On 2-element Fuzzy and Mimic Fuzzy Hypergroups

Ch. G. Massouros and G. G. Massouros

Department of Applied Sciences, Technological Institute of Chalkis, Evia, GR-344 00 GREECE e-mail: <u>Ch.Massouros@gmail.com</u> <u>masouros@teihal.gr</u>, URL: <u>http://www.teihal.gr/gen/profesors/massouros/index.htm</u>

Dedicated to the memory of mathematicians-teachers Gerasimos G. Legatos (1916-2012), Georgios C. Massouros (1920-1990) and Jean D. Mittas (1921-2012), whose struggle for the advancement of mathematical education in Greece greatly influenced and inspired younger scientists

Abstract. This paper deals with the enumeration of the different classes of 2-element fuzzy hypergroups and with the construction of some classes of 2-element mimic fuzzy hypergroups. It also introduces the notion of the pseudo-mimic fuzzy hypergroup.

Keywords: Hyperoperation, Hypergroup, Fuzzy Hypergroup. PACS: 02.10.De, 02.20.Bb, AMS-Subject classification: 08A72, 20N20, 20N25

1. CRISP AND FUZZY HYPERGROUPS

Hypercompositional algebra was born in 1934, when F. Marty, in order to study problems in non-commutative algebra, such as cosets determined by non-invariant subgroups, generalized the notion of the group, thus defining the *hypergroup* [14]. A (*crisp*) *hypercomposition* or *hyperoperation* in a non-empty set *H* is a function from $H \times H$ to the power set P(H) of *H*. A non-void set *H* endowed with a hypercomposition "." is called *hypergroupoid* if $ab \neq \emptyset$ for any *a*, *b* in *H*; otherwise, it is called *partial hypergroupoid*. Note that, if *A*, *B* are subsets of *H*, then *AB* signifies the union $\bigcup_{(a,b)\in A \times B} ab$. Since $A \times B = \emptyset \Leftrightarrow A = \emptyset$ or $B = \emptyset$, one observes that, if $A = \emptyset$ or $B = \emptyset$, then $AB = \emptyset$ and

vice versa. aA and Aa have the same meaning as $\{a\}A$ and $A\{a\}$ respectively. Generally, the singleton $\{a\}$ is identified with its member a.

Definition 1. [14] A *hypergroup* is a non-void set H endowed with a hypercomposition, which satisfies the following axioms:

- i. (ab)c = a(bc) for every $a, b, c \in H$ (associativity) and
- ii. aH = Ha = H for every $a \in H$ (reproduction).

If only (i) is valid, then the hypercompositional structure is called *semi-hypergroup*, while if only (ii) is valid, then it is called *quasi-hypergroup*. The quasi-hypergroups in which the weak associativity is valid, i.e. $(ab)c \cap a(bc) \neq \emptyset$ for every $a,b,c \in H$, were named H_{V} -groups [30]. It is worth mentioning that the result of the hypercomposition of any two elements in a hypergroup or in an H_V-group is always a non-void set (e.g. see [18]). Subsequently, hypergroups were enriched with internal and external hypercompositions and so new hypercompositional structures came into being (e.g.: see [15, 16]).

F. Marty also defined in [14] the two induced hypercompositions (right and left division) resulting from the hypercomposition of the hypergroup, i.e.:

$$\frac{a}{\mid b} = \left\{ x \in H \mid a \in xb \right\} \text{ and } \frac{a}{\mid b \mid} = \left\{ x \in H \mid a \in bx \right\}.$$

It is obvious that, if the hypergroup is commutative, then the two induced hypercompositions coincide. For the sake of notational simplicity, a/b or a:b is used to denote the right division (as well as the division in commutative hypergroups) and $b \mid a$ or a.b is used to denote the left division. The use of these induced hypercompositions led to the definition of transposition and join hypergroups and H_v -groups [9, 19, 20, 21].

As has been proven in [18], Definition 1 is equivalent to the following:

Numerical Analysis and Applied Mathematics ICNAAM 2012 AIP Conf. Proc. 1479, 2213-2216 (2012); doi: 10.1063/1.4756632 © 2012 American Institute of Physics 978-0-7354-1091-6/\$30.00 **Definition 2.** A hypergroup is a non-void (crisp) set H endowed with a (crisp) hypercomposition, which satisfies the following axioms:

- i. (ab)c = a(bc) for every $a, b, c \in H$ (associativity) and
- ii. $a/b\neq \emptyset$ and $b \mid a \neq \emptyset$ for every $a, b \in H$.

Linking hypercompositional algebra with fuzzy set theory, one can distinguish three approaches, which were employed in order to link these two topics. One approach is to consider a certain hyperoperation defined through a fuzzy set (P. Corsini [1], P. Corsini - V. Leoreanu, [3], I. Cristea e.g. [4, 5], I. Cristea - S. Hoskova [6], M. Stefanescu - I. Cristea [25], K. Serafimidis et al. [24] etc.). Another is to consider fuzzy hyperstructures in a similar way as Rosenfeld did for fuzzy groups [22] (A. Hasankhani, M. Zahedi [8, 31], B. Davvaz [7] and others). The third approach is employed in the pioneering papers by P. Corsini - I. Tofan [2] and by I. Tofan - A. C. Volf [26, 27], which introduce fuzzy hyperoperations that induce *fuzzy hypergroups*. This approach was further adopted by other researchers (Ath. Kehagias - e.g. [10, 11], V. Leoreanu-Fotea - e.g. [12, 13], K. M. Sen - R. Ameri et al. [23], etc.).

A *fuzzy hypercomposition* maps the pairs of elements of the Cartesian product $H \times H$ to fuzzy subsets of H. Thus, if we denote the collection of all fuzzy subsets of H by F(H), then a *fuzzy hypercomposition* is the map $\circ: H \times H \to F(H)$. Hence, if \circ is a fuzzy hyperoperation, then $a \circ b$ is a function and the notation $(a \circ b)(x)$ denotes the value of $a \circ b$ at the element x. The definition of the fuzzy hyperoperation subsumes the relevant definition of the crisp hyperoperation as a special case, since the latter results from the former through the use of the characteristic function.

Definition 3. [10, 11] If $\circ: H \times H \to F(H)$ is a fuzzy hypercomposition, then, for every $a \in H$, $B \in F(H)$, the fuzzy sets $a \circ B$ and $B \circ a$ are defined respectively by

$$(a \circ B)(z) = \bigvee_{y \in H} \left(\left[(a \circ y)(z) \right] \land B(y) \right) \text{ and } (B \circ a)(z) = \bigvee_{y \in H} \left(\left[(y \circ a)(z) \right] \land B(y) \right).$$

Per Definition 3, if $a, b, c \in H$:

 $(a \circ (b \circ c))(z) = \bigvee_{y \in H} \left[(a \circ y)(z) \land (b \circ c)(y) \right] \text{ and } ((a \circ b) \circ c)(z) = \bigvee_{y \in H} \left[(y \circ c)(z) \land (a \circ b)(y) \right].$

Definition 4. [10, 11] If $\circ: H \times H \to F(H)$ is a fuzzy hypercomposition, then, for every $A, B \in F(H)$, the fuzzy set $A \circ B$ is defined by $(A \circ B)(z) = \bigvee_{x,y \in H} \left(\left[(x \circ y)(z) \right] \wedge A(x) \wedge B(y) \right)$.

Definition 5. [2, 27] If $\circ: H \times H \to F(H)$ is a fuzzy hypercomposition, then H is called a *fuzzy hypergroup*, if the following two axioms are valid:

- i. $(a \circ b) \circ c = a \circ (b \circ c)$ for every $a, b, c \in H$ (associativity),
- ii. $a \circ H = H \circ a = X_H$ for every $a \in H$ (reproduction).

where X_H is the characteristic function of *H*. If only (i) is valid, then *H* is called a *fuzzy semi-hypergroup* [23], while if only (ii) is valid, then *H* is called a *fuzzy quasi-hypergroup*.

If H is a non-void set endowed with a fuzzy hypercomposition \circ , then two new induced fuzzy hypercompositions "/" and "\" can be defined as follows:

 $(a/b)(x) = (x \circ b)(a)$ for every $a, b, x \in H$ and $(b \setminus a)(x) = (b \circ x)(a)$ for every $a, b, x \in H$.

As in the case of crisp hypercompositions, the two induced fuzzy hypercompositions were named *fuzzy right division* and *fuzzy left division* respectively [18].

As has been proven in [18], if we replace the second axiom of Definition 5 with

 $a/b \neq 0_H$ and $a \setminus b \neq 0_H$ for every $a, b \in H$,

then the resulting structure is not a fuzzy hypergroup (as in the case of crisp hypergroups), but a new structure, which was called *mimic fuzzy hypergroup* ($fuzzy_M$ -hypergroup) [18]. Thus, the following definitions result:

Definition 6. If $\circ: H \times H \to F(H)$ is a fuzzy hypercomposition, then *H* is called a *mimic fuzzy hypergroup* (*fuzzy*_M-*hypergroup*), if the following two axioms are valid:

i. $(a \circ b) \circ c = a \circ (b \circ c)$ for every $a, b, c \in H$ (associativity),

ii. $a/b \neq 0_H$ and $a \setminus b \neq 0_H$ for every $a, b \in H$.

If only (ii) is valid, then H is called a *mimic fuzzy quasi-hypergroup (fuzzy_M-quasi-hypergroup)*, while, if the weak associativity is valid, instead of (i), H is called a *mimic fuzzy* H_{v} -group (fuzzy_{MHv}-group).

Definition 7. A fuzzy_M-hypergroup H will be called *commutable fuzzy_M-hypergroup*, if $a \circ H = H \circ a$ for any $a \in H$.

2. ON THE CLASSES OF TWO-ELEMENT FUZZY AND FUZZY_M-HYPERGROUPS

If the set $H = \{a, b\}$ is endowed with a fuzzy hypercomposition, then the following eight results are generated: $(a \circ a)(a), (a \circ a)(b), (a \circ b)(a), (a \circ b)(b), (b \circ a)(a), (b \circ a)(b), (b \circ b)(a), (b \circ b)(b).$

Proposition 1. There are ten different classes of 2-element fuzzy hypergroups, as illustrated in the following table:

TABLE (1)										
	i	ii	iii	iv	v	vi	vii	viii	ix	x
$(a \circ a)(a)$	1	1	1	1	1	1	1	1	1	1
$(a \circ a)(b)$	1	1	t	x	z	п	h_1	h_2	p 1	p ₂
$(a \circ b)(a)$	1	1	1	1	1	т	k ₁	<i>k</i> ₂	q 1	q ₂
$(a \circ b)(b)$	1	1	1	1	1	1	1	1	1	1
$(b \circ a)(a)$	1	1	1	У	1	1	j 1	j_2	<i>r</i> ₁	<i>r</i> ₂
$(b \circ a)(b)$	1	1	1	1	1	1	1	1	1	1
$(b \circ b)(a)$	1	1	1	1	w	1	1	1	1	1
$(b \circ b)(b)$	1	t	1	1	1	1	1	1	<i>s</i> ₁	S ₂

where t, y, x, w, z, m, n, j_1 , k_1 , h_1 , j_2 , k_2 , h_2 , p_1 , q_1 , r_1 , s_1 , p_2 , q_2 , r_2 , $s_2 \neq 1$ and for (iv) $x \leq y$, for (v) $z \leq w$, for (vi) $n \leq m$, for (vii) $h_1 \leq k_1 \leq j_1$, for (viii) $h_2 \leq j_2 \leq k_2$, for (ix) $p_1 \leq q_1 \leq r_1 \leq s_1$ and for (x) $p_2 \leq r_2 \leq q_2 \leq s_2$.

Remarks. *(a)* Concerning the variables of Table 1, the obvious limitations for values 0 and 1 are in effect, so as not to have the same fuzzy hypergroups in two different classes. For example, if t=1, then (i) results from (ii) and (iii). Classes (vii), (viii) and (ix), (x) contain common elements when there are equalities in their variables. *(b)* Each of the above classes has one isomorphic class. For example, class (vii) is isomorphic to the following:

TABLE (2)								
$(a \circ a)(a)$	$(a \circ a)(b)$	$(a \circ b)(a)$	$(a \circ b)(b)$	$(b \circ a)(a)$	$(b \circ a)(b)$	$(b \circ b)(a)$	$(b \circ b)(b)$	
1	1	1	j1	1	k_1	h_1	1	

(c) The classes (v), (ix) and (x) are called *main*. If the parameters of Table 1 are all equal to 0, then we take the eight non-isomorphic 2-element crisp hypergroups [29]. The non-isomorphic 3-element hypergroups are enumerated in [28] but the enumeration of the different classes of the 3-element fuzzy hypergroups remains an open question.

If we replace 1 by another number of the interval (0,1) in (i) of Table 1, then reproduction is not valid; however, the left and the right divisions are non-zero. Therefore, the resulting structure is a fuzzy_M-hypergroup.

Proposition 2. If the fuzzy hypercomposition is commutative, then (H, \circ) is a fuzzy semihypergroup when $(a \circ a)(a) \ge (a \circ b)(b), (b \circ b)(b) \ge (a \circ b)(a)$ and

$$(a \circ a)(b) \le \max\{(a \circ b)(a), (a \circ b)(b)\} \text{ and } (b \circ b)(a) \le \min\{(a \circ b)(a), (a \circ b)(b)\}$$

or
$$(b \circ b)(a) \le \max\{(a \circ b)(a), (a \circ b)(b)\} \text{ and } (a \circ a)(b) \le \min\{(a \circ b)(a), (a \circ b)(b)\}.$$

Proposition 2 reveals a class of commutative $fuzzy_M$ -hypergroups when the left and the right divisions are nonzero. Another class of commutative $fuzzy_M$ -hypergroups results from the following proposition:

Proposition 3. If the fuzzy hypercomposition is commutative and $(a \circ b)(a) = (b \circ b)(a)$, $(a \circ b)(b) = (b \circ b)(b)$, then (H, \circ) is a fuzzy semihypergroup when $max\{(a \circ a)(a), (a \circ a)(b)\} \ge max\{(b \circ b)(a), (b \circ b)(b)\}$.

Table 3 below presents five fuzzy semihypergroups:

TABLE (3)									
$(a \circ a)(a)$	$(a \circ a)(b)$	$(a \circ b)(a)$	$(a \circ b)(b)$	$(b \circ a)(a)$	$(b \circ a)(b)$	$(b \circ b)(a)$	$(b \circ b)(b)$		
0,11	0,6	0,5	0,9	0,7	0,8	0,4	0,7		
0,11	0,6	0,5	0,9	0,7	0	0	0,7		
0,11	0,6	0	0,9	0,7	0,8	0	0,7		
0,11	0,6	0,5	0,9	0	0,8	0	0,7		
0,11	0,6	0	0,9	0	0	0	0		

The first two are fuzzy_M-hypergroups, while the next two are not, since $a/b = 0_H$ is valid for the third one and $b \setminus a = 0_H$ is valid for the fourth one. Nevertheless, $x \circ H \neq 0_H$ and $H \circ x \neq 0_H$, $x \in \{a, b\}$ is true for the third and the fourth ones, while $b \circ H = 0_H$ is valid for the last one. This property leads us to the following definition:

Definition 8. A fuzzy semihypergroup (H, \circ) will be called *pseudo fuzzy_M-hypergroup*, if $a \circ H \neq 0_H$ and $H \circ a \neq 0_H$ for any $a \in H$.

The enumeration of the different classes of 2-element fuzzy_M-hypergroups and pseudo fuzzy_M-hypergroups remains an open question.

REFERENCES

- P. Corsini, "Join spaces, power sets, fuzzy sets", Algebraic Hyperstructures and Applications, Proc. of the 5th AHA, 1. Hadronic Press 1994, pp. 45-52.
- P. Corsini, I. Tofan, "On fuzzy hypergroups" Pure Math Appl 8, 1997, pp. 29-37. 2
- P. Corsini, V. Leoreanu, "Applications of Hyperstructures Theory", Kluwer Academic Publishers, 2003. 3.
- I. Cristea, "Hyperstructures and fuzzy sets endowed with two membership functions", *Fuzzy Sets and Systems* 160 (8), 2009, 1114-1124 I. Cristea, "About the fuzzy grade of the direct product of two hypergroupoids", *Iran. J. Fuzzy Syst.* 7, no. 2, 2010, 95-108. 4.
- 5.
- 6. I. Cristea, S. Hoskova, "Fuzzy Pseudotopological Hypergroupoids", Iran. J. of Fuzzy Systems vol. 6, no. 4, 2009, 11-19.
- B. Davvaz, "Fuzzy H_v –groups", Fuzzy Sets and Systems 101, 1999, 191-195.
- 8. A. Hasankhani, M.M. Zahedi, "Fuzzy sub-F-polygroups", Ratio Mathematica 12, 1997, pp. 35-44.
- J. Jantosciak, Ch. G. Massouros, "Strong Identities and fortification in Transposition hypergroups", Journal of Discrete 9. Mathematical Sciences & Cryptography 6, 2003, no 2-3, pp. 169-193.
- 10. Ath. Kehagias, K. Serafimidis, "The L-Fuzzy Nakano Hypergroup", Information Sciences, vol. 169, 2005, 305-327.
- 11. Ath. Kehagias, "The Construction of Fuzzy-valued t-norms and t-conorms", Studies in Comput. Intell. (SCI) 67, 2007, 361-370.
- 12. V. Leoreanu, "About hyperstructures associated with fuzzy sets of type 2", Ital. J. of Pure and Appl. Math., 17, 2005, 127-136.
- 13. V. Leoreanu-Fotea, "Fuzzy join n-ary spaces and fuzzy canonical n-ary hypergroups", Fuzzy Sets and Systems 161, 2010, 3166-3173
- 14. F. Marty, "Sur un généralisation de la notion de groupe". 8^{ième} Congrès des mathématiciens Scand., Stockholm 1934, pp. 45-49.
- 15. Ch. G. Massouros, "On the theory of hyperrings and hyperfields", Algebra and Logic 24, no 6, 1985, pp. 728-742.
- 16. Ch. G. Massouros, "Constructions of hyperfields", Mathematica Balcanica, vol. 5, no. 3, 1991, pp. 250 257.
- 17. Ch. G. Massouros, Ch. Tsitouras, Enumeration of hypercompositional structures defined by binary relations, Italian Journal of Pure and Applied Mathematics, no. 28, 2011, pp. 43-54.
- 18. Ch. G. Massouros, G. G. Massouros, "On certain fundamental properties of hypergroups and fuzzy hypergroups Mimic fuzzy hypergroups", International Journal of Risk theory (to appear)
- 19. Ch. G. Massouros, A. Dramalidis, "Transposition Hy-groups", Ars Combinatoria, vol. 106, 2012, pp. 143-160.
- 20. G. G. Massouros, "The Subhypergroups of the Fortified Join Hypergroup", Italian Journal of Pure and Applied Mathematics, no 2, 1997, pp. 51-63.
- 21. G. G. Massouros, Ch. G. Massouros and J. Mittas, Fortified join hypergroups, Annales Math Blaise Pascal, vol. 3 n. 2 (1996) 155-169
- 22. A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35, 1971, pp. 512-517.
- M. K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, *Soft Comput.* 12, 2008, pp. 891-900.
 K. Serafimidis, Ath. Kehagias, M. Konstantinidou, "The L-Fuzzy Corsini Join Hyperoperation", *Ital. J. of Pure and Appl.* Math., no 12, 2002, pp.83-90.
- 25. M. Stefanescu, I. Cristea, "On the fuzzy grade of hypergroups", Fuzzy Sets and Systems 159 (9), 2008, pp. 1097-1106.
- 26. I. Tofan, A. C. Volf, "On some connections between hyperstructures and fuzzy sets", Ital. J. of Pure and Appl. Math., 7, 2000, 63-68.
- 27. I. Tofan, A. C. Volf, "Algebraic aspects of information organization", Systematic Organisation of Information in Fuzzy Systems, P. Melo-Pinto et al. (Eds) IOS Press, pp. 71-87, 2003.
- 28. Ch. Tsitouras, Ch. G. Massouros, "On enumeration of hypergroups of order 3", Computers and Mathematics with Applications vol. 59, 2010, pp. 519-523.
- 29. T. Vougiouklis, "Cyclic Hypergroups" PhD Thesis, 1980, Democritous Univ.of Thrace, Greece.
- 30. T. Vougiouklis, "The fundamental relation in hyperrings. The general hyperfield". Proc. of the 4th AHA, World Scientific 1991, 209-217
- 31. M. M. Zahedi, A. Hasankhani, "F-Polygroups", Int. J. Fuzzy Math., vol. 4, 1996, pp.533 -548.