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TRANSPOSITION POLYSYMMETRICAL HYPERGROUPS

G. G. MASSOUROS, F. A. ZAFIROPOULOS, CH. G. MASSOUROS

ABSTRACT. This paper presents various examples and properties of Transposition
Polysymmetrical hypergroups, which are hypergroups that satisfy a postulated property of
transposition, have a nonscalar identity and contain at least one symmetric element for each one
of their nonidentity elements. This type of hypergroups initially appeared, in their commutative
case, during the study of the theory of Languages and Automata from the standpoint of
hypercompaositional structures theory.

AMS-Classification number: 20N20, 68Q70, 08A70, 68Q68

1. INTRODUCTION — HYPERGROUPS RESULTING FROM AUTOMATA

The operational details of the automaton and the intention to describe its structure,
led to the introduction of the several types of associated (or attached) hypergroups,
e.g. the associated hypergroups of the order, of the grade, of the paths, of the
operation [9,10], some of which have enriched the class of the hypergroups with
new types of hypergroups. Such hypergroups are: the Join Polysymmetrical
Hypergroup, which is analyzed below, and the Fortified Join Hypergroup.
Before proceeding to the definitions of these hypergroups, let us recall that a
transposition hypergroup (sce [2]) is a hypergroup that satisfies a postulated
property of transposition i.e. (b\a) n (¢/d) = & = (ad) » (bc) 2 &, where
a’b = {xeH laexb} and ba = {xeH |aebx} are the induced inverse
hypercompositions |5]. A join space, also join hypergroup, is a commutative
transposition hypergroup. Now a Fortified Transposition Hypergroup is a
transposition hypergroup H, having an identity or neutral element e such that ee=e,
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xeex=xe, for every x € H and also for every x € H-{e} there exists a unique
element x" € H-{e} such that e € xx’, and, furthermore, x” satisfiese € x'x [3]. If
H is a join hypergroup, then we have the Fortified Join Hypergroup [8.13,14].
This last hypergroup resulted from the theory of Languages [7.8,10,11].

Indeed, the necessity of the introduction of the “null word™ as an element “0”
bilaterally absorbing with regard to the multiplication {concatenation of the words)
in the free monoid A* which is generated by the alphabet A has lead to the
introduction of the dilated B-hypergroup [11.8,10] ie. a fortified join
hypergroup for which x+y = {x, y} if x#y and x+x = {x, 0}. Furthermore. the
concatenation of the words in A* which is bilateraily distributive over the
hypercomposition of the B-hypergroup, leads, in a natural way, to the definition of
the hyperringoid and the linguistic hyperringoid [15]. Moreover, the associated
hypergroups of the order and of the grade are directly connected to the
minimization of the automaton. The construction of these hypergroups involves
the notions of the order of a state and of the grade of a state respectively. Order of
a state is the minimum of the lengths of all the words that lead to this state from
the conventional start state. Grade of a state s; is the set of the elements of the
language over an alphabet A which lead from s; to a final state of the automaton
[10]. With the use of the notion of the grade, there can be introduced an
equivalence relation in the set of the states, named grade equivalence, as follows:
siR's; when the grade of s; is equal to the grade of's,

Considering that the automaton has only one final state s¢ (real or conventional),
the set of its states can be equipped with a hypercomposition in the following way

[ CRuc® if G 2C,% and 5.5 25
Sits = {
[ C;.R (o {S[:} if CSiR = CS)'R

where C,;" is the equivalence class of s,. With this hypercomposition, which is
derived from the notion of the grade of a state, the set of the states of the
automaton becomes a hypergroup. Moreover this hypergroup is an example from
a whole new class of hypergroups, the transposition polysymmetrical ones.

Definition 1.1. A Transposition Polysymmetrical Hypergroup (TPH) is a
transposition hypergroup (H,-) that contains an element e which satisfies the
axioms:

TP1. ee=e

TP2. x e xe=ex, forevery xe H

TP3. for every xeH-{e} there exists at least one element x'cH-{e}, a sym-

metric of x, suchthate ¢ xx, and e € x'x

The set of the symmetric elements of x is denoted by S{x) and it is cailed the
symmetric set of x. S(e) contains only the element e. A commutative
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transposition polysymmetrical hypergroup is called Join Polysymmetrical
Hypergroup (JPH).

In a TPH the identity need not be unique. This becomes apparent from the
Example 2.3, which is presented later on in the context of the next section.

Example 1.1. Let K be a field and G a subgroup of its multiplicative group. In K
we define a hypercomposition as follows:

xty={xptyq | pgeG)
Then (K, *) is a join polysymmetrical hypergroup having the 0 of K as its neutral
element. The symmetric set of an element x of K is S(x) = {-xp | peG }

The construction of the above Example was inspired by the construction of M.
Krasner's quotient hyperfields [4]. The next Example gives a construction of a
JPH which is a generalization of the associated (or attached) grade hypergroup:

Example 1.2. Let E be a nonempty set and R an equivalence relation in it. If e is
an element of E and its class is C.X = {e}, then (E. +) becomes a JPH where the

hypercomposition "+" is defined as follows:

[ CxUC\,a if CX#C)
Xty = 3
[ CoucC., if C=Cy

Regarding the hypercompositional structures in automata, there exists also the
paper [1], where the authors introduce a hypergroup which is associated to the
states of an automaton. This hypergroup is based on the hypercomposition
sot = 8(s,A*)UB(t,A*) where & is the transition function, s,t are states of the
automaton and A* is the free monoid of words over the alphabet A. Using this
hypergroup the authors of [1] reached very interesting results in automata theory.

The TPH is not the only example of polysymmetrical hypergroups. J. Mittas has
dealt extensively with certain polysymmetrical hypergroups (see [17,19]) and so
did S. Toulidis [18] and C. Yatras [21]. In his paper [17], J. Mittas, starting with a
remark regarding algebraically closed fields, was led to a special type of
completely regular hypergroup, which he named polysymmetrical and
subsequently, C. Yatras called it M-polysymmetrical hypergroup. A
M-polysymmetrical hypergroup (H,+) is a commutative hypergroup which also
satisfies the axioms:

M-P1. (30eH) (vxeH) [xe0+x]
M-P2. (¥xeH) (3x eH) [x+x'=0]
M-P3. for every x,y,z € H, x eS(x), y' €S(y), Z'eS(z) we have zex+y => z'ex'+ y’
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Another type of polysymmetrical hypergroup was studied by J. Mittas and
S. Toulidis in [18]. This hypergroup satisfies the axioms:

P1. (ecH) (vxeH) [x=ex=xe]

P2. (vxeH) (3x eH)[e € xx'Nx’X]

Next, J. Mittas in his paper [19], enriched the commutative case of the above
hypergroup with the axiom:

CP. zexy=>(Ix'e SX)) [y € zx]

and thus he defined the canonical polysymmetrical hypergroup.

It is known that transposition holds in the case of canonical hypergroups. So the
question arises: Does transposition hold in the case of canonical polysymmetrical
hypergroups? The answer is negative as is shown by the following example:

Example 1.3, Let H be a set totally ordered and symmetric around a center,
denoted by 0eH with regard to which a partition H= H U{0}UH" can be defined.
such that x<0<y for every xe H™, yeH" and x<y implies -y<-x for every x,yeH
(where —x is the symmetric of x with regard to 0). Then H with hypercomposition

[y, if [x)<|y| forevery x.y € HU {0} or x.y € {0}UH"
Xty = 3
| [x.y]. if xeH and y e H
becomes a canonical polysymmetrical hypergroup (see |19]). Suppose now that
x,y,a,beH” and x<y<a<b. Then x/y=a/b=H". Thus x/yNa/b£. But x+b={b},
y+a={a} and so x+bNy+a = i.e. transposition is not valid.

2. THE REVERSIBILITY AND OTHER PROPERTIES OF THE TPH

The axiom CP of the canonical polysymmetrical hypergroups, or the axiom M-P3
of the M-polysymmetrical hypergroups is known as the axiom of reversibility.
This axiom appears to the definition of other hypergroups as well (e.g. canonical
hypergroups). The basic concept of reversibility is the transformation of the
relation zexy with the use of their symmetric elements. For example, in the case
of quasicanonical hypergroups, we have that zexy implies yex'z and xezy'
[6] (an extensive analysis of the reversibility is given in [19]). Keeping in mind
the general definition of the completely regular hypergroups (according to Marty's
definition) [5] the property of reversibility in the case of TPHs can be formulated
as follows:

In the relation zexy the reversibility holds if there exists x'eS(x), or

v €S(y) such that either yex'z or xezy".
This type of reversibility is called partial, since reversibility may hold in a
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stronger way, that is zexy implies that there exist x €S(x) and y' € S(y) such that
yex'z and xezy'. If reversibility is satisfied in this way, then it is called
complete. Moreover, if in a TPH H reversibility holds for every relation zexy
with x,y,ze H, then we say that the reversibility holds in H.

The hypergroup of Example 1.1. is a TPH in which complete reversibility holds.
There exist though TPHs in which partial reversibility holds and others in which
reversibility is not valid at all. This becomes evident from the following examples:

Example 2.1. a) Let (G,+) be any commutative group and let P be a subgroup of
G. Then G becomes a JPH if it is equipped with the hypercomposition:
xty = x+y+P and 01t0=0

Indeed, it is obvious that (G.%) is a P-hypergroup of G [20] which is modified in
the definition of 0+0. Next, for the induced inverse hypercomposition it holds:
x/y=x-y-P. Regarding the proof of the transposition axiom, let x/ymz/w # O,
Then (x-y+P)\(z-w+P) # . So there exist a,beP such that x-y+a=z-w+b, from
where it derives that x+w+a=z+y+b and thercfore (x+tw)(z+y)2&. The
nonscalar neutral element is 0, since xext0=x+P. Also, if x#0 is an arbitrary
element of G, then S(x)=-x+P (note that -P=P). Now if xeP, then 0ex+0, but
x¢0+0. Hence partial reversibility is valid in 0e x+0, while complete reversibility
holds in all the other cases. Indecd, if xeytw then x=y+w+c for some element ¢
from P. Thus, if y'=-y-c, then y* belongs to S(y) and wexty’. Similarly, there
exists w eS(w) such that yextw’,

b) From the above JPH we can construct another one, equipping G with the
hypercomposition: x*y = (xty) U {x, y}. In this JPH, partial reversibility holds
for the relations xex*y, when xexty, or x=0, while complete reversibility holds
for all the other cases.

Example 2.2. Let A, iel (card | > 2) be a family of totally ordered sets which
have a common minimum element e. The set A =;.1A; with hypercomposition:

[ [min{x,y}, max{x.y} | if x.y € A, i€l
Xy =
| [e.x]Uley] if xe A, ye A and i), i,jel
becomes a JPH with neutral element e. Indeed, For the proof of the associativity
we have the cases:
) if x.y.weA,,then  (x=y)ytw =x+(y+w) = min{x.y,w}, max{x,y.w} |
i) if x,yeA; and weA, withi# J, then
(x+yrtw = xH(y+w) =[ 0, max{x.y} JLW [ 0. w]
) if x,y.w belong to different sets, then

195



(ctyyw = xH(ytw) = [0, x JU[ 0.y JU[0, w]

We note that in this hypergroup, for the induced hypercomposition, it holds:

[ A if x=y

| [e.x U (Uigy A) if X,y € Aj and x<y
xly =

| {weA|w>x} if x,y € A; and x>y

| {weA|w>x} if xe Ajand y e A

Therefore x/y#& and consequently the hypercompositional structure is a
hypergroup. The transposition axiom’s validity can be verified in all the cases, ¢.g.
if x,v,w,z belong to the same ordered set and x<y<w<z, then x/y N w/z 2, from
where (x+z) N (w+y) = |y, w] # &. Moreover, if xe A, then S(x) = Uy,j Ai. Thus,
regarding the reversibility, for every x.,ye A; with x<y, we have zexy = xezy’ for
every y eS(y), if z#y. while for every x eS(x) we have yex'z. Therefore partial
reversibility holds. Similarly, partial reversibility holds in all the other cases.

Example 2.3. let R’ be the Cartesian plane and let the result of the
hypercomposition xy of two elements x.ye R? be the closed line segment that they
define, if x#y and xx={x}. Considering ¢=(0, 0) to be the neutral element, R?
becomes a JPII in which the reversibility is not valid. Indeed, for every nonzero
element x, the set S(x) is the opposite open half-line of x, starting from (0, 0).
From figure 1, it becomes obvious that the reversibility is not valid, since neither x
belongs to wS(y), nor y belongs to wS(x).

Figure 1
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On the contrary, the Cartesian line equipped with the same hypercomposition:
xy = [min(x, y), max(x, y)]
becomes a JPH in which the partial reversibility ts valid.
From this example it also derives that in a TPH the identity element e need not be
unique.

Proposition 2.1. If in a TPH (H, - the sets S(x), x € H define a regular partition in
H. then the quotient set 11:S = {S(x) | x e H}, equipped with the hypercomposition:
Stx) o S(y) = { Sw) | w'ex’-y’, with w e Sw), x € S(x), y € S(v) }

becomes a fortified transposition hypergroup.

P ro o f. Since S is regular, the quotient set H:S is a transposition hypergroup.
Next we remark that S(S(x)) is a class. Indeed, if x",x""€ S(x), then x € S(x") and
x € S(x""). Thus S(x) n S(x"") # & and so S(x") = S(x"). since the symmetric
sets make a partition in H. Moreover e is the neutral element of H:S, while
S(S(x)). which is a class, is the symmetric of S(x).

Example 2.4. For the JPH E of the Example 1.2. it holds S(x)=C, , xeE. Thus
E:R=E:S={S(x) | x € E}. Also it is clear that the partition defined by R is a
regular one and that for the hypercomposition “e” we have:

S(x) @ S(y) = { S(x). S(y) } if S(x) = S(y)

S(x) @ S(x) = { S(x). e }
The fortified transposition hypergroup E:R that derives is a dilated B-hypergroup.

3. ATTRACTIVE AND NON ATTRACTIVE ELEMENTS IN THE TPH,
SYMMETRIC SUBHYPERGROUPS.

As it derives from the above Examples 2.1 - 2.3, it is possible for the neutral
element e either to belong or not to belong in the result of the hypercomposition
ex. More precisely we have the Proposition:

Proposition 3.1. For every element x of a TPH (H, ) holds ex < e} « S(S(x)).

Proof Letyze and yeex=xe, then xeely and xey/e. Moreover for every
x €S(x) holds xee/x" and xex"\e. Consequently e/x M ely2 & and y/e m x"\e # &,
so ee N yx #D and ee N x'y # &, that is eecyx’ and eex’y. Thus
yeS(x)=S(S(x)).

As in the case of the fortified transposition hypergroups, an element x of a TPH H,
will be called attractive if eexe, while a nonidentity element x will be called
non attractive if eexe [3,13]. We denote by A the set of the attractive elements
and by C the set of non attractive elements. Then H = AuC and ANC =&. The
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hypergroup of Example 1.1 is a TPH in which all the nonidentity elements are non
attractive, while the TPH of Example 2.1.a consists of attractive and non attractive
clements (P is the set of the attractive elements). Moreover the TPH of Examples
2.1.b, 2.2. and 2.3. consist only of attractive elements.

Regarding the atiractive elements and the reversibility we remark that in a TPH
which contains a nonidentity attractive element x, the complete reversibility is not
valid, since e xe but xgee=e.

Proposition 3.2. If x is an attractive element of a TPH, then S(x) consists of
attractive elements.

Proof. lLete € ex. Then x e e\e. Moreover, if X' is an arbitrary element from
S(x), then e € xx". Therefore x € e/x". Consequently e\e¢ N e/x'# &, from where
(ee)x'e= @ andso e € x'e. Thus x’ is an attractive element.

Corollary 3.1. If x is a non attractive element, then S(x) consists of non
attractive elements.

Proposition 3.3. Let x # e, then S(x) « {e} — x\e N e/x, if x is attractive and
Stxj = x\e M e/x if x is non attructive.

Corollary 3.2. If X is nonempty, e € X and X contains an attractive element. then
S o fe} = X'e ne/X, while S(X) = Xe me/X if X consists of non attractive
elements.

Proposition 3.4. x € x/e = ¢\x.
Corollary 3.3. If X is nonempty, then X < X/e = e\X.

Proposition 3.5. A = e¢/e = ¢\e.

Proof. If x belongsto A, then e € xe. and so x € e/e. Alsoifx € e/e, then
e € xe. Thus A=e/e. Dually, A=¢'e.

Proposition 3.6. If x is an attractive element of a TPH, then all the elements of ex
are attractive. Also if x is a non attractive element, then ex contains only non
attractive elements.

P ro o f. According to Proposition 3.2, if x is an attractive element, then S(x)
consists of attractive elements and so S(S(x)) consists of attractive elements as
well. Next, because of Proposition 3.1, ex < {e} w S(5(x)). thus ex contains only
attractive elements. Similarly if we assume that x is a non attractive elements,
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then, from Corollary 3.1. and Proposition 3.1, we deduce that ex consists of non
attractive elements.

Proposition 3.7. Ina TPH if x is an attractive element and y is a non attractive
element, then xy and yx consists of non attractive elements.

P ro o f Assume that acxy and a is attractive. Then, xee'\e (Prop. 3.5.) and
xe€aly. So transposition gives ea M ye # &, contrary to Proposition 3.6. Thus xy
consists of non attractive elements. Similarly, yx also consists of non attractive
elements.

Corollary 3.4. If x, y are attractive elements, then x'y c A and y\x C A

Proposition 3.8. The result of the hypercomposition of two attractive elements of
a TPH contains only attractive elements.

Proof. Letx,ybetwo attractive elements and suppose that z is a non attractive
element which belongs to xy. Then z € xy implies x € z/y. Moreover if x"e S(x),
then x € x"\e. Thus z/y m x"\e # &. Therefore (ey) N (x'z) 2 & (1). But x is
an attractive element, so X’ is also attractive (Prop. 3.2) and therefore x'z does not
contain the neutral element and it consists of non attractive elements (Prop. 3.7).
Moreover y is an attractive element and therefore ey consists only of attractive
elements (Prop. 3.6). Consequently the intersection (ey) M (x'z) is the empty set,
which contradicts (1).

Recall that a subhypergroup h of H (i.e a subset of H for which xh=hx=h. for
every xeh) is right closed (resp. left closed) if for every aeH-h it holds:
(ah)nh=0 (resp. (ha)"h=G). h is closed if it is right and left closed (for more
details see [12]).

Proposition 3.9. The set A of the attractive elements of a TPH (H, ) is a closed
subhypergroup of H

Proof According to Proposition 3.8, if xe A, then XA < A. Next, let y be an
arbitrary element of A. We shall prove that y € xA. Indeed, if x is an element of
A, then its symmetric set is a subset of A (Prop. 3.2). Thus if x" € S(x), then
xyc A and y € ey  (xx')y = x(x'y). Therefore there exists z € x’y such that
y € xz < XA. Thus xA = A, Similarly Ax = A, hence A is a subhypergroup of H.
Now if w belongs to H-A, i.e. if w is a non attractive element, then, because of
Propositions 3.7 and 3.6, we have that wA < H-A. Therefore (WA N A =
and so A is right closed. Similarly A proves to be left closed and thus A is a
closed subhypergroup of H.
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Proposition 3.10. Ifx € C, then A ¢ xC N Cx.

Proof. Letx beanon attractive element of H. Then from the reproductive
axiom (i.e. xH=Hx=H), it derives that if y is an attractive element, then there exist
elements z,w € H such that y € xz and y € wx. This elements z,w can not be
attractive, because if they were such, then (Prop. 3.7) the sets xz and wx would
contain only non attractive elements and so they could not contain y which is
attractive. Thus z,w are non attractive elements and so the Proposition.

Corollary 3.5. The set C of the non atiractive elements of a TPH (.9 is not
stable under the hypercomposition.

From Propositions 3.7, 3.9 and Corollary 3.5 it derives that:

Proposition 3.11. The set A of the attractive elements of a TPH (H. 9 s the
minimum (in the sense of inclusion) closed subhypergroup of H.

In the fortified transposition hypergroups, subhypergroups with special interest are
the symmetric ones [3,13,14,16]. Respective interest appears in the symmetric
subhypergroups of the TPH.

Definition 3.1. A subhypergroup h of a transposition polysymmetrical
hypergroup is called symmetric, if xch implies S(x) < h.

Subsequent to the definition we remark that {e} and A are symmetric
subhypergroups.

Proposition 3.12. A nonempty subset h of a TPH (H,) is a symmetric
subhypergroup of H if and only if xS(y) ch and S(y)x c h, for everyx.y € h.

Proof The above condition is obviously valid when h is a symmetric sub-
hypergroup of H. Conversely now, suppose that x belongs to h. Then xS(x)c h
and so e € h, which implies eS(x) ¢ hand so S(x) < h. Next, for the proof of the
reproductive axiom we consider an arbitrary element y of h. Then it holds S(y)ch
and y € S(y’) for every y’ in S(y). So for every x € h, xy ¢ xS(y") ¢ h is valid.
Thus xhch. By duality hxch. Also S(x)y < h = xS(x)y € xh = ey ¢ xh = yexh
That is h ¢ xh. Dually h ¢ hx. Hence xh=hx=h, forevery x € h.

Proposition 3.13. h is a symmetric subhypergroup if and only if hh=h and
Sth)=h.

Proposition 3.14. The intersection of two symmetric subhypergroups is a
symmetric subhypergroup.
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Proof. Lethj, hy be two symmetric subhypergrous of H. Then e € h; m h; and
S(x) ¢ hinh, for every x € hymh;. Next let x be an element of hy~hy  Then
X(h]f\hz) c xh; = h| and X(hlﬁhz) c xh; = hz. Therefore X(h|ﬂh2) < hynhs.
Now lety € hjmhy and x” € S(x). Then y € ey  (xx')y = x{x" y) € x(lynhy), so
hynhy ¢ x(hy~hy) and therefore hy~hs = x(hyh;). Similarly hy~h; = (hy~hy)x
and so the Proposition.
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