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Abstract. Fortified Transposition Hypergroups appeared during the study of the theory of Formal Languages and 
Automata from the point of view of the hypercompositional structures theory. This paper studies the subhypergroups of 
these hypergroups and presents properties of their closed, symmetric, normal and reflexive subhypergroups.  
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INTRODUCTION 

An operation or composition in a non void set H is a function from �H H  to H, while a hyperoperation or 
hypercomposition is a function from �H H  to the powerset P(H) of H.  An algebraic structure that satisfies the 
axioms 

i. � � � �   � � � � �a b c a b c   for all , ,  �a b c H (associativity), 
ii.      � � � �a H H a H    for all �a H  (reproduction), 

is called group if “ � ” is a composition [see 12] and hypergroup if “ � ” is a hypercomposition [5].   Generally, the 
singleton � 	a  is identified with its member a . If A  and B  are subsets of H , then �A B  signifies the union 

� �, � �

��
a b A B

a b . Since A�B=
 � A=
 or B=
, when A=
 or B=
, then A�B=
 and vice versa.  The hypergroup was 

introduced in 1934 by F. Marty, in order to study problems in non commutative algebra, such as cosets determined 
by non invariant subgroups. In [5] F. Marty also defined the two induced hypercompositions (right and left division) 
that derive from the hypercomposition of the hypergroup, i.e. 

� 	:� � �
�
a x H a xb
b

   and   � 	:� � �
�

a x H a bx
b

. 

It is obvious that if the hypergroup is commutative, then the two induced hypercompositions coincide.  For the 
sake of notational simplicity, W. Prenowitz denoted division in commutative hypergroups by /a b  and, later on, J. 
Jantosciak used the notation /a b  for right division and \b a  for left division [3].  Notations a :b  and a..b have also 
been used correspondingly for the above two types of division [e.g. 6, 8].  Also W. Prenowitz enriched commutative 
hypergroups with the following axiom: / /  
 � 
a b c d   implies   
 � 
ad bc ,  for all , , , �a b c d H , in order to 
use them in the study of geometry. He named this axiom transposition axiom and the new hypergroup that derived 
join space [19].  Later on, J. Jantosciak generalized the above axiom in an arbitrary hypergroup as follows: 

\ /   
 � 
b a c d   implies   
 � 
ad bc ,  for all , , , �a b c d H . 
He named this hypergroup transposition hypergroup [3].  Hypergroups equipped with the transposition axiom are 
widely used in geometry [e.g. 2, 8, 19, 20 etc], in the theory of languages and automata [e.g. 13, 14, 18 etc] and 
elsewhere [e.g. 1].  Especially in the theory of languages and automata the hypergroups are fortified through the 
introduction of a strong identity [15, 16].  Thus the fortified join hypergroup and the fortified transposition 
hypergroup came into being.  A transposition hypergroup T  is fortified if it contains an element e   which satisfies 
the axioms: 
(i) �ee e  ,  (ii) � �x ex xe , for all �x T  and  (iii) for every � 	� �x T e  there exists a unique � 	1x T e� � �  such 

that 1e xx��  and 1e x x�� .   
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It is proven that � 	,� �xe ex e x  for all �x T  [4, 16].  e  is called strong identity.  If the commutativity holds as 
well in T , then T  is named fortified  join hypergroup  [13, 14, 18].   As it is shown in [4, 16] the elements of 
fortified transposition hypergroups are separated into two classes: the set � 	|� � � �A x T x ex xe , including e , of 

attractive elements and the set � 	|� � � � �C x T e ex xe x of canonical elements (see [17] for the origin of the 
terminology).  A fortified transposition hypergroup is isomorphic to the expansion of a quasicanonical hypergroup 

� 	�C e  by a transposition hypergroup A  of attractive elements through the idempotent e  [4].  Thus the study of 
fortified transposition hypergroups separates into two parts, (i) the study of quasicanonical hypergroups and (ii) the 
study of fortified transposition hypergroups composed of attractive elements only.   

THE ALGEBRA IN FORTIFIED TRANSPOSITION HYPERGROUPS 

Let H  be a hypergroup.  Consequences of axioms (i) and (ii) of the hypergroup are [6,  11, 12]: 
i. � 
ab ,  / � 
a b   and  \ � 
a b ,  for all ,a b  in H , 

ii. / /� �H H a a H   and   \ \� �H a H H a ,  for all a  in H , 
iii. the non-empty result of the induced hypercompositions is equivalent to the reproductive axiom.  

In [3] and then in [4], a principle of duality is established in the theory of hypergroups.  More precisely, two 
statements of the theory of hypergroups are dual statements, if each results from the other by interchanging the order 
of the hypercomposition, i.e. by interchanging any hypercomposition ab with the hypercomposition ba.  One can 
observe that the associativity axiom is self-dual. The left and right divisions have dual definitions, thus they must be 
interchanged in a construction of a dual statement.  Therefore, the following principle of duality holds: 

Given a theorem, the dual statement resulting from interchanging the order of hypercomposition 
“�” (and, necessarily, interchanging of the left and the right divisions), is also a theorem.    

As it is proven in [3, 6] in any hypergroup H the following properties are valid: 
Proposition 1.  In any hypergroup H, if , , �a b c H   
i. � � � �/ / /�a b c a cb   and   � � � �\ \ \�c b a bc a   (mixed associativity), 

ii. � � � �\ / \ /�b a c b a c , 
iii. � �/ \�b a b a   and  � �/ \�b a b a . 

Moreover if H  is a transposition hypergroup, then it has been proven in [3, 6, 8] that: 
Proposition 2.  The following are true in any transposition hypergroup: 
i. � �/ /�a b c ab c   and   � �\ \�c b a c ba ,   

ii. � �/ / /�a c b ab c  and   � �\ \ \�b c a c ba . 
iii. � �� � � � � �\ / \ / \ /� �b a c d b ac d b ac d , 
iv. � � � � � � � �\ / / \ / \ /� �b a c d b ad c b ad c , 
v. � � � � � � � �\ \ / \ / \ /� �b a c d a bc d a bc d . 
An extensive study of fortified transposition hypergroups is given in a series of papers by G. Massouros, Ch. 

Massouros, J. Mittas and J. Jantosciak.  The algebraic calculus which is developed in these papers is summarized in 
the following Theorem: 

Theorem 1.  Let A be the set of the attractive elements and C the set of the canonical elements of a fortified 
transposition hypergroup T. Then the following are true: 

i. � 	, �a b ab  for all , �a b A  
ii. /�a a b  and \�a b a  for all , �a b A  

iii. / \� �a a a a A   for all �a A  
iv. ,   /� �ab A a b A   and  \ �b a A   for all , �a b A   
v. / \� �a e e a a   for all � 	� �a T e  

vi. � 	1 1 1/ , \� � �� � � �e a ea a e a e a e   for all � 	� �a T e  
vii. if  �a A  and  �c C , then � �ac ca c  

viii. 1� �a A , for all �a A  and 1� �c C , for all �c C  
ix. 1 1� �� �A cc c c , for all �c C  
x. if , �a b A  and �a b , then � 	1 1/� �� �ab a b b  and � 	1 1\� �� �b a b a b   

xi. if , �a b C , then 1 /� �ab a b  and 1 \� �b a b a   
xii. if , �a b A  and 1��a b , then � � 1 1 1� � ��ab b a   
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xiii. � � 1 1 1� � ��ab b a , for all , �a b C  
xiv. � � � 	 � 	1 1/ /� �� � �a b b b a a   and  � � � 	 � 	1 1\ \� �� � �b a b a b a  

THE SUBHYPERGROUPS OF FORTIFIED TRANSPOSITION HYPERGROUPS  

A non-empty subset K  of H  is called semisubhypergroup when it is stable under the hypercomposition, i.e. it 
has the property �xy K  for all , �x y K .  K  is a subhypergroup of H  if it satisfies the axiom of reproduction, i.e. 
if the equality � �xK Kx K  is valid for all �x K .  This means that when K  is a subhypergroup and , �a b K , the 
relations �a bx  and �a yb  always have solutions in K .  Although the non-void intersection of two 
subhypergroups is stable under the hypercomposition, it usually is not a subhypergroup since the reproduction fails 
to be valid for it.  This led, from the very early steps of hypergroup theory, to the consideration of more special types 
of subhypergroups.  One of them is the closed subhypergroup.  A subhypergroup K  of H  is called left closed with 
respect to H  if for any two elements a  and b  in K , all the solutions of the relation �a yb  lie in K .  This means 
that K  is left closed if and only if / �a b K , for all , �a b K  [6].  Similarly K  is right closed when all the 
solutions of the relation �a bx  lie in K  or equivalently if \ �b a K , for all , �a b K  [6].  Finally K  is closed 
when it is both right and left closed.  The non-void intersection of two closed subhypergroups is a closed 
subhypergroup.  In fortified transposition hypergroups it has been proved that the set A  of the attractive elements is 
the minimum, in the sense of inclusion, closed subhypergroup [4, 17].  But in A  there exist not closed 
subhypergroups, which when they intersect, they give subhypergroups [4, 17].  These subhypergroups are the 
symmetric ones.  A subhypergroup K  is called symmetric if �x K  implies 1� �x K .   

Proposition 3.  The intersection of any two symmetric subhypergroups of a fortified transposition hypergroup H 
is a symmetric subhypergroup of H. 

Proposition 4.  To any two symmetric subhypergroups K and M of a fortified transposition hypergroup H there 
is a least symmetric subhypergroup �K M  containing them both. 

P r o o f.  Let U be the set of all symmetric subhypergroups R of H which contain both K and M.  The 
intersection of all these symmetric subhypergroups R of H is a symmetric subhypergroup with the desired property. 

  A subhypergroup N  of a hypergroup H  is called normal if �xN Nx  for all �x H [2, 7], while it is called 
reflexive if \ /�x N N x  for all �x H [2].  A direct consequence of the above definition is that N  is normal if and 
only if \ /�N x x N  for all �x H .   

Proposition 5.   In fortified transposition hypergroups of attractive elements the normal subhypergroups are 
reflexive and vice versa.  

P r o o f.   Let T  be a fortified transposition hypergroup and N  a normal subhypergroup of T .  Suppose that �x N .  
Then, according to Theorem 1.iii, / /� �T x x N x  and \ \� �T x x x N  are valid.  Therefore / \� �N x x N T .  Next 
suppose that �x N .  Then Theorem 1.x  yields � 	1 1/� �� �Nx N x x .  But �e N  and 1 /� �x e x .  Thus 1 /� �Nx N x .  

Dually 1 \� �x N x N .  Since N  is normal 1 1� ��Nx x N  is valid.  Hence / \�N x x N .  Next suppose that N is reflexive.  
Then \ /�x N N x , for all �x T .  If �x N , then \ /� �x N x N T  and / /� �N x x N T .  Thus / \�x N N x .  Let 
�x N .  Then � 	1/ �� �Nx N x x . Since 1/ ��x e x  and  �e N , it results that 1/ ��Nx N x .  Similarly 1 \��xN x N .  

Hence �xN Nx .   
Proposition 6.  If N  is a normal symmetric subhypergroup in a fortified transposition hypergroup H and K  a 

symmetric subhypergroup  in H , then � � �N K NK KN .   
P r o o f.   � �N Ne NK  and � �K Ke KN .  Since N  is normal in H , NK  is stable under hypercomposition 

because � �� � � �� �� �NK NK NN KK NK .  Also NK  is stable under inverse.  Indeed let �x NK . Then there exist �n N  

and �y K  such that �x ny . If 1��n y , then � � 11 1 1�� � �� �x ny y n .  If  1��n y , then � 
x N K , and therefore, per 

Proposition 3, 1� � 
 �x N K NK .  Moreover, �e NK .  Hence NK  is a symmetric subhypergroup, it contains both 
N  and K , and is contained in any symmetric subhypergroup containing them both.  Therefore  � �NK N K .   

Proposition 7.   Let T  be a fortified transposition hypergroup of attractive elements and K , N  symmetric 
subhypergroups of T .  If N  is normal in T , then 
N K  is normal in K .  

P r o o f.   Let �x K .  Suppose � �� 
z x N K .  Then �z K  and there exists � 
t N K  such that �z xt .  

Since N  is normal �xN Nx  is valid, thus there exists ��t N  such as ��z t x .  Hence /��t z x .  But 1/ ��z x zx .  
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Thus / �z x K .  So �� 
t K N  and therefore � � � �
 � 
x N K N K x .  � � � �
 � 
N K x x N K  follows by 
duality, and so the Proposition holds. 

Lemma 1.  If N  is a normal subhypergroup of a transposition hypergroup, then: 
� �� �/ / /�a N b N ab N  and � �� �\ \ \�N a N b N ab  

P r o o f.  Normality of N , Proposition 2.iii and mixed associativity give: 
� �� � � �� � � � � �/ / \ / \ / / / / /� � � � �a N b N N a b N N ab N ab N N ab NN ab N . 

Proposition 8.  If N  is a normal symmetric subhypergroup of a fortified transposition hypergroup, and 
� 	, 
 � 
a b N , then: � �� �/ / /�a N b N ab N  and � �� �\ \ \�N a N b N ab  

P r o o f.  Theorem 25 of [4] gives � �� �/ / /� �ab N a N b N N .  Suppose that  1/ /��a N b N .  According to 

Theorem 23 (b) of  [4], 1 /�b N  is equal to � � 1\ �N b .  Since N is normal \ /�N b b N  is valid.  Hence � � 1/ / ��a N b N .  

Therefore N is in � �� �/ /a N b N  and so � �� �/ / /�ab N a N b N .  According to Lemma 1, � �� �/ / /�a N b N ab N  

and so the equality.  Now suppose that 1/ /��a N b N .   Let � 
t ab N , then the sequence of implications  
1 1 1 1 1  ;   /   ;      ;      ;      ;     ;   / /t ab a t b a tb a N b Na N b aN b N a N N b N N� � � � �� � � � � � � � �  

leads to the contradiction 1/ /��a N b N  .  Hence 
 �
ab N , therefore � �� �/ / /�ab N a N b N .  Next Lemma 1 
applies and the first assertion is established.  The second assertion follows by duality. 
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