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Abstract. This paper presents hypercompositions which either contain the two participating elements into their result 
(closed hypercomposition) or not (open hypercomposition).  Moreover it introduces and studies the inaccessible subsets 
of a hypergroup, which are the concept antipodal of its semi-sub-hypergroups. 

1. INTRODUCTION 

Let H  be a non-empty set.  A composition in H  is a map from H H×  to ,H  while a hypercomposition in H  is a 
map from H H×  to the power-set ( )P H  of H .  Hence the composition is a partial case of the hypecomposition.  In 
1934 F. Marty, in order to study problems in non-commutative algebra, such as cosets determined by non-invariant 
subgroups, generalized the notion of the group, thus defining the hypergroup [8].  An algebraic structure (H, ⋅), 
H≠∅ ,  which satisfies the axioms 

i.   ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅   for every  , ,a b c H∈   (associative axiom)   and 
ii.  a H H a H⋅ = ⋅ =   for every  a H∈             (reproductive axiom) 

is called group if « ⋅ » is a composition and hypergroup if « ⋅ » is a hypercomposition [12]. 
F. Marty defined in [8] the two induced hypercompositions in a hypergroup, the right and the left division, which 

derive from the hypercomposition of the hypergroup: 

{ }|a x H a xb
b

= ∈ ∈
 

   and   { }|a x H a bx
b

= ∈ ∈
 

. 

It is obvious that if the hypercomposition is commutative, then the right and the left division coincide.  For the sake 
of notational simplicity, /a b  or :a b  is used to denote the right division (as well as the division in commutative 
hypergroups) and \b a  or ..a b  is used to denote the left division [5, 10].  Obviously, if H is a group, then 

1/ −=a b ab  and 1\ −=b a b a .  In the theory of hypergroups the following principle of duality is valid [5, 6]: 
Given a theorem, the dual statement which results from the interchanging of the order of the hyper-
composition «⋅» (and necessarily interchanging of the left and the right division), is also a theorem.    

A hypercomposition is called closed (or containing; sometimes also called extensive [17]) if the two participating 
elements are in the result of the hypercomposition.  A hypercomposition is called right closed if a ba∈  for all 

,a b H∈  and left closed if a ab∈  for all ,a b H∈ .  A composition can be right or left closed but it cannot be closed. A 
hypercomposition is called right open if a ba∉  for all ,a b H∈  with b a≠  while it is called left open if a ab∉  for all 

,a b H∈  with b a≠ .  A hypercomposition is called open if it is both right and left open.  Right closed compositions are 
left open and left closed compositions are right open.  The composition in a group is neither open nor closed. 

Example 1.1.  Let H  be a non-void set.  The B-hypercomposition in H  [13], that is { },=a b a b  for all 
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, ∈a b H  and the total hypercomposition in ,H  that is * =a b H  for all , ∈a b H  are both closed hypercompositions.  
Moreover if " "  is any other closed hypercomposition in ,H then • ⊆ ⊆ ∗a b a b a b   for all , ∈a b H .  For 
example, such a closed hypercomposition is the one of the monogene hypergroup, where { },=ab a b  for all  a≠ b,  
and =aa H  for all a ∈H . 

Example 1.2. If ( ),H ⋅  is a semigroup and { }, ,= ⋅a b a b a b  for all ,a b H∈ , then " "  is a closed hyper-

composition. Moreover if  ( ),H ⋅  is a hypergroup, then { },a b a b a b= ∪ ⋅  is a closed hypercomposition as well. 

Example 1.3.  Let F   be a field and G  be a subgroup of its multiplicative group.  Then, per Theorem 3.1 [11], 
the Krasner’s hypercomposition { }| ,   ,xG yG zG z xp yq p q G+ = ∈ + ∈



 [7], provides examples of closed 
hypercompositions.  E.g. if the index of G  is 5, 2,3charF ≠  and the order of G  is greater than 23 then the 
hypercomposition is closed, while if the order of G  is less than 23 then the hypercomposition is not closed. 

Example 1.4.  Let A   be a fortified transposition hypergroup in which every element is attractive.  Then, per 
Theorem 7 [6] and Proposition 2.1.ii [14], { },a b ab⊆  for each ,a b A∈ .  Therefore, the hypercomposition is closed 
in all fortified transposition hypergroups which are consist only of attractive elements.   

Example 1.5.  A quasi-ordering hypergroup [1,2,3] is a hypergroup ,H endowed with a hypercomposition " "
which satisfies the following conditions: 

(i) 2 2= ∪a b a b   
(ii) 2 3∈ =a a a   

for all , ∈a b H .  The hypercomposition of the quasi-ordering hypergroup is a closed hypercomposition.  

Example 1.6.   If «  » is a hypercomposition in a non-empty set ,H  then the hypercomposition a b H a b∗ = −   
is called complement hypercomposition of «  » [4].  Thus, the complement hypercompositions of those of example 
1.1 are { },a b H a b∗ = −  and { }, ,a b H a b a b∗ = − ⋅  which are open hypercompositions.  In [9] the following 
hypercomposition was used for the construction of non-quotient hyperfields over a set H  with  3card H > : 

a°b = {a, b},    for all a,b ∈H   with a≠ b             and            a°a = H -{a},  for all a ∈H . 
Its complement hypercomposition is:   

a*b = H -{a,b},    for all a,b ∈H   with a≠ b        and            a*a = {a},  for all a ∈H . 
This is an open hypercomposition and it is essentially the one used by A. Nakassis, in order to prove the existence of 
non-quotient hyperrings [16].  

Example 1.7.  Let  V  be a vector space over a field F .    Then, per Proposition 1 [15], the hypercomposition: 
{ }| 1,   0,   0x y x yκ λ κ λ κ λ+ = + + = > >  

is an open hypercomposition. 
More examples of open and closed hypercomposition can be found in polysymmetrical hypergroups [18]. 

2. PROPERTIES OF THE OPEN AND THE CLOSED HYPERCOMPOSITIONS 

Proposition 2.1.  [5, 10]  In any hypergroup, the following are valid:  
i. ( ) ( )/ / /a b c a cb=   and   ( ) ( )\ \ \c b a bc a=   (mixed associativity), 

ii. ( ) ( )\ / \ /b a c b a c= , 

iii. ( )/ \b a b a∈   and  ( )/ \b a b a∈ . 
Proposition 2.2.  The hypercomposition in a hypergroup H is right closed if and only if /a a H=  for all a H∈ , 

while it is left closed if and only if  \a a H=  for all a H∈ . 
P r o o f.   Suppose that the hypercomposition is right closed.  Then a xa∈  for all x H∈ .  Hence /x a a∈   for 

all x H∈ .  Therefore /H a a= .  Conversely now.  Let /H a a=  for all a H∈ . Then a ba∈  for all ,a b H∈ .  
Thus the hypercomposition is right closed.       

Proposition 2.3.  The hypercomposition in a hypergroup H  is right open if and only if  /a a a=  for all a H∈ , 
while it is left open if and only if  \a a a=  for all a H∈ . 



P r o o f.   Suppose that the hypercomposition is right open.  Let a  be an arbitrary element of H .  Then a ba∉  
for all b H∈  with b a≠ .  Hence /b a a∉  for all b H∈  with b a≠ .  Moreover, per reproductive axiom, a Ha∈ , 
thus a aa∈ .  Therefore /a a a= .  Conversely now.  Let /a a a=  for all  a H∈ .  Then /b a a∉   for all b H∈  
with b a≠ .  So a ba∉ , for all b H∈  with b a≠ , i.e. the hypercomposition is right open. 

Proposition 2.4.  If a hypercomposition in a hypergroup H is right or left open, then all its elements are 
idempotent.  

P r o o f.   Suppose that the hypercomposition is right open and that for some a H∈  there exists b a≠ , such 
that b aa∈ .  Then, / /a b a aa⊆ .  Per Propositions 2.1.i and 2.3, ( ) ( )/ / / /a aa a a a a a a= = = .  Thus, /a b a= .  
Therefore, a ab∈ , which contradicts the assumption.  Hence, aa a=  for all  a H∈ .  

3. INACCESSIBLE ELEMENTS 

A non-empty subset S  of a hypergroup H  is called semi-subhypergroup if it is stable under the 
hypercomposition, i.e. if it has the property xy S⊆   for all ,x y S∈ .  S  is a subhypergroup of ,H  if it satisfies the 
axiom of reproduction, i.e. if the equality xS Sx S= =  is valid for all x S∈ .   

Definition 3.1.  Let Q  be a non-empty subset of a hypergroup H . Then an element a Q∈  is called Q-
inaccessible or inaccessible in Q  if a  is never contained in the result of the hypercomposition of two distinct 
elements of Q .  If every element of Q  is inaccessible in Q , then Q  is called inaccessible subset of H . 

One can realize that the inaccessible subsets of a hypergroup are the concept antipodal of its semi-sub-
hypergroups. 

Example 3.1.  Let ( ),+  be the additive group of integers.  Then any subset of the odd numbers and the odd 
numbers themselves, are inaccessible subsets of  .  

Proposition 3.1. A non-empty subset Q  of H  is inaccessible if ∩ = ∅xy Q  for any two distinct elements ,x y  
in Q .  

Proposition 3.2.  If the hypercomposition in a hypergroup H is right, left or bilaterally closed, then Q-
inaccessible elements do not exist, for any subset Q  of H .      

Proposition 3.3.  If the hypercomposition in a hypergroup H is right, left or bilaterally closed, then H does not 
have inaccessible subsets.   

Proposition 3.4.  If the hypercomposition in a hypergroup H is open, then the bisets in H  are inaccessible 
subsets. 

Proposition 3.5.  If ,  S T  are semi-subhypergroups or inaccessible subsets of a hypergroup H and S T∩ ≠ ∅ , 
then S T∩  is a semi-subhypergroup or an inaccessible subset of H respectively.  

In what follows we will consider hypergroups with open hypercompositions. 
Definition 3.2.  An element a  of a semi-subhypergroup S  is called interior element of S  if for each x S∈  

there exists y S∈ such that a xy∈ . An element of S  which is not an interior element is called frontier element of .S  
Proposition 3.6.  Let a  be an interior element and b  a frontier element of a semi-subhypergroup S  of H .  

Then ab  and ba  consists only of interior elements of S .   
P r o o f.   Let c  be an element of ab  and x  an arbitrary element of S .  Since a  is an interior element of S  it 

derives that there exists ∈z S  such that a xz∈ .  Hence ( ) ( )∈ =c xz b x zb .  Therefore, there exists y zb S∈ ⊆  such 
that ∈c xy .  Thus c  is an interior element of S .  Dually ba  consists of interior elements and the Proposition is 
established.       

Proposition 3.7.  If a semi-subhypergroup S  of a hypergroup H  consists only of interior elements, then S  is a 
subhypergroup of H . 

P r o o f.   Suppose that a  is an arbitrary element of S .  Since S  is a semi-subhypergroup, aS S⊆  is valid.  
Next let y  be any element of S .  Since y  is an interior element, there exists x S∈  such that y ax∈ .  Hence 
S aS⊆ .  Therefore S aS= .  Dually, S Sa=  holds.      

Proposition 3.8.  If S is a semi-subhypergroup of a hypergroup H and an element a S∈  is S-inaccessible, then 
it is a frontier element of .S  



Proposition 3.9.  Q is a maximal inaccessible set of a hypergroup H if and only if 
/ \H Q QQ Q Q Q Q= ∪ ∪ ∪  . 

P r o o f.   Suppose that Q  is an inaccessible set such that / \H Q QQ Q Q Q Q= ∪ ∪ ∪ . Let c H Q∈ − .  
Consider the set { }P Q c= ∪ .  If ∈c QQ , then there exist ∈,x y Q  such that ∈c xy .  Thus ∩ ≠ ∅xy P .  
Therefore P is not inaccessible set.  If ∈ /c Q Q , then there exist ∈,x y Q  such that ∈ /c x y .  Hence ∈x cy .  
Thus ∩ ≠ ∅cy P . Consequently P  is not inaccessible set.  Dually, P is not inaccessible set, when ∈ \c Q Q .  
Therefore Q  is not properly contained in any inaccessible set, so by definition Q  is a maximal inaccessible set.  
Conversely now, suppose that Q  is a maximal inaccessible set of H .  Then for all c H Q∈ − , the set 

{ }= ∪V Q c  is not inaccessible.  Thus 
∈

≠

 
 ∩ ≠ ∅ 
  


,x y V
x y

V xy .  That is [ ]∩ ∪ ∪ ≠ ∅V cQ Qc QQ .  Since the 

hypercomposition is open, it derives that ∉ ∪c cQ Qc .  Thus, if [ ]∈ ∩ ∪ ∪c V cQ Qc QQ , then ∈c QQ .  If 

[ ]∉ ∩ ∪ ∪ ,c V cQ Qc QQ  there exists ∈x Q  such that [ ]∈ ∩ ∪ ∪x V cQ Qc QQ .  Since Q  is inaccessible, it 
derives that ∉x QQ .  So ∈x cQ  or ∈x Qc .  Thus ∈ /c Q Q  or ∈ \c Q Q . Consequently 

= ∪ ∪ ∪/ \ .H Q QQ Q Q Q Q        

REFERENCES 

1. J. Chvalina, L. Chvalinová: State hypergroup of automata, Acta Mat. et. Inf. Univ. Ostraviensis 4 (1996), pp. 
105–120. 

2. J. Chvalina, Š. Hošková-Mayerová: On certain proximities and preorderings on the transposition hypergroups of 
linear first-order partial differential operators, An. Stiint. Univ. Ovidius Constanta Ser. Mat, 22 (1), pp. 85-103. 

3. Š. Hošková-Mayerová, Quasi-order hypergroups determinated by T-hypergroups, Ratio Math., 32 (2017), pp. 37-44. 
4. A. Iranmanesh, A. Babareza: Transposition hypergroups and complement hypergroups. J. Discrete Math. Sci. 

Cryptogr.  6 (2003), no 2,  pp. 161-168. 
5. J. Jantosciak: Transposition hypergroups, Noncommutative Join Spaces. J. Algebra, 187 (1997), pp. 97-119. 
6. J. Jantosciak, Ch. G. Massouros:  Strong Identities and fortification in Transposition hypergroups. J. Discrete 

Math. Sci. Cryptogr.  6 (2003), no 2-3, pp. 169-193. 
7. M. Krasner:  A class of hyperrings and hyperfields. Internat. J. Math. & Math. Sci.  6 (1983), no. 2, pp. 307-312. 
8. F. Marty: Sur un généralisation de la notion de groupe, Huitième Congrès des mathématiciens Scand., pp. 45-

49, Stockholm 1934. 
9. Ch. G. Massouros: Methods of constructing hyperfields. Internat. J. Math. Math. Sci., 8 (1985), no 4, pp. 725-728. 
10. Ch. G. Massouros: On the semi-subhypergroups of a hypergroup, Internat. J. Math.  Math. Sci. 14 (1991), no 2, 

pp. 293-304. 
11. Ch. G. Massouros: A field theory problem relating to questions in hyperfield theory, ICNAAM 2011, AIP 

Conf. Proc. 1389, pp. 1852-1855. 
12. Ch. G. Massouros: Some properties of certain subhypergroups, Ratio Math., 25 (2013), pp. 67-76. 
13. G. G. Massouros: Automata and Hypermoduloids, Proceedings of the 5th International Congress on Algebraic 

Hyperstructures and Applications, Iasi 1993, Hadronic Press 1994, pp. 251-265. 
14. G. G. Massouros, Ch. G. Massouros, J. D. Mittas: Fortified join hyper-groups. Annales Matemat. Blaise 

Pascal,  3 (1996), no 2,  pp. 155-169. 
15. J. Mittas, Ch. G. Massouros:  Hypergroups defined from a linear space. Bull. Greek Math. Soc.  30 (1989), pp. 

64-78. 
16. A. Nakassis:  Recent results in hyperring and hyperfield theory. Internat. J. of Math. & Math. Sci. 11 (1988), 

no 2, pp. 209-220. 
17. M. Novák, Š. Křehlík: EL hyperstructures revisited. Soft Comput DOI 10.1007/s00500-017-2728-y 
18. C. Yatras:  M-polysymmetrical hypergroups,  Riv. di Mat. Pura Applicata 11 (1992), pp. 81-92. 


	1. INTROdUCTION
	2. PROPERTIES OF the OPEN and the closed HYPERCOMPOSITIONS
	3. inaccessible elements
	References

