On Open and Closed Hypercompositions

Christos G. Massouros^{1, a)} and Gerasimos G. Massouros^{2, b)}

¹Faculty of Management and Economics, T. E. I. of Central Greece, Greece ²Masouros Engineering, 54 Klious street, GR15561 Cholargos, Greece

^{a)} Ch.Massouros@gmail.com, ^{b)} germasouros@gmail.com

Abstract. This paper presents hypercompositions which either contain the two participating elements into their result (closed hypercomposition) or not (open hypercomposition). Moreover it introduces and studies the inaccessible subsets of a hypergroup, which are the concept antipodal of its semi-sub-hypergroups.

1. INTRODUCTION

Let *H* be a non-empty set. A composition in *H* is a map from $H \times H$ to *H*, while a hypercomposition in *H* is a map from $H \times H$ to the power-set P(H) of *H*. Hence the composition is a partial case of the hypercomposition. In 1934 F. Marty, in order to study problems in non-commutative algebra, such as cosets determined by non-invariant subgroups, generalized the notion of the group, thus defining the *hypergroup* [8]. An algebraic structure (H, \cdot) , $H \neq \emptyset$, which satisfies the axioms

- i. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for every $a, b, c \in H$ (associative axiom) and
- ii. $a \cdot H = H \cdot a = H$ for every $a \in H$ (reproductive axiom)

is called group if «· » is a composition and hypergroup if «· » is a hypercomposition [12].

F. Marty defined in [8] the two induced hypercompositions in a hypergroup, the right and the left division, which derive from the hypercomposition of the hypergroup:

$$\frac{a}{\mid b} = \left\{ x \in H \mid a \in xb \right\} \text{ and } \frac{a}{\mid b \mid} = \left\{ x \in H \mid a \in bx \right\}.$$

It is obvious that if the hypercomposition is commutative, then the right and the left division coincide. For the sake of notational simplicity, a/b or a:b is used to denote the right division (as well as the division in commutative hypergroups) and $b \setminus a$ or a.b is used to denote the left division [5, 10]. Obviously, if *H* is a group, then $a/b = ab^{-1}$ and $b \setminus a = b^{-1}a$. In the theory of hypergroups the following principle of duality is valid [5, 6]:

Given a theorem, the dual statement which results from the interchanging of the order of the hypercomposition «·» (and necessarily interchanging of the left and the right division), is also a theorem.

A hypercomposition is called *closed* (or *containing*; sometimes also called *extensive* [17]) if the two participating elements are in the result of the hypercomposition. A hypercomposition is called *right closed* if $a \in ba$ for all $a, b \in H$ and *left closed* if $a \in ab$ for all $a, b \in H$. A composition can be right or left closed but it cannot be closed. A hypercomposition is called *right open* if $a \notin ba$ for all $a, b \in H$ with $b \neq a$ while it is called *left open* if $a \notin ab$ for all $a, b \in H$ with $b \neq a$. A hypercomposition is called *open* if it is both right and left open. Right closed compositions are left open and left closed compositions are right open. The composition in a group is neither open nor closed.

Example 1.1. Let H be a non-void set. The B-hypercomposition in H [13], that is $a \cdot b = \{a, b\}$ for all

 $a, b \in H$ and the *total hypercomposition* in H, that is $a^*b = H$ for all $a, b \in H$ are both closed hypercompositions. Moreover if " \circ " is any other closed hypercomposition in H, then $a \bullet b \subseteq a \circ b \subseteq a * b$ for all $a, b \in H$. For example, such a closed hypercomposition is the one of the *monogene hypergroup*, where $ab = \{a, b\}$ for all $a \neq b$, and aa = H for all $a \in H$.

Example 1.2. If (H, \cdot) is a semigroup and $a \circ b = \{a, b, a \cdot b\}$ for all $a, b \in H$, then " \circ " is a closed hypercomposition. Moreover if (H, \cdot) is a hypergroup, then $a \circ b = \{a, b\} \cup a \cdot b$ is a closed hypercomposition as well.

Example 1.3. Let *F* be a field and *G* be a subgroup of its multiplicative group. Then, per Theorem 3.1 [11], the Krasner's hypercomposition $xG + yG = \{zG \mid z \in xp + yq, p, q \in G\}$ [7], provides examples of closed hypercompositions. E.g. if the index of *G* is 5, *charF* \neq 2,3 and the order of *G* is greater than 23 then the hypercomposition is closed, while if the order of *G* is less than 23 then the hypercomposition is not closed.

Example 1.4. Let A be a fortified transposition hypergroup in which every element is attractive. Then, per Theorem 7 [6] and Proposition 2.1.ii [14], $\{a,b\} \subseteq ab$ for each $a,b \in A$. Therefore, the hypercomposition is closed in all fortified transposition hypergroups which are consist only of attractive elements.

Example 1.5. A quasi-ordering hypergroup [1,2,3] is a hypergroup H, endowed with a hypercomposition " \circ " which satisfies the following conditions:

(i) $a \circ b = a^2 \cup b^2$

(ii) $a \in a^2 = a^3$

for all $a, b \in H$. The hypercomposition of the quasi-ordering hypergroup is a closed hypercomposition.

Example 1.6. If «•» is a hypercomposition in a non-empty set H, then the hypercomposition $a * b = H - a \circ b$ is called complement hypercomposition of «•» [4]. Thus, the complement hypercompositions of those of example 1.1 are $a * b = H - \{a, b\}$ and $a * b = H - \{a, b, a \cdot b\}$ which are open hypercompositions. In [9] the following hypercomposition was used for the construction of non-quotient hyperfields over a set H with card H > 3:

hypercomposition was used for the construction of non-quotient hyperfields over a set H with card H > 3: $a \cdot b = \{a, b\}$, for all $a, b \in H$ with $a \neq b$ and $a \cdot a = H \cdot \{a\}$, for all $a \in H$.

 $a \circ b = \{a, b\}, \text{ for all } a, b \in H \text{ with } a \neq b$ Its complement hypercomposition is:

 $a*b = H - \{a,b\}$, for all $a, b \in H$ with $a \neq b$ and $a*a = \{a\}$, for all $a \in H$. This is an open hypercomposition and it is essentially the one used by A. Nakassis, in order to prove the existence of non-quotient hyperrings [16].

Example 1.7. Let V be a vector space over a field F. Then, per Proposition 1 [15], the hypercomposition: $x + y = \{\kappa x + \lambda y \mid \kappa + \lambda = 1, \kappa > 0, \lambda > 0\}$

is an open hypercomposition.

More examples of open and closed hypercomposition can be found in polysymmetrical hypergroups [18].

2. PROPERTIES OF THE OPEN AND THE CLOSED HYPERCOMPOSITIONS

Proposition 2.1. [5, 10] In any hypergroup, the following are valid:

i. (a/b)/c = a/(cb) and $c \setminus (b \setminus a) = (bc) \setminus a$ (mixed associativity),

- ii. $(b \setminus a) / c = b \setminus (a / c)$,
- iii. $b \in (a/b) \setminus a$ and $b \in a/(b \setminus a)$.

Proposition 2.2. The hypercomposition in a hypergroup H is right closed if and only if a / a = H for all $a \in H$, while it is left closed if and only if $a \setminus a = H$ for all $a \in H$.

P r o o f. Suppose that the hypercomposition is right closed. Then $a \in xa$ for all $x \in H$. Hence $x \in a/a$ for all $x \in H$. Therefore H = a/a. Conversely now. Let H = a/a for all $a \in H$. Then $a \in ba$ for all $a, b \in H$. Thus the hypercomposition is right closed.

Proposition 2.3. The hypercomposition in a hypergroup H is right open if and only if a / a = a for all $a \in H$, while it is left open if and only if $a \setminus a = a$ for all $a \in H$.

P r o o f. Suppose that the hypercomposition is right open. Let a be an arbitrary element of H. Then $a \notin ba$ for all $b \in H$ with $b \neq a$. Hence $b \notin a/a$ for all $b \in H$ with $b \neq a$. Moreover, per reproductive axiom, $a \in Ha$, thus $a \in aa$. Therefore a = a/a. Conversely now. Let a/a = a for all $a \in H$. Then $b \notin a/a$ for all $b \in H$ with $b \neq a$, so $a \notin ba$, for all $b \in H$ with $b \neq a$, i.e. the hypercomposition is right open.

Proposition 2.4. If a hypercomposition in a hypergroup H is right or left open, then all its elements are idempotent.

P r o o f. Suppose that the hypercomposition is right open and that for some $a \in H$ there exists $b \neq a$, such that $b \in aa$. Then, $a/b \subseteq a/aa$. Per Propositions 2.1.i and 2.3, a/(aa) = (a/a)/a = a/a = a. Thus, a/b = a. Therefore, $a \in ab$, which contradicts the assumption. Hence, aa = a for all $a \in H$.

3. INACCESSIBLE ELEMENTS

A non-empty subset S of a hypergroup H is called *semi-subhypergroup* if it is stable under the hypercomposition, i.e. if it has the property $xy \subseteq S$ for all $x, y \in S$. S is a subhypergroup of H, if it satisfies the axiom of reproduction, i.e. if the equality xS = Sx = S is valid for all $x \in S$.

Definition 3.1. Let Q be a non-empty subset of a hypergroup H. Then an element $a \in Q$ is called Q-*inaccessible* or *inaccessible in* Q if a is never contained in the result of the hypercomposition of two distinct elements of Q. If every element of Q is inaccessible in Q, then Q is called *inaccessible subset* of H.

One can realize that the inaccessible subsets of a hypergroup are the concept antipodal of its semi-subhypergroups.

Example 3.1. Let $(\mathbb{Z},+)$ be the additive group of integers. Then any subset of the odd numbers and the odd numbers themselves, are inaccessible subsets of \mathbb{Z} .

Proposition 3.1. A non-empty subset Q of H is inaccessible if $xy \cap Q = \emptyset$ for any two distinct elements x, y in Q.

Proposition 3.2. If the hypercomposition in a hypergroup H is right, left or bilaterally closed, then Q-inaccessible elements do not exist, for any subset Q of H.

Proposition 3.3. If the hypercomposition in a hypergroup H is right, left or bilaterally closed, then H does not have inaccessible subsets.

Proposition 3.4. If the hypercomposition in a hypergroup H is open, then the bisets in H are inaccessible subsets.

Proposition 3.5. If S, T are semi-subhypergroups or inaccessible subsets of a hypergroup H and $S \cap T \neq \emptyset$, then $S \cap T$ is a semi-subhypergroup or an inaccessible subset of H respectively.

In what follows we will consider hypergroups with open hypercompositions.

Definition 3.2. An element *a* of a semi-subhypergroup *S* is called *interior element* of *S* if for each $x \in S$ there exists $y \in S$ such that $a \in xy$. An element of *S* which is not an interior element is called *frontier element* of *S*.

Proposition 3.6. Let a be an interior element and b a frontier element of a semi-subhypergroup S of H. Then ab and ba consists only of interior elements of S.

Proof. Let *c* be an element of *ab* and *x* an arbitrary element of *S*. Since *a* is an interior element of *S* it derives that there exists $z \in S$ such that $a \in xz$. Hence $c \in (xz)b = x(zb)$. Therefore, there exists $y \in zb \subseteq S$ such that $c \in xy$. Thus *c* is an interior element of *S*. Dually *ba* consists of interior elements and the Proposition is established.

Proposition 3.7. If a semi-subhypergroup S of a hypergroup H consists only of interior elements, then S is a subhypergroup of H.

P r o o f. Suppose that *a* is an arbitrary element of *S*. Since *S* is a semi-subhypergroup, $aS \subseteq S$ is valid. Next let *y* be any element of *S*. Since *y* is an interior element, there exists $x \in S$ such that $y \in ax$. Hence $S \subset aS$. Therefore S = aS. Dually, S = Sa holds.

Proposition 3.8. If S is a semi-subhypergroup of a hypergroup H and an element $a \in S$ is S-inaccessible, then it is a frontier element of S.

Proposition 3.9. *Q* is a maximal inaccessible set of a hypergroup *H* if and only if

Г

$$H = Q \cup QQ \cup Q / Q \cup Q \setminus Q$$

P r o o f. Suppose that Q is an inaccessible set such that $H = Q \cup QQ \cup Q \setminus Q \cup Q \setminus Q$. Let $c \in H - Q$. Consider the set $P = Q \cup \{c\}$. If $c \in QQ$, then there exist $x, y \in Q$ such that $c \in xy$. Thus $xy \cap P \neq \emptyset$. Therefore P is not inaccessible set. If $c \in Q / Q$, then there exist $x, y \in Q$ such that $c \in x / y$. Hence $x \in cy$. Thus $cy \cap P \neq \emptyset$. Consequently P is not inaccessible set. Dually, P is not inaccessible set, when $c \in Q \setminus Q$. Therefore Q is not properly contained in any inaccessible set, so by definition Q is a maximal inaccessible set. Conversely now, suppose that Q is a maximal inaccessible set of H. Then for all $c \in H - Q$, the set

$$V = Q \cup \{c\}$$
 is not inaccessible. Thus $V \cap \left[\bigcup_{\substack{x,y \in V \\ x \neq y}} xy\right] \neq \emptyset$. That is $V \cap [cQ \cup Qc \cup QQ] \neq \emptyset$. Since the

٦

hypercomposition is open, it derives that $c \notin cQ \cup Qc$. Thus, if $c \in V \cap [cQ \cup Qc \cup QQ]$, then $c \in QQ$. If $c \notin V \cap [cQ \cup Qc \cup QQ]$, there exists $x \in Q$ such that $x \in V \cap [cQ \cup Qc \cup QQ]$. Since Q is inaccessible, it derives that $x \notin QQ$. So $x \in cQ$ or $x \in Qc$. Thus $c \in Q/Q$ or $c \in Q \setminus Q$. Consequently $H = Q \cup QQ \cup Q/Q \cup Q \setminus Q$.

REFERENCES

- 1. J. Chvalina, L. Chvalinová: *State hypergroup of automata*, Acta Mat. et. Inf. Univ. Ostraviensis 4 (1996), pp. 105–120.
- 2. J. Chvalina, Š. Hošková-Mayerová: On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators, An. Stiint. Univ. Ovidius Constanta Ser. Mat, 22 (1), pp. 85-103.
- 3. Š. Hošková-Mayerová, Quasi-order hypergroups determinated by T-hypergroups, Ratio Math., 32 (2017), pp. 37-44.
- 4. A. Iranmanesh, A. Babareza: *Transposition hypergroups and complement hypergroups*. J. Discrete Math. Sci. Cryptogr. 6 (2003), no 2, pp. 161-168.
- 5. J. Jantosciak: Transposition hypergroups, Noncommutative Join Spaces. J. Algebra, 187 (1997), pp. 97-119.
- 6. J. Jantosciak, Ch. G. Massouros: *Strong Identities and fortification in Transposition hypergroups*. J. Discrete Math. Sci. Cryptogr. 6 (2003), no 2-3, pp. 169-193.
- 7. M. Krasner: A class of hyperrings and hyperfields. Internat. J. Math. & Math. Sci. 6 (1983), no. 2, pp. 307-312.
- F. Marty: Sur un généralisation de la notion de groupe, Huitième Congrès des mathématiciens Scand., pp. 45-49, Stockholm 1934.
- 9. Ch. G. Massouros: Methods of constructing hyperfields. Internat. J. Math. Math. Sci., 8 (1985), no 4, pp. 725-728.
- 10. Ch. G. Massouros: *On the semi-subhypergroups of a hypergroup*, Internat. J. Math. Math. Sci. 14 (1991), no 2, pp. 293-304.
- 11. Ch. G. Massouros: A field theory problem relating to questions in hyperfield theory, ICNAAM 2011, AIP Conf. Proc. 1389, pp. 1852-1855.
- 12. Ch. G. Massouros: Some properties of certain subhypergroups, Ratio Math., 25 (2013), pp. 67-76.
- 13. G. G. Massouros: *Automata and Hypermoduloids*, Proceedings of the 5th International Congress on Algebraic Hyperstructures and Applications, Iasi 1993, Hadronic Press 1994, pp. 251-265.
- 14. G. G. Massouros, Ch. G. Massouros, J. D. Mittas: *Fortified join hyper-groups*. Annales Matemat. Blaise Pascal, 3 (1996), no 2, pp. 155-169.
- 15. J. Mittas, Ch. G. Massouros: *Hypergroups defined from a linear space*. Bull. Greek Math. Soc. 30 (1989), pp. 64-78.
- 16. A. Nakassis: *Recent results in hyperring and hyperfield theory*. Internat. J. of Math. & Math. Sci. 11 (1988), no 2, pp. 209-220.
- 17. M. Novák, Š. Křehlík: EL hyperstructures revisited. Soft Comput DOI 10.1007/s00500-017-2728-y
- 18. C. Yatras: *M-polysymmetrical hypergroups*, Riv. di Mat. Pura Applicata 11 (1992), pp. 81-92.