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Abstract. The mainstream approach of gravitational field is the development of 

Geometric theories of gravitation and the application of the Dynamics of General 

Relativity (GR). Besides, the Generalized Special Relativity (GSR) contains the 

fundamental parameter (ξI) of Theories of Physics (TPs). Thus, it expresses at the 

same time Newtonian Physics (NPs) for ξI→0 and Einstein Relativity Theory (ERT) 

for ξI=1. Moreover, the Equivalence Principle (EP) in the context of GSR, has two 

possible interpretations: mG=m (1), or mG=γ(ξI,β)m (2), where β=υ/c and mG, m, γ are 

the gravitational mass, inertial rest mass and Lorentz γ-factor, respectively. In this 

paper we initially present a new central scalar potential V=V(k,r), where k=k(ξI) and r is 

the distance from the center of gravity. We demand that ‘this new GSR gravitational 

field in accordance with EP (1), gives the same precession of Mercury’s orbit as 

Schwarzschild Metric (SM) does’ and we obtain k=6-ξI
2
. This emerges Einsteinian 

SR-horizon at r=5rS, while NPs extends the horizon at six Schwarzschild radius (6rS). 
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We can also explain the Gravitational Red Shift (GRS), if only the proposed GSR 

Gravitational field strength g=g(k,r) is combined with EP (2). We modify the 

aforementioned central scalar potential as V=V(h,k,r), where h=h(r). The combination 

of the above with MOND interpolating functions, or distributions of Dark Matter 

(DM) in galaxies, provides six different functions h=h(r). Thus, we obtain a new GSR 

central Gravitational field strength g=g(h,k,r), which not only explains the Precession 

of Mercury’s Perihelion, but also the Rotation Curves in Galaxies, eliminating Dark 

Matter.                                                                              

1.  Introduction 
The Equivalence Principle (EP) in the context of Special Relativity (SR), has two possible 

interpretations [1] (p.245). According to the mainstream approach (weak EP), the gravitational mass 

(mG) is equal to the inertial rest mass (m):  

mG = m.                                                                         (1) 

On the other hand, the alternative approach is  

mG= γ m.                                                                (2)  

Besides, we have the gravitational potential energy  

U=mGV,                                                                (3)  

where V is scalar gravitational potential. 

The consideration of Newtonian scalar gravitational potential  

r

M
V

G
N −= ,                                                           (4) 

according to SR, gives precession of Mercury’s perihelion only 7.16΄΄ per century, in case that we 

follow the mainstream approach (1) [2] (p. 355), [3] (p. 338), while the alternative approach (2) gives 

21.49΄΄ per century [4] (p. 758), [5] (p. 758). Both the above theoretical results are far away from the 

experimental value:  

Ωexp=42.9799(9)΄΄cy
-1

.                                                (5)  

This is the contribution of the Sun due to Schwarzschild Gravitoelectric effect to the total precession 

of Mercury’s perihelion [6] (p. 6). Therefore, when dealing with the gravitational field, we usually 

apply the Dynamics of General Relativity (GR) and we develop Geometric theories of gravitation [7]. 

The EP in GR is: accelerated motions caused by the gravitational field only (free fall) take place along 

geodesics of the metric, which corresponds to the particular gravitational field [2] (p. 248). 

In this paper, we use generalized Relativity Theory (RT), which contains Einstein Relativity Theory 

(ERT) and Newtonian Physics (NPs), keeping the formalism of ERT. Thus, the differences between 

these two Theories of Physics (TPs) are limited to their different value of metric coefficients of 

spacetime for the corresponding Relativistic Inertial observers (RIOs) and the fundamental parameter 

of TPs: ξI. NPs has ξI→0, while ERT has ξI=1 [8].  

The case of observers with variable metric of spacetime, leads to the corresponding GR. For being 

this clear, we produce the 1
st
 Generalized Schwarzschild Metric (1GSM) and the 3

rd
 Generalized 

Schwarzschild Metric (3GSM), which are in accordance with any SR based on isotropic Generalized 

metrics (gI) and Einstein field equations.  

In case of 1GSM, we compute the corresponding Lagrangian, geodesics, equations of motion, 

precession of planets’ orbits etc, resulting formulas which are referred to any TPs. We also present the 

results of the original Schwarzschild metric (SM), by adopting a new separation of total energy into 

potential energy (which depends only on distance) and generalized kinetic energy (which depends not 

only on velocity, but also on distance). This emerges a new central potential, which gives the well-

known Schwarzschild gravitational field strength. The next step is the modification of the above 

potential (by introducing a real parameter k), because is going to be used according to Generalized 

Special Relativity (GSR) (as a pure GSR field in the spacetime of RIOs). The condition: ‘this new 
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GSR gravitational field strength gives the same precession of Mercury’s orbit as the original SM 

does’, emerges the value of parameter k=6-ξI
2
. Thus, we obtain the new GSR central scalar 

gravitational potential V=[sqrt(1-krS/r)-1]c
2
/k. NPs (with ξI→0) gives k=6, while ERT (with ξI=1) 

emerges k=5. Finally, we compare the SR and GR approaches of gravity and conclude no significant 

variation. 

In case of 3GSM, the combination of its Newtonian version with Modified Newtonian Dynamics 

(MOND), leads to MOND relativization. After, we pass to RIOs of ordinary flat spacetime 

(Minkowski space) with Lorentz metric, extending MOND methods to ERT. We use Simple and 

Standard Interpolating Function (µ) to the Lorentzian version of 3GSM, for the explanation of the 

Rotation Curves in Galaxies as well as the Solar system, eliminating Dark Matter. Generally, this 

approach, in non rotating black hole, planetary and star system scale, coincides to the original 

Schwarzschild metric, while in galactic scale, it gives MONDian results. We also modify the 

aforementioned central scalar potential as V=[sqrt(1-hkrS/r)-1]c
2
/k, where h=h(r). The combination of 

the above with MOND interpolating functions, or distributions of Dark Matter (DM) in galaxies, 

provides six different functions h=h(r). Thus, we obtain a new GSR central Gravitational field strength 

g=g(h,k,r), which not only explains the Precession of Mercury’s Perihelion, but also the Rotation 

Curves in Galaxies, eliminating Dark Matter. 

2.  Isometric Euclidean Closed Linear Transformations of Complex Spacetime endowed with the 

Corresponding Metrics  
In this paper, the metric coefficients of time and space have different signs. Moreover, 3D-space is 

isotropic, in case of Isometric Euclidean Closed Linear Transformations of Complex Spacetime 

(IECLSTTs) [9]. Thus, for RIOs, the representation of the non-degenerate inner product in holonomic 

basis {ect, ex, ey, ez} of ‘flat’ spacetime is the real matrix  

( ) ( )2

I

2

I

2

I00I2

I

11I33I22I11I00II ,,,1diag1,1,1,
1

diag,,,diag ξξξ
ξ

−−−=









−== ggggggg ,         (6) 

where 

00I

11I

g

g
I −
=ξ                                                                 (7) 

The index I remind us that we are referred to the spacetime of the RIOs of each specific TPs. This 

GSR has real Universal Speed (cI):  

c
1

I

I ξ
=c                                                                    (8) 

and the transformation of a contravariant four-vector is  

dX΄=
),I( I

Λ βξ
r dX,                                                            (9) 

where 

( )












+−

−
=





















−−

−−

−−
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Ι
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)(3

2

)(

222
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and  

2)(
1

1

δ
γ δ r

r

−
=                                                             (12) 
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is Lorentz γ-factor. 

The specific value ξI→0 (gI11→0, gI00≠0) gives Galilean Transformation (GT) with Infinite 

Universal Speed (cI→+∞) and the corresponding metric of the spacetime (let us call Galilean metric) 

( ) ( )2

I

2

I

2

I
0

00I11I11I11I00I
0

,,,1diaglim,,,diaglim
I11I

ξξξ
ξ

−−−==
→→Γ gggggg

g
.                (13) 

The corresponding spacetime (let us call Galilean spacetime) has infinite curvature (K→+∞) in any 

orientation κex+λey+µez of 3D-space. This is the reason that time is absolute for any type of observers 

as well as the Universal speed is infinite (cI→+∞).                                    

The specific value ξ I=1 (gI11= - gI00) gives Vossos Transformation (VT) with cI=c (the universal 

speed is the speed of light in vacuum) and the corresponding metric of spacetime (let us call Vossos 

metric)  

( ) η1,1,1,1diag 11I11I ggg =−=Β ,                                                     (11) 

which for gI11=1 becomes the Lorentz metric (η). Thus, we have the Lorentzian case of Euclidean 

Complex Relativistic Mechanics (ECRMs) [10], which is associated with ERT.  

We now make the option that observer O measures real spacetime. As matrix ΛI contains some 

elements which are imaginary numbers, we conclude that the spacetime of one moving observer is 

complex. Thus, we put an index C to the complex natural sizes and the real natural sizes have no 

index. The typical matrix of IECLSTTs along x-axis (Generalized; Galilean-Newtonian; Lorentzian-

Einsteinian) is 





















−

−

−

=Λ

Ι

Ι

Ι

Ι Ι

1i00

i100

001

001

γ

2

)(

βξ
βξ

β
βξ

βξtyp

 ; 



















−
=ΛΓ

1000

0100

001

0001

β
typ

 ; 



















−

−

−

=ΛΒ

1i00

i100

001

001

γ )(

β
β

β
β

βtyp
. (12) 

In addition, any complex Cartesian Coordinates (CCs) of the theory may be turned to the 

corresponding real CCs, in order to be perceived by human senses. This is achieved, if the moving 

Observer Ο΄ considers as Real CCs the corresponding lengths of rods [8] (p. 6). Thus, it emerges the 

(Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) Real Boost (RB)                               

dΧ΄ =ΛIR(β) dΧ  ; dΧ΄ =ΛΓ(β) dΧ  ;  dΧ΄ =ΛL(β) dΧ,                               (13) 

where 

( ) ( )

( )
( )

















−
+−

−

=Λ
Ι T

T

T

ββ
ββ

γ
βγ

βξγγ

βξ
βξ

βξβξ

β 1
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I

II

3

2

I

)R(
r

r

rr

r  ; ( ) 








−
=Λ

Γ
3I

01

ββ
r  ; 

( ) ( )
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( )
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+−

−

=Λ
T

T

T

ββ
ββ

β

β

β
β

ββ

β
1γ

Iγ

γγ

3

)L(
r

r

rr

r . (14) 

The typical matrix of (Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) RB along x-axis is 

( ) ( )

( ) ( )





















−

−

=Λ

1000

0100

00

00

II

II

2

I

)(IR
βξβξ

βξβξ

β
γβγ

βγξγ

typ

 ; 


















−

=ΛΓ
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)(

β
βtyp

 ; 
( )

( ) ( )

( ) ( )



















−

−

=Λ

1000

0100

00γγ

00γγ

L

ββ

ββ

β

β
β

typ

. (15) 

We observe that for ξΙ=1, we have the original typical proper Lorentz Boost (LB) (see e.g. [2] p. 21, 

eq. 1.38) and the corresponding general proper LB (see e.g. [2] p. 24, eq. 1.47). 

Supposing one Particle (P) with real mass m moving with velocity cPP βυ
rr

=  wrt observer O, we 

calculate the Generalized relativistic kinetic energy; Generalized relativistic energy; Generalized 

energy of Rest mass [8] (p. 10): 

2

2

I

)(
c

1
I mK P

ξ

γ βξ −
=

r

  ;  
2

2

I

)(
cI mE P

ξ

γ βξ
r

=   ;  2

2

I

c
1

mErest ξ
=                         (16) 

 

 



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012095

IOP Publishing

doi:10.1088/1742-6596/1391/1/012095

5

 

 

 

 

 

 

3.  GR: Generalized Schwarzschild metrics  

3.1.  The metric of a static and centrally symmetric gravitational field  

Einstein field equations in vacuum [11] (pp. 303, 396) are reduced to the single tensor equation Rµν=0.  

This emerges the metric of a static and centrally symmetric gravitational field  

( ) ( ) ( ) ( )
22

11I
2

11I
2

11I
22

00I
2 dsindddcd φθθ rrrr hghgrggtfgS +++= ,                   (17) 

with the following conditions [12] (p. 2): 

( )
2

4

)()(

)(
d

d

1








−

=
r

f

ff
g

rr

r

µ
 ; 

( )2)(

)(
1 r

r
f

h
−

=
µ

,                                 (18)  

where µ is an arbitrary constant and f is an arbitrary function of r (not constant). 

3.2.  The 3
rd

 Generalized Schwarzschild Metric, Relativistic potential and Field strength  

 

We define a new relativistic potential Φ around a center of gravity with mass M (let us call 3
rd

 

Generalized Schwarzschild Relativistic Potential-3GSRP) as 











−=

r

r
aΦ r

S

2

I
)(2

I

2

1ln
2

c ξ
ξ

,                                                 (19)  

where  

2S
c

G2 M
r =                                                                 (20) 

is Schwarzschild radius and a(r) is unspecified function, in accordance with any TPs. The 3GSP is 

connected with Φ, via the formula 

ΦΦ
c

f r 2

2

I

2

I

)(
c

22
ln

ξ
== .                                                   (21) 

Thus, we obtain 

( )
r

r
af rr

S

2

I
)(1
ξ

−= .                                                        (22) 

After replacing the above equation and µ=ξI
4
rS

2
 to (18), we also have 
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r

r
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a
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a
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I
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4

)(

2
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1

d

d

ξ
 ; 

2

)(

2

)(

r

r
a

r
h = .                                     (23)  

So, we obtain the 3
rd

 Generalized Schwarzschild Metric (3GSM) 

22

2

)(

2

11I2

2

)(

2

11I2

S

2

I
)(

4

)(

2

)(11I

22S

2
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d
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ξ
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−= ,      (24) 

with spatial part 
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where a is an arbitrary function of r (or constant). Now, we can calculate this radial field strength, by 

defining 

r
dl

dr

dr

d
gr

dl

d
ggg ˆˆ

11I11I11I

Φ
−=

Φ
−=Φ∇−=

r
,                          (26) 

and 

dl

dr

dr

d
gg

Φ
= 11I .                                                       (27) 

The positive value of field strength means gravity, while negative value means antigravity. So, it is 

01
2

)(

2

1

S

2

I
)(2

>









−=

−

rr a
r

r
a

r

GM
g

ξ
.                                          (28) 

We also prefer a>0, in order to ensure Gravitational Red Shift (GRS). 

3.3.  The 1
st
 Generalized Schwarzschild Metric, Relativistic potential, Field strength, Lagrangian, 

Geodesics, Equations of motion and Precession of planets’ orbits  

In case that a(r)=1, (19) gives the 1
st
 Generalized Schwarzschild Relativistic Potential (1GSRP) [9]  

(p.11): 

      ...
G

...
2

c
1ln

2

c S
2

S

2

I

2

I

2

+−=+−=









−=

r

M

r

r

r

r
Φ

ξ
ξ

                                   (29) 

 Thus, (24) emerges the 1
st
 Generalized Schwarzschild metric (1GSM): 

222
11I

22
11I

2

S2
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11I22S2

I00I
2 dsindd

1

dc1d φθθ
ξ
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g
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r

r
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−
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 −= .                (30) 

Besides, the 1
st
 Generalized Schwarzschild field strength (g) is  

r
r

r

r

GM
g s

I
ˆ1

2

1

2
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 −−= ξ
r

 .                                                 (31) 

The usual definition of Lagrangian of gravitational system (M, m) [11] (p. 205)  
ν

µν
µ

xgxmL &&= ,                                                             (32) 

for orbit on the ‘plane’ θ=π/2, gives the 1
st
 Generalized Schwarzschild Lagrangian (1GSL) [8] (p. 15): 
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The well-known Euler-Lagrange equations 
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φ&2
mrJ =   ;  

.

τd

d
=  ,                                                        (37) 

where E is the total energy and J is the total angular momentum of the system (the integrals of 

motion). The solutions of the above equations of motion satisfy the condition 
2

00I cmgL = .                                                                (38) 

So, they can also be used for the practical determination of geodesics [11] (p. 205). 

Now, we study the motion of particle P around the center of gravity of mass M. The case of 

Uniform Circular Motion (UCM) is obtained, by putting r=R=constant to (36). The orbit of non-

circular motion comes with similar way to the original Schwarzschild space [11] (pp. 238-45). Thus, 

the exact differential equation of motion is  

2

2
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ξ
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.
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d
= ,                      (39)  

where h=J/m is the angular momentum per mass unit.  

In case of small velocities relative to cI (υ<<c/ξI), we replace the solution of the simplified 

differential equation  

22
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M
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=                             (40) 

to the last term of the exact differential equation of motion (e is the eccentricity of the  conic section, α 

is the semimajor axis in case of ellipse). Thus, we have the approximate differential equation of 

motion (which also validates UCM): 
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42

33
2

I22

2

cos1
c

G
3

G

d

d
φξ

φ
e

h

M

h

M
u

u
++=+  ;  

r
u

1
=  ;   φ&2

rh =   ;  
.

τd

d
=                 (41)  

with exact and approximate solution, correspondingly 
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The last equation can be written as    
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.               (44)                                  

Hence the orbit can be regarded as an ellipse that rotates (‘precesses’) about one of its foci by an 

amount 
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rad per revolution. Finally the angular velocity of ellipse rotation is given by the formula 
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or equivalently 
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Accordingly to the mainstream approach in textbooks, the further study is based on the 

superposition principle. This emerges the relation of time to proper time. Replacing this to (35), they 

obtain the final formula of the total relativistic energy. Finally, the generalized potential energy is 
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calculated, by reducing the kinetic energy (which is considered equal to this of SR) from the total 

relativistic energy. But SM is a static and stationary metric of non-rotating mass. So, there is no 

gravitomagnetism and we expect that the gravitational force is independent from the velocity of the 

particle. Thus we adapt the following approach which gives simple central potential which describes 

Gravitoelectric Effect (GEE).  

The isometry of spacetime relieves us the relation of time to proper time [8] (p. 16):  
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Replacing the above equation to (35), we obtain the final formula of the total relativistic energy 
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We observe the different contribution of the radial and orbital velocity to the total energy! Now, we 

demand zero kinetic energy (K=0), in case that the particle is static ( )0=Pβ
r

. Then ( ) UEE
P

+=
= rest0β

r , 

where U is the potential energy. Replacing (16iii) and (49) to the above equation, we have 
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where V is the 1
st
 Generalized Schwarzschild Potential (1GSP). This is a central potential: 
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We observe that the result is the same as (31). The generalized Relativistic Kinetic energy is defined as 

Kg=E-Erest-U. So, 
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We also observe that if r→+∞, the above equation becomes the Relativistic Kinetic energy of GSR: 

(16i). Finally the Relativistic mechanic energy Em=E-Erest=Kg+U is 
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In case that ξI→0
+
 (Galilean metric), (48) gives 1=t& . Thus, we obtain the Newtonian results:                            
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The Newtonian differential equation of motion and the corresponding solution are  
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where αN is the semimajor axis of Newtonian ellipse which do not rotate (∆N=0). Besides  
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In case that ξ I=1, it emerges the well-known results of the original Schwarzschild metric in ERT 

(see e.g. [11] pp. 228-45):                           
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The differential equation of non-UCMs of the original Schwarzschild metric has come from (39):  
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The corresponding ERT approximate differential equation of motion (which also validates UCM) is: 
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with exact and approximate solution, correspondingly 
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The last equation can be written as    
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Hence the ERT orbit can be regarded as an Einsteinian ellipse (with αEGR semimajor axis) which 

rotates (‘precesses) about one of its foci by an amount 
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rad per revolution. Accordingly to our non-mainstream approach, we have 
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4.  GSR: Metric of RIOs, Gravitational Potential, Field strength, Lagrangian, Equations of 

motion and Precession of planets’ orbits  
In case of GSR, the geometry of spacetime has steady metric (6). So, gravity is studied as a field, 

which comes from GSR gravitational potential ( )GSRGSR ,wV
r

. This adds extra terms to the GSR 

Lagrangian of a free particle P. In this paper, we examine the case that 0=SRw
r

, according to the 

mainstream approach of EP (1). Thus, the GSR Lagrangian in the frame of mass M, is [2] (p. 351): 
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where VGSR is central gravitational potential. Besides, the orbit of particle P is on the ‘plane’ θ=π/2 

and we have:                                                                                                                                   
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The GSR total energy definition (16ii) and Euler-Lagrange equations (34) give us the equations of 

motion:                                                                                                                                                                                                                      
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where the integrals of motion are: the GSR total energy (EtotGSR) and the GSR total angular momentum 

(J). Besides, h=J/m is the GSR angular momentum per mass unit. Solving (79) in terms of γ, we find                                                                                                                             
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Replacing the above in the identity  ( ) ( )
22

2

2
2

I
IIc
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PP βξβξ γγ

υ
ξ rr =+ , we obtain the equation of trajectory: 
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Differentiation wrt φ, emerges the equation of trajectory for a central gravitational potential:  
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where the points with extreme values and circular motion are excluded [2] (p. 352). 

Now, we propose the formula of GSR gravitational central potential: 
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The idea comes from 1GSP (51). This is modified (by introducing a real number k), because it is used 

according to GSR (in the space of RIOs). We also observe that the GSR horizon is located at distance k 

Schwarzschild radius (krS) from the center of gravity. Besides, we obtain the following GSR 

gravitational field strength: 
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The replacement of (86) to (85), gives the exact equation of trajectory for GSR Gravitational field:  
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In order to make the above equation similar to the corresponding of Newtonian scalar gravitational 

potential at large distance (krSu<<1 or equivalently r>>krS), we apply Taylor theorem to the quantity: 
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So, we obtain the approximate equation of trajectory for GSR Gravitational field: 
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The above equation of trajectory for GSR Gravitational field at large distance, has the following 

solution: 
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Hence we have obtained again, the ellipse which rotates (‘precesses’) about one of its foci, by using 

only GSR. 

The system of equations (91) and (93) contains the variables λGSR and EtotGSR. So, we calculate 

them, by working at the perihelion, where φ=0, r=α(1-e): 
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This emerges 
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So, the combination of the last equation with (91) gives the SR total energy at large distance: 
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Besides, the replacement of the above equation to (91) gives 
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The above leads to the final conditions 
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Moreover, the combination of (95) and (97) with (93) gives 
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Thus, the precession of ellipse is                                                                                                                             
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rad per revolution.  

The condition: ‘this new GSR gravitational field gives the same precession of Mercury’s orbit as 

does the original Schwarzschild metric’, is equivalent to 
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This combined with (71ii) and (97), gives 
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Parameter k (reason) must be independent from a and e (results). So, we prefer to adopt the integer 

value (Generalized; Newtonian; Einsteinian): 
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  ;  k=6  ; k=5.                                                       (103) 

According to (87), the force is             
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At large distance (r>>krS), we apply Taylor theorem to the quantity: 
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Thus, we obtain 
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According to NPs (ξI→0; k→6), we obtain  
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which is the force that predicts the precession of Mercury’s perihelion, by using Perturbation Theory 

[1] (p. 246), [3] (p.512), [13] (p. 536-539). 

In case of planet Mercury, it is α=0.38709893 AU, e=0.20563069 and T=87.968 days [14]. The 

values: AU= 1.4959787066×10
11

 m, G=6.67428(67)×10
−11

m
3
kg

−1
s

−2
, c=299792458 ms

−1
 (exact) [15] 

(pp. 1-1, 1-20, 14-2) and M=1,988,500×10
24

 kg [16], give 

( ) ( ) =−
=

− 222

S

1c

G2

1 ea

M

ea

r
5.32518(53)×10

−8
<<1.                               (108) 

The case of Earth, with α= 1.00000011 AU, e= 0.01671022 and T=365.242 days [17], emerges 

( ) ( ) =−
=

− 222

S

1c

G2

1 ea

M

ea

r
1.97476(20)×10

−8
<<1.                               (109) 

Now, we can return to all the previous formulas and replace the above values. Thus (100) and (47) 

give the results, which are summarized in Table 1. We observe that both ESR and NPs give the same 

precessions. 

 

Table 1. Angular velocity of ellipse perihelion rotation (‘precession’) for Mercury and Earth, 

according to GSR Gravitational field (ΩGSR) for Newtonian Physics (ξI=0) and Einsteinian Special 

Relativity (ξI=1) and according to the original Schwarzschild Gravitoelectric Effect (ΩEGR). ∆ΩGSRr (%) 

is the percentile relative change. 

   Mercury   Earth 

ξI  k  ΩGSR / ΄΄cy
-1

 ΩEGR / ΄΄cy
-1  

 ∆ΩGSRr (%)  ΩGSR / ΄΄cy
-1

 ΩEGR / ΄΄cy
-1

 ∆ΩGSRr (%) 

 0 6 42.9820(43)  42.9799(9) 
 (1)

 0.005(10)        3.83893(38) 3.8401(4) -0.030(14) 

 1 5 42.9820(43)  42.9799(9) 
 (1)

 0.005(10)        3.83893(38) 3.8401(4) -0.030(14) 

1
[6] (p. 6) 

5.  GSR: Gravitational Red Shift  
 

The proposed GSR Gravitational field was combined with the mainstream approach of EP (1). 

This combination cannot produce Gravitational Red Shift (GRS) as SM does. On the other hand, GRS 

is achieved, if only the proposed GSR Gravitational field is combined with the alternative approach of 

EP (2)  

mm
P

G )( Iβξ
γ r= .                                                       (110) 

More specifically in GSR, the photon (the particle which is associated with the E/M radiation) [8] (p. 

13) has  

m=0  ; 
I

1

ξ
β =P   ;  +∞→

)( I Pβξ
γ r  ; hfmE P == 2

2

I

)(
cI

ξ

γ
βξ
r

 ; 
2

2

I)( cI

hf
mm

P
G ξγ

βξ
== r .       (111) 

Thus, the energy conservation gives  

∞=+=+=+= hfhfhfmmmEE rr
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where h is Plank constant and f(r) ; f∞ are the frequencies of E/M radiation at distance r from the 

center of gravity and at infinite distance, respectively. So, we obtain GRS: 

 f∞=f(r)(1+ ξI
2
 VGSR(r)/c

2
)=f(r)(1+ ξI

2
/k[sqrt(1-krS/r)-1])≈f(r)(1- ξI

2
/c

2
GM/r)])< f(r),            (113) 

where (113iii) is referred to light which was emitted from atoms located far away from the GSR 

horizon. We observe that NPs (with ξI→0) has no GRS, in contrast to ESR (with ξI=1) which gives the 

well-known GRS of ERT. For instance, the replacement of f(r) with the Earth laboratory value of line 

D1 at the spectrum of Sodium (Na) to the above formula, emerges f∞ equal to the data from 

astronomical observation [18]. 

6.  Modification of GSR Gravitational Field in order to also explain the Rotation Curves in 

Galaxies  
The next step is the Modification of GSR Gravitational Field (86) in order to also explain the Rotation 

Curves in Galaxies 

0
c

11
2

S
)(GSR ≤










−−=

kr

r
khV r

  ;  k=6-ξI
2 
 ;   h(krS)≈1,                          (114)  

where h is an unspecified function of the distance with slow evolution, in accordance with any TPs. 

The condition (114iii) simplifies the modified GSR Gravitational Field to (86), near to the GSR 

horizon. Besides, we obtain the following GSR gravitational field strength: 

rgr
r

r
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r
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g s

rr   ;  k=6-ξI
2
.                                (116) 

The positive value of field strength g means gravity, while negative value means antigravity. In case of 

UCM, it is g=υ
2
/r. So, 

2

1

)()(

2 1
d

dG
−








 −






 −=
r

r
kh

r

h
rh

r

M s
rrυ ;  k=6-ξI

2 
.                                (117) 

The above (116) reminds us the corresponding of 3GSM (28), which express only gravity. Far away 

from the horizon, the gravitational field strengths (28) and (116) become the same if only 

r

h
rha rr

d

d
)(

2

)( −= .                                                        (118) 

We extend the above condition at any distance. 

6.1.  The Combination of Modified GSR Gravitational Field strength with MOND  

Modified Newtonian Dynamics (MOND) explains the rotation curves in many galaxies, by using 

suitable Interpolating Function (µ) in Milgrom’s Law [19]. In case of a spherical or cylindrical 

distribution of mass, the Modified Newtonian field strength is 

2

)(

1

r

GM
g

rµ
=                                                              (119)  

The combination of the 3GSM field strength (28) with MOND (188) and condition (118) emerges 

r

h
rha r

r

r
d

d1
)(

)(

2

)( −==
µ

 .                                                 (120) 

Two common choices are the Simple and Standard interpolating function, correspondingly 
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where r0 is called Milgrom radius [20] (p. 3) and 210
0 ms10)1.0(2.1 −−×±=a  [19] (p. 1) is a new 

(acceleration-dimensional) physical constant. Both the Interpolating functions give the same velocity 

at infinite distance from the center of gravity  

0

2
G Ma=∞υ                                                           (122) 

From (120), we calculate that 
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Besides, the integrals of Simple and Standard interpolating functions are correspondingly: 
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The last solution contains Gauss hypergeometric function and has steady imaginary part 

















ΓΓ=







=
4

5

4

31

2

StandStand
2

1
1;

4

5
;

4

1
,

4

1
F

2

1
]C-Im[I =0.7853981633974484.        (126) 

Thus, we have correspondingly 
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We observe that in case of Simple Interpolating function: h(0)=1. So, we prefer CSimpl=0 and we have 

( ) ( )( )222

)( 1ln11
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x =                   (129) 

We also observe that the Standard Interpolating function has h(0)=1, but we now prefer  
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in order to get rid of the imaginary part. Thus, we obtain 
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This kind of ‘old’ MONDian field strength:  

i. is efficient to explain the rotation curves in galaxies as well as the precession of Mercury’s 

orbit (because a≈µ≈h≈1 in the Solar system), but 
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ii. gives extra larges values of the gravitational field strength around bodies with small mass. 

For instance a body of M=1 Kg at distance r=1 m, produces µ=0.518 (1/µ=1.93) according to the 

Simple interpolating function. This means twice value of the Newtonian field strength and contradicts 

to the Cavendish experiment. 

In this paper, we also make changes to MOND resolving the above contradiction. Thus, we define 

the New Simple and New Standard interpolating function (µ) respectively 

g

a

M

M 0

0

1
1

+=
µ

  ;  

2
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0

1
1









+=

g

a

M

M

µ
.                                   (132)  

Let us also define the following characteristic radii of α system with mass M: 

8 38 3
8

5

0

43

0 C
2

MM
a

cGr
r ===

∞

∞ β
  ;  

0

0
0

4a

GM
R = ,                          (133) 

where M0 is the mass that is contained in a sphere of radius r∞ with the same center as the center of the 

system with mass M. We also calculate C=4.2(0.2)×10
6
 mKg

-3/8
, by using a0=1.2(±0.1)×10

−10
 ms

−2
 

[19] (p.1), G=6.67428(67)×10
−11

m
3
kg

−1
s

−2
 and c=299792458 ms

−1
 (exact) [15] (pp. 1-1, 1-20, 14-2). 

For instance:  

(i) In case that we examine the gravitational field at distance r=1 m from a body with M=1 Kg 

on planet Earth (at high h=2 m), we calculate r∞=1.4(0.1)×10
-13

 Kpc=2.8(0.1)×10
-5

  AU= 4.2(0.2)×10
6
 

m. Taking into account that the Earth has radius REarth=6,378,140 m and mass MEarth=5.9742 10
24

 kg 

[15] (pp.1-1,14-2), the accurate calculation of M0 needs the part of the mass of Earth that is contained 

into the sphere with center the body. Of course, this mass has not spherical or cylindrical symmetry. 

So, the following calculation gives us only order of magnitude. We can easily find that M0= (V0/VEarth) 

MEarth, where V0 is the common part of these spheres. Besides, we approximately consider that we have 

one sphere with center on the surface of another equal sphere (Figure 1). Thus the common volume 

can be calculated, by using the second Pappus's centroid theorem V0=d·S=2πCS [21], where 

C=(4rsin3a)/[2a-sin(2a)]-rcosa is the distance of the center of Circular segment of central angle  

2a=120
o
=2π/3 rad from the rotation axis and S=(r

2
/2)[2a-sin(2a)] is the area of the aforementioned 

Circular segment. So, it emerges V0=πr
3
[(4/3)sin3(π/3)-2(π/3)cos(π/3)+2sin(π/3)cos2(π/3)]= 

0.251840554πr
3
, where r=CubicRoot[(REarth

3
+r∞

3
)/2]=5.5(0.3)×10

6
 m and the mass of interest is 

M0=(V0/VEarth)MEarth=[3V0/(4πREarth
3
)]MEarth=[3·0.251840554πr

3
/(4πREarth

3
)]MEarth= [3·0.251840554 

(5.5×10
6
)

3
/(4·6378140

3
)]·5.9742×10

24
 kg=7.2(±1.2)×10

23
 kg. This results R0=1.0(0.2)×10

-8
 

Kpc=2.1(0.3) AU=3.2(0.5)×10
11

 m. 

(ii) The calculation of the gravitational field of planet Earth at high h=2 m, gives     

r∞=2.7(0.1)×10
-4

Kpc=5.5(0.3)×10
4
 AU=8.2(0.4)×10

15
 m. Taking into account that our Solar system 

has radius rSolarSys=2.4×10
-7

Kpc=50 AU=7.5×10
12

 m and the closest star to the Earth is Alpha Centauri 

at distance r=4.37 ly=1.34 pc=276×10
3
 AU=4.13×10

16
 m [22] (pp. 219–236), we understand that 

M0=MSolSys=1.9918×10
30

 kg (the total mass of the Solar System). This gives R0=1.7055×10
-5

 

Kpc=3,517.8 AU=5.2626×10
14

 m. 

(iii) The study of the gravitational field of the Sun at planet Earth, emerges r∞=0.0314(0.0014) 

Kpc= 6.5(0.3)×10
6
 AU=9.7(0.5)×10

17
 m. Taking into account that our galaxy (Milky Way)  has mass 

mG=1.3(±0.3)×10
12

 M
☉

 =2.5(±0.6)×1042 Kg [23], diameter dG=2rG=175(±25)×10
3
 ly=53.6(±7.7) 

Kpc= 1.103(±0.158)×10
10

 AU=1.65(±0.24)×10
21

 m [24] and our Solar System is located at distance 

r=2.65(±0.1)×10
3
 ly=0.812(±0.003) Kpc=1.67×10

8
 AU=2.51×10

19
 m from the Galactic Center, it is 

obvious that the sphere of radius r∞  does not enclose the supermassive black hole of Sagittarius A* 

with mass m=4.31(06)×10
6
 M

☉
 =8.57(12)×10

36
 Kg [25]. Thus, it is efficient to use as 

M0=(r∞
2
/rG

2
)mG=3.5×10

36
 Kg (about 0.00014% of the mass of Milky Way) and we obtain R0=0.023 

Kpc=4.7×10
6
 AU=7.0×10

17
 m. 

(iv) The calculation of the gravitational field of Galaxy NGC 3198 on a star at distance r=8 Kpc 

from its center, emerges r∞=279 Kpc=5.7×10
10

 AU=8.6×10
21

 m. Thus, the sphere of radius r∞,  
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encloses the whole galaxy of radius rG=50 Kpc= 1.03×10
10

 AU=1.54×10
21

 m and we put 

M0=mG=6.76294×10
40

 Kg [26] (p. 56). This gives R0=3.14 Kpc=6.5×10
8
 AU=9.7×10

19
 m. 

(v) The study of the gravitational field of the Observable Universe at the Limit of observation, 

emerges r∞=1.02×10
7
 Kpc= 2.10×10

15
 AU=3.14×10

26
 m. Taking into account that the Observable 

Universe  has mass mU=10
53

 Kg [27] (p. 43) and radius rU=4.5×10
10

 ly=1.4×10
7
 Kpc= 2.9×10

15
 

AU=4.3×10
26

 m [28] (p. 27), it is efficient to use as M0=(r∞
3
/rU

3
)mU=3.9×10

52
 Kg (about 39% of mass 

of the Observable Universe). Thus, we obtain R0=7.8×10
9
 ly= 2.4×10

6
 Kpc=4.9×10

14
 AU=7.4×10

25
 m. 

The above manifest that the gravitational field of a system which is enclosed within a circular orbit of 

radius r, is not only affected by the internal mass (M), but it is also affected by the part of total mass 

(M0) (internal & external) of the hyper-system (that is enclosed within radius r∞), where the system 

belongs!  

 

Thus, we obtain the New Simple & New Standard interpolating function (µ), respectively 
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Both the New Interpolating functions give the same new velocity at infinite distance from the center of 

gravity (e.g. Galaxy) 
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The above referred examples [System (Location) – Hyper-system] give, respectively the following 

results (data from Table 1):  

(a) New Simple interpolating function: (i) M=1Kg (located at high h=2 m from Earth at r=1m) – 

Earth: µ=0.999999999999999999999998 (1/µ=1.000000000000000000000002=1+2×10
-24

),             

(ii) Earth (at h=2m from Earth surface) – Solar System: µ=0.99999999999999996 

(1/µ=1.00000000000000004=1+4×10
-17

), (iii) Sun (at Earth) - 0.00014% Milky Way: 

 

Figure 1.    One sphere with center on the surface of another equal sphere. The common volume 

is calculated, by using the second Pappus's centroid theorem: V0=d·S=2πCS, where 

C=(4rsin
3
a)/[2a-sin(2a)]-rcosa is the distance of the center of Circular segment of central angle  

2a=120
o
=2π/3 rad from the rotation axis and S=(r

2
/2)[2a-sin(2a)] is the area of the 

aforementioned Circular segment.   
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µ=0.999999999999989 (1/µ=1.00000000000001=1+1×10
-14

), (iv) NGC 3198 (at Star 8 Kpc) - NGC 

3198: µ=0.53528 (1/µ=1.8682),  (v) Observable Universe (at the Limit of observation) - 39% 

Observable Universe: µ=0.32 (1/µ=3.2). 

(b) New Standard interpolating function: (i) M=1Kg (located at high h=2 m from Earth at r=1m) 

– Earth: µ=0.999999999999999999999999999999999999999999999997 

(1/µ=1.000000000000000000000000000000000000000000000003=1+3×10
-48

), (ii) Earth (at h=2m 

from Earth surface) – Solar System: µ=0.9999999999999999999999999999999993      

(1/µ=1.0000000000000000000000000000000007=1+7×10
-34

), (iii) Sun (at Earth) – 0.00014% Milky 

Way: µ=0.99999999999999999999999999993 (1/µ=1.00000000000000000000000000007=1+7×10
-29

), 

(iv) NGC 3198 (at Star 8 Kpc) - NGC 3198: µ=0.67462 (1/µ=1.48232), (v) Observable Universe (at 

the Limit of observation) - 39% Observable Universe: µ=0.37 (1/µ=2.7).  

The results are in accordance with the Cavendish experiment, observations in our solar system and 

also explain the rotation curves in Galaxies, especially in case of Standard µ. Besides, they are 

summarized in Table 1.   

6.2.  The Combination of Modified GSR Gravitational Field strength with the concept of phantom 

Dark Matter and the Velocity at Infinite Distance of MOND  

Below, we shall find the metric of spacetime that corresponds to the concept of phantom DM [1] 

(p. 356). We consider a very simple distribution of phantom DM:   
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and also all the luminous-baryonic mass at the center of gravity. In case of a spherical or cylindrical 

distribution of mass, the Modified Newtonian field strength is 
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Thus, the velocity in UCM is given by the formula  
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which at infinite distance from the center of gravity, gives   

dark

2
πG4 C=∞υ .                                                         (139) 

The combination of the above equation with the ‘old’ (122) or New (135i) MONDian formula gives 

correspondingly  

Gπ4

1 0
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C =   ;  

0

0
dark

Gπ4 M

aM
C = ,                                   (140)  

where M0 is the part of mass of the hyper-system that is enclosed within radius r∞. 

i) According to (140i), the initial equations can be written as 
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The replacement of ‘old’ MONDian (140i) to (137) and the combination with (119) and (120) give 

0

)(

)(

2

)(
2

1
1

d

d1

r

r

r

h
rha r

r

r +=−==
µ

.                                       (142)  

ii) According to ‘new’ MONDian (140ii), the initial equations can be written as 
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The replacement of (140ii) to (137) and the combination with (119) and (120) give 



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012095

IOP Publishing

doi:10.1088/1742-6596/1391/1/012095

20

 

 

 

 

 

 

0

)(

)(

2

)(
2

1
1

d

d1

R

r

r

h
rha r

r

r +=−==
µ

.                                       (144) 

Thus, the integral of (123) in case of DM is 

DM2
ln

2

11
d

2

1
1

1
Cx

x
xx

x
IDM ++−=







 += ∫ ,                                 (145) 

where 

0r

r
x =    ;   

0R

r
x =                                                          (146) 

for ‘old’ or ‘new’ distribution of DM, correspondingly. Thus, we have 

DMSimpl)( ln
2

1 xCx
x

xIh r −−=−=                                                 (147) 

We observe that h(0)=1. So, we prefer CSimpl=0 and we also have 

x
x

xIh r ln
2

1Simpl)( −=−= .                                                      (148) 

The ‘new’ concept, for M→0 gives a≈µ≈h≈1. This turns metric (24) approximately equal to the metric 

of RIOs (6). This is a general property, because we have used (135i). Besides, the examination of the 

dark matter around a body with M=1 Kg, near to planet Earth, within radius r=1 m (at high h=2 m), 

gives Mdark=5.488×10
-13

 Kg. This corresponds to the Newtonian field strength, in accordance with the 

Cavendish experiment. 

Finally, it is proven that the corresponding values of function a(r) have the properties:  Standard 

Interpolating function < Simple Interpolating function < Absorption of DM and also ‘New’ < ‘old’. 

7.  Experimental Validation - Discussion  

In Table 2, we show the values of ‘old’ and ‘new’ characteristic parameters for the original 1Kg, 

the Earth, the Sun (see [9] (p. 8) and data from [15] (pp. 1-1, 14-2)), Galaxy NGC 3198 (data from 

[26] (p. 56) and [29] (p. 3)) and the Observable Universe (data from [27] (p. 43) and [28] (p. 27)). 

Besides, M0 is the mass that is enclosed in a sphere of radius r∞ and the radii r∞, R0, the new velocity at 

infinite distance υ0∞, β0∞, the inverse of the New Interpolating functions 1/µNsimpl and 1/µNstand on a 

sphere of radius R and they have been obtained from (133i), (133ii), (135i), (135ii), (134i) & (134ii), 

respectively. Besides, we have used the following values of physical constants: a0=1.2(0.1)×10
−10

 ms
−2

 

[19] (p.1), AU=1.4959787066×10
11

 m, G=6.67428(67)×10
−11

m
3
kg

−1
s

−2
, c=299792458 ms

−1
 (exact) 

[15] (pp. 1-1, 1-20, 14-2).                

7.1.  The Combination of Lorentzian-Einsteinian 3
rd

 Generalized Schwarzschild Metric or Modified 

GSR Gravitational Field with ‘old’ or ‘New’ MOND Simple & Standard Interpolating Function and 

‘old’ or ‘New’ Absorption of the Dark Matter into the field in Galaxy NGC 3198  

In order to find out what is the effect of the modification at large mass and size systems, we 

analytically examine Galaxy NGC 3198.  

The values of Circular Velocities [experimental (Vexp) and calculated by the Combination of 

Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with the corresponding Simple µ 

(Vsimp,Lor) or  New Simple µ (VNsimp,Lor) or Standard µ (Vstand,Lor) or New Standard µ (VNstand,Lor) or 

Absorption of DM into the Metric by using distribution (141) (VDM,Lor) or Absorption of DM into the 

Metric by using distribution (143) (VNDM,Lor)], the Luminous Mass of the galaxy that is enclosed within 

the circular orbit (Md), the corresponding  Schwarzschild radius (rS), Milgrom radius (r0), the 

corresponding values of the function a(r) (asimp,Lor or aNsimp,Lor or astand,Lor or aNstand,Lor or aDM,Lor or 

aNDM,Lor), function h(r) (hsimp,Lor or hNsimp,Lor or hstand,Lor or hNstand,Lor or hDM,Lor or hNDM,Lor) and time 

coefficient of metric g00 (g00,simp,Lor or g00,Nsimp,Lor or g00,stand,Lor or g00,Nstand,Lor or g00,DM,Lor or g00,NDM,Lor) 

wrt the distance from the center of  Galaxy NGC 3198, are contained in Table 3 (data from [30] (p. 

2)). The Circular Velocities (Vsimp,Lor, Vstand,Lor, VNsimp,Lor, VNstand,Lor, VDM,Lor, and VNDM,Lor) have been 
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calculated by using (119) or (28) or (116), the values of function a(r) (asimp,Lor or astand,Lor or aNsimp,Lor or 

aNstand,Lor or aDM,Lor or aNDM,Lor), by using (120) combined with (121) or (134) or (142) or (144), the 

values of function h(r) (hsimp,Lor or hstand,Lor or hNsimp,Lor or hNstand,Lor or hDM,Lor or hNDM,Lor), by using and 

(129) or (131) or (148) combined with  (146), respectively. Finally the values of time coefficient of 

metric (g00) have been calculated from (24) for ξI=1. 

The calculation of the gravitational field of Galaxy NGC 3198 on a star at distance r=2 Kpc from 

its center, emerges r∞=118 Kpc=2.4×10
10

 AU=3.6×10
21

 m. Thus, the sphere of radius r∞, encloses the 

whole galaxy of radius rG=50 Kpc= 1.03×10
10

 AU=1.54×10
21

 m and we put M0=mG=6.76294×10
40

 Kg 

[4] (p. 56). This gives steady new Milgrom radius R0=3.14 Kpc=6.5×10
8
 AU=9.7×10

19
 m. 

 

Table 2. Characteristic parameters (mass M, distance or size radius R, Schwarzschild radius rS,

Milgrom radius r0, r0/rS, velocity at infinite distance υ∞, β∞, new Milgrom radius R0, new velocity at 

infinite distance υ0∞, β0∞, New Interpolating functions 1/µNSimpl and 1/µNStand on a sphere of radius R) 

for 1 Kg, the Earth, the Sun, galaxy NGC 3198 and the Observable Universe. 

  1 Kg 

(original) 

Earth  Sun   NGC 3198 Observable 

Universe 

 M / Kg  1 5.9742×10
24       (1) 1.9891×10

30   (1)
 6.76294×10

40  (2)
 10

53              (4)
 

 R / m  

   /AU   

  / Kpc 

 1 

6.68×10
-12

 

3.24×10
-20

 

6378140          
(1)

 

4.263523×10
-5

 

2.066999×10
-13

  

6.9599×10
8     (1)

 

4.6524×10
-3

 

2.2555×10
-11

 

2.47×10
20            

1.65×10
9
 

8                     
(3)

 

4.3×10
26

 

2.9×10
15

 

14×10
6
  

    (5)
 

 rs / m  

   /AU   

  / Kpc 

2.96×10
-27

 

1.98×10
-38

 

9.61×10
-47

 

8.8736×10
-3

    

5.9316×10
-14

 

2.8757×10
-22

 

2,954.4 

1.9749×10
-8

 

9.5746×10
-17

  

1.004451×10
14 

671.434 

0.0000680703
 

1.48×10
26

 

9.9×10
14

 

4.80×10
6
 

 r0 / m  

   /AU   

  / Kpc 

0.373 

2.49×10
-12

 

1.21×10
-20 

9.1143×10
11 

6.0925 

2.9537×10
-8

  

5.2591×10
14 

3,515.5 

0.000017043 

9.6972671×10
19  

6.45222×10
8 

3.14265
 

1.18×10
26

 

7.9×10
14

 

3.8×10
6
 

 r0/rs  1.26×10
26

 1.02712×10
14

 1.7801×10
11

 965,430 0.80 

 υ∞ / m s
-1 

9.45×10
-6

 14.7899 355.27 152,556 1.68×10
8
 

 β∞ 3.15×10
-14

 4.93339×10
-8

 1.1851×10
-6

 0.000508873 0.56 

r∞ / m 

    / AU 

    / Kpc 

4.2(0.2)×10
6
 

2.8(0.1)×10
-5

 

1.4(0.1)×10
-13

 

8.2(0.4)×10
15

 

5.5(0.3)×10
4
 

2.7 (0.1)×10
-4

 

9.7(0.5)×10
17

 

6.5(0.3)×10
6
 

0.0314(0.0014) 

8.6×10
21

 

5.7×10
10

 

279 

3.14×10
26

 

2.10×10
15

 

1.02×10
7
 

M0 / Kg 7.2(1.2)×10
23

 1.9918× 10
30

 3.5×10
36

 6.76294×10
40

 3.9×10
52

 

R0 / m 

    / AU 

    / Kpc 

3.2(0.5)×10
11

 

2.1(0.3) 

1.0(0.2)×10
-8

 

5.2626×10
14

 

3,517.8 

1.7055×10
-5

 

9.7×10
17

 

4.7×10
6
 

0.023 

9.7×10
19

 

6.5×10
8
 

3.14 

7.4×10
25

 

4.9×10
14

 

2.4×10
6
 

υ0∞ / m s
-1

 1.0×10
-11

 0.615 9.75 152,556 2.1×10
8
 

β0∞ 3.3×10
-20

 2.05×10
-9

 3.25×10
-8

 0.000508873 0.70 

1/µNsimpl 1+2×10
-24

 1+4×10
-17

 1+1×10
-14

 1.8682 3.2 

1/µNstand 1+3×10
-48

 1+7×10
-34

 1+7×10
-29

 1.48232 2.7 

1
[15] (pp. 1-1, 14-2), 

2
[26] (p. 56), 

3
[29] (p. 3), 

4
 [27] (p. 43), 

5
 [28] (p. 27).   
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Table 3. Circular Velocities [experimental (Vexp) and calculated by the Combination of Lorentzian-Einsteinian 

3
rd

 Generalized Schwarzschild metric  or Modified GSR Gravitational Field with the corresponding Simple µ

(Vsimp,Lor) or  New Simple µ (VNsimp,Lor) or Standard µ (Vstand,Lor) or New Standard µ (VNstand,Lor) or Absorption of 

DM into the Metric by using distribution (141) (VDM,Lor) or Absorption of DM into the Metric by using 

distribution (143) (VNDM,Lor)], the Luminous Mass of the galaxy that is enclosed within the circular orbit (Md), 

the corresponding values of function a(r), function h(r) and time coefficient of metric (g00) wrt the distance from 

the center of  Galaxy NGC 3198. The relative errors of the experimental Velocities are (∆Vexp)r≈8%. 
1
[30] (p. 2) 

 r 

/ Kpc   

/10
20

m 

 Md  

       /10
40

 kg 

 Vexp    
(1)

 

     / Km s
-1

 

asimp,Lor   

astand,Lor 

aNsimp,Lor 

aNstand,Lor 

aDM,Lor 

aNDM,Lor       

hsimp,Lor   

hstand,Lor 

hNsimp,Lor 

hNstand,Lor 

hDM,Lor 

hNDM,Lor   

g00,simp,Lor             

g00,stand,Lor           

g00,Nsimp,Lor       

g00,Nstand,Lor       

g00,DM,Lor          

g00,NDM,Lor 

Vsimp,Lor        

Vstand,Lor     

VNsimp,Lor 

VNstand,Lor      

VDM,Lor         

VNDM,Lor    / Km s
-1

 

(∆V)r           
% 

4.0 1.620 118.0 1.3759  -0.2964 -0.9999997318 128.783 9 

1.23   1.2265 -1.3149 -0.9999997609 114.801 -3 

   1.0341  0.6330 -0.9999997769 107.103 -9 

   1.3437 -0.0247 -0.9999997984 96.790 -18 

   1.5167 -0.2426 -0.9999997043 141.959 20 

   1.2792  0.8407 -0.9999997506 119.735 1 

8.0 5.825 150.3 1.3999 -0.4181 -0.9999995093 175.687 17 

2.47   1.2506 -1.4709 -0.9999995617 156.950 4 

   1.3666 -0.2523 -0.9999995210 171.504 14 

   1.2173 -1.2549 -0.9999995734 152.765 2 

   1.5399 -0.3837 -0.9999994603 193.262 29 

   1.5076 -0.2073 -0.9999994716 189.202 26 

16.1 7.237 155.3 1.7396 -2.6769 -0.9999996236 171.526 10 

4.97   1.6060 -4.2377 -0.9999996526 158.351 -2 

   1.7635 -2.8797 -0.9999996185 173.880 12 

   1.6312 -4.4717 -0.9999996471 160.839 4 

   1.8645 -2.9619 -0.9999995966 183.838 18 

   1.8872 -3.2344 -0.9999995917 186.078 20 

32.2 6.544 148.4 2.3942 -10.0944 -0.9999997658 158.734 7 

9.94   2.2927 -12.8678 -0.9999997757 152.004 2 

   2.3764 -9.8497 -0.9999997675 157.557 6 

   2.2742 -12.5675 -0.9999997775 150.781 2 

   2.4916 -11.2046 -0.9999997444 165.194 11 

   2.4745 -11.0458 -0.9999997580 164.058 11 

48.2 6.072 151.9 2.9340 -19.5417 -0.9999998221 153.157 1 

14.87   2.8503 -23.5855 -0.9999998272 148.785 -2 

   2.8609 -18.0986 -0.9999998265 149.341 -2 

   2.7751 -21.9252 -0.9999998317 144.862 -5 

   3.0155 -21.5329 -0.9999998172 157.409 4 

   2.9443 -20.1474 -0.9999998215 153.691 1 

13800 6.763 - 46.8625 -17,741.1 -0.9999999889 152.574 - 

4,258.3   46.8571 -18703. 6 -0.9999999889 152.557 - 
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 Function a  for the Combination of Lorentzian-Einsteinian 

3
rd

 Generalized Schwarzschild potential with MOND and phantom Dark Matter 

in NGC 3198   

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

0 10 20 30 40 50 r  / Kpc

a

aNstand,Lor

aexp,Lor

asimpl,Lor

astand,Lor

aNsimpl,Lor

aDM,Lor

aNDM,Lor

 

Figure 2.    Plot of function a(r) wrt the distance (r) from the center of Galaxy NGC 3198 for the 

Combination of Lorentzian-Einsteinian 3
rd

 Generalized Schwarzschild metric  or Modified GSR 

Gravitational Field with Simple interpolating function (asimp,Lor), or Standard interpolating function 

(astand,Lor), or New Simple Interpolating Function (aNsimp,Lor), or New Standard Interpolating Function 

(aNstand,Lor), or Absorption of phantom Dark Matter into the Metric by using distribution (141) (aDM,Lor), or 

Absorption of phantom Dark Matter into the Metric by using distribution (165) (aNDM,Lor).  The experimental 

values (aexp,Lor) have been obtained, by replacing the experimental acceleration (gexp=Vexp
2
/r) in (28).   

NGC 3198 Rotation Curves

0

20000

40000

60000

80000
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120000

140000

160000

180000

200000
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-1

Vd (m/s)
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VNsimpl,Lor (m/s)

VNstand,Lor (m/s)

VDM,Lor (m/s)

VNDM,Lor (m/s)

  

Figure 3.   Rotation Curves in Galaxy NGC 3198.  Rotational Velocities [experimental (Vexp), calculated by 

Schwarzschild or Newtonian field strength (Vd) and the Combination of  Lorentzian-Einsteinian 3
rd

 

Generalized Schwarzschild metric or Modified GSR Gravitational Field with Simple interpolating function 

(Vsimp,Lor), or Standard interpolating function (Vstand,Lor), or New Simple Interpolating Function (VNsimp,Lor), or 

New Standard Interpolating Function (VNstand,Lor), or Absorption of phantom Dark Matter into the Metric by 

using distribution (141) (VDM,Lor), or Absorption of phantom Dark Matter into the Metric by using 

distribution (165) (VNDM,Lor)] wrt the distance (r) from the center of Galaxy NGC 3198.   
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In Figure 2, we show the plot of function a(r) wrt the distance from the center of Galaxy NGC 3198 

for the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with 

Simple µ (asimp,Lor), or Standard µ (astand,Lor), or New Simple µ (aNsimp,Lor) or New Standard µ (aNstand,Lor), 

or Absorption of phantom Dark Matter into the Metric by using distribution (141) (aDM,Lor), or 

Absorption of phantom Dark Matter into the Metric by using distribution (143) (aNDM,Lor). The 

experimental values (aexp,Lor) have been obtained, by replacing the experimental acceleration 

(gexp=Vexp
2
/r) in (28). In addition, the corresponding Rotation Curves in Galaxy NGC 3198 are shown 

in Figure 3. 

We observe that in case of Galaxy NGC 3198, Schwarzschild or Newtonian field strength produces 

maximum relative error about 66% at extra large distances. The Simple µ gives better results, 

producing maximum relative error 39% near to the galactic center and it is improved as New Simple µ 

with corresponding maximum relative error 18% at 11.0 Kpc. The Standard µ in (119) gives even 

better results, producing maximum relative error about 23% at the center of the galaxy is also 

improved as New Standard µ with corresponding maximum relative error -18% at 4.0 Kpc. The 

Absorption of phantom DM into the Metric by using distribution (158) (VDM,Lor) has maximum relative 

error 54% near to the galactic center and it is improved with DM distribution (165) (VNDM,Lor) with 

corresponding maximum relative error 28% at 9.0 Kpc. It is noted that the relative error of 

experimental Circular Velocities is (∆Vexp)r≈8% related to the uncertainty of the Hubble constant H0 

[11] (p.356-357). Finally, the values at distance 13.8 Mpc=2.846×10
12

 AU=4.258×10
23

 m, which is the 

distance of Galaxy NGC 3198 from Earth, give us the image of what happens at extremely large 

distances: g00→-1.  

The same procedure can be followed in any galaxy, by using only the mass of the visible disk. 

Thus, it explains the rotation curves of many galaxies, eliminating the corresponding DM (see Figure 

4 [31]). 

Galaxies well fit by MOND 

84 listed at present  

UGC 2885   NGC 5533   NGC 6674   NGC 7331   NGC 5907   NGC 2998   

NGC 801   NGC 5371   NGC 5033   NGC 2903   NGC 3521   NGC 2683   NGC 3198   

NGC 6946   NGC 2403   NGC 6503   NGC 1003   NGC 247   NGC 7739   NGC 300   

NGC 5585  NGC 55   NGC 1560   NGC 3109   UGC 128   UGC 2259   M 33          

IC 2574   DDO 170   DDO 168   NGC 3726   NGC 3769   NGC 3877   NGC 3893   

NGC 3917   NGC 3949   NGC 3953   NGC 3972   NGC 3992   NGC 4010  

NGC 4013   NGC 4051   NGC 4085   NGC 4088   NGC 4100   NGC 4138   

NGC 4157   NGC 4183   NGC 4217   NGC 4389   UGC 6399   UGC 6446   

UGC 6667   UGC 6818   UGC 6917   UGC 6923   UGC 6930   UGC 6973   

UGC 6983   UGC 7089   NGC 1024   NGC 3593   NGC 4698   NGC 5879   IC 724   

F563-1   F563-V2   F568-1   F568-3   F568-V1   F571-V1   F574-1   F583-1        

F583-4   UGC 1230   UGC 5005   UGC 5999   Carina   Fornax    

Leo I   Leo II   Sculptor   Sextans   Sgr 

Figure 4.     Galaxies with rotation curves well fit by MOND [31]. 
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7.2.  The Combination of Lorentzian-Einsteinian 3
rd

 Generalized Schwarzschild Metric or Modified 

GSR Gravitational Field with ‘old’ or ‘New’ MOND Simple & Standard Interpolating Function and 

‘old’ or ‘New’ Absorption of Dark Matter into the field in the Solar System 

In order to find out what is the effect of the modification at medium mass and size systems, we now 

examine our Solar System. 

 

 

The mean values of Rotational Velocities, the Mass of the Solar System that is enclosed within the 

orbit wrt the mean distance the planet from the Sun, are contained in Table 4 [data from [15] (p. 14-

3)]. The Circular Velocities (VSchwar, Vsimp,Lor, Vstand,Lor) have been calculated by using (31) or (119) or 

(28) or (116), the values of function a(r) (asimp,Lor or astand,Lor) by using (120) combined with (121) and 

Table 4.  Rotational Velocities [experimental (Vexp) and calculated by the Combination of Lorentzian-

Einsteinian 3
rd

 Generalized Schwarzschild metric or  Modified GSR Gravitational Field  with MOND Simple

& Standard  Interpolating Function  (Vsimp,Lor & Vstand,,Lor)], the Luminous Mass of the Solar System that is 

enclosed within the circular orbit (Md), the value of function h(r) and the value  of time coefficient of metric

(g00) wrt the mean distance from the Sun. Data from [15] (p. 14-3). 

 Name 

      

  r 

/AU         

/10
11 

m 

 Md  

         /10
24

 kg 

aSchwar               

asimp,Lor             

astand,Lor                

hSchwar=1               

hsimp,Lor             

hstand,Lor                

g00,Schwar 

g00,simp,Lor             

g00,stand,Lor            

 

V Schwar         

Vsimp,Lor        

Vstand,Lor            

/ Km s
-1

 

Sun 
Surface 

 

0.00465 
0.00696 

 

1,989,100 
 
 

1 
1.000000000000 
1.000000000000 

1 
1.000000000000 
1.000000000000 

-0.9999957553 
-0,9999957553 
-0.9999957553 

436.747 
436.747 
436.747 

Mercury 
 
 

0.38710 
0.57909 

 

1,989,100.0000 
 
 

1 
1.000000001516 
1.000000000000 

1 
0.999999996969 
1.000000000000 

-0.9999999490 
-0.9999999490 
-0.9999999490 

47.880 
47.880 
47.880 

Venus 
 
 

0.72333 
1.08209 

 

1,989,100.3302 
 
 

1 
1.000000005292 
1.000000000000 

1  
0.999999989416 
0.999838760132 

-0.9999999727 
-0.9999999727 
-0.9999999727 

35.027 
35.027 
35.027 

Earth  
 
 

1.00000 
1.49598 

 

1,989,105.1992 
 
 

1 
1.000000010114 
1.000000000000 

1  
0.999999979771 
0.999771972392 

-0.9999999803 
-0.9999999803 
-0.9999999803 

29.790 
29.790 
29.790 

Mars  
 
 

1.52369 
2.27941 

 

1,989,111.1715 
 
 

1 
1.000000023482 
1.000000000000 

1  
0.999999953036 
0.999659019194 

-0.9999999870 
-0.9999999870 
-0.9999999870 

24.134 
24.134 
24.134 

Jupiter 
 
 

5.20283 
7.78332 

 

1,989,111.8134 
 
 

1 
1.000000273790 
1.000000000000 

1  
0.999999452420 
0.998837605409 

-0.9999999962 
-0.9999999962 
-0.9999999962 

13.060 
13.060 
13.060 

Saturn  
 
 

9.53876 
14.26978 

 

1,991,010.6134 
 
 

1 
1.000000919405 
1.000000000001 

1  
0.999998161187 
0.997869945819 

-0.9999999979 
-0.9999999979 
-0.9999999979 

9.650 
9.650 
9.650 

Uranus  
 
 

19.19139 
28.70991 

 

1,991,579.1134 
 
 

1 
1.000003720565 
1.000000000012 

1  
0.999992558819 
0.995715092796 

-0.9999999990 
-0.9999999990 
-0.9999999990 

6.804 
6.804 
6.804 

Neptune 
 
  

30.06107 
44.97072 

 

1,991,665.7384 
 
 

1 
1.000009128095 
1.000000000083 

 1 
0.999981743504 
0.993288340427 

-0.9999999993 
-0.9999999993 
-0.9999999993 

5.437 
5.437 
5.437 

Pluto 
 
 

39.52940 
59.13514 

 

1,991,768.5184 
 
 

1 
1.000015782729 
1.000000000249 

 1 
0.999968433629 
0.991174598083 

 -0.9999999995 
-0.9999999995 
-0.9999999995 

4.741 
4.741 
4.741 

NGC 
3198 

 

2.846×10
12 

4.258×10
12 

 

1,991,768.5334 
 
 

1 
20,114.1129122 
20,114.1128998 

1 
-8.17434687×10

9
 

-8.35188544×10
9
 

-1,0000000000 
-1,0000000000 
-1,0000000000 

3.12×10
-7 

355.39 
355.39 
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the values of function h(r) (hsimp,Lor or hstand,Lor) by using (129) or (131), respectively. Finally, the values 

of time coefficient of metric (g00) have been calculated from (24) for ξI=1. In addition, the 

corresponding Rotation Curves and Mass Distribution in the Solar System are shown in Figure 10 and 

Figure 11 of [20], respectively. 

We observe that in case of Solar System, the Combination of Lorentzian-Einsteinian 3GSM or 

Modified GSR Gravitational Field with MOND Simple or Standard µ, gives almost the same 

Rotational Velocities (Vsimp,Lor, Vstand,Lor) and coefficients of metric (g00) as those calculated by the 

original Schwarzschild field strength (VSchwar). Thus, there are not significant changes to the Relativistic 

Doppler Shift, the gravitational red shift as well as the precession of Mercury’s orbit 

(g00=0.9999999490). Finally, the values at distance 13.8 Mpc=2.846×10
12

 AU=4.258×10
23

 m, which is 

the distance of Galaxy NGC 3198 from Earth give us the image of what happens at extra large 

distances: g00→-1 (see also the corresponding velocities at infinite distance in Table 1). 

Finally, we conclude that the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR 

Gravitational Field with ‘old’ or ‘New’ MOND or Absorption of phantom DM into the Metric-Field, 

in scale of black hole, planetary and star system, coincides to the original Schwarzschild metric 

(a≈µ≈h≈1), while in galactic scale, it gives MONDian results (a>1, µ>1), eliminating the 

corresponding DM.  

Abbreviations 

        1GSL: 1
st
 Generalized Schwarzschild Lagrangian  

       1GSM: 1
st
 Generalized Schwarzschild Metric 

        1GSP: 1
st
 Generalized Schwarzschild Potential  

      1GSRP: 1
st
 Generalized Schwarzschild Relativistic Potential 

       3GSM: 3
rd

 Generalized Schwarzschild Metric 

      3GSRP: 3
rd

 Generalized Schwarzschild Relativistic Potential 

           CCs: Cartesian Coordinates  

               cI: Universal Speed 

           DM: Dark Matter  

    ECRMs: Euclidean Complex Relativistic Mechanics  

         EGR: Einsteinian General Relativity 

            EP: Equivalence Principle 

         ERT: Einstein Relativity Theory 

         ESR: Einsteinian Special Relativity 

         GEE: Gravitoelectric Effect  

           GR: General Relativity 

         GRS: Gravitational Red Shift  

         GSR: Generalized Special Relativity  

            GT: Galilean Transformation  

IECLSTTs: Isometric Euclidean Closed Linear Transformations of Complex Spacetime  

       LSTT: Linear Spacetime Transformation 

           LB: Lorentz Boost  

   MOND: Modified Newtonian Dynamics  

         NPs: Newtonian Physics  

            r0: Milgrom radius 

          RB: Real Boost  

      RIOs: Relativistic Inertial observers 

           rS: Schwarzschild radius 

          rSI: 1
st
 Generalized Schwarzschild radius 

         RT: Relativity Theory 

        SM: Schwarzschild Metric 

         SR: Special Relativity  

       TPs: Theory of Physics 

    UCM: Uniform Circular Motion 

        VT: Vossos Transformation  

           µ:  Interpolating function  
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