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1 Introduction

J. Mittas motivated from the theory of the algebraic closed fields introduced in
[4] a special type of completely regular hypergroup, the polysymmetric hyper-
group and he studied some of its fundamental properties as well. C.N. Yatras in
his dissertation [6], written under the direction of J. Mittas, studied this struc-
ture in depth under the name (Mittas) M -polysymmetric hypergroup (see also
[7, 8]). Next, J. Mittas generalized this hypergroup and introduced the General-
ized M -polysymmetric hypergroup (GM − PH), which is a set H equipped with
a hypercomposition x+ y that satisfies the axioms:

GM1 (x+ y) + z = x+ (y + z) for all x, y, z ∈ H.
GM2 x+ y = y + x for all x, y ∈ H.
GM3 There exists at least one neutral element e ∈ H (i.e. x ∈ e + x, for all

x ∈ H). The set of neutral elements is denoted by U .
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GM4a For each x ∈ H, there exists at least one x′ ∈ H, opposite or symmetric
of x with respect to every element of U . That is

(∀x ∈ H)(∃x′ ∈ H)(∀e ∈ U)[e ∈ x+ x′].

The set of the symmetric elements of x, will be denoted by S(x).
GM4b x+ x′ = U for all x ∈ H,x′ ∈ S(x).
GM4c If (x+ y) ∩ U 6= ∅, then x+ y = U for all x, y ∈ H.
GM5 For each x, y, z ∈ H with z ∈ x + y and for each (x′, y′, z′) ∈ S(x) ×

S(y)× S(z) it holds z′ ∈ x′ + y′.

A first study of this structure was done in [5] where one can find properties and
interesting examples of this hypergroup. For the self-sufficiency of this paper it is
mentioned that in [5] it is proved that if x, y, z, w are elements of a GM-PH H,
then the implications

(i) (x+ y) ∩ (z + w) 6= ∅ ⇒ x+ y = z + w

and
(ii) x+ y = z + w ⇒ y + w′ = z + x′

are valid. Also it is proved that for every x ∈ H, the sets C(x) = U + x = e+ x
(where e is any element of U) form a partition in H, that the equalities x+ y =
e+ x+ y = (e+ x) + (e+ y) are valid and that for every x, y ∈ H,x+ y is a class
of this partition. The quotient set of the above mentioned partition becomes an
abelian group under the setwise composition. This group is called the reduction
group of H.

Lemma 1.1. (x+ y) + U = x+ y, for every x, y ∈ H.

Proof. If z ∈ x + y then, (x + y) ∩ (z + e) 6= ∅, e ∈ U . Therefore x + y = z + e.
Thus (x+ y) + U = (z + e) + U = z + (e+ U) = z + U = x+ y.

The example which is presented below indicates the relation between the M -
polysymmetric hypergroups and the generalized M -polysymmetric hypergroups.

Example 1.1. Let K be the set of the points of a double circular conical sur-
face of revolution around the axis Oz of the Oxyz system. K becomes a M -
polysymmetric hypergroup, with identity the vertex of the conical surface, by
defining

(x1, y1, z1) + (x2, y2, z2) = {(x, y, z) ∈ K, z = z1 + z2} (1)

that is, the hypersum of any two elements (x1, y1, z1), (x2, y2, z2) of K are all the
points of the circle of the conical surface with center z1 + z2, while the opposite
of an arbitrary element (x, y, z) of K are all the elements of the symmetric circle
in which (x, y, z) belongs, i.e. the circle with center (0, 0,−z).
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Fig. 1.

Now if we consider the union of the set K of the points of the above double
circular conical surface with the set U of the points of the plane xOy, then
K̄ = K ∪ U endowed with the hypercomposition (1) becomes a GM-PH. In
this hypergroup the set of neutral elements is the set of the points of the plane
xOy. A remarkable family of subhypergroups of K̄ is formed by the sets kp ={
(x, y, λp), λ ∈ Z, p prime

}
∪ U .

The next two Propositions show the way of constructing aM -PH from a GM-
PH and vice versa. Their proof is straightforward through the verification of the
axioms. In what follows A..B denotes the set containing exactly those elements
in A that are not in B.

Proposition 1.1. Let (H,+) be a GM-PH and let U be the set of its neutral
elements. If e is an element, different from the elements of H, then the set H ′ =
[H ∪ {e}]..U becomes a M -PH by defining a hypercomposition “ ” as follows:

x y = x+ y if x, y ∈ H..U and y /∈ S(x),
x x′ = [(x+ x′) ∪ {e}]..U if x′ ∈ S(x),
x e = x+ U if x ∈ H..U ,
e e = e,

and the mapping f : H → H ′ with

f(x) =
{
x if x ∈ H..U

e if x ∈ U

is a normal homomorphism.

Proposition 1.2. Let (H,+) be a M -PH and let (U,+) be a total hypergroup.
In the set H́ = [H..{0}] ∪ U a hypercomposition “ ” is defined as follows:
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x y = x+ y if x, y ∈ H..{0} and y /∈ S(x)
x x′ = [(x+ x′) ∪ U ]..{0} if x′ ∈ S(x)
U x = x U = x+ 0 if x ∈ H..{0}
e1 e2 = e1 + e2 if e1, e2 ∈ U

Then (H ′, ) becomes a GM-PH and the mapping f : H ′ → H with

f(x) =
{
x if x ∈ H..U

0 if x ∈ U

is a normal homomorphism.

2 Subhypergroups of GM-PH

A subset h of a hypergroup H is a subhypergroup of (H, ·) if and only if xh =
hx = h for all x ∈ h. A consequence of the axioms of the GM-PH is that for every
neutral element e ∈ U , the equality e+ U = U holds, thus:

Proposition 2.1. The set of neutral elements U is the minimum in the sense of
inclusion subhypergroup of a GM-PH.

A subhypergroup h of a hypergroup H is a subhypergroup of operationally
equivalent elements if xy = hy and yx = yh whenever x ∈ h and y /∈ h [1]. In [5]
it has been proved that e+ x = U + x, for all e ∈ U . Thus:

Proposition 2.2. U is a subhypergroup of operationally equivalent elements.

A subhypergroup h of a hypergroup H is a subhypergroup of inseparable
elements if xy ∩ h 6= ∅ implies h ⊆ xy whenever x /∈ h or y /∈ h [1]. Thus
according to axiom GM4c it holds:

Proposition 2.3. U is a subhypergroup of inseparable elements.

A subhypergroup h of a hypergroup H is a subhypergroup of essentially in-
distinguishable elements if h is a subhypergroup of operationally equivalent and
inseparable elements [1], thus, because of the Propositions 2.2 and 2.3, it holds:

Proposition 2.4. U is a subhypergroup of essentially indistinguishable elements.

In a GM-PH H the sets C(x) = U + x = e+ x (where e is an element of U)
form a partition of H, and for every x, y ∈ H, x + y is a class of this partition
(see [5], Theorem 2.4). If G(H) = {C(x), x ∈ H}, then

Proposition 2.5. Every subhypergroup of a GM-PH is a union of classes from
G(H).
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A consequence of the axioms of the GM-PH is that for every two neutral
elements e1, e2 it holds that e1, e2 ∈ e1 + e2 and that e1 + e2 ⊆ U . Hence S(e1) =
S(e2) = U . Thus:

Proposition 2.6. The set of neutral elements U of a generalizedM -polysymmetric
hypergroup (GM-PH) H is a generalized M -polysymmetric subhypergroup (GM-
PSH) of H.

Next let h be a subhypergroup of H, different from U . Then x+h = h, for all
x ∈ h. Thus for x ∈ h, there exists y ∈ h such that x ∈ x+y. Let x′ ∈ S(x). Then
x′ + x ⊆ x′ + x + y ⇒ U ⊆ U + y ⇒ U = C(y) ⇒ y ∈ U . Therefore h ∩ U 6= ∅.
Suppose that ei ∈ h ∩ U . Since ei + ei = U and ei + ei ⊆ h, it follows that
U ⊆ h, from where it derives that the entire class C(x) = x + U is contained in
h, as well. Now, since x + h = h, for all x ∈ h and U ⊆ h, it derives that for all
x ∈ h, there exists x′ ∈ h such that e ∈ x + x′, which means that S(x) ∩ h 6= ∅.
But S(x) = C(x′), and as it was proved above, if an element belongs to h the
whole class of this element belongs to h. Thus:

Proposition 2.7. Every subhypergroup of a generalized M -polysymmetric hyper-
group (GM-PH) H is a generalized M -polysymmetric subhypergroup (GM-PSH)
of H with the same set of neutral elements.

Next, since the intersection of any two subhypergroups of a GM-PH is non
void, because it contains U , it derives:

Proposition 2.8. The set of the subhypergroups of a GM-PH is a complete
lattice.

A subhypergroup h of a hypergroup H is an invertible subhypergroup (from
the right) if ah 6= bh implies ah ∩ bh = ∅.

Proposition 2.9. The subhypergroups of a GM-PH are invertible.

Proof. Let h be a subhypergroup of a GM-PH (H,+). According to Lemma 2.1.
[5], if (a+ h) ∩ (b+ h) 6= ∅, then a+ h = b+ h and so the Proposition 2.9.

For the elements a, b of a hypergroup H the induced hypercompositions a/b
and b\a are defined as follows a/b = {t ∈ H | a ∈ tb} and b\a = {t ∈ H | a ∈ bt}.
A subhypergroup h of a hypergroup H is closed if a, b ∈ h impies a/b ⊆ h and
b\a ⊆ h. The GM-PH are commutative so the two induced hypercompositions
coincide and a/b = b\a, will be denoted by a÷ b.

Since the invertible subhypergroups are closed it holds:

Corollary 2.1. The subhypergroups of a GM-PH are closed.

Proposition 2.10. If h is a subhypergroup of a GM-PH H, then the relation
y ≡ xmod(h)⇔ y ∈ Ch (x) is an normal equivalence relation.
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Proof. Since the subhypergroups of a GM-PH are invertible, it derives that every
subhypergroup h defines in H a partition. The classes of this partition are the
sets Ch(x) = x + h, x ∈ H. If Ch(x) and Ch(y) are two classes of this partition,
then:

Ch(x) + Ch(y) = (x+ h) + (y + h) = (x+ y) + h =
⋃

z∈x+y
(z + h)

= {Ch(z) | z ∈ x+ y}.

Hence the Proposition.

Proposition 2.11. For every subhypergroup h of a GM-PH H, the quotient set
H/h is an abelian group under the setwise composition.

Proof. Since the relation mod(h) is a normal equivalence relation the set of the
classes H/h becomes a hypergroup under the hypercomposition:

Ch(x) + Ch(y) = {Ch(z) | z ∈ x+ y}.

But the set {Ch(z) | z ∈ x + y} is a singleton. Indeed z ∈ x + y implies that
x+y = e+z and therefore Ch(x)+Ch(y) = x+y+h = z+e+h = z+h = Ch(z).

A subhypergroup h of a hypergroup H is ultra-closed (from the right) if for
every x ∈ H, it holds xh ∩ x(H..h) = ∅.

Proposition 2.12. The subhypergroups of a GM-PH are ultra-closed.

Proof. Let h be a subhypergroup of a GM-PH (H,+). Suppose that z ∈ h,
x ∈ H, y ∈ H..h and (x + z) ∩ (x + y) 6= ∅, then x + z = x + y. According to
Corollary 2.6 [5] this last equality implies that x + x′ = y + z′ for all x′ ∈ S(x),
z′ ∈ S(z). But x+x′ = U , thus y ∈ S(z′), so y ∈ h, which is absurd and therefore
the proposition.

A non empty subset A of a hypergroup H is a complete part of H, if the
following implication holds:

∀n ∈ N, ∀(x1, x2, . . ., xn) ∈ Hn,
n∏
i=1

xi ∩A 6= ∅ ⇒
n∏
i=1

xi ⊆ A

As it is mentioned above in a GM-PH, x + y is a class of the partition G(H),
thus, for every n ∈ N the sum x1 + x2 + . . .+ xn is a class of this partition and
if A is a subhypergroup of H, then, according to Proposition 2.5, A is a union of
classes of this partition. Thus x1 + x2 + . . .+ xn ⊆ A, and therefore

Proposition 2.13. The subhypergroups of a GM-PH are complete parts.

Since the heart of a hypergroup is the intersection of all subhypergroups which
are complete parts, it follows that:
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Proposition 2.14. The heart of a GM-PH is the total subhypergroup U of its
neutral elements.
Proposition 2.15. A non empty subset h of a GM-PH H is a subhypergroup of
H if and only if x+ S(y) ⊆ h, for all x, y ∈ h.

Proof. The above condition is obvious when h is a subhypergroup of H. Con-
versely now, let x + S(y) ⊆ h, for all x, y ∈ h, then x + x′ ⊆ h, x′ ∈ S(x), thus
U ⊆ h. Suppose next that e ∈ U , then e + S(x) ⊆ h, for all x ∈ h, so S(x) ⊆ h,
for all x ∈ h, from which it derives that S(S(h)) = h. Now if x is an element
of h, then x + h = x + S(S(h)) ⊆ h. Next let t ∈ h, then t + S(x) ⊆ h or
t+ S(x) + x ⊆ x+ h or t+ U ⊆ x+ h from where it derives that t ∈ x+ h, that
is h ⊆ x+ h. So x+ h = h.

Corollary 2.2. A non empty subset h of a GM-PH H is a subhypergroup of H if
and only if it is stable under the hypercomposition and if for every element x ∈ h,
its symmetric set S(x) is a subset of h.

Next suppose that t ∈ x ÷ y, then x ∈ t + y or t ∈ x + y′ for all y′ ∈ S(y),
hence x ÷ y ⊆ x + S(y). Now if t ∈ x + S(y), then t ∈ x + y′, y′ ∈ S(y) and so
x ∈ t+ y. Thus t ∈ x÷ y and therefore x+S(x) ⊆ x÷ y. Hence x÷ y = x+S(x)
an so the Proposition:
Proposition 2.16. A non empty subset h of a GM-PH H is a subhypergroup of
H if and only if x÷ y ⊆ h, for all x, y ∈ h.

Let X be a subset of a GM-PH H. Since the set of the subhypergroups of a
GM-PH is a complete lattice, the smallest in the sense of inclusion, subhypergroup
h(X) of H, which contains X can be corresponded to X. If X = ∅, then h(X) =
U . If X 6= ∅, then X and all the symmetric elements of the elements of X
belongs to h(X), i.e. X ∪ S(X) ⊆ h(X). Also h(X) contains all the finite sums
k∑
i=1

xi, xi ∈ X ∪ S(X). Let X be the set of all elements x ∈ H which belong to

sums of the type
k∑
i=1

xi, xi ∈ X∪S(X). Suppose that x, y ∈ X. Then x ∈
m∑
i=1

xi and

y ∈
n∑
i=1

yi, xi, yi ∈ X ∪ S(X). If y′ ∈ S(y), then y′ ∈
n∑
i=1

y′i and therefore x+ y′ ⊆
m∑
i=1

xi+
n∑
i=1

y′i =
m+n∑
i=1

zi, where zi ∈ X∪S(X). Thus x+S(y) ⊆ X and according to

Proposition 2.15, X is a subhypergroup of H. Since X contains all the elements
of the union X ∪ S(X), it derives that h(X) ⊆ X. But every subhypergroup of
H that contains X, contains every sum of finitely many elements from the union
X ∪ S(X) as well, which means that X ⊆ h(X). Hence:
Proposition 2.17. The subhypergroup of a GM-PH which is generated from a
non empty set X consists of the unions of all finite sums of the elements that are
contained in the set X ∪ S(X), where S(X) =

⋃
x∈X

S(x).
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3 Monogenic Subhypergroups of GM-PH

This paragraph contains the study of the monogenic subhypergroups of a GM-
PH, i.e. the subhypergroups, which is generated by a single element (see also [3]).
So let (H,+) be a GM-PH, let x be an arbitrary element of H and let h(x) be
the subhypergroup which is generated by this element. Then, it holds

n · x =


x+ x+ · · ·+ x (n times) if n > 0,

U if n = 0,

x′ + x′ + · · ·+ x′ (−n times) if n < 0.

(1)

Next,

m · x+ n · x =

 (m+ n) · x if mn > 0,

(m+ n) · x+ U if mn < 0.
(2)

From the above it derives that

(m+ n) · x ⊆ m · x+ n · x. (3)

Proposition 3.1. For every x ∈ H it holds:

h(x) =
[ ⋃
k∈Z

k · x
]
∪ [x+ U ].

Proof. According to Proposition 2.17, the subhypergroup of a GM-PH which is
generated from a non empty set X consists of the unions of all the finite sums of
the elements that are contained in the set X ∪ S(X), thus, according to (1), for
the singleton {x}, it holds:

h(x) =
⋃

(m,n)∈N2

m · x+ n · x′

and according to (2), it is m ·x+n ·x′ = (m+n) ·x+U . So the Proposition.

Let’s define now a symbol ω(x) which is a natural number, but it can even
be the +∞. ω(x) will be named the order of x and simultaneously the order of
the monogenic subhypergroup h(x). Two cases can appear such that one revokes
the other:

I. U ∩ k · x = ∅ is valid, for all k ∈ Z..{0}. Then the order of x and of h(x) is
defined to be the infinity and it is written ω(x) = +∞.

Proposition 3.2. ω(x) = +∞, if and only if it holds m1 · x ∩m2 · x = ∅, for
every m1,m2 ∈ Z, with m1 6= m2 .
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Proof. Supposing that U ∩m · x = ∅, for all m ∈ Z,m 6= 0 and assuming that
m = m1 +m2, it holds:

U ∩m · x = ∅ ⇒ U ∩ (m1 · x+m2 · x) = ∅
⇒ m1 · x′ ∩m2 · x = ∅ ⇒ −m1 · x ∩m2 · x = ∅

Conversely now, if the intersection m1 · x∩m · x is void for every m1,m2 ∈ Z
with m1 6= m2, then U ∩ (m1 ·x+m2 ·x′) = ∅ and therefore U ∩ (m1−m2) ·x = ∅.
Thus U ∩m · x = ∅.

II. There exist k ∈ Z, with k 6= 0 such that U ∩ k · x 6= ∅. Then, because of the
axiom GM4c, the equality kx = U holds. Let p be the minimum positive
integer, such that p · x = U . Then the order of x and of h(x) is defined to
be the positive integer p and it is written ω(x) = p.

Proposition 3.3. ω(x) = p, p ∈ N if and only if there exist m1,m2 ∈ Z, with
m1 6= m2, such that m1 · x ∩m2 · x 6= ∅.

Now suppose that ω(x) = p and assume that there exists m ∈ Z..{0} such
that mx = U . Then m = kp+ r, 0 6 r < p. Thus (kp+ r)x = U or kpx+ rx = U
or U + rx = U , hence rx = U . But r < p and r is the minimum non zero positive
integer which has this property, therefore r = 0, and so the Proposition:

Proposition 3.4. If ω(x) = p, p ∈ N , then mx = U,m ∈ Z..{0} if and only if
m = kp.

As it is mentioned above, in [5] it is proved that the sets x + U, x ∈ H form
a partition in H and x + y is a class of this partition for all x, y ∈ H. Thus the
sets kx, k ∈ Z..{1} and the set x + U are the classes of this partition (note that
according to Lemma 1.1, kx + U = kx, for all k ∈ Z..{1}). When ω(x) = +∞,
then the sets kx, U +x are disjoint for all k ∈ Z..{1}, while when ω(x) = p, these
sets coincides with the ones of the family {U,U + x, 2x, . . . , (p− 1)x}.

Proposition 3.5. If ω(x) = +∞, then the reduction group h(x)/U of h(x) is
isomorphic to the additive group Z of integers, while when ω(x) = p, p ∈ N , then
the reduction group is isomorphic to the additive group Zp of the integers mod(p).

4 Homomorphisms of GM-PH

This study mainly refers to the normal (or good) homomorhisms. According to the
terminology that M. Krasner introduced [2], if H and H ′ are two hypergroups,
then a homomorphism from H to H ′ is a mapping φ : H → P (H ′) such that
φ(x + y) ⊆ φ(x) + φ(y), for every x, y ∈ H. φ is named strong if the above
relation holds as an equality. A homomorphism is named strict if φ is a mapping
from H to H ′ such that φ(x + y) ⊆ φ(x) + φ(y), for every x, y ∈ H. A strict
homomorphism is called normal if φ(x + y) = φ(x) + φ(y), for every x, y ∈ H.



226 Christos G. Massouros, Jean D. Mittas

Let’s suppose that H and H ′ are two GM-PH, with sets of neutral elements U
and U ′ respectively and let φ be a normal homomorphism from H to H ′. As
usual [2], the kernel of φ, which is denoted by kerφ, is defined to be the subset
φ−1(φ(U)) of H and the homomorphic image φ(H) of H, is denoted by Imφ.

Proposition 4.1. If φ is a normal homomorphism from H to H ′, then
i) φ(U) = U ′,
ii) φ(S(x)) = S(φ(x)) for all x ∈ H,
iii) Imφ is a subhypergroup of H ′,
iv) kerφ is a subhypergroup of H.

Proof.
(i) Let x be an element of H. Then φ(x) ∈ φ(x + U) = φ(x) + φ(U). Since in

[5] it is proved that the implication x ∈ x+ y ⇒ y ∈ U holds, it derives that
φ(U) = U ′.

(ii) It has been proved that S(x) is a class of the partition which is defined
by U , i.e. that S(x) = x′ + U [5]. Also since φ(U) = U ′ it derives that
φ(x + x′) = U ′ or φ(x) + φ(x′) = U ′, i.e. φ(x′) ∈ S(φ(x)). Thus φ(S(x)) =
φ(x′ + U) = φ(x′) + φ(U) = φ(x′) + U ′ = S(φ(x)) + U ′ = S(φ(x)).

(iii) Let y be an arbitrary element of φ(H). Then y = φ(x) for some x ∈ H. Thus
y + φ(H) = φ(x) + φ(H) = φ(x+H) = φ(H).

(iv) Since φ(U) = U ′ it derives that φ(x+x′) = U ′, x′ ∈ S(x) or equivalently that
φ(x) +φ(x′) = U ′. If it is assumed that x belongs to kerφ, then U ′+φ(x′) =
U ′, i.e. φ(x′) = U ′. So S(x) ⊆ kerφ, for all x ∈ kerφ. Therefore if x, y ∈ H,
then φ[y + S(x)] = φ(x) + φ(S(x)) = U ′ + U ′ = U ′. Hence y + S(x) ⊆ kerφ
and because of Proposition 2.15 kerφ is a subhypergroup of H.

A direct consequence of the above (iii) is the following Proposition:

Proposition 4.2. If φ is a normal homomorphism from H to H ′ then the ho-
momorphic image of every subhypergroup of H is a subhypergroup of H ′.

Now let h be a subhypergroup of φ(H). If x, y are elements of φ−1(h) then
φ(x) ∈ h and S(φ(y)) = φ(S(y)) ⊆ h. Thus φ(x) +φ(S(y)) ⊆ h, or φ(x+S(y)) ⊆
h, or x+ S(x) ⊆ φ−1(h). Hence because of Proposition 2.15 it holds:

Proposition 4.3. If φ is a normal homomorphism from H to H ′ then the inverse
image of every subhypergroup of φ(H) is a subhypergroup of H.

Although in normal homomorphism the equality φ(x+y) = φ(x)+φ(y) holds,
the respective equality is not valid for the induced hypercomposition. Generally
for the induced hypercomposition the inclusion φ(x ÷ y) ⊆ φ(x) ÷ φ(y) is valid.
Indeed if z ∈ φ(x ÷ y), then there exists w ∈ x ÷ y such that φ(w) = z. Since
w ∈ x ÷ y, it derives that x ∈ w + y. Therefore φ(x) ∈ φ(w + y), or φ(x) ∈
φ(w) + φ(y), or φ(w) ∈ φ(x) ÷ φ(y). Thus z ∈ φ(x) ÷ φ(y) and so the inclusion
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φ(x÷y) ⊆ φ(x)÷φ(y) holds. But since in the GM-PH the equality x : y = x+S(y)
is valid, it derives that φ(x÷y) = φ(x+S(y)) = φ(x)+φ(S(y)) = φ(x)+S(φ(y)) =
φ(x)÷ φ(y). Hence the Proposition:

Proposition 4.4. If φ is a normal homomorphism between two GM-PH, then
the equality φ(x÷ y) = φ(x)÷ φ(y) is valid.

Since kerφ is a subhypergroup of H, it derives, because of Proposition 2.11,
that H/kerφ is an abelian group. Also φ(H)/U ′ is the reduction group of φ(H).
For these two groups it holds:

Proposition 4.5. The abelian groups H/kerφ and φ(H)/U ′ are isomorphic.

Proof. Consider the mapping ψ : H/kerφ→ φ(H)/U ′ with ψ(x+ kerφ) = φ(x) +
U ′. Obviously ψ is a surjection for which it holds: ψ[(x + kerφ) + (y + kerφ)] =
ψ(x+y+kerφ) = {ψ(z+kerφ) | z ∈ x+y} = {φ(z)+U ′ | z ∈ x+y} = φ(x+y)+U ′ =
[φ(x) +U ′] + [φ(y) +U ′] = ψ(x+kerφ) +ψ(y+kerφ). Thus ψ is an epimorphism.
Also ψ is a monomorphism, since if it is supposed that from x+ kerφ 6= y+ kerφ
derives the equality φ(x) + U ′ = φ(y) + U ′, then the following implications lead
to a contradiction: Indeed φ(x) + U ′ = φ(y) + U ′ ⇒ φ(x′) + φ(x) + U ′ = φ(x′) +
φ(y) + U ′ ⇒ φ(x′ + x) + U ′ = φ(x′ + y) + U ′ ⇒ φ(U) + U ′ = φ(x′ + y) + U ′ ⇒
U ′ = φ(x′ + y) + U ′ ⇒ φ(x′ + y) = U ′ ⇒ x′ + y ∈ kerφ ⇒ x + kerφ = y + kerφ.
So the Proposition.

Corollary 4.1. If φ is a normal epimorphism, then the abelian group H/kerφ is
isomorphic to the reduction group of H ′.

Corollary 4.2. If kerφ = U , then the reduction group of H is isomorphic to the
reduction group of φ(H).

Every normal homomorphism φ from H to H ′ defines in a natural way a
mapping φ from H to the reduction group of H ′ as follows: φ(x) = φ(x) + U .
One can easily verify that φ is a normal homomorphism. φ is called reduction
homomorphism.

Proposition 4.6. If φ is a normal homomorphism from H to H ′, then for the
reduction homomorphism φ the equality φ = ψσ is valid, where σ is the function
that maps each element x ∈ H to the element x + kerφ of H/kerφ and ψ is the
isomorphism from H/kerφ to the reduction group of φ(H).
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