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Abstract. The paths 1n a tree define a hypercomposition 1n the set of its vertices and so a hypergroup 1s associated to each

tree. Hypergroups are also associated to graphs through their spanning trees. Furthermore hypergroups are associated to
automata using hypercompositions defined through strings.
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AINTRODUCTION

To make this paper self-contained, we are beginning by mentioning some definitions from the theory of
hypercompositional structures. A hypercomposition in a non empty set H, is a function from HxH to the power set

35_(H) of H. A set H endowed with a hypercomposition “-” is called hypergroupoid 1f xy=0 for all x, y in H,

otherwise 1t 1s called partial hypergroupoid. If A and B are subsets of H, then AB signifies the union Uab.
- (a,b)eAxB
Ab and aB will have the same meaning as A{b} and {a}B. A hypergroup [4] is a hypergroupoid that satisties the
axioms:
1. a(bc) = (ab)c forevery a,b,c € H (associativity)
1. aH=Ha=H forevery a ¢ H (reproductivity)
If only (1) is valid then (H, -) is called semihypergroup, while it is called quasi-hypergroup if only (11) holds.

Two induced hypercompositions (the left and the right division) derive from the hypercomposition of the
hypergroup, 1.¢.
alb={xe H | acxb} and bla={yeH | a € by}
When "-" 1s commutative, a/b = b\a. Consequences of the axioms (1) and (11) are:
1. abz#J, forallab e H.

1. ab# and a\b# 3, forallab € H.
1i1. the nonempty result of the induced hypercompositions i1s equivalent to the reproductive axiom.

iv. (a/b)c=al/(cb), c\(b\a)=(b-c)ha, (b\a)c=>b\(a/c), forallab,c e H (mixed associativity) [3]

A transposition hypergroupoid is a hypergroupoid which satisfies the axiom [3]:

bamc/d#© mmplies ad "bc#= I
A commutative transposition hypergroup is called join hypergroup or join space [3], [6].

TREES AND HYPERGROUPS

In general graph is a set of points called vertices connected by lines called edges. A path in a graph is a

sequence of no repeated vertices vj, Vo, ..., Vu, sSuch that v,v,,v,va,..., v, _;v_, are edges in the graph. A graph is

said to be connected if every pair of its vertices is connected by a path. A tree is a connected graph with no cycles.
Let J be a tree. In the set V of its vertices a hypercompostion "-" can be introduced as follows: for each two
vertices X, y in V, xy is the set of all vertices which belong to the path that connects vertex x with vertex y.
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Proposition 2.1. If V is the set of the vertices of a tree T, then V = x/x, for eachx in V.

Proof. Since X €xy, for each y in V, it derives that y ex/x, for each y in V, therefore V = x/x.

Definition 2.1. The set <x,y> = xX/y U xy U y/X, where X2y are two vertices of o, is called the line of /

which is defined by x, y.
Definition 2.2. A subset S of V i1s called convex, 1f it holds xycS, for each x, y in S.

Proposition 2.2. [fr belongs to x/y, then ry < <x,y> and if v belongs to y/x, then rx & <x,y> .

Proof . Letrex/y. Then xery, and so ry = rx U Xy. Suppose that s is an element of rx. Then sx < rx and
sxUXy=sy. Thus xesy, hence sex/y. Similar is the proof of the other part of the Proposition.

Proposition 2.3. [fr; andr, are elements of <x,y>, then r;ir, C <x,y>.

Proof. Obviously, if 1, r; € Xy, the Proposition 1s valid.
Let 1y, 1, € X/y, then, xer;y and xer,y. If r;ynryy is equal to r;y or rpy, then rirp is a subset of r;y or 1y
respectively which, according to Proposition 2.2, are subsets of <x,y>. If ryymr,y # 11y, 12y, then, since </ contains

no cycles there exists one and only one element s such that se[ryynr,y]lmrr,. So rr, = risusr,. Butris < ryy and
r,s C rpy, and, according to Proposition 2.2, r,y, 1,y are subsets of <x,y>, hence r;r, < <x,y>. Similar 1s the case
when 1, 1, €Vy/X.

Next let r;ex/y and r,exy, then, xer;y. So ryer,y and therefore rir, € <x,y>. Similar 1s the case when riexy
and r,ey/X.

Finally if riex/y and rey/x, then riy=rix\Uxy and rpx=xyuUyr,. Thus rirn= rixUxyuyr, € <x,y> and so the
Proposition.

Corollary 2.1. The lines are convex sets.

Proposition 2.4. [V is the set of the vertices of a tree J, then (V, -} is a join space.

Proof. Since {X, y} < xy, it derives that xV=V for each x in V and therefore the reproductive axiom is valid.

Also since o/ is undirected graph, the hypecomposition is commutative. Next, let X, y, z be vertices of J. If any of

these three vertices, e.g. z, belongs to the path that the two other define, then (xy)z=x(yz)=xy. If X, y, z do not
belong to the same path, then there exists only one vertex v in xy such that vzoxy={v}. Indeed if there existed a
second vertex w such that wznxy={w}, then the tree / would have a cycle, which is absurd. So (xy)z=xyuvz and

X(yz)= xvuyz. Since xy\vz = XvuUyz, it derives that (xy)z=x(yz). Now for the transposition axiom suppose that x,
y, Z, w are vertices of J such that x/'ynz/w#J. If x, y, z, w are in the same path, then considering all their possible

arrangements in their path, it derives that xwnyz=J. Next suppose that the four vertices do not belong to the same
path. Thus suppose that z does not belong to the path defined by y, w. Then z¢yw. Consider zy and zw. As

indicated above, since there are no cycles in o/, there exists only one vertex v in xy such that zy=yvivz and

zw=wvivz., Now we distinguish the cases:
(1) if x, y, w do not belong to the same path, then for the same reasons as above there exists only one s n Xy

such that xy=ystsx and sw=wsusx. Since x/ynz/w#J, there exists r in V such that xery and zerw. Thus, since J

contains no cycles, and in order for srv not to be a cycle, s and v must coincide. Hence vexwnyz and therefore

XWMYZ£D. _
(11) 1f X belongs to the same path with y and w, then:

(11,) if xeyw, then yw=yxUxw and xwcx/y. Hence v=x, xexwnyz and therefore xwnyzz0.
(1ip) 1f x€yw, then xX/'ynz/w=0 |

A spanning tree of a connected graph is a tree whose vertex set is the same as the vertex set of the graph, and
whose edge set 1s a subset of the edge set of the graph. Any connected graph has at least one spanning tree and there
exist algorithms which find such trees. Hence any graph can be endowed with the join space structure through its

spanning trees.

Proposition 2.5. Let G be a graph and J a spanning tree of G. The set of the vertices of the graph becomes a
join space if for all vertices x, y of G, the hypercomposition x e,y is the set of all vertices which belong to the path

that connects vertex x with vertex v in J .
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Since a graph may have more than one spanning trees, more than one join spaces can be associated to a graph.

The connection of graphs with hypercompositonal structures was studied also by M. Gionfriddo (2], J.
Nieminen [13], [14], P. Corsini [1] and [. Rosenberg [ 13].

AUTOMATA AND HYPERGROUPS

An automaton &% is a collection of five objects (T, S, 8, s,, F) where T is the alphabet of input letters (a finite
nonempty set of symbols), S is a finite nonvoid set of states, s, is the start (or initial) state, an element of S, F 1s the
set of the final (or accepting) states, a (possibly empty) subset of S and & is the state tramsition function with
domain SxX and range S, in the case of a deterministic automaton (DFA), or & (S), in the case of a

nondeterministic automaton (NDFA). I denotes the set of words (or strings) formed by the letters of = —closure

of Z— and AeX signifies the* empty word. *2* under the concatenation of words is a monoid, with neutral element A,
since Ax=xA=x for all x in £. Moreover ¥ becomes a hyperingoid under the b-hyperoperation: x+y={x, y} for all x,

y 1n 5 [12]. Given a DFA &% the extended state transition function for &%, denoted &, is a function with domain

SxX and range S defined recursively as follows:
1. 5 (s,a) = o(s,a) forallsinSandain X
ii. &(s,A)=s forallsin$
111. 8 (s,ax) = & (8(s,a),x) forallsinS,xinX andainX.

Let x be a word 1n Z*, then:
Prefix(x)={yeZX’| yz=x for some zeX } and Suffix(x)={zeX’ | yz=X for some yeXl)
Let s be an ¢clement of S. Then
[,= {xeX | & (so,x)=s} and P,= {s;eS $;=8 (S,,y), yePrefix(x), xel,)
Obviously the states s, and s are 1n P..

Lemma 3.1. [freP,, then P, C P,

Proof. P,.={s¢€ S| si=6*(sc,,y), yePrefix(v), vel,} and since reP,, it holds that § (r,z)=s, for some z in Suffix(x),
xel,. Thus 6*(si,yi)=sj y;€Suffix and so the Lemma.

In the set of the states of an automaton the structure of the hypergroup was introduced in many ways (see [7], |8],
(9], [10], [11]). Hereafter, new hypercompositions are introduced in S. The first one is defined as follows:

stq=P;,UP, foralls,qe S (1) |
This hypercomposition is commutative, thus the two induced hypercompositions coincide and so we have:
[ S, if s € P,
s/q=q\s = 3
L{re S | P,cP;} ifseg P,

Proposition 3.2. The set S endowed with the hypercomposition (1) is a join hypergroup. |

Proof.  First notice that s+S = LJ(PS UP ) =S. Hence, the reproductive axiom is valid. Next for the
qeS

associative low it holds: s+(qtr) =s + (P, U P) = P U ( UPH) , which, because of lemma 1.1, 1s equal to

ueb Uk

P, (Py U P). But Pyu (P, uP)=([P;UP) P,

Using again lemma 1.1, we get the equality (P; W Py) U P, = ( U P )P . Thus ( U PYUP =P,uUP)+r=
veP UP, veP UP

= (s+q)+r and so the associative low is valid. Finally suppose that s/gp/r# <. Then (str) N (q+p) =

= (P;u P) m (P, U P,) which is non empty, since it contains s,. Hence the transposition axiom 1s valid and so the
Proposition.

Another hypercomposition is the following:
s+q=P;nP, foralls,qeS (2)
Since s, € P, forallr € S, the results of hypercomposition (2) are always non void sets.
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The above hypercomposition 1s commutative, thus the two induced hypercompositions coincide and so we have:
'S, ifs e P,
S/q=q\s = 1
L @, ifs ¢ P,
Proposition 3.3. The set S endowed with the hypercomposition (2) is a join semihypergroup.

Proof. Since s/q, with s, g in S, 1s not always nonvoid, it derives that the reproductive axiom 1s not valid. Next
letve Py P, Then P, € Py P, thus U PV = Py m Py, Hence 1t holds:

veP, NP,
(sttr=PsNP) +r= U (P,NP ) =( UPv) NP =Ps " P) P, = Py (P, N P;). Similarly s+(q+r) =
veP, NP, vePNP,

=Py M (P m P, ) and so the associative low 1s valid. Finally it s/q m p/r # &, then s/q ™ p/r = S and (s+r) N (q+p) =
=(PsnPy) N (Pg N P,) 1s non empty, since 1t contains s,.
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