$ $V_{\text {Nstand,Lor }}$ $V_{\text {DM,Lor }}$ $\boldsymbol{V}_{\text {NDM,Lor }} / \mathrm{Km} \mathrm{s}^{-1}$	$\underset{\%}{(\Delta V)_{\mathbf{r}}}$
4.0	1.620	118.0	1.3759	-0.2964	-0.9999997318	128.783	9
1.23			1.2265	-1.3149	-0.9999997609	114.801	-3
			1.0341	0.6330	-0.9999997769	107.103	-9
			1.3437	-0.0247	-0.9999997984	96.790	-18
			1.5167	-0.2426	-0.9999997043	141.959	20
			1.2792	0.8407	-0.9999997506	119.735	1
8.0	5.825	150.3	1.3999	-0.4181	-0.9999995093	175.687	17
2.47			1.2506	-1.4709	-0.9999995617	156.950	4
			1.3666	-0.2523	-0.9999995210	171.504	14
			1.2173	-1.2549	-0.9999995734	152.765	2
			1.5399	-0.3837	-0.9999994603	193.262	29
			1.5076	-0.2073	-0.9999994716	189.202	26
16.1	7.237	155.3	1.7396	-2.6769	-0.9999996236	171.526	10
4.97			1.6060	-4.2377	-0.9999996526	158.351	-2
			1.7635	-2.8797	-0.9999996185	173.880	12
			1.6312	-4.4717	-0.9999996471	160.839	4
			1.8645	-2.9619	-0.9999995966	183.838	18
			1.8872	-3.2344	-0.9999995917	186.078	20
32.2	6.544	148.4	2.3942	-10.0944	-0.9999997658	158.734	7
9.94			2.2927	-12.8678	-0.9999997757	152.004	2
			2.3764	-9.8497	-0.9999997675	157.557	6
			2.2742	-12.5675	-0.9999997775	150.781	2
			2.4916	-11.2046	-0.9999997444	165.194	11
			2.4745	-11.0458	-0.9999997580	164.058	11
48.2	6.072	151.9	2.9340	-19.5417	-0.9999998221	153.157	1
14.87			2.8503	-23.5855	-0.9999998272	148.785	-2
			2.8609	-18.0986	-0.9999998265	149.341	-2
			2.7751	-21.9252	-0.9999998317	144.862	-5
			3.0155	-21.5329	-0.9999998172	157.409	4
			2.9443	-20.1474	-0.9999998215	153.691	1
13800	6.763	-	46.8625	-17,741.1	-0.9999999889	152.574	-
4,258.3			46.8571	-18703. 6	-0.9999999889	152.557	-

Figure 2. Plot of function $a_{(r)}$ wrt the distance (r) from the center of Galaxy NGC 3198 for the Combination of Lorentzian-Einsteinian $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR Gravitational Field with Simple interpolating function ($a_{\text {simp,Lor }}$), or Standard interpolating function ($a_{\text {stand,Lor }}$), or New Simple Interpolating Function ($a_{\text {Nsimp,Lor }}$), or New Standard Interpolating Function ($a_{\text {Nstand,Lor }}$), or Absorption of phantom Dark Matter into the Metric by using distribution (141) ($a_{\mathrm{DM}, \mathrm{Lor}}$), or Absorption of phantom Dark Matter into the Metric by using distribution (165) ($a_{\mathrm{NDM}, \mathrm{Lor}}$). The experimental values ($a_{\text {exp,Lor }}$) have been obtained, by replacing the experimental acceleration $\left(g_{\exp }=V_{\exp }{ }^{2} / r\right)$ in (28).

Figure 3. Rotation Curves in Galaxy NGC 3198. Rotational Velocities [experimental ($V_{\text {exp }}$), calculated by Schwarzschild or Newtonian field strength $\left(V_{\mathrm{d}}\right)$ and the Combination of Lorentzian-Einsteinian $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR Gravitational Field with Simple interpolating function ($V_{\text {simp,Lor }}$), or Standard interpolating function ($V_{\text {stand,Lor }}$), or New Simple Interpolating Function ($V_{\text {Nsimp,Lor }}$), or New Standard Interpolating Function ($V_{\text {Nstand,Lor }}$), or Absorption of phantom Dark Matter into the Metric by using distribution (141) ($V_{\mathrm{DM}, \mathrm{Lor}}$), or Absorption of phantom Dark Matter into the Metric by using distribution (165) ($V_{\text {NDM,Lor }}$)] wrt the distance (r) from the center of Galaxy NGC 3198.

In Figure 2, we show the plot of function $a_{(r)}$ wrt the distance from the center of Galaxy NGC 3198 for the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with Simple $\mu\left(a_{\text {simp,Lor }}\right)$, or Standard $\mu\left(a_{\text {stand,Lor }}\right)$, or New Simple $\mu\left(a_{\text {Nsimp,Lor }}\right)$ or New Standard $\mu\left(a_{\text {Nstand,Lor }}\right)$, or Absorption of phantom Dark Matter into the Metric by using distribution (141) ($a_{\mathrm{DM}, \mathrm{Lor}}$), or Absorption of phantom Dark Matter into the Metric by using distribution (143) ($a_{\text {NDM,Lor }}$). The experimental values ($a_{\text {exp,Lor }}$) have been obtained, by replacing the experimental acceleration ($g_{\text {exp }}=V_{\text {exp }}{ }^{2} / r$) in (28). In addition, the corresponding Rotation Curves in Galaxy NGC 3198 are shown in Figure 3.

We observe that in case of Galaxy NGC 3198, Schwarzschild or Newtonian field strength produces maximum relative error about 66% at extra large distances. The Simple μ gives better results, producing maximum relative error 39% near to the galactic center and it is improved as New Simple μ with corresponding maximum relative error 18% at 11.0 Kpc . The Standard μ in (119) gives even better results, producing maximum relative error about 23% at the center of the galaxy is also improved as New Standard μ with corresponding maximum relative error -18% at 4.0 Kpc . The Absorption of phantom DM into the Metric by using distribution (158) ($V_{\text {DM,Lor }}$) has maximum relative error 54% near to the galactic center and it is improved with DM distribution (165) ($\mathrm{V}_{\text {NDM,Lor }}$) with corresponding maximum relative error 28% at 9.0 Kpc . It is noted that the relative error of experimental Circular Velocities is ($\left.\Delta V_{\text {exp }}\right)_{\mathrm{r}} \approx 8 \%$ related to the uncertainty of the Hubble constant H_{0} [11] ($\mathrm{p} .356-357$). Finally, the values at distance $13.8 \mathrm{Mpc}=2.846 \times 10^{12} \mathrm{AU}=4.258 \times 10^{23} \mathrm{~m}$, which is the distance of Galaxy NGC 3198 from Earth, give us the image of what happens at extremely large distances: $g_{00 \rightarrow-1}$.

The same procedure can be followed in any galaxy, by using only the mass of the visible disk. Thus, it explains the rotation curves of many galaxies, eliminating the corresponding DM (see Figure 4 [31]).

Galaxies well fit by MOND

84 listed at present
UGC 2885 NGC 5533 NGC 6674 NGC 7331 NGC 5907 NGC 2998
NGC 801 NGC 5371 NGC 5033 NGC 2903 NGC 3521 NGC 2683 NGC 3198
NGC 6946 NGC 2403 NGC 6503 NGC 1003 NGC 247 NGC 7739 NGC 300
NGC 5585 NGC 55 NGC 1560 NGC 3109 UGC 128 UGC 2259 M 33
IC 2574 DDO 170 DDO 168 NGC 3726 NGC 3769 NGC 3877 NGC 3893
NGC 3917 NGC 3949 NGC 3953 NGC 3972 NGC 3992 NGC 4010
NGC 4013 NGC 4051 NGC 4085 NGC 4088 NGC 4100 NGC 4138
NGC 4157 NGC 4183 NGC 4217 NGC 4389 UGC 6399 UGC 6446
UGC 6667 UGC 6818 UGC 6917 UGC 6923 UGC 6930 UGC 6973
UGC 6983 UGC 7089 NGC 1024 NGC 3593 NGC 4698 NGC 5879 IC 724
F563-1 F563-V2 F568-1 F568-3 F568-V1 F571-V1 F574-1 F583-1
F583-4 UGC 1230 UGC 5005 UGC 5999 Carina Fornax
Leo I Leo II Sculptor Sextans Sgr
Figure 4. Galaxies with rotation curves well fit by MOND [31].

7.2. The Combination of Lorentzian-Einsteinian $3^{\text {rd }}$ Generalized Schwarzschild Metric or Modified GSR Gravitational Field with 'old' or 'New' MOND Simple \& Standard Interpolating Function and 'old' or 'New' Absorption of Dark Matter into the field in the Solar System

In order to find out what is the effect of the modification at medium mass and size systems, we now examine our Solar System.

Table 4. Rotational Velocities [experimental ($V_{\text {exp }}$) and calculated by the Combination of LorentzianEinsteinian $3^{\text {rd }}$ Generalized Schwarzschild metric or Modified GSR Gravitational Field with MOND Simple \& Standard Interpolating Function ($V_{\text {simp,Lor }} \& V_{\text {stand,Lor }}$)], the Luminous Mass of the Solar System that is enclosed within the circular orbit $\left(M_{\mathrm{d}}\right)$, the value of function $h_{(r)}$ and the value of time coefficient of metric $\left(g_{00}\right)$ wrt the mean distance from the Sun. Data from [15] (p. 14-3).

Name	$\begin{aligned} & r \\ & / \mathrm{AU} \\ & / 10^{11} \mathrm{~m} \end{aligned}$	$M_{\text {d }} \quad 110^{24} \mathrm{~kg}$	$a_{\text {Schwar }}$ $\boldsymbol{a}_{\text {simp,Lor }}$ $\boldsymbol{a}_{\text {stand,Lor }}$	$\begin{aligned} & h_{\text {Schwar }}=1 \\ & h_{\text {simp,Lor }} \\ & h_{\text {stand,Lor }} \end{aligned}$	$\boldsymbol{g}_{00, \text { Schwar }}$ $g_{00, \text { simp,Lor }}$ $g_{00, \text { stand,Lor }}$	$V_{\text {Schwar }}$ $V_{\text {simp,Lor }}$ $V_{\text {stand,Lor }}$ / $\mathrm{Km} \mathrm{s}^{-1}$
Sun	0.00465	1,989,100	1	1	-0.9999957553	436.747
Surface	0.00696		1.000000000000	1.000000000000	-0,9999957553	436.747
			1.000000000000	1.000000000000	-0.9999957553	436.747
Mercury	0.38710	1,989,100.0000	1	1	-0.9999999490	47.880
	0.57909		1.000000001516	0.999999996969	-0.9999999490	47.880
			1.000000000000	1.000000000000	-0.9999999490	47.880
Venus	0.72333	1,989,100.3302	1	1	-0.9999999727	35.027
	1.08209		1.000000005292	0.999999989416	-0.9999999727	35.027
			1.000000000000	0.999838760132	-0.9999999727	35.027
Earth	1.00000	1,989,105.1992	1	1	-0.9999999803	29.790
	1.49598		1.000000010114	0.999999979771	-0.9999999803	29.790
			1.000000000000	0.999771972392	-0.9999999803	29.790
Mars	1.52369	1,989,111.1715	1	1	-0.9999999870	24.134
	2.27941		1.000000023482	0.999999953036	-0.9999999870	24.134
			1.000000000000	0.999659019194	-0.9999999870	24.134
Jupiter	5.20283	1,989,111.8134	1	1	-0.9999999962	13.060
	7.78332		1.000000273790	0.999999452420	-0.9999999962	13.060
			1.000000000000	0.998837605409	-0.9999999962	13.060
Saturn	9.53876	1,991,010.6134	1	1	-0.9999999979	9.650
	14.26978		1.000000919405	0.999998161187	-0.9999999979	9.650
			1.000000000001	0.997869945819	-0.9999999979	9.650
Uranus	19.19139	1,991,579.1134	1	1	-0.9999999990	6.804
	28.70991		1.000003720565	0.999992558819	-0.9999999990	6.804
			1.000000000012	0.995715092796	-0.9999999990	6.804
Neptune	30.06107	1,991,665.7384	1	1	-0.9999999993	5.437
	44.97072		1.000009128095	0.999981743504	-0.9999999993	5.437
			1.000000000083	0.993288340427	-0.9999999993	5.437
Pluto	39.52940	1,991,768.5184	1	1	-0.9999999995	4.741
	59.13514		1.000015782729	0.999968433629	-0.9999999995	4.741
			1.000000000249	0.991174598083	-0.9999999995	4.741
NGC	2.846×10^{12}	1,991,768.5334	1		-1,0000000000	3.12×10^{-7}
3198	4.258×10^{12}		20,114.1129122	$-8.17434687 \times 10^{9}$	-1,0000000000	355.39
			20,114.1128998	$-8.35188544 \times 10^{9}$	-1,0000000000	355.39

The mean values of Rotational Velocities, the Mass of the Solar System that is enclosed within the orbit wrt the mean distance the planet from the Sun, are contained in Table 4 [data from [15] (p. 143)]. The Circular Velocities ($V_{\text {Schwar }}, V_{\text {simp,Lor }}, V_{\text {stand,Lor }}$) have been calculated by using (31) or (119) or (28) or (116), the values of function $a_{(r)}\left(a_{\text {simp,Lor }}\right.$ or $\left.a_{\text {stand,Lor }}\right)$ by using (120) combined with (121) and
the values of function $h_{(r)}\left(h_{\text {simp.Lor }}\right.$ or $\left.h_{\text {stand,Lor }}\right)$ by using (129) or (131), respectively. Finally, the values of time coefficient of metric (g_{00}) have been calculated from (24) for $\xi_{1}=1$. In addition, the corresponding Rotation Curves and Mass Distribution in the Solar System are shown in Figure 10 and Figure 11 of [20], respectively.
We observe that in case of Solar System, the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with MOND Simple or Standard μ, gives almost the same Rotational Velocities ($V_{\text {simp,Lor, }}, V_{\text {stand,Lor }}$) and coefficients of metric $\left(g_{00}\right)$ as those calculated by the original Schwarzschild field strength ($V_{\text {Schwar }}$). Thus, there are not significant changes to the Relativistic Doppler Shift, the gravitational red shift as well as the precession of Mercury's orbit ($g_{00}=0.9999999490$). Finally, the values at distance $13.8 \mathrm{Mpc}=2.846 \times 10^{12} \mathrm{AU}=4.258 \times 10^{23} \mathrm{~m}$, which is the distance of Galaxy NGC 3198 from Earth give us the image of what happens at extra large distances: $g_{00 \rightarrow-1}$ (see also the corresponding velocities at infinite distance in Table 1).

Finally, we conclude that the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with 'old' or 'New' MOND or Absorption of phantom DM into the Metric-Field, in scale of black hole, planetary and star system, coincides to the original Schwarzschild metric $(a \approx \mu \approx h \approx 1)$, while in galactic scale, it gives MONDian results ($a>1, \mu>1$), eliminating the corresponding DM.

Abbreviations
1GSL: $1^{\text {st }}$ Generalized Schwarzschild Lagrangian
1GSM: ${ }^{\text {st }}$ Generalized Schwarzschild Metric
1GSP: $1^{\text {st }}$ Generalized Schwarzschild Potential
1GSRP: $1^{\text {st }}$ Generalized Schwarzschild Relativistic Potential
3GSM: $3^{\text {rd }}$ Generalized Schwarzschild Metric
3GSRP: $3^{\text {rd }}$ Generalized Schwarzschild Relativistic Potential
CCs: Cartesian Coordinates
c_{I} : Universal Speed
DM: Dark Matter
ECRMs: Euclidean Complex Relativistic Mechanics
EGR: Einsteinian General Relativity
EP: Equivalence Principle
ERT: Einstein Relativity Theory
ESR: Einsteinian Special Relativity
GEE: Gravitoelectric Effect
GR: General Relativity
GRS: Gravitational Red Shift
GSR: Generalized Special Relativity
GT: Galilean Transformation
IECLSTTs: Isometric Euclidean Closed Linear Transformations of Complex Spacetime
LSTT: Linear Spacetime Transformation LB: Lorentz Boost
MOND: Modified Newtonian Dynamics
NPs: Newtonian Physics
r_{0} : Milgrom radius RB: Real Boost
RIOs: Relativistic Inertial observers
r_{S} : Schwarzschild radius
$r_{\mathrm{SI}}:$: $^{\text {st }}$ Generalized Schwarzschild radius
RT: Relativity Theory
SM: Schwarzschild Metric
SR: Special Relativity
TPs: Theory of Physics
UCM: Uniform Circular Motion
VT: Vossos Transformation
μ : Interpolating function

References

[1] Phipps T E 1986 Mercury's precession according to special relativity Am. J. Phys. 54 (3) 245247 [DOI: 10.1119/1.14664]
[2] Tsamparlis M 2010 Special relativity: An introduction with 200 problems and solutions (Berlin Heidelberg: Springer-Verlag) [ISBN: 978-3-642-03836-5, e-ISBN: 978-3-642-03837-2]
[3] Goldstein H 1980 Classical Mechanics, $2^{\text {nd }}$ Edition (Cambridge, London: Addison-Wesley) [ISBN: 0-201-02969-3]
[4] Peters P C 1987 Comment on "Mercury's precession according to special relativity" [Am. J. Phys. 54, 245 (1986)]. Am. J. Phys. 55 (8) 757-758 [DOI: 10.1119/1.15014]
[5] Phipps T E 1987 Response to "Comment on 'Mercury's precession according to special relativity"" [Am. J. Phys. 55, 757 (1987)] Am. J. Phys. 55 (8) 758-759. [DOI: 10.1119/1.15015]
[6] Park R S et al 2017 Precession of Mercury's Perihelion from Ranging to the MESSENGER Spacecraft Astronomical Journal 153, 121 pp 1-7 [DOI: 10.3847/1538-3881/aa5be2]
[7] Einstein A 1920 Relativity: The Special and General Theory (New York, USA: Holt). Translated by Robert W. Lawson.
[8] Vossos S and Vossos E 2018 Unification of Newtonian Physics with Einstein Relativity Theory, by using Generalized Metrics of Complex Spacetime and application to the Motions of Planets and Stars, eliminating Dark Matter J Phys.: Conf. Ser. 1141012128 [DOI: 10.1088/1742-6596/1141/1/012128]
[9] Vossos S and Vossos E 2016 Euclidean Closed Linear Transformations of Complex Spacetime and generally of Complex Spaces of dimension four endowed with the Same or Different Metric J Phys: Conf Ser 738012048 [DOI:10.1088/1742-6596/738/1/012048]
[10] Vossos S and Vossos E 2015 Euclidean Complex Relativistic Mechanics: A New Special Relativity Theory J. Phys.: Conf. Ser. 633012027 [DOI:10.1088/1742-6596/633/1/012027]
[11] Rindler W 2006 Relativity: Special, General and Cosmological (New York, USA: Oxford University Press) [ISBN: 978-0-19-856732-5]
[12] Golovko V A 2019 New metrics for the gravitational field of a point mass Results in Physics 13 102288 [DOI: 10.1016/j.rinp.2019.102288]
[13] Goldstein H, Poole C P, Safko J L 2014 Classical Mechanics, $3^{\text {rd }}$ Edition (Edinburgh, England: Pearson) [ISBN: 978-1-292-02655-8].
[14] Williams D R Mercury Fact Sheet [Access: June 27, 2018] https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
[15] Lide D R ed 2009 CRC Handbook of Chemistry and Physics 89th Edition (Internet Version) (FL: CRC Press/Taylor and Francis, Boca Raton)
[16] Williams D R Sun Fact Sheet [Access: June 27, 2018] https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
[17] Williams D R Earth Fact Sheet [Access: June 27, 2018] https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
[18] Brault J W 1963 Gravitational red Shift of Solar Lines. Bull. Amer. Phys. Soc. 828.
[19] McGaugh S and Milgrom M 2013 Andromeda Dwarfs in Light of MOND Astrophysical Journal 766(1), 22 pp 1-7 [doi: 10.1088/0004-637X/766/1/22]
[20] Vossos S and Vossos E 2017 Explanation of Rotation Curves in Galaxies and Clusters of them, by Generalization of Schwarzschild Metric and Combination with MOND, eliminating Dark Matter, J. Phys.: Conf Ser. 936012008 [DOI:10.1088/1742-6596/936/1/012008]
[21] Па́ллоv A入є ${ }^{2} \alpha \nu \delta \rho \varepsilon ́ \omega \varsigma, ~ \Sigma v v a \gamma \omega \gamma \dot{\eta} \varsigma Z^{\prime}$ (Pappus of Alexandria, The Collection, Book VII) ed. Alexander Jones 1986 (New York, USA: Springer-Verlag) [ISBN: 0-387-96257-3]
[22] Wilkinson J 2012 The Sun and Stars: New Eyes on the Sun. A Guide to Satellite Images and Amateur Observation. Astronomers' Universe. (Berlin Heidelberg, Germany): SpringlerVerlag [ISBN: 978-3-642-22838-4] [eISBN: 978-3-642-22839-1] [DOI: 10.1007/978-3-642-
[23] McMillan P J 2017 The mass distribution and gravitational potential of the Milky Way. Monthly Notices of the Royal Astronomical Society 465(1), 76-94. [DOI:10.1093/mnras/stw2759]
[24] López-Corredoira M, Allende Prieto C, Garzón F, Wang H, Liu C, Deng L 2018 Disk stars in the Milky Way detected beyond 25 kpc from its center. Astron Astrophy. 612, L8. [DOI: 10.1051/0004-6361/201832880].
[25] Gillessen et al 2009 Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center. ApJ 692(2), 1075-1109. [DOI: 10.1088/0004-637X/692/2/1075].
[26] Begeman KG $1989 \mathrm{H}_{\mathrm{I}}$ rotation curves of spiral galaxies. I - NGC 3198 Astron Astrophys 223(12) $47-60$ http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1989A\%26A...223...47B\& defaultprint=YES\&filetype=.pdf
[27] Davies P 2006 The Goldilocks Enigma (New York, USA: First Mariner Books). [ISBN: 978-0-618-59226-5].
[28] Bars I and Terning J 2009 Extra Dimensions in Space and Time (New York, USA: Springer). [ISBN: 978-0-387-77637-8].
[29] Heymans C 2017 The Dark Universe (IOP Publishing, Bristol, UK) pp 3-4 [ISBN: 978-0-7503-1373-5] [DOI:10.1088/978-0-7503-1373-5]
[30] Karukes EV, Salucci P and Gentile G 2015 The Dark Matter Distribution in the Spiral NGC3198 out of $0.22 \mathrm{R}_{\text {vir }}$ Astron Astrophys 578 A13 pp 1-8 [DOI: 10.1051/0004-6361/201425339]
[31] McGaugh, S. MOND Rotation Curve Fits-"The MOND pages" [Access: April 19, 2019] http://astroweb.case.edu/ssm/mond/fitroster.html

[^0]: ${ }^{2}$ Spyridon Vossos, 39 Epidavrou Str., GR-15233 Chalandri, Athens, Greece, e-mail: spyrolia@hotmail.com.
 ${ }^{3}$ Elias Vossos, 39 Epidavrou Str., GR-15233 Chalandri, Athens, Greece, e-mail: elias.vossos@outlook.com.
 ${ }^{4}$ Prof. Christos G. Massouros, National and Kapodistrian University of Athens, Euripus Campus, GR-34400, Greece, e-mail: ChrMas@uoa.gr.

