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Abstract. A join hyperring is a hyperringoid whose additive part is a commuta-
tive fortified transposition hypergroup. The hyperringoid and the join hyperring
derived from the approach of the theory of formal languages and automata from
the stand point of hypercompositional algebra. This paper deals with the structure
of the join hyperrings. The behaviour of the canonical and attractive elements is
analyzed, the characteristic of the join hyperrings is defined and the good homo-
morphisms are studied.
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1 Introduction

The theory of languages, viewed from the standpoint of hypercompositional alge-
bra, led to the introduction of new hypercompositional structures [13, 14, 15, 22].
Thus the definition of the regular expressions over an alphabet A requires the
consideration of subsets {x, y} of the free monoid A∗ generated by A. This leads
to the definition of the hypercomposition x + y = {x, y} in A∗ that endows A∗
with a join hypergroup structure, which was named B-hypergroup. Moreover,
the empty set of words and its properties in the theory of the regular expressions
lead to the following extension: Let 0 6∈ A∗. On the set A∗ = A∗ ∪ {0} define a
hypercomposition as follows:

x+ y = {x, y} if x, y ∈ A∗ and x 6= y,

x+ x = {x, 0} for all x ∈ A∗.

This structure is called dilated B-hypergroup and it lead to the definition of a
new class of hypergroups, the fortified join hypergroups [16, 17].
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Before going on and for the self-sufficiency of this paper, it is noted that a
transposition hypergroup [3] is a hypergroup which satisfies a postulated prop-
erty of transposition i.e. (b\a) ∩ (c/d) 6= ∅ ⇒ (ad) ∩ (bc) 6= ∅ where a/b = {x ∈
H | a ∈ xb} and b\a = {x ∈ H | a ∈ bx} are the induced hypercompositions (for
some recent interesting examples see [1, 2]). When a hypergroup is commuta-
tive, the two induced hypercompositions coincide. A commutative transposition
hypergroup is called join hypergroup or join space [30]. In what follows A..B
denotes the set containing exactly those elements in A that are not in B.

Definition 1.1. A fortified join hypergroup (FJH) is a commutative trans-
position hypergroup (H,+) which contains an element 0, called the zero element
of H, which satisfies the axioms:
(i) 0 + 0 = 0;
(ii) x ∈ x+ 0, for every x ∈ H;
(iii) for every x ∈ H..{0} there exists one and only one element −x ∈ H..{0},

called the opposite of x, such that 0 ∈ x+ (−x).

Furthermore the binary operation of the word concatenation in the free monoid
A∗ is bilaterally distributive over the hyperoperation of the B-hypergroup and
so, generally:

Definition 1.2. A hyperringoid [20] is a non empty set Y equipped with an
operation “·” and a hyperoperation “+” such that:
i) (Y,+) is a hypergroup,
ii) (Y, ·) is a semigroup,
iii) the operation “·” distributes on both sides over the hyperoperation “+”.

M. Krasner was the first who introduced and studied hypercompositional
structures with an operation and a hyperoperation, giving thus birth to the hy-
perring [6] i.e a hyperringoid whose additive part is a canonical hypergroup
and the hyperfield [5]. Thereafter, these structures were extensively studied in
depth. See e.g. [7, 8, 9, 10, 11, 12, 23, 24, 25, 27, 28, 29, 31]. Afterward, I. Mittas
introduced the superring and the superfield, in which both, the addition and
the multiplication are hypercompositions [26].

The new hypercompositional structures that arose from the theory of lan-
guages and automata were given names according to the terminology by Krasner
and Mittas [5, 6, 26]. Thus, provided that (Y,+) is a join hypergroup, (Y,+, ·)
is called join hyperringoid. The join hyperringoid that derives from a B-
hypergroup is called B-hyperringoid and the special B-hyperringoid that ap-
pears in the theory of languages is the linguistic hyperringoid. If the additive
part of a hyperringoid is a fortified join hypergroup whose zero element is bi-
laterally absorbing with respect to the multiplication, then, this hyperringoid,
is named fortified join hyperringoid or join hyperring (JH). A join hy-
perdomain is a join hyperring which has no divisors of zero. A proper join
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hyperring, is a join hyperring which is not Krasner’s hyperring. A join hyper-
ring K is called join hyperfield if K∗ = K..{0} is a multiplicative group.

Since the additive part of a hyperringoid is a fortified join hypergroup it
must be mentioned that such a hypergroup consists of two types of elements, the
canonical (c-elements) and the attractive (a-elements) [4, 17]. An element
x is called a c-element if 0 + x is the singleton {x}, while it is called an a-
element if 0 + x is the biset {0, x}. The set of the canonical element is denoted
by C and the set of the attractive elements is denoted by A. Moreover, another
distinction between the elements of the FJH stems from the fact that the equality
−(x − x) = x − x is not always valid. So, those elements that satisfy the above
equality are called normal, while the rest are called abnormal [16, 17]. A join
hyperring in which the additive hypergroup consists only of normal elements, is
called normal.

2 Algebra of subhypergroups of the additive hypergroup of a
join hyperring. Hyperideals

The additive hypergroup of a join hyperring is a fortified join hypergroup. Thus
regarding its subhypergroups [18], it has join ones and others that are not join,
i.e. subhypergroups which satisfy the transposition axiom inside them (because
they are stable with regard to the induced hypercomposition) and others that
do not. It is proved that the join subhypergroups are the closed ones [18] and
that they are part of a bigger class of subhypergroups, the class of the symmetric
subhypergroups. Symmetric is a subhypergroup h of a FJH, for which−x ∈ h for
every x ∈ h. Of course, in a FJH there also exist non symmetric subhypergroups.

In what follows some important compositions that can be defined in the col-
lection of subhypergroups of the additive hypergroup of a join hyperring are
investigated. Since the set of the symmetric subhypergroups and the set of the
join subhypergroups of a fortified join hypergroup are complete lattices [18], two
of these compositions are the intersection and the subhypergroup, symmetric or
join, generated by a collection of symmetric or join subhypergroups respectively.
More precisely if Y1 and Y2 are symmetric subhypergroups, the symmetric subhy-
pergroup [Y1 ∪ Y2] generated by Y1 and Y2 coincides with the set Y1 + Y2 of sums
y1+y2, y1 in Y1, y2 in Y2. On the other hand if Y1 and Y2 are join subhypergroups,
the join subhypergroup 〈Y1 ∪ Y2〉 generated by Y1 and Y2 coincides with the set
(Y1 + Y2)∪ (Y1÷ Y2)∪ (Y2÷ Y1) where “÷” is the induced hypercomposition, i.e.
y1 ÷ y2 = {x ∈ Y ; y1 ∈ x+ y2}.

Now it will be introduced the third important composition on subhypergroups
of the additive hypergroup of a join hyperring. Let Y1 and Y2 be symmetric subhy-
pergroups, then the product Y1Y2 is defined to be the symmetric subhypergroup
generated by all the products y1y2, y1 in Y1, y2 in Y2. If the join hyperring Y is
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an integral hyperdomain then Y1Y2 coincides with the union of finite hypersums

P =
⋃

xi∈Y1,yi∈Y2

(x1y1 + x2y2 + . . .+ xnyn).

Indeed, it is clear that P contains all the products from Y1Y2 and that P is
contained in any symmetric subhypergroup that contains all of these products.
Also it is clear that P is stable under hypercomposition and that 0 is in P . Finally,
since the integral join hyperrings are normal [20] −(x1y1 + x2y2 + . . .+ xnyn) =
−x1y1−x2y2− . . .−xnyn, is valid and since Y is an integral domain it holds that
−x1y1 − x2y2 − . . . − xnyn = (−x1)y1 + (−x2)y2 + . . . + (−xn)yn. Hence P is a
symmetric subhypergroup and P = Y1Y2.

The associative law (Y1Y2)Y3 = Y1(Y2Y3) can easily be established; for either
of these subhypergroups is the totality of finite hypersums of the form Σxiyizi,
xi in Y1, yi in Y2, zi in Y3. Also the distributive laws Y1(Y2 + Y3) = Y1Y2 + Y1Y3
and (Y1 + Y2)Y3 = Y1Y3 + Y2Y3 holds. Let us prove the first of these. First note
that Y1(Y2 +Y3) is the symmetric subhypergroup generated by all products xw, x
in Y1 and w ∈ y + z, y in Y2, z in Y3. Since x(y + z) = xy + xz ⊆ Y1Y2 + Y1Y3,
it holds that Y1(Y2 + Y3) ⊆ Y1Y2 + Y1Y3. On the other hand xy ∈ x(y + 0) ⊆
Y1(Y2 + Y3). Hence Y1Y2 ⊆ Y1(Y2 + Y3). Similarly Y1Y2 ⊆ Y1(Y2 + Y3). But then
Y1Y2 + Y1Y3 ⊆ Y1(Y2 + Y3). Therefore Y1(Y2 + Y3) = Y1Y2 + Y1Y3. Evidently this
same argument applies to the other distributive law.

A subhypergroup T of the additive hypergroup determines a subhyperringoid
if and only if T is stable under multiplication. The condition for this can be
expressed in terms of multiplication as follows: T 2 ⊆ T . If T is symmetric or
join then the symmetric subhyperring and the join subhyperring is determined
respectively. The conditions that a subhypergroup I be an hyperidealoid are that
Y I ⊆ I (L) and IY ⊆ I (R). If I is a subhypergroup such that (L) is valid, then
I is called left hyperidealoid and if (R) holds, then I is a right hyperidealoid. If
I is join or symmetric then the join hyperideal and the symmetric hyperideal is
defined respectively.

Since a÷ a = A, for any attractive element a [4, 17] it derives that A∪ {0} is
the minimal join subhypergoup [18]. More precisely it holds:

Proposition 2.1. In a join hyperring Y , the union A∧ = A ∪ {0} of the a-
elements with the zero element is the minimal bilateral join hyperideal of Y and
furthermore it is the minimal join subhyperring of Y .

Proposition 2.2. If Y is join hyperring and I is a symmetric hyperideal in Y ,
then the relation (m,n) ∈ R⇔ (m− n) ∩ I 6= ∅ is a congruence relation.

Proof. In [21] it has been proved that if I is a hyperidealoid in a hyperringoid Y ,
and “÷” is the induced hypercomposition, i.e. m÷ n = {x ∈ Y |m ∈ x+ n}, then
the relation R defined as follows: (m,n) ∈ R if (m÷n)∩I 6= ∅ and (n÷m)∩I 6= ∅,
is a homomorphic relation. In fortified join hypergroups it is known that ifm 6= n,
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then m ÷ n ∪ n−1 = m − n. Therefore the above relation is homomorphic. Next
it will be proved that R is an equivalence relation. Indeed (m,m) ∈ R, for all
m ∈ Y , because 0 ∈ (m −m) ∩ I. Now let (m,n) ∈ R. Then (m − n) ∩ I is non
void, so there exists x ∈ (m− n) ∩ I or −x ∈ (n−m) ∩ I. Thus the intersection
(n−m) ∩ I is non void and so the relation R is symmetric. Next let (m,n) ∈ R
and (n, s) ∈ R. Then the intersections (m− n) ∩ I and (n− s) ∩ I are non void.
Thus m ∈ n+ I and n ∈ s+ I. Therefore m ∈ s+ I and so R is transitive.

Proposition 2.3. If Y is join hyperring and I is a symmetric hyperideal in
Y , then the quotient Y/I becomes a join hyperring if a hypercomposition and a
composition are defined as follows:

(x+ I) + (y + I) = {w + I;w ∈ x+ y} and (x+ I)(y + I) = xy + I.

Proof. Let (x + I) ÷ (y + I) ∩ (z + I) ÷ (w + I) 6= ∅. Then there exists x′ ∈
x + I, y′ ∈ y + I, z′ ∈ z + I, w′ ∈ w + I, such that x′ ÷ y′ ∩ z′ ÷ w′ 6= ∅,
which implies that x′ + w′ ∩ z′ + y′ 6= ∅, because Y is a join hyperring. Thus
(x+ I) + (w + I) ∩ (z + I) + (y + I) 6= ∅.

An important symmetric subhypergroup of the FJH’s is the one which consists
of the unions of sums of the type:

(x1 − x1) + · · ·+ (xn − xn),

where xi, i = 1, . . . , n belong to a set of normal elements X. This hypergroup is
denoted by Ω(X).

Proposition 2.4. Let X be a non empty subset of a join hyperring Y , which
i) is multiplicatively closed,
ii) consists of normal elements,
iii) the elements of −X ∪X are not divisors of zero.
Then Ω(X) is a symmetric subhyperring of Y . If X is also multiplicatively ab-
sorbing, then Ω(X) is a symmetric hyperideal.

Corollary 2.5. Ω(Y ) is a symmetric hyperideal of Y .

Proposition 2.6. In any join hyperring Y the totality Y x of left multiples yx, y
in Y is a symmetric left hyperideal. In a similar manner xY is a symmetric right
hyperideal. If Y contains canonical elements, then the above hyperideals are join.

Proof. Obviously Y Y x ⊆ Y x. Next let yx be an element of Y x. Then Y x+ yx =
(Y +y)x = Y x. Thus Y x is a subhypergroup of Y , and since −yx belongs to Y x,
for every yx in Y x it follows that Y x is symmetric. According to Proposition 2.1,
if Y consists only of attractive elements, then Y has no proper join subhyperrings.
Suppose now that Y contains canonical elements. In this case the product of two
attractive elements or the product of an attractive with a canonical element is the
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0 [20]. So, if x is an attractive element, then Y x = {0}, while if x is a canonical
element, then Y x is a join subhypergroup. Indeed, let (y1x÷y2x)∩(y3x÷y4x) 6= ∅.
Then the elements yix are either canonical elements, or 0. If they are canonical
elements, then (y1x÷y2x)∩(y3x÷y4x) = (y1x−y2x)∩(y3x−y4x) ([17] prop.2.9).
Let u be an element in (y1x − y2x) ∩ (y3x − y4x). Then u − u ⊆ (y1x − y2x) −
(y3x− y4x) = (y1x+ y4x)− (y3x+ y2x). Hence 0 ∈ (y1x+ y4x)− (y3x+ y2x) and
so (y1x+ y4x) ∩ (y3x+ y2x) 6= ∅. Next suppose that some of the yix’s are 0. For
instance let
(a) y1x = 0. Then (y1x÷y2x)∩ (y3x÷y4x) = (0÷y2x)∩ (y3x÷y4x) = {−y2x}∩

(y3x ÷ y4x) and therefore −y2x ∈ y3x ÷ y4x ⇔ y3x ∈ y4x − y2x ⇔ y4x ∈
y3x+ y2x⇔ (y1x+ y4x) ∩ (y3x+ y2x) 6= ∅

(b) y1x = y2x = 0. Since 0÷0 = A∧, and the intersection (y1x÷y2x)∩(y3x÷y4x)
is non void, it must be y3x ÷ y4x = 0 ÷ 0. But in this case the implication
(0÷ 0) ∩ (0÷ 0) 6= ∅ ⇔ (0 + 0) ∩ (0 + 0) 6= ∅ is valid.

3 Structure of the additive hypergroup of a join hyperring. The
characteristic of a join hyperring

The additive hypergroup of a join hyperring is a fortified join hypergroup. Certain
significant properties of the FJH are [17, 4]:

i. the sum of two a-elements is a subset of A and it always contains the two
addends,

ii. the sum of two non opposite c-elements consists of c-elements, while the
sum of two opposite c-elements contains all the a-elements,

iii. the sum of an a-element with a non zero c-element is the c-element.

The structure of the additive hypergroup imposes significant properties on
the multiplicative semi-group of a join hyperrings. Thus [20]:

i. C2 ⊆ C and CA = AC = {0}.
ii. In a join hyperrring which contains a c-element, the product of two a-elements

equals to zero.
iii. The equalities

x(−y) = (−x)y = −xy,
(−x)(−y) = xy,

w(x− y) = wx− wy, (x− y)w = xw − yw

hold if -x, -y, x, y, w are not divisors of zero.
iv. Every join hyperring which has no divisors of zero is normal.
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If Y is any FJH, a multiplication xy = 0, for all x, y ∈ Y can be defined.
It is clear that this composition is associative and distributive with respect to
hypercomposition and thus a join hyperring is obtained. A join hyperring of this
type is called zero join hyperring. The existence of such join hyperrings shows that
there is nothing that one can say in general about the structure of the FJH of a
join hyperring. However, simple restrictions on the multiplicative semi-group of a
join hyperring impose strong restrictions on the hypergroup. For example suppose
that Y has an identity 1. If c is a canonical element in Y , then c = 0+c = c(0+1),
thus 0 + 1 must be equal to 1 and therefore 1 has to be canonical. On the other
hand if a is an attractive element in Y , then {0, a} = 0 + a = a(0 + 1), thus 0 + 1
must be equal to the set {0, 1} which means that 1 has to be attractive. Hence:

Proposition 3.1. If a join hyperring Y is unitary, then either Y is a join hyper-
ring which consists only of attractive elements or Y is a (Krasner’s) hyperring.

Next one can easily see that

Proposition 3.2. A join hyperring Y with a unitary element 1 6= 0, is a division
join hyperring if and only if it has no proper left (right) ideals.

In any join hyperring Y expressions like x + x are abbreviated by 2x and
generally we put:

n · x =


x+ x+ · · ·+ x (n times) if n > 0,

0 if n = 0,

(−x) + (−x) + · · ·+ (−x) (-n times) if n < 0.

It is easily seen that (mn)x = m(nx),m, n ∈ Z. On the contrary, if n < 0 and
y = −x, the rule n(x+ y) = nx+ ny is not always valid. This rule is true if Y is
normal. Also when Y is normal it holds:

m · x+ n · x =

 (m+ n) · x if mn > 0,

(m+ n) · x+ min{|m|, |n|} · (x− x) if mn < 0.

For this reason, the join hyperrings that are used in the following text are normal.
Let us consider the additive order of x in the normal join hyperrings, i.e. the

order of x in the additive hypergroup of Y . The symbol ω(x) is introduced which
is named the additive order of x. Two cases can appear such that one revokes the
other:

I. 0 /∈ m·x + n·(x-x), for any (m,n)∈Z×N, with m 6= 0. Then the order of x is
defined to be the infinity and ω(x)=+∞ is written.

II. There exist (m,n) ∈ Z ×N with m 6= 0 such that 0 ∈ m · x+ n · (x− x). Let
p be the minimum positive integer, such that there exists n ∈ N for which
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0 ∈ p ·x+n · (x−x). Let m = kp, (k ∈ Z) and q(k) the minimum non negative
integer for which 0 ∈ kp·x+q(k)·(x−x). A function q : Z → N is defined such
that it corresponds k to q(k). Then the order of x is the pair ω(x) = (p, q).
The number p is called the principal order of x and the function q is called
the associated order of x.

Thus if x is an a-element, then 0 ∈ x + (x − x) and therefore ω(x) = (1, q)
with q(k) = 1 for every k ∈ Z..{0}. Moreover, if x is a selfopposite c-element,
then 0 ∈ 2 · x+ 0 · (x− x), if x /∈ x− x and 0 ∈ x+ (x− x), if x ∈ x− x and thus
ω(x) = (2, q) with q(k) = 0 in the first case and ω(x) = (1, q) with q(k) = 1 in
the second case (for every k ∈ Z).

Definition 3.3. The characteristic χ(x) of an element x ∈ Y is the principal
order of x in the additive hypegroup of Y , if ω(x) 6= +∞ and the 0, if ω(x) = +∞.

Proposition 3.4. If x ∈ Y divides y ∈ Y , then χ(x) divides χ(y).

Proof. The proposition is obvious when χ(x) = 0. Next suppose that y = ax.
Then 0 ∈ χ(x)x+ n(x− x), n ∈ N which implies that 0 ∈ χ(x)ax+ n(ax− ax).
Thus 0 ∈ χ(x)y+n(y−y) from which it derives that χ(x) is multiple of χ(y).

Definition 3.5. The characteristic χ(Y ) of the join hyperring Y is the least
common multiple of χ(x), x in Y . If no common multiple exists, then χ(Y ) is
defined to be 0.

If χ(Υ ) 6= 0, then 0 ∈ χ(Y )x+Ω(x), for all x ∈ Y and if n is an integer such
that 0 ∈ nx + Ω(x), then n is multiple of χ(Υ ). If χ(Y ) = 0, then no integer n
satisfies the relation 0 ∈ nx+Ω(x) for all x in Y .

Proposition 3.6. If x ∈ Y is not a zero divisor then χ(Y ) = χ(x).

Proof. The proposition is obvious when χ(x) = 0. Next suppose that x is not a
zero divisor e.g. from the left and that χ(x) 6= 0. Then 0 ∈ χ(x)x + Ω(x) and
0 ∈ χ(x)xy +Ω(x)y, for all y in Y . Next note that Ω(x)y =

[⋃
n∈N n(x− x)

]
y =⋃

n∈N n(xy − xy) = x
[⋃

n∈N n(y − y)
]

= xΩ(y), thus 0 ∈ x
[
χ(x)y + Ω(y)

]
, from

which it derives that 0 ∈ χ(x)y + Ω(y) for all y in Y . Hence the principal order
of all y in Y is finite and χ(y) divides χ(x). Therefore χ(x) is the least common
multiple of χ(y), y in Y and so χ(Y ) = χ(x).

Proposition 3.7. Let Y be a unitary join hyperring, then

i. χ(Y ) = χ(1).
ii. If Y is a proper join hyperring, then χ(Y ) = 1.

The proof derives from Propositions 3.4. and 3.1.
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4 Homomorphisms of Join Hyperrings

According to the terminology that M. Krasner introduced [8], if Y and Y ′ are
two JH, then a homomorphism from Y to Y ′ is a mapping f : Y → P (Y ′) such
that

f(x+ y) ⊆ f(x) + f(y) and f(xy) = f(x)f(y) for all x, y in Y

A homomorphism is named good or normal if f is a mapping from Y to Y ′

such that: f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, y in Y . This
paragraph deals with the good homomorhisms. As usual [8], the kernel of f ,
denoted by kerf , is the subset f−1(f(0)) of Y . The homomorphic image f(Y ) of
Y , is denoted by Imf .

Proposition 4.1.
(i) if x belongs to C ∩ kerf then −x belongs also to kerf ,
(ii) if C 6= ∅, then the set of the attractive elements of Y is a subset of kerf ,
(iii) if f(0) = 0′, then f(A) ⊆ A′ and f(C) ⊆ C ′.

Proof.
(i) If x is a canonical element, then −x is canonical as well [17, 4]. Since f(0) ∈

f(x− x) = f(x) + f(−x) = f(0) + f(−x) = f [0 + (−x)] = f(−x), it derives
that f(−x) = f(0), hence −x ∈ kerf .

(ii) Since A ⊆ x − x, for all x ∈ C [17, 4], it derives that f(A) is a subset of
f(x− x). Because of (i) it holds f(x− x) = f(0). Therefore A ⊆ kerf .

(iii) If x is an attractive element, then f(x)+0′ = f(x+0) = f{x, 0} = {f(x), 0′}.
If x is a canonical element, then f(x) + 0′ = f(x+ 0) = f(x).

Proposition 4.2.
(i) kerf is a hyperindealoid of Y .
(ii) Imf is a subhyperringoid of Y ′ which generally does not contains the element

0′ of Y ′, but f(0) is neutral element in Imf .
(iii) if T is a subhyperringoid of Y , then f(T ) is a subhyperringoid of Y ′.

Proof.
(i) If x ∈ kerf , then f(x + kerf) = f(0). Thus x + kerf ⊆ kerf . Next let

y ∈ kerf and suppose that x is a canonical element. Then −x ∈ kerf , so
y ∈ y + 0 ⊆ y + (x − x) = (y − x) + x ⊆ x + kerf . Now suppose that x
is an attractive element. Then y ∈ x + y, if y is an attractive element, or
y = x + y if y is a canonical element. Thus kerf ⊆ x + kerf and therefore
x + kerf = kerf . Also if x ∈ kerf , and y ∈ Y , then f(xy) = f(x)f(y) =
f(0)f(y) = f(0), hence xy ∈ kerf .
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(ii) If x′, y′ are two elements of Y ′ then there exist x, y ∈ Y , such that f(x) = x′,
f(y) = y′. Thus x′y′ = f(x)f(y) = f(xy) ∈ Imf . Also x′ + Imf = f(x) +
f(Y ) =

⋃
z∈Y

f(x+ z) = f(Y ). Thus Imf is a subhyperringoid of Y ′. Yet

f(0) ∈ f(x − x) = f(x) + f(−x) is valid and since x ∈ x + 0, it holds that
f(x) ∈ f(x) + f(0). Hence (ii).

(iii) The proof is similar to (ii).

Proposition 4.3.
(i) The quotient Y/kerf becomes a hyperringoid if a hypercomposition and a

composition is defined as follows:

(x+ kerf) + (y + kerf) = {w + kerf : w ∈ x+ y}
and (x+ kerf)(y + kerf) = xy + kerf.

(ii) Y/kerf is isomorphic to Imf .
(iii) f = e◦π, where π is the natural epimorphism from Y to Y/kerf , i.e. π(x) =

x+kerf and e is the isomorphism from Y/kerf to Imf , with e(x+kerf) =
f(x).

Proposition 4.4. If f is an epimorphism, then f(0) = 0′.

Proof. Since f is an epimorphism then for the −f(0) there exists an element x
of Y such that f(x) = −f(0). Consequently it holds: 0′ ∈ −f(0) + f(0) ⇒ 0′ ∈
f(x) + f(0) ⇒ 0′ ∈ f(x + 0) ⇒ 0′ ∈ f({x, 0}) ⇒ 0′ ∈ {f(x), f(0)}. So either
f(0) = 0′ or f(x) = 0′ from where −f(0) = 0′, and thus f(0) = 0′.

Proposition 4.5. If f is a monomorhpism, then kerf = {0}.

Proof. Let x ∈ kerf , then f(x) = f(0), hence x = 0 and kerf = {0}.

As it is analyzed in [8], the fact that x is an a-element and x ∈ kerf , does
not imply that −x belongs to kerf as well. Thus the complete homomorphism
was defined, which is a homomorphism that satisfies the implication: x ∈ kerf ⇒
−x ∈ kerf .

Proposition 4.6. If f is an epimorphism, then it is complete.

Proof. Since f is an epimorphism, f(0) = 0′. Suppose next that f is not complete.
Then there exists an element x ∈ Y such that f(x) = 0′ and f(−x) 6= 0′. Then for
−f(−x) there exists y ∈ Y , which does not belong to kerf , such that −f(−x) =
f(y). Thus 0 ∈ f(−x) + f(y) = f(−x + y) and therefore (−x + y) ∩ kerf 6= ∅.
Let w ∈ (−x + y) ∩ kerf . Since −x /∈ kerf , the reversibility of −x is valid [17]
and so y ∈ x + w, thus y ∈ kerf , which contradicts the assumption for y. Thus
f(−x) = 0 and therefore f is complete.
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Proposition 4.7. If f is an epimorphism and kerf = {0}, then it is an isomor-
phism.

Proof. Since f is an epimorphism, it is complete and f(0) = 0′. Thus, 0′ ∈ f(x−
x) = f(x)+f(−x). Since kerf = {0}, for x 6= 0 it holds that f(x), f(−x) 6= 0 and
therefore f(−x) = −f(x). Next suppose that f(x) = f(y), then 0′ ∈ f(x)−f(y) =
f(x) + f(−y) = f(x − y) and since kerf = {0} it derives that 0 ∈ x − y, hence
x = y.

Proposition 4.8. If C ∩ kerf 6= ∅, then f is complete.

Proof. According to Proposition 4.1 (i), if the kernel of a normal homomorphism
contains a c-element then it will also contain its opposite as well as all the a-
elements. Therefore for every element of kerf , its opposite will be in kerf as
well.

Proposition 4.9. Let f be a complete and good homomorphism for which f(0) =
0′. Then
(i) f(−x) = −f(x).
(ii) Imf is a symmetric subhyperring of Y ′.
(iii) kerf is a symmetric hyperideal of Y .

Proof.
(i) Since f(0) = 0′ it derives that 0′ belongs to Imf . Now let f(x) be an arbitrary

element of Imf . Then it holds 0′ = f(0) ∈ f(x − x) = f(x) + f(−x) and
since f is a complete homomorphism, if f(x) 6= 0 then f(−x) 6= 0 as well.
Thus it derives that f(−x) = −f(x).

(ii) According to Proposition 4.2 (ii), Imf is a subhyperringoid of Y ′. Next
since f(−x) = −f(x) for all x ∈ Y it derives that for every element of
Imf its inverse belongs to Imf as well and therefore Imf is a symmetric
subhyperring of Y ′.

(iii) According to Proposition 4.2 (i), kerf is a hyperidealoid of Y . In [8] it has
been proved that the set [kerf ] = −f−1(f(0)) ∪ f−1(f(0)) is a symmetric
subhypergroup. Since f is complete −f−1(f(0)) = f−1(f(0)) = kerf . Thus
kerf is a symmetric hyperideal of Y .

Proposition 4.10. Let f be a complete and good homomorphism, for which
f(0) = 0′. Then
(i) if T be a symmetric subhyperring of Y , f(T ) is a symmetric subhyperring

of Y ′.
(ii) if I is a symmetric hyperideal of Y, f(I) is a symmetric hyperideal in Imf .
(iii) if I ′ is a symmetric hyperideal in Imf , f−1(I ′) is a symmetric hyperideal

in Y .
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(iv) if I is a maximal symmetric hyperideal in Y, f(I) is maximal in Imf .

Proof.
(i) According to Proposition 2.2 (iii), f(T ) is a subhyperringoid of Y ′. Next

since f(−x) = −f(x) for all x ∈ T it derives that for every element of
f(T ) its inverse belongs to f(T ) as well and therefore f(T ) is a symmetric
subhyperring of Y ′.

(ii) Because of (i), f(I) is a symmetric subhyperring of Imf . Next if f(x) is an
element of f(I) and f(y) an element of Imf , then f(x)f(y) = f(xy) ∈ f(I).

(iii) Let x, y be elements in f−1(I ′). Then f(x), f(y) belong in I ′, thus f(x) +
f(y) ⊆ I ′ or f(x + y) ⊆ I ′, so x + y ⊆ f−1(I ′). Next if x ∈ f−1(I ′), then
f(x) ∈ I ′ and since I ′ is symmetric, −f(x) ∈ I ′. But according to Proposition
4.9 (i) it holds that −f(x) = f(−x). Hence −x ∈ f−1(I ′). Furthermore, if
x ∈ f−1(I ′) and y ∈ Y , it holds: f(xy) = f(x)f(y) ∈ I ′Y ⊆ I ′. Therefore
xy ∈ f−1(I ′).

(iv) Suppose that there exists an hyperideal J in Imf , such that f(I) ⊆ J ⊆
Imf . Then because of (iii) f−1(J) is a hyperideal and furthermore I ⊆
f−1(J) ⊆ Y , which contradicts the assumption that I is maximal.
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