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Abstract. Polysymmetrical Hypergroups are special cases of regular
hypergroups i.e. hypergroups which have at least one two-sided identity and
each one of their non identities has two-sided inverses. Many types of
Polysymmetrical Hypergroups derived from the study of other areas of
Algebra (as for example the algebraically closed fields and the linear
spaces), or appeared during the study of other mathematical branches (as
geometry, or the theory of Languages and Automata) from the point of view
of the hvpercompositional structures theory. This paper presents and
analyzes all the different kinds of Polysymmetrical Hypergroups that have
appeared up to now.
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1. Introduction

1934 was the year that Frederic Marty defined the hypergroup [9]. This happened in
connection with his thesis on meromorphic functions, which was written under the direction
of Paul Montel. Unfortunately F. Marty died young, during the Second World War, when
his airplane was shot down over the Baltic Sea, while he was going on a mission to Finland.
In the duration of his short life (1911-1940), F. Marty studied properties and applications of
the hypergroups in two more communications ([10, 11]). This new structure though, very
soon whipped up the interest of other mathematicians such as M. Krasner, J. Kuntzmann,
H. Wall, O. Ore, M. Dresher etc. So, several papers appeared referring to its study and its
applications [1, 5, 7, 8, 30]. For the self-sufficiency of this paper, it is mentioned that the
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R3]

axioms which endow the pair (H,), where H is a nonempty set and *” is a
hypercomposition in H (i.e. a function from HxH to the powerset *P(H) of H), with the
hypergroup structure are:

1. a(bc) = (ab)c for every ab,c € H (associativity)

ii. aH=Ha=H forevery ac H (reproductivity)

In a hypergroup, the result of the hypercomposition is always a nonempty set. Indeed,
let ab=¢J. Then H =aH = a(bH) = (ab)H = &H = &, which is absurd.

Soon, from the very first stage of this theory, the hypergroup was enriched with new
further more axioms. So, not only F. Marty, but also M. Krasner, Kuntzmann, H. Wail, M.
Dresher and O. Ore observed that there exist hypergroups with identity (or unit or neutral)
elements and inverses. An element ecH such that acea for all acH is called lefi identity.
A right identity is defined analogously. An identity is an element e that is both left and right
identity. Next a’ is a left inverse of acH if eca’a, where e is an identity. The right inverse
is defined in a similar manner and a two-sided inverse a’ has the property eca’anaa’ where
e is a two-sided identity. Thus any hypergroup (H,-) satisfying the conditions:

iii. in H there exists two-sided identities

iv. every element of H has two-sided inverses

was named regular hypergroup. A hypergroup is said to be complerely regular if it
contains a single identity e with respect to which, every element x has a unique inverse x ™,
such that eex 'xnxx

Another important property that holds in certain hypergroups is the reversibility:
Suppose that h is as subhypergroup of H (i.e h is a subset of H that satisfies the axioms of a
hypegroup). Then h is left reversible in H if any relation x,eax,, where a,eh implies the
existence of an a,eh such that x,€a,x,. Similar is the definition of right reversibility and h
is called reversible in H if it is both left and right reversible.

In F. Marty’s paper [9] one can also find the definition of the two induced
hypercompositions (the left and the right division) that derive from the hypercomposition of
the hypergroup, i.e.

‘%=~{er | a e xb} and bi‘={yeH | a € by}
For the sake of simplicity of the notation, these hypercompositions are also denoted by
a:b or a/b and a..b or b\a respectively. When "-" is commutative, a/b = b\a. Using the
induced hypercompositions, the closed subhypergroup can be defined as follows: a
subhypergroup h of a hypergroup H is closed if a/bch and b\ach, for each a,beh [3, 12,
13]. ‘

W. Prenowitz, in order to study Geometries using tools and methods of the hypergroup
theory, introduced the hypergroups, which are known as join spaces [29]. Now, the term
Join space or join hypergroup signifies a commutative hypergroup that satisfies the
transposition property:

(a’b) M {c/d) # D. implies ad "bc= D
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J. Jantosciak, in his paper [3] removes the commutativity from the axioms of the join
hypergroup introducing thus the transposition hypergroup. More precisely, a transposition
hypergroup is a hypergroup which satisfies the axiom:

blanc/d# O implies ad N bec = I

2.  M-Polysymmetrical Hypergroups

Special cases of regular hypergroups are the polysymmetrical hypergroups. The term
“polysymmetrical” was used by J. Mittas, who introduced them and studied them in
connection with the algebraically closed fields.

The characteristic feature of the polysymetrical hypergroups is a more or less strong
axiom of reversibility that permits to shift elements of the relation zexy from the one part
to the other, using the symmetric elements of x,y,z.

At first, in 1970, Jean Mittas [23], in connection with his work on algebraically closed
fields, defined a commutative hypergroup (H,-) having the following axioms:

M,i.  in H there exists one two-sided identity e

Mjii.  every element x of H has two-sided inverses x” such that xx"=x"x=e

the set S(x)={x"eH | x'x=e} is called the symmetric set of x

Miiii. if zexyand x €S(x), y'€S(y), z’€S(z), then z" ey 'x’

Next in 1983 in a joint paper by S. Toulidis and J. Mittas [2], a hypergroup (H,-) with
the following axioms was introduced:
M. in H there exists one two-sided identity e such that ex=xe=x, for every xeH
{scalar identity)

M,ii. every element x of H has two-sided inverses x” such that eexx ' mx'x. The set
of the inverses x” of an element x is denote by S(x) and S(x) is called the
symmetric set of x

M,iii. for every x, zeH and for every x’, x"eS(x), there exist y;ex'z and y,€zx"

such that zexy;Ny»x.

{see also [26]). J. Mittas named the hypergroups that satisfy the axioms M,i-Miii,
first kind polysymmetrical hypergroups and the hypergroups that satisfy the axioms M,i-
M,iii, second kind polysymmetrical hypergroups. Later on C. Yatras who studied in details
the commutative polysymmetrical hypergroups of the first kind [31], [32] named them M-
polysymmetrical hypergroups, using the letter “M” after the name of J. Mittas, who
introduced them.

Finally in 2005, in his paper [28], J. Mittas defined the generalized M-
polysymmetrical hypergroup. This hypergroup satisfies the axioms:
GMi. in H there exists at least one two-sided identity e (i.e. xexe=ex for every
xeH). the set of identities is denoted by U
GMii. for each element x of H there exists at least one two-sided inverse x" with
respect to each element of U, i.e. (VxeH)3 x'eH)(VeeU)[eexx'=xx]
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GMiii. x x'=x"x=U for each xeH, x"S(x)

GMiv. for each x,yeH it holds: xy"U=d = xy=U

GMv. if zexyand x"eS(x), y' €S(y), z'€S(z), then z'ey’x’

The following example shows the close connection between the generalized M-
polysymmetrical hypergroup and the first kind M-polysymmetrical hypergroup.

Example 2.1. Let K be the set of the points of a conical surface of revolution around
the axis Oz of the Oxyz system, having vertex O. In K the following hypercomposition is
introduced

(XLynLz)H(xeynz:) = { (x,y,2) € K, z=27,+2, }

i.e. the result of the hypercomposition of any two elements (x,,y),21), (X2,¥2,22) is the
set of the points of a circle of the conical surface having z=z,+z,. K, endowed with this
hypercomposition, is a M-polysymmetrical hypergroup of the first kind. The neutral
element of this hypergroup is the conical surface’s vertex (0,0,0), while the symmetric set
S(x) of any element x€K is the set of the points of the circle which is symmetric to the
circle defined by x with center of symmetry the point (0,0,0). Now if we consider the union
of the points of the conical surface with the points of the plane xOy, and we endow it with
the same hypercomposition, we end up to a generalized M-polysymmetrical hypergroup. In
this hypergroup, the set of the neutral elements is the set of the points of the plain xOy.

3. Canonical Polysymmetrical Hypergroups

The additive part of the hyperfield is a special type of a completely regular
commutative hypergroup, having a scalar (and thus unique) identity and a unique inverse
for each one of its elements. The hyperfield is a hypercompositional structure, analogous to
the field, (with the addition being a hypercomposition and the multiplication a composition)
which was introduced, in 1956, by M. Krasner, who constructed it as the proper algebraic
tool in order to define a certain approximation of a complete valued field, by sequences of
such fields [6]. J. Mittas named the additive hypergroup of the hyperfield canonical
hypergroup and he studied it in depth (e.g. see [24]). A canonical hypergroup is a
completely regular commutative hypergroup, having a scalar (and so unique) identity, a
unique inverse for each one of its elements, and is also enriched with the axiom:

Z€ Xy = y e zx' (x'isthe inverse of x)

Equivalently, canonical hypergroup is a join hypergroup that has a scalar identity.
Next, in 1985, J. Mittas, in his paper [25], defined the canonical polysymmetrical
hypergroup. According to his definition, a canonical polysymmetrical hypergroup (CPH)
is a second kind commutative polysymmetrical hypergroup which satisfies the axiom:

zexy = (3Ix'eS(x)) [yezx']

From this axiom it derives that in a CPH, for any two elements x, y, it holds
S(xy)cS(x)S(y). Also in a CPH the implications are valid:

zexy = (3x'eS(x)) (Vy' eS(y)) (Fz'€S(z))[z' ex’y’]
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ZEXY = (3z'€S(2)) (F(x".y")eS(x)xS(y))
(3z'eS(z))[z'ex'y"]

It is worth mentioning that although the transposition holds in the case of the canonical
hypergroups, this does not happen in the case of the canonical polysymmetrical
hypergroups. Indeed:

Example 3.1. Let H be a set totally ordered and symmetric around a center, denoted
by 0eH. Then H with the commutative hypercomposition
[y, if [x|<|y|] forevery x,y e H U {0} or xy € {0}UH"
Xty = g
| [x.y], ifxeH and yeH"
becomes a canonical polysymmetrical hypergroup. Suppose now that x.y,a,beH" and
x<y<a<b. Then x/y=a/b=H . Thus x/yNa/b#J. But x+b={b}, y+a={a} and so x+bNy+a =
&, 1.e. transposition is not valid.

In the same paper [25], J. Mittas introduced stronger definitions of polysymmetrical
hypergroups. Thus he defined the fortified canonical polysymmetrical hypergroup and the
extremely fortified canonical polysymmetrical hypergroup.

A fortified canonical polvsymmertrical hypergroup (F-CPH) is a first kind
commutative polysymmetrical hypergroup (H.-), which satisfies the axiom:
S(xy)c [x'S(y)]In[y'S(x)], foreach x,yeH, x'eS(x). y' €S(y)
One can observe that a F-CPH is a CPH. Also in a F-CPH it holds:
zexy = (V(x',2')eS(x)xS(z)) (Fy' eS(y))[z' ex'y’]

An extremely fortified canonical polysymmetrical hypergroup (EF-CPH) is a first kind
commutative polysymmetrical hypergroup (H.-). which satisfies the axiom:
zexy = (V(x',y',z2)YeS(x)xS(y)xS(z))[z'ex'y']
From the above definition it derives that in a EF-CPH, for any two non identities x, y,
the equality S(xy)=S(x)S(y)=x"y’ is valid. This property has interesting consequences:
a) an EF-CPH isaF-CPH
b) if x is a non identity of a EF-CPH H and yeH, y'.y"eS(y), then xy'=xy” and
yy'=yy"
¢) foreach xeH, x’' x"eS(x) it holds S(x")=S(x")
d) for each x,y,zeH, with z non identity, the implication holds:
zexy = (Vx'eS(x))[y' ezx’']

Next in [27], in connection with vector spaces, the notion of the generalized canonical
polysymmetrical hypergroup was introduced. A generalized canonical polvsymmetrical
hvpergroup (G-CPH) is a commutative hypergroup (H,) endowed with the following
axioms:

1. (deeH)(VxeH)[xeex]
. (vxeH)( (Ix'eH) [eexx’]
. S(e)=e
iv. tor each x,y,zeH, the implication holds:
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zexy = (Ix*eS(S(z))(3x' eS(x))[yez*x']
The G-CPH appeared as the attached hypergroup of vector spaces. Indeed, let V be a
vector space over a field F. Then [27]:

Proposition 3.1. V, endowed with hypercomposition
xty = /rxtiy [ kel * k+i=1), foreveryx,y € V¥
and xt0=0tx=x foreveryxeV
is a G-CPH, but not a join one.

Proposition 3.2. V, endowed with hvpercomposition
xty = fkxtiy / KAEF K k+i=1), foreveryxy e V*
and xt0 =0tx = {Ax/ LeF.* i<l}, forevervxeV
is a join G-CPH.

Two other G-CPHs derive from the Propositions 3.1. and 32. if the
hypercompositions are properly modified in such a way that the sum xty denotes,
geometrically, not only the set of points of the segment xy (for xy). but also the set of all
the points of the line through x.y (xy)

Propeosition 3.3. V, endowed with hvpercomposition
xtv = {kx+Ay [ kAieF* k+i=1}, Jorevervxy e V*
and xt0=0tx=x foreveryxeV
becomes a non join G-CPH.

Proposition 3.4. V, endowed with hypercomposition
Xty = (kxtiv ] kA EF* kti=1), for evervx,y & V*
and xt0 = 0tx = lix/ s eF* i<l), foreveryxeV
becomes a join G-CPH.

Also the hypercomposition of the next Proposition gives an interesting and useful
result. The figure which presents geometrically this hypercomposition, is the set of the
vectors with origin 0. that fill the parallelogram with sides x and v, and end to the opposite
sides of x and .

Proposition 3.5. V, endowed with hvpercomposition
xty = x+tay, ytix | heF . * A<l}, forevervxy €V
becomes a join G-CPH.

In [12, 13. 27] it is proved that the convex sets of a vector space and its vector
subspaces are directly connected to the semi-sub-hypergroups and to the closed sub-
hypergroups respectively, of some of the vector space’s attached hypergroups. This
approach leads to remarkable results and aiso lets the generalization of already known
theorems of the vector spaces. in sets with fewer axioms [13, 14, 15].
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4. Transposition Polysymmetrical Hypergroups

A Transposition Polysymmetrical Hypergroup (TPH) is a transposition hypergroup
(H,) that contains an identity e which satisfies the axioms:

TP1. ee=e

TP2. x e xe=¢ex

TP3. for every xeH-{e} there exists at least one element x"eH-{e}, symmetric of x,

such that eex x’, and furthermore x” satisfiese € x'x

A commutative transposition polysymmetrical hypergroup is called Join
Polysymmetrical Hypergroup (JPH). The JPH appeared as an attached hypergroup of an
automaton, during the study of automata theory with tools from the theory of
hypercompositional structures. Indeed, based on the notion of the grade of a state s; of an
automaton, which is the set of the elements of the language over an alphabet A that lead the
automaton from this state (s;) to one of its final states [17], there can be introduced an
equivalence relation in the set of the states, named grade equivalence, as follows:

siR s; when the grade of s; is equal to the grade of s;

Considering that the automaton has only one final state sg (real or conventional), the

set of its states can be equipped with the following hypercomposition:

[ crucg® if CGR#CR and s, # s
S + S =
R : R __ R
L Ci v {SF} if Cg —Csj

where Cy* is the equivalence class of s;. With this hypercomposition, the set of the
states of the automaton becomes a join polysymmetrical hypergroup [18, 19]. Next, since
the attached hypergroup of the grade of an automaton is a JPH, one can construct a fortified
join hypergroup (FJH) [21] in the set of this JPH’s equivalence classes. This last FJH, used
as the attached hypergroup of the grade, leads to the construction of a new equivalent
automaton, the states of which are the equivalence classes of the states of the initial
automaton. Apparently, this new automaton has fewer states and accepts the same language
with the one it started with {17, 18]. Moreover, by eliminating those states for which the
order can not be defined, there derives the automaton which has the minimum number of
states and which accepts exactly the same language with the initial one [17, 18, 20].

Another example of a JPH is the following:

Example 4.1. Let K be a field and G a subgroup of its multiplicative group. Also let a
hypercomposition + be defined in K as follows:

X + y=1ZEK|Z=xp+yq, p,g €G}

Then (K, + ) is a join polysymmetrical hypergroup having the 0 of K as its neutral
element. The symmetric set of an element x of K is the set S(x) = {xp| peG}.

Keeping in mind the general definition of the completely regular hypergroups, the
(partial) reversibility in the case of the TPH is:
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For every x,y,w € H there exists either x'e S(x) or y'e S(y) such that: w

xy implies either ye x'w or x e wy’

Obviously if w € xy implies that y € x'w, x"e S(x) and x € wy’, y'€ S(y), then the
reversibility is complete

In the TPH, there exist three possible cases:
e The TPH in which the complete reversibility holds
¢ The TPH in which the partial reversibility holds
e The TPH in which the reversibility is not valid

Thus there exist three kinds of transposition polysymmetrical hypergroups. In [22]
one can find examples of each one of them.

From the different examples of TPH it derives that the identity e is possible either to
belong or not to belong in the result of the hypercomposition ex. More precisely it holds
that exc{e}US(S(x)) for each element x of a TPH (H,-). Thus in TPH there exist two
kinds of elements, the attractive elements and the non attractive elements. An element x of
a TPH, is called attractive if eexe, while a nonidentity element x is called non attractive if
egxe [21, 22]. If x is an attractive element of a TPH, then S(x) consists of attractive
elements, while if x is a non attractive element, then S(x) consists of non attractive
elements. Also if X is an attractive element of a TPH, then all the elements of ex are
attractive while if x is a non attractive element, then ex contains only non attractive
elements. Moreover the result of the hypercomposition of two attractive elements contains
only attractive elements, while the result of the hypercomposition of an attractive element
with a non attractive element, consists of non attractive elements. It is proved that the set A
of the attractive elements of a TPH is a closed subhypergroup of H and further more that A
is the minimum (in the sense of inclusion) closed subhypergroup of H. In the study of TPH
the symmetric subhypergroups play a significant part. A subhypergroup h of a

transposition polysymmetrical hypergroup is called symmetric, if x<h implies that S(x)< h.
It 1s proved that the intersection of two symmetric subhypergroups is a symmetric

subhypergroup. Thus the set of the symmetric subhypergroups of a TPH is a complete
lattice.

An element ¢ of a hypergroup H is a scalar identity if ex=xe=x for each x in H. Ifa
scalar identity exists in H, then it is unique. An element e of a hypergroup H is a strong

identity if xeex=xeC {x.e} for all xeH. A strong identity need not be unique [4]. The set

E of the strong identities is a central subhypergroup of H [4]. It is proved that if a

transposition polysymmetrical hypergroup has a strong identity, then it is unique. In [16]

one can find many examples of TPH with strong identity. From these examples, there

derive the following interesting remarks:

1) the non existence of e in ab does not necessarily imply that e does not also belong to
S(a)S(b), or to S(b)S(a). ’

il) the non void intersection S{a)~S(b) does not imply that S(a) is equal to S(b) i.e. in
TPHs the sets S(x), do not define a partition in general.
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The following propositions present some properties of the transposition
polysymmetrical hypergroups with strong identity (for their proofs see [16])

Proposition 4.1. Let x #e be an attractive element of H, then
i. e/x=eSkx)={e} US(x) =S(x)je=x\e
ii. xle=elx=x

Proposition 4.2. If x, y are attractive elements of H, then
Loy} cxy
ii. xex/y and xeyk
iii. x/x =x\x = A, where A is the set of the attractive elements

Proposition 4.3. If a,bed, e # ab and e & S(b)S(a), then S(ab) = S(b)S(a)

Proposition 4.4. Let x, v,z € A-{e} and zexy:

i if SN S@E)= then yexz forevery x' € S(x)
ii. if SN S(z)=& then xezy' forevery y' e S(©)

If x 1s attractive and x’=S(x), then eexx’ implies that xeex and x'eex’. Also ecex
implies that eeex’, while xgee. Thus, from the above observations and from Proposition
4.4, it is clear that in the transposition polysymmetrical hypergroups with strong identity the
property of reversibility is valid under conditions.

Next, using the symmetric subhypergroups, cosets can be defined. Indeed if it is
assumed that H has a strong identity and consists only of attractive elements, X is an element

of H and h a symmetric subhypergroup of H, then x _ (the left coset of h determined by x)
P

and dually, x | (the right coset of h determined by x), are given by
k

h, if xeh h, if xeh
X_= an X_ =

no x/h, if xeh k x\h, if xeh

Recalling that in any hypergroup, the equality (B\A)/C=B\(A/C) is valid, we have that
Xy, 1.e. the double coset of h determined by x, is given by

h, if xeh
B\(x/h)=(h\x)/h, if x&h

Xn

It is proved that if h is a symmetric subhypergroup of H and x is an element of H which
does not belong to h, then the equalities (x/h)h = xh and h(h\x) = hx are valid. Thus, each

one of the families H: h={x .| xeH}, H: 7 ={x .| xeH} and H:h={x, | xeH} of the left,
h h

right and double cosets are partitions of H. A thorough and detailed study of these cosets as
well as the homomorphisms of TPH appears in [16].



28

Ch. G. Massouros, G. G. Massouros

5. Reference

M. Dresher-O. Ore: Theory Of Multigroups. Amer. J. Math. 60 (1938) 705-733.

S. Ioulidis — J. Mittas: Sur Certaines Notions Preliminaries De L’ Hyperalgebre
Linéaire- Introduction De L’ Hypergroupe Polysymétrique. [Ipaxtikd Tng
Axoadnuiog AGnvov, 58 (Athens 1983) 361-392.

J. Jantosciak: Transposition Hypergroups, Noncommutative Join Spaces. Journal Of
Algebra, 187 (1997) 97-119.

J. Jantosciak - Ch. G. Massouros: Strong Identities And Fortification In Transposition
Hypergroups. Journal Of Discrete Mathematical Sciences & Cryptography, Vol. 6,
No 2-3 (2003) 169-193.

M. Krasner: Sur La Primitivité Des Corps B-Adiques. Mathematica, 13 (1937) 72-
191

M. Krasner: Approximation Des Corps Values Complets De Caracteristique P#0 Par
Ceux De Caracteristique 0. Colloque D' Algebre Superieure (Bruxelles, Decembre
1956), Cbrm, Bruxelles, 1957.

J. Kuntzmann: Opérations Multiformes. Hypergroupes Comptes Rendus, Vol 204
(Paris, 1937), Pp. 1787-1788

J. Kuntzmann: Homomorphie Entre Systémes Multiformes

Comptes Rendus, Vol 205 (Paris, 1937), Pp. 208-210

F. Marty: Sur Un Généralisation De La Notion De Groupe.

Huitiéme Congrés Des Mathématiciens Scand., Pp. 45-49, Stockholm 1934.

. F. Marty: Réle De La Notion De Hypergroupe Dans L' Etude De Groupes Non

Abéliens. C.R. Acad. Sci. (Paris) 201 (1935) 636-638.

. F.Marty: Sur Les Groupes Et Hypergroupes Attachés A Une Fraction Rationelle.

Annales De L” Ecole Normale, 3 Sér., Vol. 53 (1936) 83-123.

. Ch. G. Massouros: Hypergroups And Convexity. Riv. Di Mat. Pura Ed Applicata 4

(1989) 7-26.

. Ch. G. Massouros: On The Semi-Subhypergroups Ot A Hypergroup. [nternat. J.

Math. & Math. Sci. Vol. 14, No 2, Pp. 293-304, 1991.

. C.G. Massouros : Applications Of The Hypercompositional Structures Into

Geometry. Proceedings Of The 26th Annual Iranian Math. Conf. 2 (Kerman, Iran.
1995) 231-235.

. C.G. Massouros : Hypergroups And Geometry. Mem. Academia Romana,

Mathematics, Special Issue, Ser. Iv Tom. Xix (1996) 185-191.

Ch. G. Massouros - G.G. Massouros: Transposition Polysymmetrical Hypergroups
With Strong Identity Proceedings Of The 9th Internat. Cong. On Aha (Babolsar
2005) (To Appear)

. G.G. Massouros - J. Mittas: Languages - Automata And Hypercompositional

Structures. Proceedings Of The 4th Internat. Cong. On Aha (Xanth 1990, World
Scientific) 137-147



Elements and Results on Polysymmetrical Hypergroups 29

[18].

G.G. Massouros:  Automata-Languages And Hypercompositional Structures.
Doctoral Thesis, Depart. Of Electrical Engineering And Computer Engineering Of
The National Technical Univ. Of Athens, 1993.

. G.G. Massouros: Hypercompositional Structures In The Theory Of The Languages

And Automata. An. Stiintifice Univ. Al. 1. Cuza, Iasi, Informatica, T. [ii (1994) 65-
73,.

. G.G. Massouros: A New Approach To The Theory Of Languages And Automata.

Proceedings Of The 26th Annual Iranian Math. Conf. 2 (Kerman, Iran 1995) 237-
239.

. G.G. Massouros - Ch. G. Massouros - I. D. Mittas: Fortified Join Hypergroups. Ann.

Mat. Blaise Pascal, Vol. 3, No 2 (1996) 155-169.

.G. G. Massouros - F. A. Zafiropoulos - Ch. G. Massouros: Transposition

Polysymmetrical Hypergroups. Proceedings Of The 8th Internat. Cong. On Algebraic
Hyperstructures And Applications. (Samothraki 2002, Spanidis Press) 191-202.

. J. Mittas: Hypergroupes Et Hyperanneaux Polysymetriques. C. R. Acad. Sc. Paris, T.

271, Serie A (1970) 920-923 J. Mittas: Hypergroupes Canoniques. Mathematica
Balkanica, 2, Pp. 165-179, 1972.

. J. Mittas: Hypergroupes Polysymetriques Canoniques. Atti Del Convegno Su

Ipergruppi, Altre Strutture Multivoche E Loro Applicazioni. (Udine 1985) 1-25.

. J. Mittas - S. Ioulidis: Sur Les Hypergroupes Polysymetriques Commutatifs. 1st

Matem. Univ. Trieste, Vol. Xviii (1986) 125-135.

. J. Mittas - C.G. Massouros: Hypergroups Defined From A Linear Space.
. Bull. Greek Math. Soc., 30 (1989) 64-78.
. J. Mittas:  Generalized M-Polysymmetric Hypergroups Proceedings Of The 9th

Internat. Cong. On Aha (Babolsar 2005) (To Appear)

. W. Prenowitz: A Contemporary Approach To Classical Geometry.Amer. Math.

Month. 68, No 1, Part Ii (1961) 1-67.

0]. H. S. Wall: Hypergroups American Journal Of Mathematics, 59 (1937) 77-98.
. CN. Yatras: M-Polysymmetrical Hypergroups. Riv. Di Mat. Pura Ed Applicata [1

(1992) 81-92

.CN. Yatras: Homomorphisms In The Theory Of The M-Polysymmetrical

Hypergroups And Monogene M-Polysymmetrical Hypergroups. Proceedings Of The
Workshop On Global Analysis, Differential Geometry, Lee Algebras, 1 (Aristotle
University Of Thessaloniki, 1995) 155-165.






