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Abstract. The hypergroup, being a very general algebraic structure, was enriched with additional axioms, some less and 
some more powerful.  These axioms led to the creation of more specific types of hypergroups such as the transposition, 
the cambiste and the convexity ones. This paper deals with the notion of the separation and relevant properties in 
hypergroups, in join spaces and in convexity hypergroups as well. 
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Hypercompositional Algebra is the branch of Algebra which deals with structures endowed with multi-valued 

operations.  Multi-valued operations, also called hyperoperations or hypercompositions, are operations in which the 
result is multi-valued, rather than a single element.  More precisely, a hypercomposition in a non-void set H  is a 
function from the Cartesian product H H  to the powerset  P H  of .H   Hypercompositional structures came into 

being through the notion of the hypergroup.  The hypergroup was introduced by F. Marty in 1934, during the 8th 
congress of the Scandinavian Mathematicians [5].  A hypergroup, satisfies the following axioms: 

i.     ab c a bc   for all , ,  a b c H (associativity), 

ii.  aH Ha H    for all  a H  (reproduction). 
Note that, if «» is a hypercomposition in a set H  and ,  A B  are subsets of H , then A B  signifies the union 

 ,a b A B

a b
 

  ( ·A B A B      ). In both cases, aA  and Aa  have the same meaning as  a A  and  A a  

respectively. Generally, the singleton  a  is identified with its member a .  In a hypergroup, the result of the 

hypercomposition is always a non-empty set (see [14, 16]).  In [5], F. Marty also defined the two induced 
hypercompositions (right and left division) that result from the hypercomposition of the hypergroup, i.e. 

 |
a

x H a xb
b
  


    and     |

a
x H a bx

b
  


. 

It is obvious that the two induced hypercompositions coincide, if the hypergroup is commutative.  For the sake of 
notational simplicity, a / b  or a : b  is used to denote the right division (as well as the division in commutative 
hypergroups) and b\ a  or a..b  is used to denote the left division [4, 7, 22, 23].    

A non-empty subset K  of H  is called semi-subhypergroup when it is stable under the hypercomposition, i.e. 
it has the property xy K  for all , x y K .  K  is a subhypergroup of ,H  if it satisfies the axiom of reproduction, 

i.e. if the equality  xK Kx K  is valid for all x K  [15].  This means that when K  is a subhypergroup, the 
relations a bx  and a yb  can always be solved in K .  The non-void intersection of two subhypergroups, 

although stable under the hypercomposition, usually is not a subhypergroup, since the reproduction is not always 
valid.  In other words the solutions of the relation a yb  and a bx  do not lie in the intersection when a  and b  

are elements of the intersection.  This led (from the very early steps of hypergroup theory) to the consideration of 
more special types of subhypergroups.  One of them is the closed subhypergroup.  A subhypergroup K  of H  is 
called left closed with respect to H , if for any two elements a  and b  in K  all possible solutions of the relation 
a yb  lie in .K  This means that K  is left closed if and only if / a b K , for all , .a b K  Similarly, K  is right 
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closed when all possible solutions of the relation a bx  lie in K  or, equivalently, if \ b a K  for all , .a b K   
Finally, K  is closed when it is both right and left closed.  The non-void intersection of two closed subhypergroups 
is a closed subhypergroup. 

It is has been proven [7, 8] that the set of the semi-subhypergroups (resp. the set of the closed subhypergroups) 
which contain a non-void subset E  is a complete lattice.  Hence, given a non-empty subset E  of a hypergroup H , 
the minimum semi-subhypergroup (in the sense of inclusion) which contains E  can be assigned.  This semi-
subhypergroup is denoted by  E  and it is called the generated by E  semi-subhypergroup of H .  Similarly, E  is 

the generated by E  closed subhypergroup of H .  For notational simplicity, if  1,..., nE a a ,    1,..., nE a a  and 

1,..., nE a a  are used instead.   A subset B  of a hypergroup H  is called free or independent if either B   , 

or  x B x   for all x B , otherwise it is called non-free or dependent. B  generates H , if B H , in which 

case B  is a set of generators of H .  If  H  has a finite set of generators, it is called a finite type hypergroup. A free 
set of generators is a basis of H .   

Proposition 1.  If ,  S T  are semi-subhypergroup of a commutative hypergroup H , then ST  is a semi-
subhypergroup of H as well.  

An element a  of a semi-subhypergroup S  is called interior element of S  if for each x S  there exists y S  

such that a xy . An element of S  which is not an interior element is called frontier element of S . 

Proposition 2.  Let a  be an interior element and b  a frontier element of a semi-subhypergroup S  of H .  
Then ab  and ba  consists only of interior elements of  S .   

P r o o f.   Let c  be an element of ab  and x  an arbitrary element of S .  Since a  is an interior element of S  it 

derives that there exists z S  such that a xz .  Hence    c xz b x zb  .  Therefore there exists y zb S   such 

that c xy .  Thus c  is an interior element of S .  Dually ba  consists of interior elements and the Proposition is 

established.       
Proposition 3.  If a semi-subhypergroup S  of a hypergroup H  consists only of interior elements, then S  is a 

subhypergroup of H . 
P r o o f.   Suppose that a  is an arbitrary element of S .  Since S  is a semi-subhypergroup, aS S  is valid.  

Next let y  be any element of S .  Since y  is an interior element, there exists x S  such that y ax .  Hence 

S aS .  Therefore S aS .  Dually, S Sa  holds. 

A hypercomposition is called right open if a ba  for all , a b H  with b a .  The definition of left open 
hypercomposition is similar.  Obviously, a hypercomposition is open if it is both right and left open. 

Proposition 4.  Let H  be a hypergroup endowed with an open hypercomposition and K  a subhypergroup of 
H .  Then any element of K  is an interior element. 

Proposition 5.  Let H  be a hypergroup endowed with an open hypercomposition, S  a semi-subhypergroup of 
H  and I  the subset of the interior elements of S .  Then I  absorbs S , i.e. IS I   

P r o o f.    Suppose that a I  and b S .  Let r  be an element of ab .  In order to prove that r  is an interior 
element, we have to show that for any x S  it exists y S  such that r xy .  Since a  is an interior element, there 

exists  z S , such that a xz .  Hence,    r ab xz b x zb   .  But zb S .  So there exists y S  such that 

r xy , QED. 

Proposition 6.  Let H  be a hypergroup endowed with an open hypercomposition, S  a semi-subhypergroup of 
H  and I  the subset of the interior elements of S .  Then I  is a subhypergroup of H .   

P r o o f.    Suppose that a I .  Per Proposition 4.4, aI I .  To prove the reverse inclusion, let b I .  Since 

b  is an interior element, there exists z S , such that b az .  Per Proposition 1.5, aa a , hence 

   az aa z a az  .  Per Proposition 4.4, az aS I  .  Thus there exists w I , such that b aw , QED. 

Let A  and B  be subhypergroups of H .  Suppose  ,B A A B   and no subhypergroup lies between B  and 

A .  Then we say that A  covers B , or that  B  is covered by A . 
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Proposition 7.  If the closed subhypergroup A  covers the closed subhypergroup B , and c A B  , then 

 A B c  . 

P r o o f.    B B c   and moreover  B c A  .  Hence by definition of covering   A B c  . 

The hypergroup (as defined by F. Marty), being a very general algebraic structure, was enriched with 
additional axioms, some less and some more powerful.  These axioms led to the creation of more specific types of 
hypergroups.   One of these axioms is the transposition axiom [4, 13]:    

\ /b a c d      implies  ad bc   ,  for all , , ,a b c d H  
A hypergroup H which satisfies the transposition axion is called transposition hypergroup [4].  W. Prenowitz called 
the commutative transposition hypergroup  join space [22, 23].   This type of hypergroup has been widely utilized in 
the study of geometry via the use of hypercompositional algebra tools [9, 22, 23] and it has numerous applications in 
formal languages, the theory of automata and graph theory [12, 18, 19, 20].  A convexity hypergroup is a join 
hypergroup which satisfies the axioms: 

i. the hypercomposition is open, 
ii.   ab ac   implies b c  or b ac  or  c ab . 

Among the results reached in convexity hypergroup are [2, 3, 17]:  

Proposition 8. Let B  be a non-empty subset of a convexity hypergroup H . B is a basis of H  if and only if:  
(i) B is a maximal free set and   

(ii) B is a minimal set of H  generators  

Proposition 9.  Every convexity hypergroup has at least one basis.  

Proposition 10.  All the bases of a convexity hypergroup have the same cardinality.  

The dimension of a convexity hypergroup H  (denoted by dim  H ) is the cardinality of any basis of H .  

Proposition 11.  Let V be a vector space over an ordered field F .  Then, V , when endowed with the 
hypercomposition  

 0 1       ab a b | , , , 

becomes a convexity hypergroup. 

This hypergroup, which was derived from the vector space and is connected with it, was named attached 
hypergroup of V  [7, 21].  A direct consequence of the above proposition is that the convex sets of V  are the semi-
subhypergroups of the attached hypergroup VH , while the subspaces of V  are the closed subhypergroups of this 

hypergroup [7, 10, 21]. 

Let A  and B  be two non-empty subsets of a hypergroup H .  Suppose that a subset S  of H has the property 
 ,a A b B   implies ab S   .  Then we say that S  separates A  and B .  If S A    and S B   , 

we say that S  strictly separates A  and B .  In addition if S  is a closed subhypergroup covered by 

   ,S a a A   and    ,S b b B  , we say that S  is the separating closed subhypergroup of  A  and B .     

Proposition 12.  Let H be a convexity hypergroup and A  a nonempty closed subhypergroup which strictly 
separates the closed subhypergroup B  into sets M and .N  Then B covers A  and / /B A M A A N   . 

  P r o o f.   Let p M  and q N .  Since A  separates B , for any x M  we have qx A   , thus 

/x A q , therefore /M A q B  .  Similarly /N A p B  .  Since the hypercomposition is open the sets 

/ , / ,A M A N A  are disjoined.  Thus  / /B M A N A q A A p      , hence /M A q  and /N A p  .  It 

remains to prove that   B covers A .  Suppose that C  is a closed subhypergroup such that A C B  .  Then 
M C    or N C   .  Let  M C   .  Then  / /M A q A C C   .  Moreover, since pq A    we 

have / /N A p A C C   .  But B M A N   , therefore C B .   

Proposition 13.    Let S  and T  be two finite sets of elements in an n-dimensional convexity hypergroup H .  
If any semi-subhypergroup generated by 1,  k k n   elements of S  may be separated from any semi-

subhypergroup generated by 1,  l l n   elements of T , then    S T   .  
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P r o o f.    If H be a commutative hypergroup and  1,... na a H .  Then, 

                    1 2 1 2 1 2 1 1, ,..., ... ... ... ...n n n n na a a a a a a a a a a a          

(Proposition 2.1.  [17]).  Since H is a convexity hypergroup, the hypercomposition is open, thus aa a  and 

therefore [ ]a a .  Hence      1 2 1 2 1 2 1 1, ,..., , ,... ... ... ...n n n n na a a a a a a a a a a a      .  Therefore if we suppose 

that    S T   , then for any element    x S T   it holds that 1 1... ...i jx s s t t  , where  1,..., is s S  and 

 1,..., jt t T .  But, it is known that [17] if an element x  of an n-dimensional convexity hypergroup H belongs to 

a hyperproduct of 1n   elements, then there exists a proper subset of these elements which contains x  in their 

hyperproduct.   So, there exists proper subsets of  1,..., is s  and  1,..., jt t  not exceeding n  elements, which 

contains x  in their hyperproduct, i.e. 1 1... ...   ,p qx s s t t p q n   .   The contradiction obtained proves the validity of 

the Proposition. 
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