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Abstract. The mainstream approach of gravitational field is the development of
Geometric theories of gravitation and the application of the Dynamics of General
Relativity (GR). Besides, the Generalized Special Relativity (GSR) contains the
fundamental parameter (&) of Theories of Physics (TPs). Thus, it expresses at the
same time Newtonian Physics (NPs) for §—0 and Einstein Relativity Theory (ERT)
for &=1. Moreover, the Equivalence Principle (EP) in the context of GSR, has two
possible interpretations: mg=m (1), or mg=y(&,f)m (2), where f=v/c and mg, m, y are
the gravitational mass, inertial rest mass and Lorentz y-factor, respectively. In this
paper we initially present a new central scalar potential V=V, ,,, where k=k(&)) and r is
the distance from the center of gravity. We demand that ‘this new GSR gravitational
field in accordance with EP (1), gives the same precession of Mercury’s orbit as
Schwarzschild Metric (SM) does’ and we obtain k=6-¢&”. This emerges Einsteinian
SR-horizon at r=5rs, while NPs extends the horizon at six Schwarzschild radius (6rs).
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We can also explain the Gravitational Red Shift (GRS), if only the proposed GSR
Gravitational field strength g=g(k,r) is combined with EP (2). We modify the
aforementioned central scalar potential as V=V(h,k,r), where h=h(r). The combination
of the above with MOND interpolating functions, or distributions of Dark Matter
(DM) in galaxies, provides six different functions h=h(r). Thus, we obtain a new GSR
central Gravitational field strength g=g(h,k,r), which not only explains the Precession
of Mercury’s Perihelion, but also the Rotation Curves in Galaxies, eliminating Dark
Matter.

1. Introduction

The Equivalence Principle (EP) in the context of Special Relativity (SR), has two possible
interpretations [1] (p.245). According to the mainstream approach (weak EP), the gravitational mass
(mg) is equal to the inertial rest mass (m):

ma= m. (1)
On the other hand, the alternative approach is

mg=7y m. ()
Besides, we have the gravitational potential energy

U=mgV, 3)

where V is scalar gravitational potential.
The consideration of Newtonian scalar gravitational potential
GM
VN =- - 4)
according to SR, gives precession of Mercury’s perihelion only 7.16"" per century, in case that we
follow the mainstream approach (1) [2] (p. 355), [3] (p. 338), while the alternative approach (2) gives
21.49"" per century [4] (p. 758), [5] (p. 758). Both the above theoretical results are far away from the

experimental value:

Quy=42.9799(9) "cy ™. (5)
This is the contribution of the Sun due to Schwarzschild Gravitoelectric effect to the total precession
of Mercury’s perihelion [6] (p. 6). Therefore, when dealing with the gravitational field, we usually
apply the Dynamics of General Relativity (GR) and we develop Geometric theories of gravitation [7].
The EP in GR is: accelerated motions caused by the gravitational field only (free fall) take place along
geodesics of the metric, which corresponds to the particular gravitational field [2] (p. 248).

In this paper, we use generalized Relativity Theory (RT), which contains Einstein Relativity Theory
(ERT) and Newtonian Physics (NPs), keeping the formalism of ERT. Thus, the differences between
these two Theories of Physics (TPs) are limited to their different value of metric coefficients of
spacetime for the corresponding Relativistic Inertial observers (RIOs) and the fundamental parameter
of TPs: &. NPs has &§—0, while ERT has &=1 [8].

The case of observers with variable metric of spacetime, leads to the corresponding GR. For being
this clear, we produce the 1* Generalized Schwarzschild Metric (1IGSM) and the 3" Generalized
Schwarzschild Metric (3GSM), which are in accordance with any SR based on isotropic Generalized
metrics (g1) and Einstein field equations.

In case of 1GSM, we compute the corresponding Lagrangian, geodesics, equations of motion,
precession of planets’ orbits etc, resulting formulas which are referred to any TPs. We also present the
results of the original Schwarzschild metric (SM), by adopting a new separation of fotal energy into
potential energy (which depends only on distance) and generalized kinetic energy (which depends not
only on velocity, but also on distance). This emerges a new central potential, which gives the well-
known Schwarzschild gravitational field strength. The next step is the modification of the above
potential (by introducing a real parameter k), because is going to be used according to Generalized
Special Relativity (GSR) (as a pure GSR field in the spacetime of RIOs). The condition: ‘this new
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GSR gravitational field strength gives the same precession of Mercury’s orbit as the original SM
does’, emerges the value of parameter k:6-512. Thus, we obtain the new GSR central scalar
gravitational potential V:[sqrt(l—krS/r)-l]cz/k. NPs (with &—0) gives k=6, while ERT (with &=1)
emerges k=5. Finally, we compare the SR and GR approaches of gravity and conclude no significant
variation.

In case of 3GSM, the combination of its Newtonian version with Modified Newtonian Dynamics
(MOND), leads to MOND relativization. After, we pass to RIOs of ordinary flat spacetime
(Minkowski space) with Lorentz metric, extending MOND methods to ERT. We use Simple and
Standard Interpolating Function (u) to the Lorentzian version of 3GSM, for the explanation of the
Rotation Curves in Galaxies as well as the Solar system, eliminating Dark Matter. Generally, this
approach, in non rotating black hole, planetary and star system scale, coincides to the original
Schwarzschild metric, while in galactic scale, it gives MONDian results. We also modify the
aforementioned central scalar potential as V=[sqrt(1—hkrs/r)—1]02/k, where h=h(r). The combination of
the above with MOND interpolating functions, or distributions of Dark Matter (DM) in galaxies,
provides six different functions h=h(r). Thus, we obtain a new GSR central Gravitational field strength
g=g(h,k,r), which not only explains the Precession of Mercury’s Perihelion, but also the Rotation
Curves in Galaxies, eliminating Dark Matter.

2. Isometric Euclidean Closed Linear Transformations of Complex Spacetime endowed with the
Corresponding Metrics

In this paper, the metric coefficients of time and space have different signs. Moreover, 3D-space is
isotropic, in case of Isometric Euclidean Closed Linear Transformations of Complex Spacetime
(IECLSTTs) [9]. Thus, for RIOs, the representation of the non-degenerate inner product in holonomic
basis {e, €y, €, €.} of ‘flat” spacetime is the real matrix

1 .
— L1 lj:gIOO dlag(l, _élzv _512’ _512)’ (©)

I

& = ’ 8111 (7)
— 8100

The index I remind us that we are referred to the spacetime of the RIOs of each specific TPs. This
GSR has real Universal Speed (cy):

gI:diag(gIOO’ i 8122o g133)=gmdiag(—

where

1
¢ =—c¢C ()
L
and the transformation of a contravariant four-vector is
dX'=A,, 54X ©)
where
L =&'8, -&°B, -&°P.
_ 1 . o 1 _ 2 5T
Mei)="ep| o il }éﬁ,:@@ éﬂ ’ (10)
" =B, —i§pB, 1 15/, =B L+i& Ay
=B, igp, -—i&p, 1
Cdy P 0 F -4
ﬂ'Zﬁ s B=|pB, | 3 Ap=|-p. 0 B an
B, B, -p. 0
and
1

12)
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is Lorentz y-factor.
The specific value &—0 (gr1—0, gie#0) gives Galilean Transformation (GT) with Infinite
Universal Speed (c;—+) and the corresponding metric of the spacetime (let us call Galilean metric)

= lim dlag(gIOO’ 8urr s gm) 8100 hmdlag( =&, =&, _9312)' (13)

g111—=0
The corresponding spacetime (let us call Galilean spacetime) has infinite curvature (K—+o0) in any
orientation xey+ie,+ue, of 3D-space. This is the reason that time is absolute for any type of observers
as well as the Universal speed is infinite (c;—+x).

The specific value & =1 (gn1= - gio) gives Vossos Transformation (VT) with c;=c (the universal
speed is the speed of light in vacuum) and the corresponding metric of spacetime (let us call Vossos
metric)

gB:gmdiag(_L 11, 1)2811111’ (1)
which for gy;;=1 becomes the Lorentz metric (v). Thus, we have the Lorentzian case of Euclidean
Complex Relativistic Mechanics (ECRMs) [10], which is associated with ERT.

We now make the option that observer O measures real spacetime. As matrix 4; contains some
elements which are imaginary numbers, we conclude that the spacetime of one moving observer is
complex. Thus, we put an index C to the complex natural sizes and the real natural sizes have no
index. The typical matrix of IECLSTTs along x-axis (Generalized; Galilean-Newtonian; Lorentzian-
Einsteinian) is

1 =& 0 0 1 000 1 - 0 0

B 0 0 |: -8 1 0 0. =81 0 .(12)
Alfyy;zy(ﬁlﬂ) 0 0 | iﬁlﬂ Tryp — 0 010 ABtyp_Y(ﬂ) 0 0 1 iﬂ
0 0 -igp 1 00 1 0 0 -ip 1

In addition, any complex Cartesian Coordinates (CCs) of the theory may be turned to the
corresponding real CCs, in order to be perceived by human senses. This is achieved, if the moving
Observer O’ considers as Real CCs the corresponding lengths of rods [8] (p. 6). Thus, it emerges the
(Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) Real Boost (RB)

dx’ :AIR(ﬂ) dx ) dx’ :Ar(ﬂ) dx 5 dx’ :AL(ﬂ) d.Xv, (13)
where
_ - .
Nei) — ~ wfl P { 10 e V@A "
A . A .\ = N A L= - —1 .
R(E) r(3) = _ > Ry (3) T
I A ﬂﬁ B L v P L+ BB
i éﬂ)ﬂ ﬂ ,3 (5) ﬁT Yij |
The typical matrix of (Generalized; Galilean-Newtonian; Lorentzian-Einsteinian) RB along x-axis is
Yew —S7ewB 0 0 L 000 Yy —tph 00
A | "ewf a0 0 =B 1.0 0] _[mvwhB o v 0 0] (15)
IR typ(B) 0 0 10 Ttyp(B) 0 01 0 Lop(p) 0 0 10
0 0 0 1 0O 0 0 1 0 0 0 1

We observe that for £=1, we have the original typical proper Lorentz Boost (LB) (see e.g. [2] p. 21,
eq. 1.38) and the corresponding general proper LB (see e.g. [2] p. 24, eq. 1.47).

Supposing one Particle (P) with real mass m moving with velocity v, = B » C wrt observer O, we

calculate the Generalized relativistic kinetic energy; Generalized relativistic energy; Generalized
energy of Rest mass [8] (p. 10):

Vees, —1 Ve 1
K = (51210)2 m02 : — (flﬂp)mCZ : E L 2
1

E =
& "g

(16)
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3. GR: Generalized Schwarzschild metrics

3.1. The metric of a static and centrally symmetric gravitational field
Einstein field equations in vacuum [11] (pp. 303, 396) are reduced to the single tensor equation R,,=0.
This emerges the metric of a static and centrally symmetric gravitational field

ds? = 8100 c’de? + 8 d r’+ gl deo* + guihy) sin® 6d¢*, (17)
with the following conditions [12] (p. 2):

2
8 = 7—;" (ﬂj by, =t (18)
f(r) 1_f(r) dr (l_f(r)j

where p is an arbitrary constant and fis an arbitrary function of » (not constant).
3.2. The 3" Generalized Schwarzschild Metric, Relativistic potential and Field strength

We define a new relativistic potential @ around a center of gravity with mass M (let us call 3"
Generalized Schwarzschild Relativistic Potential-3GSRP) as

2 2
®=_Inl1-q, 5|, (19)
28, r
where
2GM
T2 (20)

is Schwarzschild radius and a, is unspecified function, in accordance with any TPs. The 3GSP is
connected with @, via the formula

2 287
lnf(,)z—ch:—z‘@. 21)
¢ c
Thus, we obtain
512" s
foy=1-a,=—. (22)
r
After replacing the above equation and ,u:&4r52 to (18), we also have
(r da p jz
T % 2

8n = 2 ’ h(r) - 2"
4 1— 51 rS a(”)
Ay G

So, we obtain the 3" Generalized Schwarzschild Metric (3GSM)
2 ni| T %0 2 2
dSzzgmo(l_a(r)mJCzdtz+ dr : dr2+g111’; d92+8111’; sin®@dg? (24)
r
am{l e St ] o s

r

with spatial part

da ?
8| - Ay 2 2
di? = dr?+8ml_qg2 + 80l _gin2 9442, (25)

2




8th International Conference on Mathematical Modeling in Physical Science IOP Publishing
Journal of Physics: Conference Series 1391 (2019) 012095  doi:10.1088/1742-6596/1391/1/012095

where a is an arbitrary function of r (or constant). Now, we can calculate this radial field strength, by

defining
~ dd do dr
§=—8m VP =g —T=—8&mn ’ (26)
dl dr a’l
and
do® dr
= 27
8 811 ar dl 27)
The positive value of field strength means gravity, while negative value means antigravity. So, it is
1
GM ’r | 2
g :7(1—% %) a,’>0. (28)

We also prefer a>0, in order to ensure Gravitational Red Shift (GRS).

3.3. The I'" Generalized Schwarzschild Metric, Relativistic potential, Field strength, Lagrangian,
Geodesics, Equations of motion and Precession of planets’ orbits
In case that a,,=1, (19) gives the 1" Generalized Schwarzschild Relativistic Potential (1GSRP) [9]

(p.11):
2 2 2
b= 2111[1—ﬂj:—C—ﬁ+...:—GM+... (29)
| r 2 r r
Thus, (24) emerges the 1" Generalized Schwarzschild metric (1GSM):
ds? = g100(1 &2 rSj 2d7% + 8142 4 g, P2 d6% + g, r sin’ Od ¢ (30)
1-£25
Besides, the I* Generalized Schwarzschild field strength (g)is
1
. GM 2y
i=—— (1—5,%) P 31)
r r
The usual definition of Lagrangian of gravitational system (M, m) [11] (p. 205)
L=mx"g, x", (32)
for orbit on the ‘plane’ #=n/2, gives the I* Generalized Schwarzschild Lagrangian (1GSL) [8] (p. 15):
" é: 2 . . d
L=mg,q (1—512—5)02 PS5 =— (33)
r 1—g? s dr
S
The well-known Euler-Lagrange equations
d( oL oL
—=0; u=0,1,3 34
dr (Ox ) ox” # 9
give us
2
..o d
:l—zr—smct;z—; 35
( ‘ r j 512 dr (35)
i 2rr — —r—szczf'z-l‘@i;r};z'i'zréz =0 ; (36)
drlglzs r rlglzi
r r
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dr

where E is the total energy and J is the total angular momentum of the system (the integrals of
motion). The solutions of the above equations of motion satisfy the condition

L=mg ¢ (38)
So, they can also be used for the practical determination of geodesics [11] (p. 205).

Now, we study the motion of particle P around the center of gravity of mass M. The case of
Uniform Circular Motion (UCM) is obtained, by putting r=R=constant to (36). The orbit of non-
circular motion comes with similar way to the original Schwarzschild space [11] (pp. 238-45). Thus,
the exact differential equation of motion is

d*u GM

_— bty =—

d¢’ h?
where h=J/m is the angular momentum per mass unit.

In case of small velocities relative to ¢ (v<<c/{)), we replace the solution of the simplified
differential equation

M
+3§IZG—2u2 ;U=
c

N =

D oh=rg o =—, (39)

2
d u _GM . MZGM (1+€COS¢) : GM 1

+u= ; = 40)
dg’ h? n? W dll-e?)
to the last term of the exact differential equation of motion (e is the eccentricity of the conic section, o
is the semimajor axis in case of ellipse). Thus, we have the approximate differential equation of
motion (which also validates UCM):

d>u GM  ,,.G'M’ NN R 5 S|
d—¢2+u:7+3§l W(l+€COS¢) ) M—; ) h—r¢ 5 :E (41)
with exact and approximate solution, correspondingly
GM 2G*M? 1 o . d  GM 1
= l+ecosg+3E ——edsing |; u=— ; h=r'¢g ; =— = , (42
u h2 ( 4 ¢ él C2h2 e¢ ¢] u r ¢ dt h2 al—e2 ( )
GM G’ M? 67E> G M>
u = h2 {1+€C0S|:(1—3§I (:27 ¢ 5 0<§I&T<<l. (43)
The last equation can be written as
1 GM G*M? 6752 G2 M2
w=_E 2 [1+‘3C05(/16R¢)] ; Ak :1_3‘):12 SFE ; 0< 5102 e <<1. (44)

Hence the orbit can be regarded as an ellipse that rotates (‘precesses’) about one of its foci by an
amount

2 ~2 g2 2
. .od do .
Ao 2 g SR OM O Oy oSS0 )
2G M cth a(l_e )C dr dr
e

rad per revolution. Finally the angular velocity of ellipse rotation is given by the formula
o —l=a rad | 360 3600 | I( rev | 365.242day | 100 year , (46)
cy rev | 2n rad 1 T\ day year cy

" 3.,
ol :A(ﬂj 7533657 x10" "-day | 1 [ rev ' (47)
cy rev rad- cy T \ day
Accordingly to the mainstream approach in textbooks, the further study is based on the

superposition principle. This emerges the relation of time to proper time. Replacing this to (35), they
obtain the final formula of the toral relativistic energy. Finally, the generalized potential energy is

or equivalently
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calculated, by reducing the kinetic energy (which is considered equal to this of SR) from the total
relativistic energy. But SM is a static and stationary metric of non-rotating mass. So, there is no
gravitomagnetism and we expect that the gravitational force is independent from the velocity of the
particle. Thus we adapt the following approach which gives simple central potential which describes
Gravitoelectric Effect (GEE).

The isometry of spacetime relieves us the relation of time to proper time [8] (p. 16):

2

1

i=Slol1-g B, 0 || 210 0=L 48)
dT r er 2
1-¢ "

Replacing the above equation to (35), we obtain the final formula of the fotal relativistic energy

;
1_55275 2
E= . mE 20 5 0=7 (49)
&
r; 1
=87 B+ By
Tt
)

We observe the different contribution of the radial and orbital velocity to the total energy! Now, we
demand zero kinetic energy (K=0), in case that the particle is static (ﬁP = 0). Then E( Fpm0) = E. . +U,

rest

where U is the potential energy. Replacing (16iii) and (49) to the above equation, we have

U:[Jl—gf%— J";‘jso; (50)
2
V:(,h—gf%—k—lzso (51)

where V is the 1" Generalized Schwarzschild Potential (1GSP). This is a central potential:
1

g:—d—vf:—GM[l—g,zij 'y (52)
r

dr r’

We observe that the result is the same as (31). The generalized Relativistic Kinetic energy is defined as
K,=E-E..U. So,

1—52’;5 2 . _Tl',
K, - - _fimgrfs e 5 0= (53)
rolg

I 1
=& Dt B By
gt

We also observe that if —+oo, the above equation becomes the Relativistic Kinetic energy of GSR:
(161). Finally the Relativistic mechanic energy En=E-E,.«=K,+U is
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T,
1- 512 = 2, _n
. ; L fme s e=T (54)
g
I 1
1_512 =4 . /BPr2 +/BP¢2
T
r

In case that §—0" (Galilean metric), (48) gives ¢ =1. Thus, we obtain the Newtonian results:

. . . —2a% .
. . 1 . 1 GM
D :hm@:C—hm —In 1—ﬁ :C—hm —% =-S5 ;0 (59)
&—0 2 &-0 §I r 4 &-0 gl 1— 1 ¥ 2 r r
r
&'n &’
dSy’ = g lim (1—Ajc2dt2 ——2Ldr? - &7 d0° - &7 sin* 0d ¢ | (56)
&0 r 5 T-
1_ I°S
r
~ GM ,
N :—r—zr 5 (57)
Ly =mgpc’ ; Ey=+0 ; if’+G12VI—r¢52:O D Iy =mrig '=di; H:g. (58)
r t
The Newtonian differential equation of motion and the corresponding solution are
d*u GM GM . 1. oo d
V;+MN=W s Uy = th (1+eNCOS¢) > I/t=7 > hN:7'2¢ s = (59)
2E,_hy’ G Mm
=[] ZomNN - _ , 60
R G>M>m "N 24, (60)
where ay is the semimajor axis of Newtonian ellipse which do not rotate (4Any=0). Besides
G Mm GM 15 2 | B 1 . GM
Uy=- ; Vg=— KN=—‘,BP‘ mc* =—mlp|  En=—mp| -———. (61
r r 2 2 2 r
In case that & =1, it emerges the well-known results of the original Schwarzschild metric in ERT
(see e.g. [11] pp. 228-45):
2
@, =Sn[1-5] ; (62)
2 r
r; 1 .
dS.> = g0 [1——5Jc2dt2 ———dr’=r*d@> -r’sin’ 0d¢* | ; (63)
r =
r
_1
- GM r.) 2.,
8GR =7 ( __Sj ro; (64)
r r
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. I . . d
Leox = Mgy (1_r_5j02i2_ P29 | 5 Epr =(1——Sjmczt ;= ; 9:%. (65)
r 15 r d7ger
,
d | 2 | —r—szczt'2+i P2t |20 3 T =mrig s = (66)
dzger 1= r or 1-s d7zper
r r
The differential equation of non-UCMs of the original Schwarzschild metric has come from (39):
2 .
dZ+u=GAf+3G12”u2 Cu=t o Ry =r = d_ (67)
d¢ hy; c r d7yer
The corresponding ERT approximate differential equation of motion (which also validates UCM) is:
d’ GM ,G'M’ 1 i d
b2t+u= >+3— 4(l+ecos¢)2 s u=—; My =r'¢ ;= (68)
dg e ¢ hger r d7per
with exact and approximate solution, correspondingly
GM G’M*® . GM 1
u = > {1 +epgr COSP+3———— epgr@sin ¢J ; == AR (69)
EGR EGR g r AgGr (1 ~€EGr )
2M? 67G>M*
u = M2 1+ epgg COS 1—3% ol s O<%<<1. (70)
hgor ¢” hgor ¢ hger
The last equation can be written as
1 GM , G*M* . 6xG'M?
w=—ss [1+ecos(Aucrd)] : Apor 13T 0 << 1)

Hence the ERT orbit can be regarded as an Einsteinian ellipse (with aggr semimajor axis) which
rotates (‘precesses) about one of its foci by an amount

27 67G>M* 67GM . L., d dg .
Apor =——2— a2 22 e =g s =S
1_3G7M ¢” hggr apGr (l_eEGR )C TeGR t
2 2
¢ hggr
rad per revolution. Accordingly to our non-mainstream approach, we have
1
2 rS
. dr 17 1 2 2 . -
= S R + >1 > _ r 2 (73)
dTpom , I_LS'BP’ Bry Eor mc” =0
4 I 1 2 2
1-| =+ B+ Bry
r S
-8
r
Ueer :[ I_rS_IJmCZ <0 : Veor :(1 1_@—1]02 <0 ; -5 (74)
' " Ky eor = L - 1—r7s mc? >0
I 1
1- 7S+1_§ﬂPr2+ﬂP¢2
-

10
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s

_’s .,
Enpor = = ~ljme?® > o= 2’ ()
7. 1
- = ﬂPrz + ﬂP¢2
ol
r

4. GSR: Metric of RIOs, Gravitational Potential, Field strength, Lagrangian, Equations of
motion and Precession of planets’ orbits
In case of GSR, the geometry of spacetime has steady metric (6). So, gravity is studied as a field,

which comes from GSR gravitational potential (VGSR,VVGSR). This adds extra terms to the GSR
Lagrangian of a free particle P. In this paper, we examine the case that wg, =0, according to the
mainstream approach of EP (1). Thus, the GSR Lagrangian in the frame of mass M, is [2] (p. 351):

Lsr =_810{_ mcz_élszGSR}’ (76)
Mep,)
where Vgsr 1S central gravitational potential. Besides, the orbit of particle P is on the ‘plane’ 0=m/2

and we have:

2 _ .2 252 1 .o d
OV =7 "4+1°¢" 5 y . \= — ; =—), (77)
(flﬂp) \/1_52 ’-.2+r2¢2 dr
I 2
c
2, 232
Fo+r
Lsr =_810{_\/1_§12 o2 ¢ mcz_flszGSR]' (78)

The GSR total energy definition (16ii) and Euler-Lagrange equations (34) give us the equations of

motion:
2

V(g )MC
E sr =(§—)2+mVGSR ; (79)
1
d ) 0 Vs
d_z(7 (&8 )" )_7 5P + or =03 (80)

o 2o d
J—mh—}/(élﬂp)mr o " (81)
where the integrals of motion are: the GSR total energy (Ewgsr) and the GSR total angular momentum

(/). Besides, h=J/m is the GSR angular momentum per mass unit. Solving (79) in terms of y, we find

_ 2 Eigsr ~mMVosr
g =&~ ®2
Moreover, we have
2 2 2
Uzz[ﬂJ 3+ 124 = [ﬂ} 472 h—24 : g (83)
d¢ d¢ e " a

2
Replacing the above in the identity 1+ ;‘Iz U—z;/( 55 )2 =5 )2 , we obtain the equation of trajectory:
C 7P 7P
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R | (du) Epgigor —MVose | 1 d
1+§[2 aw +u2 :§I4 tot GSR . GSR Cu=— h=l’2¢ . -=_’ (84)
d¢ mc r dt
Differentiation wrt ¢, emerges the equation of trajectory for a central gravitational potential:
2
dzl’;_l_u:_%EtotGSR_;nvGSR dVisr : uzl L h=r% -:i’ (85)
d¢ h mc du r ds

where the points with extreme values and circular motion are excluded [2] (p. 352).
Now, we propose the formula of GSR gravitational central potential:

Ve :[ -kl ]iso s k= k(). (86)
r k

The idea comes from 1GSP (51). This is modified (by introducing a real number k), because it is used
according to GSR (in the space of RIOs). We also observe that the GSR horizon is located at distance k
Schwarzschild radius (krs) from the center of gravity. Besides, we obtain the following GSR
gravitational field strength:

N | =

go-Wosw GM(I k! j ;. 87)
dr r r
The replacement of (86) to (85), gives the exact equation of trajectory for GSR Gravitational field:
2 2 1 1
d D= & _guM IOtGgR (1—kru) 2 +G—M—G—M(1 kra) 2| 5 u -1 (88)
d¢ h? mc k k r

In order to make the above equation similar to the corresponding of Newtonian scalar gravitational
potential at large distance (krsu<<1 or equivalently r>>krs), we apply Taylor theorem to the quantity:

_1 k 1
(1—kru) 2 z1+5rsu s u=— ; r>>krs. (89)
r
So, we obtain the approximate equation of trajectory for GSR Gravitational field:
2
d [1 512 GM Egsz KGM e GM GM} _512 GM Eoose . ,-1 . roskrs, (90)
d¢? mc? ¢’ mc? r
which after replacmg
GM E kGM GM GM
y) —1- 2 tot GSR 2 , 1)
GSR S 2 med ol 3 PR
gives
d’u GM E, 1
a5 +,105R2u=§[2—h2 —"ntCGgR Pu=— 3 >k (92)

The above equation of trajectory for GSR Gravitational field at large distance, has the following
solution:

1 § GME,, _1 . GM 1 .
u == %[14—6005( GSR¢)] = :m ; r>>krs. (93)

Agsg mc” h® r

Hence we have obtained again, the ellipse which rotates (‘precesses’) about one of its foci, by using
only GSR.

The system of equations (91) and (93) contains the variables Agsg and Eiysr- S0, we calculate
them, by working at the perihelion, where p=0, r=a(1-¢):

2
1§ GyEmGSR (1+e) s SM__ 1 ook (94)
a(l—e) Agsg mc” b’ h

2
all—e

This emerges

12
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2 m02
Easr =Agsg —5 5 >>krs. 95)

I
So, the combination of the last equation with (91) gives the SR total energy at large distance:

1 GM
2 2 2 2
c all-
ElotGSR = gl Z(A/I—e)mcz Sn;_czzEresl > r>>krS' (96)
1

1+
c? a‘l —e’ )
Besides, the replacement of the above equation to (91) gives
2 2 (1_,2)_£2
: (’”512 Jom ¢ 2“(1 ez) S G0 sk (97)
Call-e?)+kGM — call-e*)+kGM
The above leads to the final conditions

09;/1—5122’—5 - a>>krs. (98)
a

Moreover, the combination of (95) and (97) with (93) gives
1 Call-e?)-£2Gm
u === 1+ ecos(4, R I s r>>kr. 99
r M[ ( GSR¢)] SR \/ c? a(l—ez)+kGM s ©9)

Thus, the precession of ellipse is

2
ﬂ'GSR =1-

kry

1+
2 _ 2 _ 2
AGSRz[ ! _1Jzﬂ:(\/° all-¢* )+ kGM _1}”— _1 x5 as>krs (100)

c? a(l—ez)—dflzGM 512"3

2all -

GSR

1-

rad per revolution.
The condition: ‘this new GSR gravitational field gives the same precession of Mercury’s orbit as
does the original Schwarzschild metric’, is equivalent to

j’GSRZ = /1EGR2 . (101)
This combined with (71ii) and (97), gives
9
6-6" - Yoo
k= a-el (102)

2
-3
2 ail —e? )
Parameter k (reason) must be independent from a and e (results). So, we prefer to adopt the integer
value (Generalized; Newtonian; Einsteinian):

k=6-& 3 k=6 ; k=5. (103)
According to (87), the force is
1
ﬁ:mg=—md—vf=—GAfm(1-k£j Y (104)
dr r r
At large distance (r>>krs), we apply Taylor theorem to the quantity:

1

(1—1{3} ? z1+ﬁi=1+kG2M . p>skr, (105)
r 2r cr

Thus, we obtain
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F 2 2.3

| GMm G>*M’m
r cr

k Jf ; r>>krs. (106)
According to NPs (&—0; k—6), we obtain
B (_ G Mm 3 G*M’m

> 6 — jf s r>>krg, (107)
r c’r

F

which is the force that predicts the precession of Mercury’s perihelion, by using Perturbation Theory
[1] (p. 246), [3] (p.512), [13] (p. 536-539).

In case of planet Mercury, it is a=0.38709893 AU, ¢=0.20563069 and T=87.968 days [14]. The
values: AU= 1.4959787066x10"" m, G=6.67428(67)x10™"'m’kg™'s %, ¢=299792458 ms™" (exact) [15]
(pp. 1-1, 1-20, 14-2) and M=1,988,500x10** kg [16], give

5 = 2GM =5.32518(53)x107°<<1. (108)
a(l—ez) c? a(l—ez)
The case of Earth, with a= 1.00000011 AU, e=0.01671022 and 7=365.242 days [17], emerges
5 - 2GM =1.97476(20)x10"*<<1. (109)
a(l—ez) c? a(l—ez)
Now, we can return to all the previous formulas and replace the above values. Thus (100) and (47)

give the results, which are summarized in Table 1. We observe that both ESR and NPs give the same
precessions.

Table 1. Angular velocity of ellipse perihelion rotation (‘precession’) for Mercury and Earth,
according to GSR Gravitational field (Qgsg) for Newtonian Physics (&=0) and Einsteinian Special
Relativity (&=1) and according to the original Schwarzschild Gravitoelectric Effect (Qggr). AQgsr: (%)
is the percentile relative change.

Mercury Earth
¢i k Qose/ ey"' Quer/ ey’  AQqsre (%) Qqsr/ ey Qper/ ey’ AQqsk: (%)
0 6 429820(43) 42.97999) ' 0.005(10)  3.83893(38) 3.8401(4)  -0.030(14)
1 S5 42.9820(43)  42.9799(9) V" 0.005(10)  3.83893(38) 3.8401(4)  -0.030(14)
'[6] (p. 6)

5. GSR: Gravitational Red Shift

The proposed GSR Gravitational field was combined with the mainstream approach of EP (1).
This combination cannot produce Gravitational Red Shift (GRS) as SM does. On the other hand, GRS
is achieved, if only the proposed GSR Gravitational field is combined with the alternative approach of
EP (2)

Mo =V iep)" (110)

More specifically in GSR, the photon (the particle which is associated with the E/M radiation) [8] (p.
13) has

1 Vg
-0 - - . ~ 0 - — 1/p — . — - —
=03 P & D Vg 210 E 2y met =hf smg =y s m=g
1

2@. (111)

Thus, the energy conservation gives

Ve V,
(51Bp) 2 2 GSR(r)
Eygsr = E+mgVgspey =—5—mc +7(§Iﬁ‘P)mVGSR(r) =hf,) +& 2 =hf,, (112)

I
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where h is Plank constant and f(r) ; f,, are the frequencies of E/M radiation at distance r from the
center of gravity and at infinite distance, respectively. So, we obtain GRS:

fofor (14 &7 Vosro /A=A (L+ &Ik sqrt(L-krs/r)- 1D (1- &P/ GMIT < fi, (113)
where (113iii) is referred to light which was emitted from atoms located far away from the GSR
horizon. We observe that NPs (with £—0) has no GRS, in contrast to ESR (with &=1) which gives the
well-known GRS of ERT. For instance, the replacement of fi,, with the Earth laboratory value of line
D, at the spectrum of Sodium (Na) to the above formula, emerges f,, equal to the data from
astronomical observation [18].

6. Modification of GSR Gravitational Field in order to also explain the Rotation Curves in
Galaxies
The next step is the Modification of GSR Gravitational Field (86) in order to also explain the Rotation

Curves in Galaxies
2
Vasg = [\/1_ h(r)kr_s _IJ% <0 ; k=6-&" 5 h(kre)=1, (114)
r

where & is an unspecified function of the distance with slow evolution, in accordance with any TPs.
The condition (114iii) simplifies the modified GSR Gravitational Field to (86), near to the GSR

horizon. Besides, we obtain the following GSR gravitational field strength:
1

- dVgg ~ GM dh r.) 2. .
e [h(,) _,»Ej@_kh(,) 7) Fogt (115)
_!
GM dh r.) 2
= h, —r— |1—kh, =~ ; k=6-&. (116)
§=72 ( "=y rj( ) rj 1
The positive value of field strength g means gravity, while negative value means antigravity. In case of
UCM, it is g=v*/r. So,
1
GM dh r) 2 ‘
v’ = (hm — r—j[l—khm —Sj s k=6-&". (117)
r dr r

The above (116) reminds us the corresponding of 3GSM (28), which express only gravity. Far away
from the horizon, the gravitational field strengths (28) and (116) become the same if only

a,’=h, —r—. (118)

We extend the above condition at any distance.

6.1. The Combination of Modified GSR Gravitational Field strength with MOND

Modified Newtonian Dynamics (MOND) explains the rotation curves in many galaxies, by using

suitable Interpolating Function (1) in Milgrom’s Law [19]. In case of a spherical or cylindrical

distribution of mass, the Modified Newtonian field strength is
1 GM

= - (119)
Hiy T
The combination of the 3GSM field strength (28) with MOND (188) and condition (118) emerges
1 h
4, =——=h, -r3% (120)
/Ll(r) d r

Two common choices are the Simple and Standard interpolating function, correspondingly
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2
Lops Ly, 1+[ij gL 1+(“° -5\ 1+— L
H g 2 T U

where ry is called Milgrom radius [20] (p. 3) and a, =12(x0.1)x10""ms™ [19] (p. 1) is a new
(acceleration-dimensional) physical constant. Both the Interpolating functions give the same velocity

at infinite distance from the center of gravity
v,” =G Ma, (122)
From (120), we calculate that

h(r)z—rj dr =-L ;d(LJz—LL (123)

2 2
Ly Ty r u o
r (r)

Besides, the integrals of Simple and Standard interpolating functions are correspondingly:

— N 2 2
ISimpl :'[2%(1"’ 1+X2Jd)€:;[—l— 1+x -}—a_r(;sinhx}.'»c‘smpl:1[_1_\/§+1n()€+1 1+X2 j]+csimpl (124)
X

X X 21 x X

1
o J4
I+—+1 1
7 [V 4 3 )4 J (125)
Isina = [ LY /PO U, Y . RPAR JUUNP) FY OE. N I Y JLURL U P (T | | PG
w =) oy’ 4 2 N 4 4747472 4 .
[,/1+2—1J

The last solution contains Gauss hypergeometric function and has steady imaginary part

, (121)

Im[I,,, - Cgpal = | ZF(I 1.5 1):Lr T, ., =0.7853981633974484. (126)

V2 e a )T ()L

Thus, we have correspondingly

h(r):—xISimp1=%(1+vl+x2—xarcsinhx)—xCSimp1=%(1+\/1+x2—xln(x+\/1+x2D—xCSimp1 s x=— 3 (127)

Ty
1
e 3 o 4
By = =Xl gng = f 1+ 1+— 1-24|1- S ’F,

We observe that in case of Simple Interpolating function: hg=1. So, we prefer Cs;np=0 and we have

h, =;(1+\/1+x2 —xArcSinhx)=;(1+\/1+x2 —xln(x+\/1+x2 )) ; x=— (129)

o

We also observe that the Standard Interpolating function has hg=1, but we now prefer

CStand=—L2F(1 LS lj ! I ,\I,i=-0.7853981633974484 i. (130)

2 e )T )

in order to get rid of the imaginary part. Thus, we obtain

1
4 3 4 \4 7
1151 1
h“:_x’s‘a"“‘:f “Fl 24[1_ ”ZJ 21{4’4;4;2[ 1*2“}] TR o

4) \a

This kind of ‘old” MONDian field strength:
. is efficient to explain the rotation curves in galaxies as well as the precession of Mercury’s
orbit (because a~u~h=1 in the Solar system), but
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ii. gives extra larges values of the gravitational field strength around bodies with small mass.
For instance a body of M=1 Kg at distance r=1 m, produces x=0.518 (1/u=1.93) according to the
Simple interpolating function. This means twice value of the Newtonian field strength and contradicts
to the Cavendish experiment.

In this paper, we also make changes to MOND resolving the above contradiction. Thus, we define
the New Simple and New Standard interpolating function (u) respectively

(132)

Let us also define the following characteristic radii of a system with mass M:

3 4
ro= 2 Sy oo Ry = |SMe (133)
\/ﬂ—m a, 4a,
where M, is the mass that is contained in a sphere of radius r,, with the same center as the center of the
system with mass M. We also calculate C=4.2(0.2)x10° ng'3’8, by using ap=1.2(0.1)x10™"° ms™
[19] (p.1), G=6.67428(67)x10™'m’kg™'s* and ¢=299792458 ms™' (exact) [15] (pp. 1-1, 1-20, 14-2).
For instance:
(1) In case that we examine the gravitational field at distance =1 m from a body with M=1 Kg
on planet Earth (at high h=2 m), we calculate r,,=1.4(0.1)x10™" Kpc=2.8(0.1)x10° AU= 4.2(0.2)x10°
m. Taking into account that the Earth has radius Rg,,=6,378,140 m and mass Mg,,=5.9742 10 kg
[15] (pp.1-1,14-2), the accurate calculation of M, needs the part of the mass of Earth that is contained
into the sphere with center the body. Of course, this mass has not spherical or cylindrical symmetry.
So, the following calculation gives us only order of magnitude. We can easily find that My= (Vio/VEarm)
Mg, where Vj is the common part of these spheres. Besides, we approximately consider that we have
one sphere with center on the surface of another equal sphere (Figure 1). Thus the common volume
can be calculated, by using the second Pappus's centroid theorem Vy=d-S=2nCS [21], where
C=(4rsin3a)/[2a-sin(2a)]-rcosa is the distance of the center of Circular segment of central angle
2a=120°=27/3 rad from the rotation axis and S=(r/2)[2a-sin(2a)] is the area of the aforementioned
Circular segment. So, it emerges Vo=nr [(4/3)sin3(/3)-2(n/3)cos(n/3)+2sin(n/3)cos2(n/3)]=
0.251840554nr°, where r:CubicRoo‘[[(REarmS+r003)/2]=5.5(0.3)><106 m and the mass of interest is
Mo=(Vo/Vart) Meari=[3Vo/ (4R Ewt ) IMai=[3-0.2518405 5477 /(AT R ) M parar= [3-0.251840554
(5.5%10%°/(4-6378140)]-5.9742x10**  kg=7.2(¥1.2)x10*® kg. This results Re=1.0(0.2)x10®
Kpc=2.1(0.3) AU=3.2(0.5)x10"" m.
(ii) The calculation of the gravitational field of planet Earth at high h=2 m, gives
r,=2.7(0.1)x10*Kpc=5.5(0.3)x10" AU=8.2(0.4)x10"> m. Taking into account that our Solar system
has radius rSOIarSyS=2.4x10’7KpC=50 AU=7.5%10" m and the closest star to the Earth is Alpha Centauri
at distance r=4.37 ly=1.34 pc=276x10> AU=4.13x10"* m [22] (pp. 219-236), we understand that
My=Msqs,:=1.9918x10” kg (the total mass of the Solar System). This gives Ry=1.7055x107
Kpc=3,517.8 AU=5.2626x10"* m.
(iii) The study of the gravitational field of the Sun at planet Earth, emerges r,=0.0314(0.0014)
Kpce= 6.5(0.3)x10° AU=9.7(0.5)x10"" m. Taking into account that our galaxy (Milky Way) has mass
mg=1.3(20.3)x10"> My, =2.5(x0.6)x1042 Kg [23], diameter dg=2rc=175(x25)x10" ly=53.6(7.7)
Kpc= 1.103(20.158)x10" AU=1.65(£0.24)x10*" m [24] and our Solar System is located at distance
r=2.65(x0.1)x10” 1ly=0.812(+0.003) Kpc=1.67x10*> AU=2.51x10" m from the Galactic Center, it is
obvious that the sphere of radius r,, does not enclose the supermassive black hole of Sagittarius A*
with mass m=4.31(06)x10° M, =8.57(12)x10°® Kg [25]. Thus, it is efficient to use as
Mo=(r.,Irs)ms=3.5x10"" Kg (about 0.00014% of the mass of Milky Way) and we obtain R,=0.023
Kpc=4.7x10° AU=7.0x10"" m.
(iv) The calculation of the gravitational field of Galaxy NGC 3198 on a star at distance r=8 Kpc
from its center, emerges r,=279 Kpc:5.7x1010 AU=8.6x10*' m. Thus, the sphere of radius r.,
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encloses the whole galaxy of radius rg=50 Kpc= 1.03x10" AU=1.54x10"' m and we put
My=mg=6.76294x10* Kg [26] (p. 56). This gives Ry=3.14 Kpc=6.5x10* AU=9.7x10" m.

(v) The study of the gravitational field of the Observable Universe at the Limit of observation,
emerges r,=1.02x10" Kpc= 2.10x10" AU=3.14x10"® m. Taking into account that the Observable
Universe has mass my=10" Kg [27] (p. 43) and radius ry=4.5x10" ly=1.4x10" Kpc= 2.9x10"
AU=4.3x10°° m [28] (p. 27), it is efficient to use as Mo=(r.,/ry’)my=3.9x10>> Kg (about 39% of mass
of the Observable Universe). Thus, we obtain Ry=7.8x10° ly= 2.4x10° Kpc=4.9x10"* AU=7.4x10” m.
The above manifest that the gravitational field of a system which is enclosed within a circular orbit of
radius r, is not only affected by the internal mass (M), but it is also affected by the part of fotal mass
(M,) (internal & external) of the hyper-system (that is enclosed within radius r.,), where the system
belongs!

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Figure 1. One sphere with center on the surface of another equal sphere. The common volume :
is calculated, by using the second Pappus's centroid theorem: Vo=d-S=2nCS, where '

C=(4rsin’a)/[2a-sin(2a)]-rcosa is the distance of the center of Circular segment of central angle
2a=120°=27/3 rad from the rotation axis and S=(r*/2)[2a-sin(2a)] is the area of the

(134)

Both the New Interpolating functions give the same new velocity at infinite distance from the center of
gravity (e.g. Galaxy)

M? G 1 M? NM |G
UOO(:Z =./G—a, =M % > ﬂ()oc =Uﬂ=_4 G——a, = 1 =% (135)
M, M, c c\ M, c \ M,

The above referred examples [System (Location) — Hyper-system] give, respectively the following
results (data from Table 1):

(a) New Simple interpolating function: (i) M=1Kg (located at high A=2 m from Earth at =1m) —
Earth: £=0.999999999999999999999998 (1/1=1.000000000000000000000002=1+2x10*),
(ii) Earth (at h=2m from Earth surface) - Solar System: ©=0.99999999999999996
(1/1=1.00000000000000004=1+4x10""), (i) Sun (at Earth) - 0.00014% Milky Way:
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£=0.999999999999989 (1/1=1.00000000000001=1+1x10"*), (iv) NGC 3198 (at Star 8 Kpc) - NGC
3198: u=0.53528 (1/u=1.8682), (v) Observable Universe (at the Limit of observation) - 39%
Observable Universe: yu=0.32 (1/u=3.2).

(b) New Standard interpolating function: (i) M=1Kg (located at high #=2 m from Earth at r=1m)

Earth: £=0.999999999999999999999999999999999999999999999997
(1/,u—1 000000000000000000000000000000000000000000000003=1+3x10"*), (ii) Earth (at h=2m
from Earth surface) -  Solar System: ©=0.9999999999999999999999999999999993

(1/u=1.0000000000000000000000000000000007=1+7x10"*, (iii) Sun (at Earth) — 0.00014% Milky
Way: £=0.99999999999999999999999999993 (1/1=1.00000000000000000000000000007=1+7x1 0,
(iv) NGC 3198 (at Star 8 Kpc) - NGC 3198: u=0.67462 (1/u=1.48232), (v) Observable Universe (at
the Limit of observation) - 39% Observable Universe: 4=0.37 (1/u=2.7).

The results are in accordance with the Cavendish experiment, observations in our solar system and
also explain the rotation curves in Galaxies, especially in case of Standard p. Besides, they are
summarized in Table 1.

6.2. The Combination of Modified GSR Gravitational Field strength with the concept of phantom
Dark Matter and the Velocity at Infinite Distance of MOND

Below, we shall find the metric of spacetime that corresponds to the concept of phantom DM [1]
(p- 356). We consider a very simple distribution of phantom DM:

dark

C r
Pdark = 2 s My = j4nr2pdarkdr =4nCyur (136)
0

and also all the luminous-baryonic mass at the center of gravity. In case of a spherical or cylindrical
distribution of mass, the Modified Newtonian field strength is

GWM +M M 4nGC
— ( 5 dark) :(G > + n darkj. (137)
r r r
Thus, the velocity in UCM is given by the formula
GM +M GM
vl = ( dafk)z( +4ncharkj, (138)
r r
which at infinite distance from the center of gravity, gives
v, =41GC,, . (139)

The combination of the above equation with the ‘old’ (122) or New (1351) MONDian formula gives
correspondingly

1 |Ma M
Can =7\ & Cam =7 (140)
“4n\ G W 4n\GM,
where M, is the part of mass of the hyper-system that is enclosed within radius 7.
i) According to (140i), the initial equations can be written as
aNM 1 M Ma, M r
Pdark = - ; = Cr=— (141)

2 Mdark - - -
47\ G 8 T ryr G 2
The replacement of ‘old” MONDian (140i) to (137) and the combination with (119) and (120) give
2 1 dh 1 r

a .~ =—=h_ —-r—=1+ . (142)
" Hpy " dr 2 Iy
ii) According to ‘new’ MONDian (140ii), the initial equations can be written as
M a 1 1 M M r
Pk = ° ——— s My =M (143)

4n\GM, r* 8m Ry’ GM T2 R,
The replacement of (140ii) to (137) and the combination with (119) and (120) give
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a,’ :L:hm—rd—hznll. (144)
i dr 2R,

Thus, the integral of (123) in case of DM is

1 1 11
I =I?(1+§xjdx=—;+alnx+CDM, (145)
where
x=L ; x=L (146)
) R,
for ‘old’ or ‘new’ distribution of DM, correspondingly. Thus, we have
h(r) = _XISimpl =1- glnx —xChy (147)

We observe that /=1. So, we prefer Csim,=0 and we also have

By, =g, =1—§lnx. (148)

(r)

The ‘new’ concept, for M—0 gives a~u~h=1. This turns metric (24) approximately equal to the metric
of RIOs (6). This is a general property, because we have used (135i). Besides, the examination of the
dark matter around a body with M=1 Kg, near to planet Earth, within radius r=1 m (at high h=2 m),
gives My, =5.488x10"° Kg. This corresponds to the Newtonian field strength, in accordance with the
Cavendish experiment.

Finally, it is proven that the corresponding values of function a, have the properties: Standard
Interpolating function < Simple Interpolating function < Absorption of DM and also ‘New’ < ‘old’.

7. Experimental Validation - Discussion

In Table 2, we show the values of ‘old’ and ‘new’ characteristic parameters for the original 1Kg,
the Earth, the Sun (see [9] (p. 8) and data from [15] (pp. 1-1, 14-2)), Galaxy NGC 3198 (data from
[26] (p. 56) and [29] (p. 3)) and the Observable Universe (data from [27] (p. 43) and [28] (p. 27)).
Besides, M, is the mass that is enclosed in a sphere of radius r,, and the radii r.., Ry, the new velocity at
infinite distance vgw., Pow, the inverse of the New Interpolating functions 1/unsmp and 1/tingana ON @
sphere of radius R and they have been obtained from (133i), (133ii), (1351), (135ii), (134i) & (134ii),
respectively. Besides, we have used the following values of physical constants: ag=1.2(0.1)x107"" ms™
[19] (p.1), AU=1.4959787066x10"" m, G=6.67428(67)x10™"'m’kg™'s?, ¢=299792458 ms™' (exact)
[15] (pp. 1-1, 1-20, 14-2).

7.1. The Combination of Lorentzian-Einsteinian 3" Generalized Schwarzschild Metric or Modified
GSR Gravitational Field with ‘old’ or ‘New’ MOND Simple & Standard Interpolating Function and
‘old’ or ‘New’ Absorption of the Dark Matter into the field in Galaxy NGC 3198

In order to find out what is the effect of the modification at large mass and size systems, we
analytically examine Galaxy NGC 3198.

The values of Circular Velocities [experimental (V) and calculated by the Combination of
Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with the corresponding Simple u
(Vsimp,Lor) 0r  New Simple pt (Vxsimpror) O Standard p (Vianapror) or New Standard p (Vsandror) OF
Absorption of DM into the Metric by using distribution (141) (Vpm.Le) OF Absorption of DM into the
Metric by using distribution (143) (Vnpm.Lor)], the Luminous Mass of the galaxy that is enclosed within
the circular orbit (My), the corresponding Schwarzschild radius (rs), Milgrom radius (ry), the
corresponding values of the function a() (dsimpior OF GNsimpLor OF Gstand,Lor O ONstandLor OF ADM,Lor OF
aNDM,Lor)’ function h(r) (hsimp,Lor or thimp,Lor or hstand,Lor or thtand,Lor or hDM,Lor or hNDM,Lor) and time
coefficient of metric ggo (goo,simp,Lor OT' g00,Nsimp,Lor O £00,stand,Lor OT §00,Nstand,Lor O £00,DM,Lor OT 800.NDM.Lor)
wrt the distance from the center of Galaxy NGC 3198, are contained in Table 3 (data from [30] (p.
2)) The Circular Velocities (Vsimp,Lor’ Vstand,Lor’ VNsimp,Lor’ VNstand,Lor’ VDM,Lor’ and VNDM,Lor) have been
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calculated by using (119) or (28) or (116), the values of function a, (dsimp,Lor OF Gstand,Lor OF ANsimp,Lor OF
ANstand.Lor O @pM.Lor OF dnpM.Lor), DY Using (120) combined with (121) or (134) or (142) or (144), the
values of function /) (Agimpror OF Astand,Lor O ANsimp.Lor OF ANstand,Lor OT ApM,Lor OF ANDM,Lor), DY Using and
(129) or (131) or (148) combined with (146), respectively. Finally the values of time coefficient of
metric (ggo) have been calculated from (24) for &=1.

The calculation of the gravitational field of Galaxy NGC 3198 on a star at distance r=2 Kpc from
its center, emerges r,,=118 Kpc=2.4x10"" AU=3.6x10*' m. Thus, the sphere of radius ., encloses the
whole galaxy of radius rg=50 Kpc= 1.03x10'"° AU=1.54x10*' m and we put My=m=6.76294x10* Kg
[4] (p. 56). This gives steady new Milgrom radius Ry=3.14 Kpc=6.5x10° AU=9.7x10" m.

Table 2. Characteristic parameters (mass M, distance or size radius R, Schwarzschild radius rs,
Milgrom radius ry, ro/rs, velocity at infinite distance v.., .., new Milgrom radius R,, new velocity at
infinite distance vg., Bo., New Interpolating functions 1/unsimpi and 1/unswna 0N a sphere of radius R)

for 1 Kg, the Earth, the Sun, galaxy NGC 3198 and the Observable Universe.

1Kg Earth Sun NGC 3198 Observable
(original) Universe
M/Kg 1 59742x107 ' 19891x10° D 6.76294x10° @ 10 @
R/m 1 6378140 M 6.9599x10° D 2.47%10% 4.3x10%
/AU 6.68x10’; 4.263523><10‘I3 4.6524%10° 1.65%10° 2.9><1o615 5
/Kpe ~ 3:24x10 2.066999x10™"° 5 55550 10! 8 @ 14x10° @
r./m 2.96x107% 8.8736x10™ 2.954.4 1.004451x10"*  1.48x10%
AU 1.98x10° 5.9316x10™ 1.9749%10° 671.434 9.9x10"
/ Kpe 9.61x10 2.8757%x10 9.5746x10" 0.0000680703  4.80x10
ro/ m 0.373 9.1143%10" 5.2591x10" 9.6972671x10"  1.18x10*
/AU 2.49x10™" 6.0925 3,515.5 6.45222x10° 7.9x10"
/ Kpe 1.21x107% 2.9537x10* 0.000017043 3.14265 3.8x10°
rolrs 1.26x10%° 1.02712x10" 1.7801x10" 965,430 0.80
v./ms'  9.45x10° 14.7899 355.27 152,556 1.68x10°
B 3.15x10™ 4.93339x10° 1.1851x10° 0.000508873 0.56
ro./m 4.2(0.2)x10°  8.2(0.4)x10" 9.7(0.5)x10" 8.6x10% 3.14x10%
/ AU 2.8(0.1)x10°  5.5(0.3)x10" 6.5(0.3)x10° 5.7x10" 2.10x10"
/ Kpc 1.4(0.D)x10™" 2.7 (0.1)x10™ 0.0314(0.0014) 279 1.02x10’
M,/Kg  72(1.2)x10®  1.9918x 10* 3.5%x10% 6.76294x10% 3.9x10°
Ry/m 3.2(0.5)x10"  5.2626x10™ 9.7x10" 9.7x10" 7.4x10%
/ AU 2.1(0.3) 3,517.8 4.7%x10° 6.5x10° 4.9%x10"
/Kpe  1.0002)x10%  1.7055x107 0.023 3.14 2.4x10°
vo./ ms'  1.0x10™M 0.615 9.75 152,556 2.1x10°
Bos 3.3x107% 2.05x10” 3.25x10™ 0.000508873 0.70
Wpnsimp 142107 1+4x107" 1+1x10™ 1.8682 3.2
Hpnsana ~ 143x107% 1+7x107 1+7x10™% 1.48232 2.7

'[15] (pp. 1-1, 14-2), [26] (p. 56), °[29] (p. 3), * [27] (p. 43), [28] (p. 27).
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Table 3. Circular Velocities [experimental (V) and calculated by the Combination of Lorentzian-Einsteinian
3" Generalized Schwarzschild metric or Modified GSR Gravitational Field with the corresponding Simple u
(Vsimp,Lor) OF New Simple p (VNgimp,Lor) OF Standard pi (Vgandor) OF New Standard i (Vgandor) OF Absorption of
DM into the Metric by using distribution (141) (Vpmiror) Or Absorption of DM into the Metric by using
distribution (143) (VxpmLor)l, the Luminous Mass of the galaxy that is enclosed within the circular orbit (My),
the corresponding values of function a,, function A, and time coefficient of metric (go) wrt the distance from
the center of Galaxy NGC 3198. The relative errors of the experimental Velocities are (AVe,)=8%. '130] (p.2)

r My Vexp o Qgimp,Lor Rgmpror  800simp,Lor Vsimp,Lor (AV),
/ Kpe 110¥ kg /Kms' @standLor  FstandLor  &00stand,Lor Vstand,Lor %o
10%m QNsimpLor  PNsimp,Lor  £00,Nsimp,Lor VNsimp,Lor
ONstand,Lor  PNstand,Lor  £00,Nstand,Lor VNstand,Lor
apM,Lor hpm,Lor £00,DM,Lor VoM, Lor
AaNDM,Lor hNDM,Lor £00,NDM,Lor VNDM,Lor /Kms™'
4.0 1.620 1180 13759  -0.2964  -0.9999997318  128.783 9
1.23 12265  -1.3149  -0.9999997609  114.801 -3
1.0341 0.6330  -0.9999997769  107.103 -9
13437 -0.0247  -0.9999997984  96.790 -18
15167  -02426  -0.9999997043  141.959 20
1.2792 0.8407  -0.9999997506  119.735 1
8.0 5.825 1503 13999 04181  -0.9999995093  175.687 17
2.47 12506 14700  -0.9999995617  156.950 4
13666 02523 -0.9999995210  171.504 14
L2173 12549  0.9999995734  152.765 2
1.5399 03837  -0.9999994603  193.262 29
15076 02073 -0.9999994716  189.202 26
16.1 7.237 1553 17396 26769  -0.9999996236  171.526 10
4.97 1.6060 42377 -0.9999996526  158.351 -2
1.7635 28797  -0.9999996185  173.880 12
1.6312 44717 -0.9999996471  160.839 4
1.8645 29619  -0.9999995966  183.838 18
1.8872 3.2344  -0.9999995917  186.078 20
322 6.544 1484 23942 _10.0044 -0.9999997658  158.734
9.94 22927 128678 -0.9999997757  152.004
23764 98497 09999997675  157.557
22742 125675  -0.9999997775  150.781 2
24916 112046  -0.9999997444  165.194 11
24745 11,0458  -0.9999997580  164.058 11
48.2 6.072 1519 29340 195417  -0.9999998221  153.157 1
14.87 28503 235855 -0.9999998272  148.785 2
2.8609 180986 -0.9999998265  149.341 2
27751 219252 10.9999998317  144.862 -5
30155 515329 09999998172  157.409 4
29443 20.1474  -0.9999998215  153.691
13800  6.763 - 46.8625  -17,741.1 -0.9999999889  152.574 _

4,258.3 46.8571  -18703.6 -0.9999999889  152.557
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Figure 2. Plot of function a,, wrt the distance (r) from the center of Galaxy NGC 3198 for the
Combination of Lorentzian-Einsteinian 3" Generalized Schwarzschild metric or Modified GSR
Gravitational Field with Simple interpolating function (asimpy.or), OF Standard interpolating function
(Gstand,Lor)> OF New Simple Interpolating Function (axsimpLor), OF New Standard Interpolating Function
(aNstand Lor)» OF Absorption of phantom Dark Matter into the Metric by using distribution (141) (apmLor), OF
Absorption of phantom Dark Matter into the Metric by using distribution (165) (anpmLor)- The experimental
values (deyp,10r) have been obtained, by replacing the experimental acceleration (gexp=Vexp2/r) in (28).
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Figure 3. Rotation Curves in Galaxy NGC 3198. Rotational Velocities [experimental (V.,,), calculated by
Schwarzschild or Newtonian field strength (V) and the Combination of Lorentzian-Einsteinian 3™
Generalized Schwarzschild metric or Modified GSR Gravitational Field with Simple interpolating function
(Vsimp,Lor)» OF Standard interpolating function (Vgandror), O New Simple Interpolating Function (Vxsimp Lor)> OF
New Standard Interpolating Function (Vgand,Lor)> OF Absorption of phantom Dark Matter into the Metric by
using distribution (141) (VpmLor), Or Absorption of phantom Dark Matter into the Metric by using
distribution (165) (VxpmLor)] Wrt the distance (7) from the center of Galaxy NGC 3198.
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In Figure 2, we show the plot of function a, wrt the distance from the center of Galaxy NGC 3198
for the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR Gravitational Field with
Simple 1t (Qgimp10r), OF Standard p (Agand,Lor), OF New Simple (1 (GngimpLor) OF New Standard p (ansiand,Lor)s
or Absorption of phantom Dark Matter into the Metric by using distribution (141) (apmpor), OF
Absorption of phantom Dark Matter into the Metric by using distribution (143) (axpmpor)- The
experimental values (aegpror) have been obtained, by replacing the experimental acceleration
(gexp=Vexp2/r) in (28). In addition, the corresponding Rotation Curves in Galaxy NGC 3198 are shown
in Figure 3.

We observe that in case of Galaxy NGC 3198, Schwarzschild or Newtonian field strength produces
maximum relative error about 66% at extra large distances. The Simple p gives better results,
producing maximum relative error 39% near to the galactic center and it is improved as New Simple u
with corresponding maximum relative error 18% at 11.0 Kpc. The Standard y in (119) gives even
better results, producing maximum relative error about 23% at the center of the galaxy is also
improved as New Standard p with corresponding maximum relative error -18% at 4.0 Kpc. The
Absorption of phantom DM into the Metric by using distribution (158) (Vpm.Lor) has maximum relative
error 54% near to the galactic center and it is improved with DM distribution (165) (Vnpm.Lor) With
corresponding maximum relative error 28% at 9.0 Kpc. It is noted that the relative error of
experimental Circular Velocities is (AV.y,)~8% related to the uncertainty of the Hubble constant H,
[11] (p.356-357). Finally, the values at distance 13.8 Mpc=2.846x10'> AU=4.258x10> m, which is the
distance of Galaxy NGC 3198 from Earth, give us the image of what happens at extremely large
distances: goo—-1.

The same procedure can be followed in any galaxy, by using only the mass of the visible disk.
Thus, it explains the rotation curves of many galaxies, eliminating the corresponding DM (see Figure
4 [31]).

Galaxies well fit by MOND
84 listed at present

UGC 2885 NGC 5533 NGC 6674 NGC 7331 NGC 5907 NGC 2998
NGC 801 NGC 5371 NGC 5033 NGC 2903 NGC 3521 NGC 2683 NGC 3198
NGC 6946 NGC 2403 NGC 6503 NGC 1003 NGC 247 NGC 7739 NGC 300
NGC 5585 NGC 55 NGC 1560 NGC 3109 UGC 128 UGC 2259 M 33
IC 2574 DDO 170 DDO 168 NGC 3726 NGC 3769 NGC 3877 NGC 3893
NGC 3917 NGC 3949 NGC 3953 NGC 3972 NGC 3992 NGC 4010
NGC 4013 NGC 4051 NGC 4085 NGC 4088 NGC 4100 NGC 4138
NGC 4157 NGC 4183 NGC 4217 NGC 4389 UGC 6399 UGC 6446
UGC 6667 UGC 6818 UGC 6917 UGC 6923 UGC 6930 UGC 6973
UGC 6983 UGC 7089 NGC 1024 NGC 3593 NGC 4698 NGC 5879 IC 724
F563-1 F563-V2 F568-1 F568-3 F568-V1 F571-V1 F574-1 F583-1
F583-4 UGC 1230 UGC 5005 UGC 5999 Carina Fornax
Leol LeoIl Sculptor Sextans Sgr

Figure 4. Galaxies with rotation curves well fit by MOND [31].
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7.2. The Combination of Lorentzian-Einsteinian 3" Generalized Schwarzschild Metric or Modified
GSR Gravitational Field with ‘old’ or ‘New” MOND Simple & Standard Interpolating Function and
‘old’ or ‘New’ Absorption of Dark Matter into the field in the Solar System

In order to find out what is the effect of the modification at medium mass and size systems, we now
examine our Solar System.

Table 4. Rotational Velocities [experimental (V) and calculated by the Combination of Lorentzian-
Einsteinian 3" Generalized Schwarzschild metric or Modified GSR Gravitational Field with MOND Simple
& Standard Interpolating Function (Vsmpror & Viand,Lor)], the Luminous Mass of the Solar System that is
enclosed within the circular orbit (M,), the value of function A, and the value of time coefficient of metric
(goo) wrt the mean distance from the Sun. Data from [15] (p. 14-3).

N ame r M d Aschwar hSchwar=1 8 00,Schwar V Schwar
/ AU / 1024 kg asimp,Lor hsimp,Lor 8 00,simp,Lor Vsimp,Lor
/ 1011 m Qstand,Lor hstand,Lor 800,stand,Lor Vstand,Lor
/Kms
Sun 0.00465 1,989,100 1 1 -0.9999957553 436.747
Surface 0.00696 1.000000000000 1.000000000000 -0,9999957553 436.747
1.000000000000 1.000000000000 -0.9999957553 436.747
Mercury 0.38710 1,989,100.0000 1 1 -0.9999999490 47.880
0.57909 1.000000001516 0.999999996969 -0.9999999490 47.880
1.000000000000 1.000000000000 -0.9999999490 47.880
Venus 0.72333 1,989,100.3302 1 1 -0.9999999727 35.027
1.08209 1.000000005292 0.999999989416 -0.9999999727 35.027
1.000000000000 0.999838760132 -0.9999999727 35.027
Earth  1.00000 1,989,105.1992 1 1 -0.9999999803 29.790
1.49598 1.000000010114 0.999999979771 -0.9999999803 29.790
1.000000000000 0.999771972392 -0.9999999803 29.790
Mars  1.52369 1,989,111.1715 1 1 -0.9999999870 24.134
2.27941 1.000000023482 0.999999953036 -0.9999999870 24.134
1.000000000000 0.999659019194 -0.9999999870 24.134
Jupiter  5.20283 1,989,111.8134 1 1 -0.9999999962 13.060
7.78332 1.000000273790 0.999999452420 -0.9999999962 13.060
1.000000000000 0.998837605409 -0.9999999962 13.060
Saturn 9.53876 1,991,010.6134 1 1 -0.9999999979  9.650
14.26978 1.000000919405 0.999998161187 -0.9999999979  9.650
1.000000000001 0.997869945819 -0.9999999979  9.650
Uranus 19.19139 1,991,579.1134 1 1 -0.9999999990 6.804
28.70991 1.000003720565 0.999992558819 -0.9999999990 6.804
1.000000000012 0.995715092796 -0.9999999990 6.804
Neptune 30.06107 1,991,665.7384 1 1 -0.9999999993  5.437
44.97072 1.000009128095 0.999981743504 -0.9999999993  5.437
1.000000000083 0.993288340427 -0.9999999993 5.437
Pluto 39.52940 1,991,768.5184 1 1 -0.9999999995 4.741
59.13514 1.000015782729 0.999968433629 -0.9999999995 4.741
1.000000000249 0.991174598083 -0.9999999995 4.741
NGC 2.846x10' 1,991,768.5334 1 1 -1,0000000000 3.12x107
3198 4.258x10" 20,114.1129122 -8.17434687x10° -1,0000000000  355.39

20,114.1128998 -8.35188544x10° -1,0000000000 355.39

The mean values of Rotational Velocities, the Mass of the Solar System that is enclosed within the
orbit wrt the mean distance the planet from the Sun, are contained in Table 4 [data from [15] (p. 14-
3)]. The Circular Velocities (Vschwars VsimpLors Vstand,Lor) have been calculated by using (31) or (119) or
(28) or (116), the values of function a (dsimp,Lor OF Gsand,Lor) Y Using (120) combined with (121) and
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the values of function £y (Asimp,Lor OF Agand,Lor) DY using (129) or (131), respectively. Finally, the values
of time coefficient of metric (go) have been calculated from (24) for &=1. In addition, the
corresponding Rotation Curves and Mass Distribution in the Solar System are shown in Figure 10 and
Figure 11 of [20], respectively.

We observe that in case of Solar System, the Combination of Lorentzian-Einsteinian 3GSM or
Modified GSR Gravitational Field with MOND Simple or Standard u, gives almost the same
Rotational Velocities (Vmpror Vsuandror) and coefficients of metric (go) as those calculated by the
original Schwarzschild field strength (Vsenwar). Thus, there are not significant changes to the Relativistic
Doppler Shift, the gravitational red shift as well as the precession of Mercury’s orbit
(800=0.9999999490). Finally, the values at distance 13.8 Mpc=2.846x10'* AU=4.258x10*’ m, which is
the distance of Galaxy NGC 3198 from Earth give us the image of what happens at extra large
distances: goy—-1 (see also the corresponding velocities at infinite distance in Table 1).

Finally, we conclude that the Combination of Lorentzian-Einsteinian 3GSM or Modified GSR
Gravitational Field with ‘old’ or ‘New’ MOND or Absorption of phantom DM into the Metric-Field,
in scale of black hole, planetary and star system, coincides to the original Schwarzschild metric
(a=u~h=1), while in galactic scale, it gives MONDian results (a>1, p>1), eliminating the
corresponding DM.

Abbreviations
1GSL: 1* Generalized Schwarzschild Lagrangian
1GSM: 1% Generalized Schwarzschild Metric
1GSP: 1% Generalized Schwarzschild Potential
1GSRP: 1* Generalized Schwarzschild Relativistic Potential
3GSM: 3" Generalized Schwarzschild Metric
3GSRP: 3" Generalized Schwarzschild Relativistic Potential
CCs: Cartesian Coordinates
cr: Universal Speed
DM: Dark Matter
ECRMs: Euclidean Complex Relativistic Mechanics
EGR: Einsteinian General Relativity
EP: Equivalence Principle
ERT: Einstein Relativity Theory
ESR: Einsteinian Special Relativity
GEE: Gravitoelectric Effect
GR: General Relativity
GRS: Gravitational Red Shift
GSR: Generalized Special Relativity
GT: Galilean Transformation
IECLSTTs: Isometric Euclidean Closed Linear Transformations of Complex Spacetime
LSTT: Linear Spacetime Transformation
LB: Lorentz Boost
MOND: Modified Newtonian Dynamics
NPs: Newtonian Physics
ro: Milgrom radius
RB: Real Boost
RIOs: Relativistic Inertial observers
rs: Schwarzschild radius
rsi: 1% Generalized Schwarzschild radius
RT: Relativity Theory
SM: Schwarzschild Metric
SR: Special Relativity
TPs: Theory of Physics
UCM: Uniform Circular Motion
VT: Vossos Transformation
w1 Interpolating function
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