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Abstract. M. Krasner introduced the notions of the hypefield and the hyperring in 1956. Much later, he 
constructed the quotient hyperfield/hyperrring, using a field/ring and a subgroup of its multiplicative 
group/semigroup. The existence of non-quotient hyperfields and hyperrings was an essential question for the 
self-sufficiency of the theory of hyperfields and hyperrings vis-à-vis that of fields and rings. The momogene 
hyperfield, which was introduced by the author, is a hyperfield H having the property x x H� �  for all 
x H�  with 0x � . The existence of non-quotient monogene hyperfields is a hitherto open question. The 

answer to this question is directly connected with the answer to the question which fields can be expressed as 
a difference of a subgroup of their multiplicative group from itself and which these subgroups are. These 
issues, as well as some relevant theorems are presented in this paper. 
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INTRODUCTION 
In 1934 F. Marty, in order to study problems in non-commutative algebra, such as cosets determined 

by non-invariant subgroups, generalized the notion of the group by defining the hypergroup [4, 20]. The 
result of the operation between two elements in a hypergroup is not a single element, but a set of 
elements. Thus, the notion of the hypercomposition was introduced. A hypercomposition “+” in a non-
empty set H  is a function from H H�  to the powerset P (H) of H . In 1956, M. Krasner replaced the 
additive group of a field with a special hypergroup, thus introducing the hyperfield. He then used it as the 
proper algebraic tool in order to define a certain approximation of complete valued fields by sequences of 
such fields [2]. This additive hypergroup was later named canonical hypergroup by J. Mittas [21, 22]. 
� �H ,	  is a canonical hypergroup, if it satisfies the following axioms:  

i. x y y x	 � 	  for all x, y H  � , 
ii. � � � �x y z x y z  	 	 � 	 	  for all x, y,z H  � , 
iii. there exists an element 0 H� , such that, for each x H� , there is one and only one x H
� , 

denoted by x� , such that � �0 x x x x� 	 � � � ,  
iv. z x y x z y� 	 � � �  (reversibility). 

Notations: 
(a) If A  and B  are subsets of H , then A B	  signifies the union

( a,b ) A B
a b

� �

	� . A b	  and a B	  mean 

the same as � A b	  and � a B	  respectively.  

(b) If A  and B  are subsets of H , then A\ B  signifies the set � |  and x x A x B� � . 

Remarks: 
(a) By virtue of axioms (iii) and (iv), the equality 0 x x	 �  is valid for all x H� . Indeed�� 0 x x� � and 
thus, 0x x� 	  per reversibility. Next, suppose that some y  different from x  belongs to 0x 	 . Then, 
0 x y� � , which is absurd because of (ii). Therefore, 0 x x	 � . This equality is voided if the reversibility 
axiom is deleted from consideration. Thus, other types of hypergroups appear, such as, for example, the 
fortified join hypergroup in which � 0 0,x x	 �  [17, 18].  
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(b) The collection /G Q  of all double cosets of a subgroup Q  of a group G  is an typical example of a 
canonical hypergroup.�

A hyperfield is a triplex � �, ,H 	 � , where:  

i. � �H ,	  is a canonical hypergroup,  

ii. � �,H �  is an almost-group (i.e. the union of a group with a bilaterally absorbing element) with 
the zero element (0) of the hypergroup being the absorbing element, 

iii. The multiplication is distributive across the hyperaddition, i.e. � �z x y zx zy	 � 	  and 

� �x y z xz yz	 � 	  for all x, y,z H  � . 
If axiom (ii) is replaced by axiom: 

ii ' . � �,H �  is a semigroup in which the zero element of the hypergroup is a bilaterally absorbing 
element, 

then, a more general structure is obtained, which was called hyperring by M. Krasner [3]. Among others, 
these structures were recently utilized by A. Connes and C. Consani in the study of the algebraic structure 
of the adèle class space ��=��/�� of a global field � [1]. Additionally, the above structures contributed to 
the creation of more generalized structures, such as the hyperringoid and the join hyperring used in the 
theory of formal languages and automata [11, 15, 16, 19].  

QUOTIENT AND NON-QUOTIENT HYPERFIELDS / HYPERRINGS  
M. Krasner dealt with the question of occurrence frequency of structures such as hyperrings and 

hyperfields. He thus observed that the quotient /R G  of any ring R  by any normal subgroup G  of its 
multiplicative semigroup is always a hyperring. This hyperring becomes a hyperfield when R  is a field. 
Indeed, the multiplicative classes x xG� , where x R� , form a partition of R . �he set /R G  of these 
classes becomes a hyperring, if the product of /R G 's two elements is defined to be their setwise product 
and their sum to be the set of the classes contained in their setwise sum [3]. Following this observation, 
M. Krasner raised the question whether all hyperrings are isomorphic to subhyperring of quotient 
hyperrings or not. He also raised a similar question concerning hyperfields [3]. The answer to these 
questions was of higher importance than simply determining the number of different classes of these 
structures. That is, if all hyperrings could be isomorphically embedded into the type of hyperrings that 
Krasner exhibited, then several conclusions of their theory could be arrived at in a very straightforward 
manner, through the use of the ring, field and modules theories, instead of developing new techniques and 
proof methodologies. 

The existence of non-quotient hyperfields and hyperrings was proven by the author ([6], [7]), as well 
as by A. Nakassis ([23]). Concerning hyperfields, A. Nakassis worked with hyperfields in which the 
hypersum of any two elements, different to each other, does not contain the two addends. More precisely, 
he started his construction with a multiplicative group *T , which has more than three elements; he 
considered one more element (the 0 element), which is multiplicatively absorbing in � * 0T T� � , i.e. 

·0 0· 0a a� �  for all a T� . Next, he endowed T  with a hyperfield structure, through the introduction of 
hypercomposition 0 0a a a	 � 	 �  for all a T� , � 0,  a a a	 �  for all *a T� , a b b a	 � 	 �  

� \ 0,  ,  T a b�  for all , *a b T� , where a b� . He then proved that choosing either the cardinality or the 
structure of group *T  in a suitable manner, ( , ,·)T 	  is not embeddable into a quotient hyperring. 

Contrarily to Nakassis’s methodology, the author constructed hyperfields in which the hypersum of 
any two elements different from each other and non-opposite contains the two addends. Construction of 
these hyperfields starts with a multiplicative group � �,� � , which has more than two elements. In the first 

construction, �  is equipped with a multiplicatively absorbing element 0 and then the union � 0� � ��  

is endowed with the following hypercomposition: 0 0x x x	 � 	 �  for all x�� , � \x x x	 � �  for all 

x��  and � ,  x y y x x y	 � 	 �  for all ,x y�� , where x y� . Then, � � � �, ,� � � � 	 �  is a hyperfield. 

In the second construction, the direct product � 1, 1� � �� �  of the multiplicative groups �  and � 1, 1�  

is considered. �  is equipped with a multiplicatively absorbing element 0 and the union � 0� � ��  is 
endowed with the following hypercomposition:  
 0 0w w w	 � 	 �  for all w�� ,  
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 � � � � � � � �� , , \ , , , ,0x i x i x i x i	 � � � ,  for all � �,x i �� ,  

 � � � � � � � �� , , \ , , ,x i x i x i x i	 � � � � ,  for all � �,x i �� , 

 � � � � � � � � � � � �� , , , ,  , ,  , ,  ,x i y j x i x i y j y j	 � � � ,  for all � � � �, , ,x i y j ��  with � � � � � �, , ,  ,y j x i x i� � . 

Then, � � � �, ,� � � � 	 �  is a hyperfield and the following theorem is valid: 

Theorem 2.1. If �  is a periodic group, then hyperfields � �� �  and � �� �  do not belong to the 
class of quotient hyperfields (for the proof, see [6, 7, 8, 10]). 

Before hyperfields � �� �  and � �� � , the author constructed hyperfields in which the difference of 
each one of their non-zero elements from itself produses the entire hyperfield. Due to this property, these 
hyperfields were named monogene, since they can be generated by a single element. There are many 
examples of monogene hyperfields [9]. In what follows, two of them are presented.  

Example 2.1. [9] Let Q  be a multiplicative group and Q  be the direct product of Q  by � 1, 1� . 

Consider the almost-group � 0M Q� � . Then, M  can be endowed with a hyperfield structure, if one 

defines a hyperaddition as follows: � � � �, ,x i x i M	 � �  for all � �,x i M� , � � � � � �, 0 0 , ,x i x i x i	 � 	 �  for 

all � �,x i M�  and � � � � � � � �� , , , ,  ,x i y j x i y j	 �  for all � � � �, , ,x i y j M�  with � � � �, ,y j x i� � . A. 
Nakassis, having worked on these hyperfields, proved that there exist quotient hyperfields of this type [9]. 

Example 2.2. [9] Let � �, ,H 	 �  be a field or a hyperfield. If a hyperaddition « » is defined in H  

as follows: � �x x H� �  for all x H� , where 0x � , 0 0x x x� �  for all x H�  and x y �  

� � � ,  x y x y� 	 �  for all ,x y H� , where y x� �  and , 0x y � , then the structure � �, ,H �  is a 

hyperfield. It has been proven that, if � �, ,H 	 �  is a quotient hyperfield, � �, ,H �  is a quotient hyperfield 
as well.  

The question that arose following the appearance of the monogene hyperfields was whether there are 
monogene hyperfields that are non-quotient. This is a hitherto unanswered question, which leads to 
another problem. If a monogene hyperfield is isomorphic to a quotient hyperfield /F G , then the equality 

- /xG xG F G�  must be valid for each /xG F G� . Therefore, the multiplicative subgroup G  of F  
must have the property G G F� � . Hence, in the early 80’s, the author was led to raising the question: 
when does a subgroup G  of the multiplicative group of a field F  posses the ability to generate F via the 
subtraction of G  from itself? [5, 8, 9]  

Remark: Instead of defining x x H� � , the following was defined: \{ , }x x H x x� � �  or 

� \x x H x	 � , if x  is self-opposite. This subtle differentiation in definition of the hypercomposition 
facilitated the sidestepping of the above problems. Thus, the construction of non-quotient hyperfields was 
achieved.  

ON THE DIFFERENCE OF A SUBGROUP OF A FIELD’S MULTIPLICATIVE 
GROUP FROM ITSELF  

The concise answers available to us so far concerning the above problem on finite fields can be 
summarized in the following theorem [10, 12, 13, 14]:  

Theorem 3.1. Let F be a finite field and G be a subgroup of its multiplicative group of index n  and order 
m . Then, G-G = F, if and only if: 

2n �  and 2m � , 
3n �  and 5m � , 
4n � , 1 G� �  and 11m � , 
4n � , 1 G� �  and 3m � , 
5n � , 2charF �  and 8m � , 
5n � , 3charF �  and 9m � , 
5n � , 2,3charF �  and 23m � . 
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From the above theorem, one can see, beyond any doubt, that the validity of equality G G F� �  
depends only on the cardinality of G . Of course, this does not mean that any subset S  of F  with the 
same cardinality as G  has the property S S F� � . For example, let 19F Z� . Then, if we consider the 
multiplicative subgroup of index 3, which is � 1,7,8,11,12,18G � , equality G G F� �  is true; while, if 

we consider the set � 1,6,8,11,13,17S � , which has the same number of elements as G , we come up 

with S S F� � . However, it must be mentioned that the classes iG� , defined in *F  by G , are sets with 

the same cardinality as G , satisfying equality i iG G F� �� �  (when, of course, this is satisfied by G ). On 
the other hand, what can be observed is that, when the order of G is small, there exist additional 
suppositions described by the above theorem, on the validity of which depends whether G G F� �  is true 
or not. Thus, for example, the index 5 subgroup in GF[34] numbers 16 elements and satisfies equality 
G �G = GF[34]. On the contrary, the index 5 subgroup in �101 numbers 20 elements, but does not satisfy 
the corresponding equality, as G �G = �101\ G. 
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