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Abstract. This paper deals with hypercompositional structures endowed with a single hypercomposition (i.e. hypergroupoids, 
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INTRODUCTION 

Hypercompositional Algebra is the branch of Algebra which deals with structures endowed with multi-valued 

operations.  Multi-valued operations, also called hyperoperations or hypercompositions, are operations in which the 
result is multi-valued, rather than a single element.  More precisely, a hypercomposition in a non-void set H  is a 

function from the Cartesian product H H×  to the powerset ( )P H  of .H   Hypercompositional structures came into 

being through the notion of the hypergroup.  The hypergroup was introduced by F. Marty in 1934, during the 8
th
 

congress of the Scandinavian Mathematicians [10].  A hypergroup, satisfies the following axioms: 

i. ( ) ( ) ab c a bc=   for all , ,  a b c H∈ (associativity), 

ii.  aH Ha H= =   for all  a H∈  (reproduction). 

Note that, if «⋅» is a hypercomposition in a set H  and ,  A B  are subsets of H , then A B⋅  signifies the union 

( ),a b A B

a b

∈ ×

⋅∪  ( ·A B A B= ∅∨ = ∅⇔ =∅ ). In both cases, aA  and Aa  have the same meaning as { }a A  and { }A a  

respectively. Generally, the singleton { }a  is identified with its member a .  In a hypergroup, the result of the 

hypercomposition is always a non-empty set (see [14, 22]).  In [10], F. Marty also defined the two induced 

hypercompositions (right and left division) that result from the hypercomposition of the hypergroup, i.e. 

{ }|
a

x H a xb
b

= ∈ ∈

 

    and    { }|
a

x H a bx
b

= ∈ ∈

 

. 

It is obvious that the two induced hypercompositions coincide, if the hypergroup is commutative.  For the sake of 

notational simplicity, W. Prenowitz [29] denoted division in commutative hypergroups by /a b .  Later on, J. 

Jantosciak used the notation /a b  for right division and \b a  for left division [7].   

The hypergroup (as defined by F. Marty), being a very general algebraic structure, was enriched with additional 

axioms, some less and some more powerful.  These axioms led to the creation of more specific types of 

hypergroups.   One of these axioms is the transposition axiom.   It was introduced by W. Prenowitz, who used it in 

commutative hypergroups.  W. Prenowitz called the resulting hypergroup join space [29].  Thus,  join space (or join 

hypergroup) is defined as a commutative hypergroup ,H  in which 

/ /a b c d∩ ≠∅   implies  ,ad bc∩ ≠∅   for all , , ,a b c d H∈  (transposition axiom) 

is true.  This type of hypergroup has been widely utilized in the study of geometry via the use of hypercompositional 

algebra tools [29, 30] and it has numerous applications in formal languages, the theory of automata and graph theory 

[18, 24, 25, 26].  Later, J. Jantosciak generalized the transposition axiom in an arbitrary hypergroup as follows: 

\ /b a c d∩ ≠∅   implies  ,ad bc∩ ≠∅   for all , , ,a b c d H∈ . 

He named this particular hypergroup transposition hypergroup and studied its properties in [7].   
Mathematical study of hypercompositional structures followed the reverse course as well. Instead of enriching 

the hypergroup with more axioms, certain axioms were removed thus leading to the generation of weaker structures.   
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In this way, the pair ( ),H ⋅ , where H is a non-empty set and " ⋅ " a hypercomposition, was named partial 

hypegroupoid, while it was called hypegroupoid if ab ≠∅  for all ,a b H∈ [2]. A hypergroupoid in which the 

associativity is valid, is called semi-hypergroup, while it is called quasi-hypergroup, if the reproductivity is valid. 

The quasi-hypergroups in which the weak associativity is valid, i.e. ( ) ( )ab c a bc∩ ≠∅  for all , ,a b c H∈ , were 

named HV-groups [33].  In [22] the transposition axiom is introduced in hypegroupoids, semi-hypergroups and 

quasi-hypergroups, thus defining transposition hypegroupoids, transposition semi-hypergroups and transposition 

quasi-hypergroups.   Moreover, in [21], the transposition axiom is introduced in HV-groups, thus defining 

transposition HV-groups and join HV-groups when the hyperoperation is commutative.  Properties and examples of 

these hypercompositional structures are given in [21] and [22].  However, issues pertaining to the enumeration of 

hypercompositional structures are of special interest [e.g. 3, 4, 5, 20, 23, 31, 32]. In the following paragraph we will 

deal with the enumeration of a class of hypercompositional structures that satisfy the transposition axiom.   

 

RIGID TRANSPOSITION HYPERCOMPOSITIONAL STRUCTURES  

The enumeration of hypergroups of order 3 reveals that there are 23.192 hypergroups which are partitioned into 

3999 equivalence classes [31]. 3739 of the above classes consist of 6 members, 244 consist of 3 members, 10 consist 

of 2 members and the last 6 are one-member classes.  As mentioned in [31], the 6 one-member classes 

correspondingly contain the following 6 hypergroups:  

(H1)  ,ab H=  for all ,a b H∈  (H2)  { }, ,ab a b=  for all ,a b H∈   

(H3)  
{ }

{ }

, ,     

,   

 ≠
= 

− =

a b if a b
ab

H a if a b
 (H4)  

{ }

,           

,   

≠
= 

− =

H if a b
ab

H a if a b
 

(H5)  
{ }, ,   

,        

≠
= 

=

a b if a b
ab

H if a b
 (H6)  

,    

,     

≠
= 

=

H if a b
ab

a if a b
 

All the above hypergroups are commutative.  H1 is called total hypergroup.  H2 is called B(iset)-hypergroup and 
emerged during the study of formal languages and automata theory through the use of hypercompositional algebra 

[24, 25,26].  A B-hypergroup is a join hypergroup (see [24] for proof). The free monoid of the words generated by 

an alphabet A  can be endowed with the B-hypergroup structure, thus becoming a join hyperring, which is named 

linguistic hyperring [25, 26, 27].  Moreover, hypergroup H5 was named monogene, since it is spanned by a single 
element (see [13]).  If the monogene hypergroup is the additive part of a hyperfield, then the matter of monogene 

hyperfields isomorphism to quotient hyperfields [9] is a hitherto open problem in the theory of hyperfields.   This 

also leads to open questions in the theory of fields [16, 17, 19].  On the other hand, if H3, endowed with a scalar 

neutral element, is the additive part of a hyperfield, then the class of these hyperfields contains elements that do not 

belong to the class of quotient hyperfields [11, 12, 15].  With regard to the validity (or not) of the transposition 

axiom in the above hypergroups, we initially observe that, since all these are commutative, the two induced 

hypercompositions coincide (i.e. \ /b a a b= ).  If  2card H > , then the following Lemmas are valid.   

Lemma 1.  The transposition axiom is valid in H1. 

P r o o f.   The induced hypercomposition in H1 is the following: / ,a b H=   for all ,a b H∈ .  Since ,ab H=  for 

all , ,a b H∈  the intersection ab cd∩  is equal to ,H  for all , , ,a b c d H∈ . 

Lemma 2.  The transposition axiom is valid in H2  (see [24]). 
Lemma 3.  The transposition axiom is valid in H3. 
P r o o f.   The induced hypercomposition in H3 is the following: 

{ }
{ }

, ,      
/

,   

 ≠
= 

− =

a b if a b
a b

H a if a b
 

Next, suppose that / /a b c d∩ ≠∅ .  This means that at least one element among , , ,a b c d  is equal to one of the 

rest.  Hence, the intersection ad bc∩  is always non-void. 

Lemma 4.  The transposition axiom is valid in H4. 
P r o o f.   The induced hypercomposition in H4 is the following: 

{ }

,           
/

,   

≠
= 

− =

H if a b
a b

H a if a b
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Next, suppose that / /a b c d∩ ≠∅ .   Then, { },H a b−  is always a subset of the intersection ad bc∩ .  Therefore,  

ad bc∩ ≠∅ . 

Lemma 5.  The transposition axiom is valid in H5. 
P r o o f.   The induced hypercomposition in H5 is the following: 

{ }, ,   
/

,        

≠
= 

=

a b if a b
a b

H if a b
 

If / /a b c d∩ ≠∅ ,  then at least one element among , , ,a b c d  must be equal to one of the rest.  Hence, the 

intersection ad bc∩  is always non-void. 

Lemma 6.  The transposition axiom is not valid in H6. 
P r o o f.   The induced hypercomposition in H6 is the following: 

{ },   
/

,            

− ≠
= 

=

H b if a b
a b

H if a b
 

Next, if a b≠ , we have: { } { }/ /a b b a H b H a∩ = − ∩ − ≠ ∅       , while { } { }aa bb a b∩ = ∩ = ∅ . 

 Hence, the following is valid: 

Theorem 1.   The hypergroups  Hi,  i=1,…,5  are join hypergroups, while the transposition axiom is not valid    
in H6.  

Remark.  One can observe that in hypergroups Hi, i=1,…,5 the equality /ab a b=  is valid for all ,a b H∈ .   

Definition.  A hyperstructure is called rigid, if its group of automorphisms is of order 1. 

In [1] the rigid quasi-hypergroups are presented and it is proven that, there also exist 8 HV-groups, in addition to 

the above 6 hypergroups.  Assuming that  2card H > , these are the following:    

 

(HV1) 
{ } ,   

,           

− ≠
= 

=

H a if a b
ab

H if a b
 (HV2) 

{ } ,   

,           

− ≠
= 

=

H b if a b
ab

H if a b
 

(HV3) 
{ } , ,   

,              

− ≠
= 

=

H a b if a b
ab

H if a b
 (HV4) 

{ } , ,   

,                

− ≠
= 

=

H a b if a b
ab

a if a b
 

(HV5) 
{ } ,   

,            

− ≠
= 

=

H a if a b
ab

a if a b
 (HV6) 

{ } ,   

,            

− ≠
= 

=

H b if a b
ab

a if a b
 

(HV7) 
,    

 ,    

≠
= 

=

a if a b
ab

H if a b
 (HV8) 

,    

 ,    

≠
= 

=

b if a b
ab

H if a b
 

 

In [7] and then in [8], a principle of duality is established in the theory of hypergroups.  This principle is valid for 

all hypercompositional structures.  More precisely, two statements of the theory of hypercompositional structures are 

dual statements, if each results from the other by interchanging the order of the hypercomposition, i.e. by 

interchanging any hypercomposition ab  with the hypercomposition ba .  One can observe that the transposition 

axiom, as well as the associativity axiom (whether weak or not), are self-dual. The left and the right division have 

dual definitions, thus they must be interchanged in the construction of a dual statement.  Therefore, the following 

principle of duality holds for the theory of hypercompositional structures: 

Given a theorem, the dual statement resulting from interchanging the order of hypercomposition “⋅” (and, 
necessarily, interchanging of the left and the right divisions) is also a theorem.    

In accordance to that, given a hypercomposition its dual one derives if the result ab of any two elements ,a b  is 

interchanged by the result ba .  Obviously the commutative hypercompositions are self-dual.   Two 

hypercompositional structures are dual if they have dual hypercompositions.  Thus there are 3 pairs of dual HV-

groups: (HV1, HV2), (HV5, HV6) and  (HV7, HV8).  HV3 and HV4 are self-dual. 

Lemma 7.  The transposition axiom is valid in HV1 and HV2. 
P r o o f.   The induced hypercompositions in HV1 are the following: 

,     
\

,     

≠
= 

=

H if a b
b a

a if a b
   and   

{ }  ,   
/

  ,           

− ≠
= 

=

H a if a b
a b

H if a b
 

Next, suppose that \ /b a c d∩ ≠∅ .  Then, ad bc∩ ≠∅ , since ad bc∩  always contains the non-void intersection 

{ } { }H a H b− ∩ −       .  By duality, the Lemma is true for HV2 as well. 
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Lemma 8.  The transposition axiom is valid in HV3. 
P r o o f.   The hypercomposition is commutative.  Therefore, the two induced hypercompositions coincide, i.e. 

\ /b a a b= . Therefore, the induced hypercomposition in HV3 is the following: 

{ } ,    
/

,              

− ≠
= 

=

H a if a b
a b

a if a b
 

Next, suppose that \ /b a c d∩ ≠∅ .  Then, ad bc∩ ≠∅ , since ad bc∩  always contains the non-void intersection 

{ } { }, ,H a d H b c− ∩ −       . 

Lemma 9.  The transposition axiom is not valid in HV4. 
P r o o f.   The hypercomposition is commutative.  Therefore, the two induced hypercompositions coincide, i.e. 

\ /b a a b= . Therefore, the induced hypercomposition in HV4 is the following: 

{ } ,    
/

,               

− ≠
= 

=

H a if a b
a b

a if a b
 

Next, let a b≠ ; then, { } { }/ /b a a a H b a∩ = − ∩ ≠∅   , while { } { },aa ab a H a b∩ = ∩ − = ∅   .   

Lemma 10.  The transposition axiom is not valid in HV5 and HV6. 
P r o o f.   The induced hypercompositions in HV5 are the following: 

{ } ,    
\

,              

− ≠
= 

=

H b if a b
b a

a if a b
   and   

{ } ,    
/

,             

− ≠
= 

=

H b if a b
a b

H if a b
 

Next, let a b≠ ; then, { } { }\ /a a a b a H b∩ = ∩ − ≠ ∅   , while { } { }aa ab a H a∩ = ∩ − = ∅   .  The rest follows 

through the duality of  HV6 with HV5. 

Lemma 11.  The transposition axiom is not valid in HV7 and HV8. 
P r o o f.   The induced hypercompositions in HV7 are the following: 

,     
\

,     

≠
= 

=

b if a b
b a

H if a b
   and   

{ }, ,    
/

,          

≠
= 

=

a b if a b
a b

a if a b
 

Next, let , ,a b c  be three elements of H , each not equal to the other two, then { } { }\ / ,b a c b b b c∩ = ∩ ≠ ∅ , while 

{ } { }bc ab b a∩ = ∩ = ∅ .  The Lemma is also true for the dual structure HV8. 

The following theorem results from lemmas 7-11 above: 

Theorem 2.  HV1 and  HV2 are transposition HV-groups, while HV3 is a join HV-group. The transposition axiom is 
not valid for the remaining rigid HV-groups.  

Remark. HV4 is a quasi-hypergroup if  3card H = , while it is an HV-group, if  3card H >  [1]. 

In [6], the complement hyperoperation of a hyperoperation is defined as follows:  If « � » is a hyperoperation in a 

set H , then the hyperoperation a b H a b∗ = − �  is called complement hyperoperation of « � ».  The authors of [6] 

have elaborated this notion in hypergroup H3, which resulted from the constructions of non-quotient hyperfields 

over a set H  with  3card H >  [11, 12, 15]. The complement hyperoperation of H3 produces the HV-group HV4.  

This hyperoperation is essentially the one used by A. Nakassis, in order to prove the existence of non-quotient 

hyperrings [28].  As defined in [21], such hypercompositional structures are be named complementary.  Thus, HV4 is 

complementary to H3 and vise-versa.  If we seek the complement of H4, H5 and H6, then it turns out that this is a 

partial hypegroupoid.  This occurs when equality xy H=  is valid in a hypercompositional structure for some 

,x y H∈ .  But the complement of H2, HV5 and HV6 is a non-partial rigid hypergroupoid.  More precisely, with the 

exception of the 6 rigid hypergroups and the 8 rigid HV-groups, there exist in additional 7 rigid hypergroupoids [1].  

Assuming that  2card H > , these are the following:  

 

(h1) { } ,ab H a= −  for all ,a b H∈  (h2) { },ab H b= −  for all ,a b H∈  

(h3) ,ab a=  for all ,a b H∈  (h4) ,ab b=  for all ,a b H∈  

(h5) 
{ }

,          

  ,   

≠
= 

− =

a if a b
ab

H a if a b
 (h6) 

{ }

,          

  ,   

≠
= 

− =

b if a b
ab

H b if a b
 

(h7)  { }, ,ab H a b= −   for all ,a b H∈    
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Proposition 1.  H2 is the complement hypergroup of the hypergroupoid h7; HV5 and its dual HV6 are the 
complement HV-groups of the dual hypergroupoids h5 and h6 respectively; h1 and its dual h2 are the complement 
hypergroupoids of the duals h3 and  h4 respectively.   

Proposition 2.  h3 and h4 are semi-hypergroups while for their complement hypergroupoids h1 and h2 

respectively the weak associativity is valid.  The weak associativity is also valid in h7 when   3card H > . 

P r o o f.   In h3 for any , ,a b c H∈  it holds ( )ab c ac a= =  and ( )a bc ab a= =  that is ( ) ( )ab c a bc= .  On the 

other hand in h1 it holds ( ) { }ab c H a c H= − =    and ( ) { } { }a bc a H b H a= − = −   , that is ( ) ( )ab c a bc∩ ≠∅ .  

In h5 the associativity, either weakly or not, fails to hold true since ( ) { }ab a aa H a= = −  while ( )a ba ab a= = .  

Dually the same results are valid for h4, h2 and h6 respectively.  Finally for h7 it holds: 

( ) { } { }, ,ab c H a b c a b= − ⊇    and ( ) { } { }, ,a bc a H b c b c= − ⊇   .  Hence ( ) ( )ab c a bc∩ ≠∅ . 

Lemma 12.  The transposition axiom is valid in h1 and h2. 
P r o o f.   The induced hypercompositions in h1 are the following: 

,     
\

,     

≠
= 

∅ =

H if a b
b a

if a b
   and   { }/ ,a b H a= −  for all ,a b H∈  

Next, let \ /b a c d∩ ≠∅ . Then, a b≠ .  Hence, { } { }ad bc H a H b∩ = − ∩ − ≠∅       . 

Lemma 13.  The transposition axiom is valid in semi-hypergroups h3  and h4. 
P r o o f.   The induced hypercompositions in h3 are: 

,     
\

,     

=
= 

∅ ≠

H if a b
b a

if a b
   and   / ,a b a=  for all ,a b H∈ . 

Therefore, \ /b a c d∩ =∅   if a b≠ , while { }\ /a a c d c∩ =  for all , ,a c d H∈ .  From the latter, it follows that 

{ }ac ad a∩ = .  Hence, the transposition axiom is valid in h3.  Dually, the same is true for h4.  

Lemma 14.  The transposition axiom is valid in h7, if   4card H > . 

P r o o f.   The hypercomposition is commutative.  Therefore, the two induced hypercompositions coincide, i.e. 

\ /b a a b= . Therefore, the induced hypercomposition in h7 is: 

{ },    
/

,             

− ≠
= 

∅ =

H a if a b
a b

if a b
    

Next, suppose that / /a b c d∩ ≠∅ . Then, a b≠ . Hence, { } { }, ,ad bc H a d H b c∩ = − ∩ − ≠ ∅       . 

Lemma 15.  The transposition axiom is not valid in h5  and h6. 
P r o o f.   The induced hypercompositions in h5 are the following: 

{ }

,            
\

- ,    

≠
= 

=

b if a b
b a

H a if a b
   and   

{ }, ,   
/

,        

≠
= 

∅ =

a b if a b
a b

if a b
  

Let a b≠ . Then, { } { } { }\ / ,a a a b H a a b b∩ = − ∩ = ≠∅   , while { } { }ab aa a H a∩ = ∩ − = ∅ . 

Theorem 3.  The transposition axiom is valid in hypergroupoids h1, h2 and in semi-hypergroups h3 and h4; it is 

also valid in hypergroupoid  h7, if  4card H > .  It is not valid in hypergroupoids h5 and h6. 

From Theorems 1-3 it follows that: 

Theorem 4.  There are 21 rigid hypergroupoids which are classified as follows:  
 

 
non transposition 

transposition 

non commutative Commutative (join) 

Hypergroups 1 - 5 

HV-groups 5 2 1 

Semi-hypergroups - 2 - 

Hypergroupoids 2 2 1 
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