Operators and Hyperoperators Acting on Hypergroups
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Abstract. External operations and hyperoperations on hypergroups leads to structures that are called hypermodules,
supermodules, hypermoduloids and supermoduloids. These structures give applications in the theory of graphs and in
geometries.
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INTRODUCTION

In a non empty set H, a hypercomposition is a function from H x H to the powerset P(H) of H. This notion was
introduced in mathematics together with the notion of the hypergroup by F. Marty [3]. The axioms that endow the
pair (H, -) of a nonempty set H and a hypercomposition “-” with the hypergroup structure are:

i. a(bc) = (ab)c forall a, b, ¢ € H (associativity)
ii. aH=Ha=H foralla e H (reproductivity)
Also F. Marty defined the two induced hypercompositions (the left and the right division) that derive from the
hypercomposition of the hypergroup, i.e.
ab={xeH | aexb} and ba={yeH | ae by}
When "-" is commutative, a/b=b\a. Consequences of the above definitions are:
i ab# O, forallab € H.
ii. ab#O and a\b =, forallab € H.
iii. the nonempty result of the induced hypercompositions is equivalent to the reproductive axiom.
iv. (ab)/c=a/(cb), c\(b\a)=(b-c)\a, (b\a)/c=Db\(a/c), forall a,b,c € H (mixed associativity)

A transposition hypergroup [1] is a hypergroup (H,-) that satisfies a postulated property of transposition i.e.
b\a) N (c/d) # D = (ad) n (bc) # D.. A join space, also join hypergroup, is a commutative transposition
hypergroup [11]. A quasicanonical hypergroup is a transposition hypergroup containing a scalar identity, that is,
there exists € € H such that ea = ae = a, for each a € H. For each a € H, one has that e/a = a\e¢ is a singleton, which
is denoted by a [6, 1]. A commutative quasicanonical hypergroup is called canonical hypergroup [10].

A nonvoid set Y endowed with a composition "-" and a hypercomposition "+" is called a hyperringoid [9] if:

i. (Y, +)is ahypergroup
ii. (Y, ) is a semigroup
iii. the composition is bilaterally distributive to the hypercomposition.
If (Y,+) is a transposition hypergroup, then the hyperringoid is called transposition hyperringoid, while if (Y,+) isa
canonical hypergroup, then the structure (Y, +,-) was named hyperring by M. Krasner [2].

The notions of the set of operators and hyperoperators from a hyperringoid Y, over an arbitrary non void set M,
were introduced in [7], in order to describe the action of the state transition function in the theory of Automata. Y is
a set of operators over M, if there exists an external operation from MxY to M, such that (sk)A = s(kh), for all seM
and xAeY and moreover sl=s for all seM, when Y is a unitary hyperringoid. If there exists an external
hyperoperation from MxY to P(M) which satisfies the above axiom with the variation that sesl, when Y is a unitary
hyperringoid, then Y is a set of hyperoperators over M.

If M is a hypergroup and Y a hyperringoid of operators over M such that, for each x,AeY and s,teM, the
axioms: (i) (s+tA=sh+th, (il) s(x+24) < sk + sk hold, then M is called right hypermoduloid over Y. If Y is
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a set of hyperoperators, then M is caltkeght supermoduloid. If the second of the above axioms holds as an
equality, then the hypermoduloid is callsttongly distributive. There is a similar definition of théeft
hyper moduloid and thdeft supermoduloid over Y in which the elements of Y operate from lgfe side. When M

is both right and left hypermoduloid (resp. supedmoid) over Y it is calledY-hypermoduloid (resp. Y-
supermoduloid) [8]. If M is a canonical hypergroup, the set glecators Y is a hyperring, and s1=s, s0=0 for all
seM, then M is namedight hyper module, while it is namedight supermodule if Y is a set of hyperoperators [5].

HYPERMODULOIDS

The set of the operators over a non empty set M,dedine in M a hypercomposition and when the $a¢he
operators is a unitary hyperringoid, M enrichedhtitis hypercomposition, becomes a hypergroup.

Definition 2.1. An element sof M is calledconnected with an element;sof M, if there exists an elemehtof Y
such that &=s)\, when Y is a set of operators over M, g S\, when Y is a set of hyperoperators over M.
It must be mentioned that seing connected tq,sdoes not necessarily imply thatis connected to,s
With the use of the notion of the connected elemenhypercomposition can be defined in M, as fadto
[ {seM | s=gk and s=9s\, with x,AeY}, if s, is connected to;s
(2.1) st = 3
L {s1, &}, if s»is not connected tq s
Proposition 2.1. If the set of the operators Y over a non void seés sl unitary hyperringoid, then M endowed with
the hypercomposition (2.1) becomes a hypergroup.

Corollary 2.1. The set of vertices of a directed graph, is eratbwith the structure of the hypergroup, if theutes
of the hypercomposition of two verticesamd vy is the set of the vertices which appear in all possible paths that
connect vto v, or the biset {y v}, if there do not exist any connecting paths frartex yto vertex y

Proposition 2.2. If M3, M, are two right Y-hypermoduloids, then MzM\, becomes a right Y-hypermoduloid, if M
is endowed with the hypercomposition:
(Slltl) + (Sz,tz) = { (S't)/ Sésl+521 te tl+t2}
and the external operation fromM to M:
(s,t) = (sh.th)
M is not strongly distributive, even when &hd M are strongly distributive.
Let H and H™ be two hypergroups and letR1 x H" be a binary relation from H to H".

Definition 2.2. R is calledhomomor phic relation, if, for all (a,b,), (a,b,) € R it holds:

(Vx € a+a)(dy € bithy) [(x.y) € R] and ¥y e by+by)(3X € a+ap) [(X'y) € R] (Dy)
or equivalently for all »x a+& and for all ye by+h, it holds:

[{x} x(bth)JnR =& and [(&&)x{y}]"R=J (%)

Let Y and Y~ be two hyperringoids and letRY x Y~ be a binary relation from Y to Y~.

Definition 2.3. R will be calledhomomorphic relation, if it satisfies the axioms of the Definition 2.2nd,
moreover, if for every (@b,) € R and (g b,) € R it holds:

(@, biby) € R DyJ
A homomorphic relation which is also an equivaleralation is namedongruence relation.

Proposition 2.3. If M is a strongly distributivénypermoduloid over a hyperringoid Y, then the rielat
T={(kk) e YXY / (VseM) sk =sK}
is a congruence relation.
It is easy to verify that if an equivalence relati® in a hyperringoid Y satisfies the property:
XRy and we E = xwRyw and wxRwy [B]

then it satisfies the axiom ppof the Definition 2.3. An equivalence relatiorhish satisfies [B'], is called
compatible to the composition. It is possible though thaegnivalence relation satisfies only one of the diors
of the second part of [[J. Such a relation is calladght or, respleft compatible to the composition.

Lemma 2.1. Every congruence relation R in a hypergroup H isoamal equivalence relation and therefore the set
H/R becomes a hypergroup under the hypercomposition

2.2) G1G={C,/zex+y}
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where G is the class of an arbitrary elementex.
Lemma 2.2. If the hypergroup H is transposition, then H/R liscea transposition hypergroup.
Proposition 2.4. Let R be a congruence relation in a hyperring¥®idight compatible to the multiplication. Then
the quotient set Y/R becomes a right hypermodohega Y.
From Proposition 2.3. and 2.4. it derives

Corollary 2.2. If M is a finite strongly distributivétypermoduloid over a hyperringoid Y, then the hypmatuloid
Y/T is also finite.

HYPERMODULES

Suppose that M is a module over a unitary ring B k@ G be a subgroup of the multiplicative semigro
P*=P\{0} of P, which satisfies the condition x&=xyG, for each x,ye P. In [4] it is proved that the above
equality is equivalent to the normality of G in Brily when P* is a group, that is, when P is a divising. G
defines in P a partition, the equivalence clas$eghich are the cosets xGge¥. The quotient set of this partition is
denoted by P/G and it becomes a hyperring ifénisched with the following composition and hypergmsition:

xGyG = xyG
xG1yG = {(xp+yq)G| p,ge G}
for each xG, yGe P/G. This hyperring, which was constructed bykvasner, was named quotient hyperring [2].
Furthermore, in [5] this construction has been maéel to the hypermodules through the introductioa kelation g
in a module M, in the following way:
(xy) € g < x=qy, G
It can easily be proved that g is an equivalendation. Let Xq signifies the equivalence class of an arbitrary

element x and leM g be the set of the equivalence classes modul®lg, becomes a canonical hypergroup, if it is
endowed with the hypercomposition:

Xg + ¥g={zgeMg | zg< xg+yg}
i.e. Xg + Yg consists of all the classeg; € M g which are contained in the setwise sumxgf with yg. Now let

Ps be the quotient hyperring of P by G. Then:
Proposition 3.1. Mg becomes a strongly distributiieypermodule overRs, if an external operation from
P xMg to Mg is defined as followskg xg = (kx)g, foreachkg ePRg, Xg € Mg
It is worth mentioning that the elements of thipégsmodule are selfopposite, ixeg + Xg = {0, Xg }, when -1eG.
.

In accordance to the above, suppose that V is mvepace over an ordered field F and supposerthit the
positive cone of F. Since Rs a multiplicative subgroup of F*, there existe tuotient hyperfield F/E{F",0,F}

of F by F. Next letV be the hypermodule (vector hyperspace) ovef, Fifaich derives from V, using the above
described construction. Then the $étis exactly what is called “ray join space” in [11]Next, consider a
hypersphere S of V centered at 0. The rﬁapx of V onto S {0} is one to one and the elements of the hypersum
;<+§/, ;<¢§/ are mapped to the points of the minor arc whichdrad points x, y and lies on the great circlehef t
hypersphere that passes through x, y. In this, ¢hsetwo end points x and y do not belong to thiromarc xy,
since X,y & x+y, while x+(-x)={- X,0,x}.

Proposition 3.2. Let M be a strongly distributivehypermodule over a division hyperring (D)}, A new
commutative hypercomposition is introduced in MicWlis defined as follows:
[ x+y U{x, y}, if x,y=0 and x=-y
xty =AM, if x=-y
L x, if y=0
and a similar one is introduced in D, that is:
[ m+n {m, n}, if m, n=0 and m=-n
mtn = {D, if x=-y
[ m, if n=0
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Then (D,19) is a division hyperring and M endowed with th@érgomposition “t” becomes a hypermodule over
(D,T,), which is not strongly distributive.

Let M be a module over a non commutative field i &t the equivalence relation g be defined a®vait

(x.y) € g & x=qy, GeK*
then, according to Proposition 3.1 4 becomes a strongly distributive hypermodule ober duotient hyperfield

K/K*={0,K*}. If the construction which is presentein Proposition 3.2 is applied to this hypermodae also, if
the elements ofM ¢ -{0} are defined as points and the result of th@drgomposition Xg Tyg= (Xg + yg) v

{ xg,Yg} of any two pointsxg,yg with Xg=yq, are defined as lines, then an analytic projecgjgemetry is
formed. Moreover all analytic projective geomedrian derive using this method (see also [11]).

Furthermore, applying the construction of PropositB.2 in the vector hyperspaGTe, the two participating
elementsx ?/ belong to their hypersurm TS/, giving thus closed arcs on the hypersphere S #iisox T(-?():\7 ,

i.e. any two opposite points generate the wholestgghere (which derives as the result of their fograposition).
This construction is very natural, since two opfgioints define infinitly many great circles thaintain all the
points of the sphere. Thus every Euclidian sphérgeometry can be described algebraically as dieqio
hypermodule.

Proposition 3.3. Let R be a hyperring, therl' B a hypermodule over R which is not stronglyritistive.
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